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CHAPTER 1 

General Introduction 

 

1.1 Remote sensing of riverine environments 

Appraising riverine environments, including topo-bathymetric, on-site streamflow, 

and discharge measurements of stream channels and floodplains, along with their 

vegetation distribution assessment, is challenging and expensive. Nevertheless, such 

appraisal is crucially important for proper river channel design and management 

measures (e.g., Yoshida et al., 2020a), including riparian ecosystems management 

tasks (e.g., Toda et al., 2005). The importance of gathering this basic information is 

growing by the day due to recent climate change (Schiermeier, 2011), causing more 

devastating extreme flood occurrences than predicted. Manually obtaining 

information related to riverine hydro-environmental attributes is often challenging, 

time-consuming and restricted by safety concerns. However, as a result of rapid 

technological advancements, various sophisticated remotely sensed techniques have 

been demonstrated to overcome such challenges that can hinder traditional river 

engineering research methods. Although several new remote sensing technologies 

have been demonstrated over the last few decades, they are still in various stages of 

development, rely on different computational platforms, and each has unique 

benefits and challenges. Therefore, their applicability must be validated and improved 

in light of the uncertainties associated with varying field conditions. The following 

sections describe the promises and uncertainties of remote sensing technologies in 

comparison to traditional approaches in riverine studies, particularly for topo-

bathymetric, hydraulic quantity, and vegetation attribute assessment.   
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1.1.1 Topo-bathymetric assessment 

High-resolution topo-bathymetric data of both exposed and submerged areas is 

critical for a wide range of practical applications in river research, management, and 

rehabilitation, including flow and sediment transport, hydrogeomorphic processes, 

flood flow modeling, aquatic habitat assessment, and so on. It is also essential to 

identify the places of disaster risk in the river channel, including the current situation 

of the submerged artificial infrastructures, which are becoming increasingly important 

because of their roles to drain heavy rain or flood water safely. However, due to the 

difficulty of conducting reliable surveys in a variety of fields with extreme situations 

(e.g., flood-affected areas) or regions that are difficult for researchers to access (e.g., 

vegetated floodplains), field data are scarce or, if available, are frequently inaccurate 

or incomplete. Particularly in Japan, after larger-scale flooding events, manual 

surveys of cross-sectional bed elevations and visual inspections have been conducted 

at 200 m intervals along the longitudinal direction (Mano et al., 2020). Such 

traditional in situ surveys necessitate a high level of engineering expertise to identify 

disaster risk locations between survey lines and suitably digitize via acquiring river 

shapes and circumstances. To overcome those constraints in traditional methods, 

remote sensing techniques with potential, including image-based approaches (e.g., 

Westaway et al., 2020), airborne LiDAR bathymetry (ALB; e.g., Kinzel et al., 2007; 

Yoshida et al., 2020a), unmanned aerial vehicle (UAV)-integrated LiDAR (e.g., Islam 

et al., 2022; Kinzel et al., 2021; Mandlburger et al., 2020), and others are commonly 

used to demonstrate river terrain with emphasis on submerged areas. Because water 

transparency, riverbed conditions, and bottom reflectivity can all restrict bathymetric 

LiDAR measurements (e.g., Kinzel et al., 2021), the performance of the emerging 

remotely sensed techniques must be examined carefully in light of their shortcomings. 
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1.1.2 Sensing of hydraulic quantities 

In addition to assessing topo-bathymetric attributes, obtaining information related to 

stream velocity and discharge is important because it can have an impact on the 

surrounding environment, floodplains, riverine habitats, sedimentation, river 

construction tasks, human needs (agriculture, ecotourism, etc.), and others. A 

reliable record of such hydraulic quantities, particularly during extreme flooding, can 

serve as input and validation data for hydrodynamic modeling (Yoshida et al., 2020a). 

Traditionally, the streamflow rates in Japanese flooded rivers have been gauged by 

dropping several floats from a bridge. Because of its cost-effectiveness and feasibility, 

this conventional method has been widely adopted throughout the country. However, 

the measurement's accuracy becomes questionable when the floats are confined by 

locally produced vortices and tend to meander near river banks while passing through 

the sampling sections. Furthermore, conducting fieldwork with many personnel 

becomes dangerous in extreme weather conditions such as heavy rain and strong 

winds during rainy seasons and typhoons. Consequently, the conventional method 

may provide limited information during a significant flood, resulting in uncertain 

rating curves. Although sophisticated two-dimensional (2-D) or three-dimensional (3-

D) flow measurement approaches, such as the Acoustic Doppler Current Profiler 

(ADCP) (Gordon, 1989), have evolved over the last few decades for simultaneous 

acquisition of water velocity and depth in wide rivers (Mueller et al., 2013), these 

technologies cannot always be used economically. Moreover, they are difficult to 

operate in severe flood conditions. 

 

Given those circumstances, designing remote-sensing-based methodologies for on-

site streamflow assessment can lower risks to hydrographers during natural hazards, 
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economize current streamflow platforms, and broaden networks into ungagged river 

systems, including remote catchments that are difficult to reach. To elucidate such 

practical river engineering issues, many academic, public, and commercial entities 

are launching several remotely sensed analyses using various sensors and platforms: 

ground-based techniques (e.g., Fujita et al., 2019), aerial vehicles that are crewed 

(e.g., Barker, 2018) and uncrewed (e.g., Tauro et al., 2016), and satellites (e.g., 

Bjerklie et al., 2018). These rapidly evolving sets of approaches are expected to be 

used in applied research in river channel planning and disaster mitigation measures, 

with great promises. Although several new sensors and algorithms have been 

proposed, image-based techniques at the hydraulic research level are still in their 

early stages. More recently, Fujita et al. (2020) proposed commercial software to 

estimate surface flow velocity along a specific cross-section: artificial intelligence 

(AI)-automated Hydro- space–time image velocimetry (Hydro-STIV). The technique's 

main benefit is that it uses moving images captured by the UAV platform in addition 

to fixed camera images. Furthermore, unlike other image-based methods (e.g., Large 

Scale Particle Image Velocimetry, Particle Tracking Velocimetry, and so on), the 

current approach requires no visual tracking of tracers (i.e., floats) on superimposed 

images. Earlier studies (Fujita et al., 2019; Yoshida et al., 2020b) reasonably validated 

the conventional STIV (KU-STIV) technique's accuracy using images taken by fixed 

station cameras. Then the studies compared results to ground-truth observation and 

traditional ADCP, which gave few erroneous results and little need for manual 

parameter adjustment. Consequently, as with other imaging systems, when verifying 

the recently updated STIV technique's applicability to examine on-site streamflow 

features under varying field conditions, one must particularly consider its 

uncertainties. Therefore, in this study, I evaluated the promises and drawbacks of 
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the AI-based STIV approach to the remote analysis of hydraulic quantities under 

varying field conditions.  

1.1.3 Vegetation attributes assessment 

With topo-bathymetric and hydraulic information, riparian vegetation attributes are 

crucially important to developing balanced river management measures, addressing 

issues such as flood control (Yoshida et al., 2021) and ecosystem management (e.g., 

Toda et al., 2005). When confronted with environmental system challenges, 

researchers can benefit from understanding the specific distribution of vegetation, 

including but not limited to location, quantity, and species. In recent years, 

researchers have become increasingly interested in changes in the numbers of 

original dominant species as a result of exotic species invasion (Mooney & Cleland, 

2001). In this regard, field inspections have primarily been conducted on limited river 

sections, requiring personnel to enter the site to conduct measurements with a total 

station or a real-time dynamic global positioning system. These ground-truth surveys 

are daunted by several limitations: they are expensive, time-consuming, and non-

repeatable. Furthermore, field surveys may encounter extreme situations (e.g., flood-

affected areas) that can endanger the investigators, as well as areas that are difficult 

for the researchers to access (e.g., densely vegetated areas), resulting in ineffective 

data collection (Anjum and Tanaka, 2020). Nevertheless, it is essential to clarify their 

distributions to predict and control the flooded river flows, as vegetation is prone to 

reducing flow capacity during floods, which significantly impacts river management. 

 

To address these shortcomings in assessing vegetation distributions over long river 

reaches at the reach scale, several leading researchers have demonstrated advanced 

and effective remote sensing techniques, specifically synthetic aperture radar images 
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(Mason et al., 2003), airborne laser scanning (Forzieri et al., 2011; Straatsma & 

Baptist, 2008), airborne LiDAR topo-bathymetry (ALB) (Mandlburger et al., 2015; 

Wieser et al., 2016; Yoshida et al., 2020a), and others. However, because of non-

uniform point cloud density and low-resolution aerial images remotely captured from 

airborne platforms, most researchers find it difficult to extract detailed features for 

accurate land cover mapping (e.g., Yoshida et al., 2020a). Consequently, to achieve 

the ultimate targets in fluvial research (e.g., flood control and ecosystem 

management), river engineers have recently been drawn to UAV-borne topo-

bathymetric LiDARs (Kinzel et al., 2021; Mandlburger et al., 2016) and a novel UAV-

based GLS (TDOT GREEN, 2020) with higher and more uniform point density. Despite 

advancements in remote sensing technologies, more research is required to address 

their benefits and challenges in varying field conditions. 

 

1.2 Flood flow modeling for vegetated rivers 

Water is crucially important for sustaining life, but it is also the root cause of 

numerous disasters. In recent years, extreme and even record-breaking flood events 

induced by intensive rainfall, exacerbated by global warming phenomena, have 

increasingly endangered human lives worldwide (Schiermeier, 2011). For instance, 

European floods, although they had not been seen in decades, occurred in mid-July 

2021 as the latest sign of climate change. Several news outlets reported that at least 

188 people had died in a catastrophic flood that inundated parts of Germany, Belgium, 

and the Netherlands. A flood inundated central China, largely Henan province, in mid-

July 2021, following torrential rains that precipitated an average year's moisture in 

just three days: the most since record-keeping began 60 years ago. In fact, China 

has remained on high alert since devastating floods struck the region in 2020 (Wei 

et al., 2020), with regular flood-response and rescue drills. Furthermore, particularly 
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in Japan, heavy rain frequency has intensified following recent climate change, with 

heavier than expected flooding occurring each year during the last decade (Ministry 

of the Environment et al., 2018). For instance, during July 5–7 in 2018, a severe 

rainfall event occurred in western Japan, causing intense flooding and sediment 

disasters in many places, especially in Okayama, Hiroshima, and Ehime Prefectures. 

In Okayama Prefecture, devastating floods occurring in several rivers inundated 

residential areas (Yoshida et al., 2021). According to field observations after flooding, 

most rivers were damaged severely. Table 1.1 presents the rivers damaged in 

Okayama Prefecture during the 2018 rainfall event.  

 

Table 1.1 Damaged rivers in Okayama Prefecture during 2018 flooding  

 

River name River basin Major river 

damage type* 

Management 

authority 

Takahashi River  

 

 

 

Takahashi 

River 

B and C National Gov. 

Takahashi River A Okayama Pref. 

Oda River A and B National Gov. 

Oda River A Okayama Pref. 

Nariwa River A Okayama Pref. 

Matani River A Okayama Pref. 

Takama River A Okayama Pref. 

Suemasa River A Okayama Pref. 

Osaka River A and C Okayama Pref. 

Asahi River  

Asahi River 

B, C, and D National Gov. 

Asahi River A Okayama Pref. 

Suna River A Okayama Pref. 

Yoshii River Yoshii River B and D National Gov. 

 

*Remarks: A, dike breaching; B, water leakage from dike body (sand boiling at a 

landward area); C, dike protection failure; D, collapse of landward dike slope 

Because of the catastrophic water-related disaster, 81 persons were killed in 
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Okayama Prefecture. Figure 1.1 portrays aerial photographs of the inundation area 

of Mabi Town and a dike breaching point (3.4 KP) taken a few days after the Oda 

River flooding. Hereinafter, the kilometer post (KP) value represents the longitudinal 

distance (kilometer, km) from the river mouth. The inundation area extended 

throughout approximately 30% of the Mabi Town. The dike breaching caused 

extensive inundation at several sections of the related rivers: The Oda River and its 

tributaries (Takama, Matani, and Suemasa rivers). In the Oda River, woody 

vegetation is established lushly along the river reach. In addition, in 1998, a massive 

flood (4310 m3/s peak discharge) occurred in the lower Asahi River, Okayama 

Prefecture, Japan (Figure 1.2). Then, some residential areas were inundated 

severely; hydraulic structures were destroyed. 

 

 

 

 

Figure 1.1 Inundation scene at Mabi Town, near the breaching point at the left-side 

bank of the Oda River (3.4 KP) and thickly established woody vegetation. Kilo post 

(KP) value denotes the longitudinal distance in km from the respective river mouth. 
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Figure 1.2 1998 flood scenes of the lower Asahi River, Okayama Prefecture, Japan. 

 

Devastating damage commonly occurs because of overflow during river flooding. The 

overflow phenomenon is attributable to various factors, including unexpected heavy 

rainfall, low flow capacity in vegetated rivers with narrowed channel width, and 

insufficient flood control tasks, whereas vegetation can be managed artificially in a 

planned manner. Given that background, recent flooding events worldwide highlight 

the importance of detailed flood flow modeling that incorporates actual complicated 

flow regimes under real land cover used for preventing devastation through proper 

river engineering measures. Despite the fact that a considerable amount of research 

has already been conducted on the modeling of open-channel flow and 

parameterization of hydraulic resistance attributable to vegetation distributed both 

flow

flow
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on a laboratory scale and at the reach-scale using various 1-D (Fathi-Moghadam et 

al., 2011) and 2-D approaches to numerical simulations (Yoshida et al., 2020a), many 

unknown aspects remain to be explored. Using the yields of conventional numerical 

approaches developed to date, elucidating the complex flow environment around 

actual riparian vegetation is a challenging task. Consequently, a detailed 3-D 

interpretation is required to improve physical insights into flow phenomena, such as 

aids to river engineering measures. Finally, in this study, I introduced and evaluated 

a fully 3-D numerical modeling of recent floods in river corridors with complex 

vegetation. 

1.3 Purpose of the study 

My PhD research aimed to provide insight into the management of shallow clear-

flowing vegetated rivers, as well as remote sensing of streamflow to validate 

hydrodynamic-numerical methods. Furthermore, the study findings are expected to 

aid policymakers in developing a balanced and rational scenario for flood control 

measures that take best vegetation management practices around river corridors into 

account. 

My PhD research focused on the following specific goals.  

 

 To spatially map and compare riverbed deformation to respective field measures 

and high-resolution aerial images using seasonal GLS datasets acquired before 

and after recent flooding; 

 To confirm positional displacement and severely damaged parts of a river 

submerged structure with its surrounding area, which is expected to be useful for 

ongoing river engineering maintenance tasks; 

 To assess the performance of the depth-averaged flow model after using GLS-
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derived data as input and validation with varying numerical conditions and mesh 

sizes while accounting for computational costs and stability; 

 To compare GLS-based numerical flow estimates with simulated results using ALB 

data; 

 To inform novel approaches for estimating accurate vegetation heights and 

recommending riparian vegetation growth rates; 

 To present multi-seasonal GLS-processed improved algorithms in classifying land 

covers with proper validation; 

 To estimate the overall accuracy of the newly proposed land cover classification 

method by revealing individual percentages of distributed riparian vegetation (via 

confusion matrix) versus pixel-based true labels derived from all possible ground-

truth evidence; 

 To compare finer mesh-based depth-averaged flow model estimates to a non-

contact methodology with novel GLS and deep learning-based imaging 

velocimetry approaches for remote analysis of on-site hydraulic quantities;  

 To introduce a fully 3-D river flood simulation model with reach-scale turbulence 

parameterization using information related to topography, land cover, and 

vegetation distribution from seamless airborne point cloud data; 

 To evaluate the accuracy of the newly constructed 3-D flood flow model in 

comparison to the conventional 2-D hydrodynamic-numerical model (as a 

reference), in addition to imaging STIV-derived flow data and field observations; 

and 

 To ascertain the flood flow response (taking into account both major and minor 

recent flooding events) to the distributed vegetation conditions around the 

historic diversion weir in the lower Asahi River, Okayama Prefecture, Japan. 
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CHAPTER 2 

Characterizing riverine hydro-environmental attributes 

using novel approaches to unmanned aerial vehicle-

borne LiDAR and imaging velocimetry: Promises and 

uncertainties 

 

2.1 Abstract 

Recent advancements in remotely sensed techniques have markedly expanded data 

acquisition potential in riverine studies, but the techniques’ applicability must be 

validated and improved because of uncertainties associated with diverse field 

conditions. This study is the first of a scientific platform that uses a newly designed 

unmanned aerial vehicle (UAV)-borne green light detection and ranging (LiDAR) 

system (GLS) and deep learning-based space–time image velocimetry (STIV) for 

remote investigation of hydraulic and vegetation quantities of the gravel-bed Asahi 

River in Okayama Prefecture, Japan. Aside from identifying bed deformation in waters 

shallower than 2 m, the GLS point clouds characterized the submerged infrastructure 

with block detailing patterns, thereby identifying positional displacement and severely 

damaged parts. The results were compatible with the corresponding high-resolution 

aerial images. Seasonal-GLS measures also revealed that LiDAR-derived elevation 

data, even after minor flooding events with varying conditions (underwater, bare 

ground, and beneath vegetation canopy), were nearly identical to ground-truth 

observations, with outperformed accuracy ranging from 2 to 14 cm of root-mean-

square-error values. The study also assessed the performance of depth-averaged 

flow model after using GLS-derived data as input and validation with varying 
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numerical conditions and mesh sizes while accounting for computational costs and 

stability. In the case of the referenced 4 m mesh, GLS-based numerical estimates 

were aligned with evidence gathered using the airborne LiDAR topo-bathymetry 

(ALB) technique, but for the targeted finer–2 m mesh, the current UAV-based 

approach produced better simulation than the ALB. Furthermore, this study presents 

a non-contact method of estimating incremental river discharge. Compared to 

benchmarked flow model estimates, remotely sensed discharges for three transects 

covering shallower, deeper, and partially submerged woody vegetation areas were 

overestimated as 1–11%, with 4% underestimation for another cross-stream. The 

STIV analysis also showed complicated flow patterns that were reasonably confirmed 

by flow vectors from depth-averaged modeling. Ultimately, a finer mesh (2 m) based 

depth-averaged model validated hydraulic quantities derived remotely from GLS and 

STIV, and vice versa. In addition to approximation of 0.5–1.5 m per year for 

vegetation growth that varies among species, the study using GLS attributes 

accurately identified riparian vegetation types as herbaceous (70%), woody (86%), 

and bamboo groves (65%). That identification can help estimate spatially distributed 

hydrodynamic roughness and can support the preservation of desirable river 

ecosystems. Finally, the findings of the study provide insight into the management 

of shallow clear-flowing vegetated rivers and remote sensing of streamflow to 

validate hydrodynamic-numerical methods. 

 

2.2 Introduction 

Remote sensing of riverine environments, including topo-bathymetric, on-site 

streamflow, and discharge measurements of stream channels and floodplains, along 

with their vegetation distribution assessment, are detailed in Chapter 1. Among the 
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emerging remotely sensed techniques, a cost-effective UAV-borne green LiDAR 

system (GLS; TDOT GREEN, 2020) comprising a high-resolution lightweight camera, 

global navigation satellite system (GNSS) receiver, and an inertial measurement unit 

(IMU) (Mano et al., 2020), have been attracting the attention of river and coastal 

engineers. From a researcher and practitioner perspective, the salient advantage of 

the current GLS compared with other LiDAR-based techniques is the capture of laser 

point clouds and aerial images concurrently. Consequently, it is remarkably well suited 

for topo-bathymetry and land use mapping at a high spatial resolution as a result of 

the lower flying altitude above ground level, yielding a higher and homogeneous 

point density on the ground of about 100–200 points/m2. However, although airborne 

techniques are apparently more productive for larger-scale measurements (Yoshida 

et al., 2020a), they have important shortcomings compared to UAV-based LiDARs, 

such as higher data acquisition costs and difficulties in balancing mission safety and 

flight conditions. For that reason, airborne LiDAR makes it challenging to carry out 

immediate assessments of river management works (e.g., Yoshida et al., 2020a). In 

contrast, using current GLS, information can be extracted easily, if necessary, 

particularly for clear and shallower rivers, because of its comparatively lower material 

and operating costs, drone-based operation, data measurement flexibility, and 

repeatability. Moreover, most airborne LiDAR approaches have no sufficient point 

density to capture artificial river structure shape effectively. In comparison, because 

of homogeneous point density, the novel GLS can be expected to allow individuals to 

reproduce hydraulic infrastructure and other smaller objects on the riverbed such as 

rocks, submerged driftwood, with potential applications for the portrayal of stream 

resistance in numerical hydrodynamic models. Therefore, because hydrodynamic-

numerical methods (e.g., Barker et al., 2018; Yoshida et al., 2021) are vitally 
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important for numerous practical applications in river research and management, it 

is necessary to evaluate flow model performance after using GLS-derived data as 

input and validation with varying numerical conditions and mesh sizes while 

considering computational costs and stability. Furthermore, a vital issue of concern 

is how LiDAR-based measurements have been influenced by various environmental 

factors, such as flow and turbidity, depth, water surface waves, riverbed conditions, 

riparian vegetation, and atmospheric conditions (e.g., Kinzel et al., 2021). Advancing 

beyond these measurement shortcomings has been a slow process. Therefore, 

significant attention must be given to the level of accuracy of GLS to help address its 

promises and limitations, particularly for assessing riverine hydro-environmental 

attributes. Furthermore, Fujita et al. (2020) recently proposed a deep learning-based 

STIV technique for remote sensing of surface flow velocity along a specific cross-

section, the benefits of which are already mentioned in Chapter 1 in comparison to 

other imaging approaches. 

 

Because no report of the relevant literature provides a detailed overview of accurate 

validation of the new advanced GLS and STIV techniques, the current study uses 

both novel approaches to examine hydraulic and riparian vegetation quantities 

remotely with precise valuation. These remotely sensed techniques' potential was 

approximated based on correspondence between ground-truth observations, LiDAR- 

and STIV-derived information, and hydrodynamic–numerical model estimates. 

Because of the higher and more uniform point density of GLS data, the current study 

used GLS data in finer mesh (2 m)-based flow modeling, in addition to the commonly 

used coarse mesh (e.g., 4 m as referenced herein), while accounting for 

computational costs and model stability. Subsequently, the results were compared to 
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those obtained using ALB-based data. Such finer mesh-based numerical findings with 

positive stimulus are expected to be used in numerous hydro-environmental 

applications such as flow and sediment transport modeling, and for riverine habitat 

assessment. This study also used multi-seasonal GLS datasets to depict the 

deformation of riverbeds and submerged infrastructure caused by recent floods and 

other natural disasters. Furthermore, this study examines an entirely non-contact 

methodology for estimating river discharge based on surface velocity and cross-

sectional area data, respectively derived from imaging-based and LiDAR-based 

techniques. Such a remote-sensing approach can be expected to pave the way for 

rapid and safe estimation of river discharges at ungauged sites, which can particularly 

help improve the numerical simulation of river-scale flow. In addition to suggesting 

riparian vegetation growth rates and depicting vertical structures, the current study 

proposed GLS-based novel land cover classification (LCC) methodologies to 

accurately identify individual percentages of distributed vegetation over the targeted 

site (via confusion matrix) in comparison to pixel-based true labels prepared from all 

possible ground-truth evidence. Quantitative findings for vegetation distributions can 

aid in the estimation of spatially distributed hydrodynamic roughness parameters and 

can support the preservation of desirable river ecosystems.  

 

2.3 Study Site and Methods 

2.3.1 Outline of the study site 

The survey was conducted in the lower reaches of the Asahi River in Okayama 

Prefecture, Japan (Islam et al., 2022), covering a 1.2 km long channel (14.6–15.8 KP, 

locally called the "Gion area"), 300 m wide with an average bed slope of about 1:670 

(Figure 2.1a). Throughout this study, Kilo Post (KP) numbers are expressed in terms 
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of longitudinal distance (km) from the river's mouth.

 
 

Figure 2.1 (a) Study site with ground-surveyed positions, and (b) overview of the 

lower Asahi River water level observed and discharge estimated at the nearest 

observatory station. A19.2, ALB measure on 05 February 2019; G20.3, GLS measure 

on 03 March 2020; G20.10, GLS measure on 27 October 2020; and G21.4, GLS 

measure on 09 April 2021. 
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Figure 2.1b presents the lower Asahi River water level observed and the streamflow 

rate estimated during 2019–2021 at the nearest hydraulic station, called Makiyama 

observatory (20 KP), located upstream beyond the domain of interest. It is 

noteworthy that, from the observatory to the upper end of the targeted field (i.e., 

20–15.8 KP), no confluence of large tributaries exists. Figure 2.1b also depicts a 

minor flooding event in July 2020 with maximum discharge of approximately 1600 

m3/s, which might affect the channel's fluvial topography, including floodplain 

vegetation conditions. Originally, numerous gravel bars existed in this river reach, but 

the construction of several multipurpose dams in upstream river areas during the 

1980s gave rise to riparian vegetation and lowered bedload transport, as Yoshida et 

al. (2021) reported. Consequently, research into spatially distributed floodplain 

vegetation, as well as streamflow features with precise valuation in the targeted 

reaches, is crucially important for practical flood risk assessment and for ecosystem 

management measures. 

 

2.3.2 Remotely sensed measures and data processing 

2.3.2.1 UAV-borne LiDAR data capture and positional accuracy 

assessment 

A UAV-mounted GLS (TDOT GREEN, 2020) platform with a single green laser, a high-

resolution camera, a dual-frequency global navigation satellite system (GNSS) 

antenna, data storage, and control unit (i.e., inertial measurement unit, IMU) was 

deployed to conduct both underwater and overland measures (Figure 2.2a). Figure 

2.2b elucidates photographic documentation of the instrumentation package and 

LiDAR mounted on a drone during the G21.4 campaign (09 April 2021), with quadratic 

gray-and-yellow checkerboard targets used as ground control points (GCPs) in the 
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foreground for the absolute orientation of laser scans.  

 

 

 

Figure 2.2 (a) Typical view of UAV-borne green LiDAR used for underwater and 

overland measures, (b) photographic documentation of the instrumentation package 

and LiDAR mounted on a drone during the G21.4 campaign, and (c) positional 

accuracy of GLS measures. 
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Furthermore, to capture data with desired attributes, overlapping coverage of the 

targeted area was attained by multiple flying operations during the G20.3 (03 March 

2020), G20.10 (27 October 2020), and G21.4 deployments. Because of hazardous 

substances such as riparian vegetation along channel margins and floodplains, the 

UAV (DJI Matrice 600 Pro)-based LiDAR flew at 50–100 m above ground level (AGL). 

Table 2.1 presents the specifications of the UAV-LiDAR device used herein, including 

measurement conditions. The plane position of the UAV was generated following the 

world geodetic system, such as the Japanese geodetic datum 2011 and the fifth local 

Cartesian coordinate system. The approach of the measurement system is to obtain 

the distance from the round trip time of the laser beam irradiated to the ground or 

reflected from the targeted object. The LiDAR concurrently captures GNSS and IMU 

data to generate global coordinates-oriented 3-D laser point clouds with continuous 

connection between land and water bottom. Point clouds result from refraction in the 

water region, with one portion of the laser irradiation reflecting on the water's surface 

and the other portion reflecting on the riverbed's bottom. In this study, the water 

depth required for LiDAR-based river discharge estimation was calculated by 

distinguishing between the water surface and riverbed returns, retrieving spatial 

locations where the two types of returns coincided, and subtracting the riverbed 

height from the water surface elevation. 

 

Besides, the optimal trajectory was assessed with a tightly coupled integration 

approach (Dorn et al., 2017) using base station- and UAV-based GNSS and IMU data. 

The trajectory analysis accuracy was within the equipment specifications, with a 

maximum of 20 mm or less in horizontal and vertical positions, whereas attitude 

accuracy (i.e., pitch and roll) of 0.01 degrees or less.  
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Table 2.1 Specifications of the UAV-integrated green LiDAR with survey conditions 

used for the study 

 

 

a Formazin Turbidity Unit (FTU) values were based on a laboratory analysis of samples 

collected near the water's surface; b Nephelometric Turbidity Unit (NTU) values were 

recorded respectively for the water surface, intermediate and bottom layers at a 

depth of about 1.5 m. 

GLS measuremes  G20.3, G20.10 G21.4 

 

Equipment 

specifications 

Device name TDOT GREEN 

Weight (kg) 2.6 

Dimensions (L x W x H) m 0.26 × 0.22 × 0.15 

Laser wavelength (nm) 532 

 

 

 

 

 

 

Survey 

conditions 

Pulse rate (kHz/s) 60 

Scan speed (scans/s) 30 

Maximum number of 

echoes per pulse 

2 

Divergence of the laser 

beam (mrad) 

1.0 

Average point density 

(points/m2) 

200 100 (underwater) 

50 (overland) 

Field of view (°) 90 

Flying altitude 

aboveground level (m) 

50 50 (underwater) 

100 (overland) 

Flying speed (m/s) 2.5 2.5 (underwater) 

4.5 (overland) 

Degree of overlapping 

between flight paths (%) 

75 75 (underwater) 

60 (overland) 

 

 

River water turbidity 

FTUa NTUb 

0.80 (G20.3) 

3.12 (G20.10) 

 

2.45 (G21.4) 

- 

3.70, 3.70 and 5.50 

(G20.10) 

1.90, 2.60 and 2.80 

(G21.4) 
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Before each LiDAR survey, positions of ten GCPs (six: verification points; four: 

adjustment points) were conducted using total station (TS)-based ground 

observation and a virtual reference system to evaluate positional accuracy. Figure 

2.2c shows the verification results of the positional accuracy of the GLS measures 

using the shift correction method (Delefortrie et al., 2016) based on the difference 

between the coordinate values of the GCPs obtained from the ground-truth survey 

and the generated point cloud. The findings revealed that the position correction 

marginally improved the accuracy in the horizontal direction (XY), whereas vertical 

(Z) accuracy resulted in a remarkable improvement with a maximum of about 5 cm. 

This variation in accuracy is most likely due to point cloud reading uncertainties by 

the measurement points' interval of around 10 cm. 

2.3.2.2 Laser point cloud processing 

The traditional waveform approach used in ALB surveys is not used to record data 

from UAV-integrated green LiDAR measures. The reflective method is typically used 

by GLS, with up to four echoes recorded per laser pulse. However, reflection intensity 

values were recorded with a maximum of two echoes in the current study. However, 

the raw laser points were confirmed using commercial software (TDOT Pre 

PROCESSING Ver.1.6; Amuse Oneself Inc., Japan). Subsequently, 3-D point cloud 

data in (.las) file format were generated by employing software (TDOT PROCESSING 

Ver.5.9.5; Amuse Oneself Inc., Japan) with optimal trajectory results and raw data 

captured. In addition, software was used to correct underwater points 

(UNDERWATER CORRECT Ver.7.1; Amuse Oneself Inc., Japan). Figure 2.3 presents 

an overview of the main steps used in LiDAR-derived 3-D point cloud processing from 

the UAV platform. 

 



35 

 

For use in this study, 3-D laser point cloud data were processed by developing a 

Cartesian grid of 0.25 m cubic voxels to filter certain point clouds out of portions 

overlapped by multiple flying operations. Consequently, each voxel included only the 

datum from the topmost point cloud. A 2-D cell of 1 m by 1 m grid were also 

established, comprising point clouds in multiples of 16 voxels spread over the 

horizontal cell (Figure 2.4a). 

 

Figure 2.3 Schematic overview of the main steps in GLS data processing. 

 

The homogenized point clouds within voxels on each horizontal cell were also counted 

(VOX_CNT). After such processing, ground level, called digital terrain model (DTM), 

data were obtained considering the lowest point of each 2-D cell. Furthermore, digital 

surface model (DSM) data were obtained by considering the uppermost point in each 

horizontal cell.  
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Figure 2.4 (a) Schematic overview of GLS data processing, and (b) spatial 

distribution of digital surface model-based data retrieved from UAV campaigns. Tokyo 

Peil (TP) denotes the referenced data level signifying the mean sea level of Tokyo 

Bay in Japan. 
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Using the difference between DSM and DTM (i.e., DSM–DTM), designated as digital 

canopy model (DCM) data, the vegetation height (l) was assessed in each 2-D cell. 

In addition, the number of point clouds on each 2-D cell in the lower half of 

vegetation height (i.e., VOX_CNT50; yellow-shaded part in Figure 2.4a, right side) 

was estimated. Finally, the lower layer points percentage (i.e., Under % = 

(VOX_CNT50/VOX_CNT) × 100) was calculated as a parameter of land cover 

classification (LCC). 

 

In addition, the red–green–blue (RGB) attribute was extracted from high spatial 

resolution aerial images captured concurrently during each GLS measurement with 

ground sampling distance of around 0.03 m/pixel. The elevation data obtained from 

the LiDAR-based DSM data were then combined with RGB information to produce 

color-coded DSMs. Figure 2.4b represents the spatial products of each GLS 

measurement, demonstrating that the color-coded DSM mappings (3-D views) 

obtained from the GLS correspond closely to the respective aerial photographs (2-D 

views), and that this mapping ensures consistency of the extracted DSM data. 

Consequently, the color-coded attribute provides a broad overview to specify the 

position and elevation of the individual object (i.e., water, bare ground, vegetation, 

etc.), effectively assisting in LCC to distinguish the unexpected shallower water area 

from the bare ground. Furthermore, the spatial products revealed missing data in 

deeper waters during the GLS campaigns. The missing data is most likely due to 

insufficient laser power, flying height and river transparency metrics. 

2.3.2.3 Updating UAV-LiDAR-derived missing data 

When performing the depth-averaged numerical simulations described hereinafter, 

the missing bed elevation data of deeper waters evident during the G20.3 campaign 
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were revised using already reported February 2019 ALB (A19.2) data (Yoshida et al., 

2021) obtained with 1.79 Formazin Turbidity Unit. The ALB data were offered by the 

Asahi River Office in Okayama Prefecture, Japan. The ALB-derived digital terrain 

model (DTM) data used to update the missing values in this study can be closest to 

the G20.3 condition because no major flooding took place in the targeted area during 

February 2019 – March 2020 (Figure 2.1b). Similarly, missing data for G21.4 

measurement were updated using the same ALB data, assuming that bed 

deformation in deepwater areas during minor flooding in July 2020 was negligible 

compared to that of shallower regions. Furthermore, it is noteworthy that no recent 

ALB measurements were taken following the small flooding event in the lower Asahi 

River. The ALB surveys tend to be conducted generally after larger-scale flooding 

events, which might be attributable to the enormous expense of data collection, as 

past overviews have shown (e.g., Yoshida et al., 2020a). In such cases, the UAV-

borne GLS is expected to be a promising tool, particularly for the periodic assessment 

of shallow rivers with vegetated floodplains after each flood event. 

2.3.2.4 UAV-based image acquisition and STIV analysis 

To capture vertical shooting above the pre-specified sites of the targeted river reach 

(Figure 2.1a), a mini and low-cost drone (Mavic 2 Pro; DJI Inc., Japan) was chosen. 

The drone specifications, including the video camera, are presented in Table 2.2. 

During the campaigns (S1: 08 March 2021; S2–S5: 07 April 2021; see Figure 2.1a), 

the UAV was connected by Wi-Fi to a tablet; it functioned using a DJI GO 4 application. 

The study used the "tripod flight mode" option, which helps capture stable and 

smooth videos while slowing down the drone. The drone hovered at approximately 

40–60 m AGL over the selected areas, capturing videos lasting about 1 minute in 

each case. 
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Table 2.2 Specifications of a drone-mounted video camera and software used for 

image velocimetry analysis 

 

 

 

 

 

 

Drone 

specifications 

 

Model name DJI Mavic 2 Pro 

Takeoff weight (g) 907 

Dimensions (L x W x H) mm 

 

Folded state: 214 × 91 × 84  

Unfolded state: 322 × 242 × 

84  

Maximum flight time (min) 31 

Satellite positioning GPS/GLONASS 

Hovering accuracy (m) Vertical ±0.1 m  

Horizontal ±0.3 m 

Transmission power (GHz) 2.400–2.483 

Flying height above ground level 

(m) 

40–60  

 

 

Camera 

specifications 

Sensor 1" CMOS 

Lens 28 mm lens (77° field of 

view) 

ISO sensitivity Video: 100–6400 

Video resolution (pixels) 4K: 3840 × 2160; 30 fps 

Video format MP4 (MPEG-4 AVC/H.264) 

Stabilization 3-axis mechanical (tilt, roll, 

pan) 

 

Image velocimetry 

software 

specifications 

Software name Hydro-STIV 

Searching line length (m) 8.00–28.50 

Analysis period (s) 60 

 

A novel approach, space–time image velocimetry (STIV), may be a quick and 

effective image analysis tool for evaluation of streamwise velocity distributions using 

video images. This study used the newly released Hydro-STIV software, which 

incorporates a deep learning-based convolutional neural network algorithm (Fujita et 

al., 2020). An important requirement of STIV is that the brightness or color of the 

water surface must change with the water flow. The streamflow is estimated based 
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on user-defined parallel search lines to the main flow direction rather than the 

image's entire field. Table 2.3 compares the accuracy of geometric corrections of 

video images used in STIV analysis (for section S1 as an example) to pixel-based and 

benchmarked GCPs coordinates, revealing the plane position and height errors of 

0.07–1.020 m, supporting the product developer's recommended limit of 2 m for 

proper analysis in larger river sections. 

 

Table 2.3 Accuracy valuation of geometric corrections of video images used in 

space-time image velocimetry analysis (for section S1) 

 

Ground control 

points (GCPs) 

number 

RTK-GNSS-based 

GCPs coordinates 

Pixel-based 

coordinates 

Estimated 

errors 

X (m) Y (m) X (pixel) Y (pixel) dX (m) dY (m) 

1 34068.144 142586.271 438.773 1055.545 -0.157 0.485 

2 34070.426 142588.282 632.679 1409.678 -0.481 0.801 

3 34070.442 142592.289 1108.258 1575.008 -0.632 0.585 

4 34066.885 142590.787 1091.929 1112.696 -0.277 0.712 

5 34066.280 142588.321 821.481 934.099 -0.190 0.792 

6 34062.065 142586.549 781.680 357.485 0.084 0.712 

7 34061.903 142588.523 1053.148 449.335 0.151 0.895 

8 34068.610 142606.950 2825.853 2011.805 -0.414 -0.823 

9 34066.120 142609.401 3215.705 1841.373 -0.184 -1.000 

10 34065.231 142606.384 2910.559 1605.624 -0.119 -0.769 

11 34063.115 142608.763 3275.918 1472.952 0.070 -0.943 

12 34060.835 142609.081 3405.527 1231.367 0.300 -1.010 

13 34060.457 142606.173 3092.866 1066.223 0.370 -0.748 

14 34057.668 142605.730 3165.233 732.222 0.616 -0.707 

 

2.3.3 Depth-averaged flow modeling 

For steady-state streamflow simulation in the targeted domain, the study employed 

a 2-D hydrodynamic-numerical modeling approach based on the boundary-fitted 
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coordinate system in a conservative form (Yoshida & Maeno, 2014; Yoshida et al., 

2021). In the current shallow-water model, the local water depth and depth-averaged 

velocities were regarded as dependent flow variables. Hydrodynamic roughness 

attributable to gravel-bedded conditions was computed using Hey's formula 

(Rickenmann & Recking, 2011). Employing the finite difference method with the 

support of the finite volume method's concept, the governing flow equations used in 

the model were discretized in a staggered mesh. Computation on the time 

development of the flow variables was performed using an explicit second-order 

Adams-Bashforth scheme. In contrast, the second-order central difference technique 

was employed to discretize spatial derivatives, except for advection terms, which 

were computed based on the first-order upwind approach. 

 

Movements of water edges varying over time were captured considering both 

continuity and simplified momentum equations. The water level gradient and bed 

friction were evaluated using two terms of the momentum equations (Yoshida & 

Maeno, 2014). The numerical mesh was composed of 615 × 167 cells, signifying 615 

longitudinal cross-sections and 167 nodes in each cross-section. The mesh size was 

estimated to be around 2 m on average. Based on computational cost and stability, 

a referenced mesh size of 4 m on average with 305 × 85 cells was also considered 

for comparisons with the targeted finer mesh (2 m)-based simulated findings. The 

boundary conditions were defined as upstream discharge data obtained from the 

nearest observatory station database and downstream water level information 

acquired through portable pressure-type sensor (S&DL mini electrical conductivity 

meter) observation. Based on preliminary simulations, a threshold water depth of 

0.01 m was used in the drying state assessment to prevent its uncertainty, which 
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might be caused by high velocities near the wet–dry boundary. Furthermore, a 

velocity of zero and the slip-velocity were considered for the computational nodes in 

the dry bed and water's edge conditions, respectively. The numerical analysis 

conditions for the depth-averaged hydrodynamic-numerical model applied in this 

study are presented in Table 2.4. Also, the computational details were demonstrated 

in the earlier studies report (Yoshida & Maeno, 2014; Yoshida et al., 2021). 

 

Table 2.4 Computation conditions for depth-averaged hydrodynamic-numerical 

model applied for this study 

 

Parameters Assigned values 

Numerical calculation time (hr) 10  

Calculation time interval (s) 0.01  

Completion step 360000 × 10 

Water level downstream gradient as an initial 

condition 

1.0/750.0 

Threshold water depth (m) 

(Criteria for water/land boundary) 

0.01 

Gravel bar size via sieve analysis for Hey's 

formulaa, D85 (mm) 

57 

Computational mesh 305 × 85 cells (Referenced) 

615 × 167 cells (Targeted) 

Averaged numerical mesh sizeb (m) 4 m (Referenced) 

2 m (Targeted) 

Upstream boundary condition 

(Discharge at upstream from observatory station 

database) 

26.16 m3/s (23 March 2020; 

G20.3) 

19.67 m3/s (07 April 2021; 

G21.4) 

Downstream boundary condition 

(Water level at downstream via pressure-type 

sensor observation) 

6.93 m (23 March 2020; G20.3) 

6.87 m (07 April 2021; G21.4) 

Execution time (i.e., central processing unit, CPU 

run-time) to perform numerical simulation 

21 hrs (For 4 m mesh) 

131 hrs (For 2 m mesh) 
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2.3.4 Ground-truth measurements 

To verify UAV-based GLS data and to validate the flow model estimates along with 

imaging velocimetry analysis results, topo-bathymetric and velocities were locally 

surveyed during the respective UAV campaign. The locations of all ground-truth 

surveys were depicted earlier in Figure 2.1a. Using total station (TS) and a measuring 

rod, benchmark measurements were taken of the riverbed elevation and the water 

depth along specified cross-sections. Water levels were monitored in real time by 

installing several portable pressure type sensors at specific positions to validate the 

model-based simulated findings. The sensor-based data additionally verifies the 

LiDAR-derived water level data used as input in Hydro-STIV analysis to estimate the 

incremental river discharge through specified transects. Furthermore, the average 

flow velocity was calculated by taking three readings with a digital current meter for 

each specific interval of the local cross-section. Water edge positions were also 

measured using a TS and a real-time kinematic global navigation satellite system 

(RTK-GNSS) with a dual-frequency network to validate the GLS-based hydrodynamic 

model estimates. Furthermore, before the UAV flights, a maximum of 14 GCPs was 

placed along the banks of the river's specified sites to establish survey control for 

moving images captured for STIV analysis. Herein, the RTK-GNSS surveying 

instrument was applied to identify the targeted GCP positions. In recent years, an 

unprecedented diversity of vegetation has been observed in the study area, 

dominated by woody plants (i.e., willow) and bamboo trees. In this study, a few 

willow heights were locally surveyed via TS and measuring rod to validate GLS 

estimates and to verify vegetation growth rates calculated considering the one-year 

gap between GLS campaigns.  
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2.3.5 True label mapping for LCC accuracy assessment 

For this study, a pixel-based performance evaluation method of confusion matrices 

(Story & Congalton, 1986) was applied to assess the overall accuracy (OA) of GLS-

based predicted information for LCC mapping versus ground-truth evidence, 

designated as true label. Based on results of earlier field observations of typical 

vegetation species in the targeted river presented in a recent report (Yoshida et al., 

2021), the land-cover objects were classed in the study area using the following 

labels: water, bare ground, herbaceous, arborous or woody, bamboo species, and 

others. Herein, single true-label mapping (Figure 2.5a) was drawn instead of different 

seasonal cases because the process was expensive, time-consuming, and laborious. 

Information was gathered from a 0.03 m/pixel orthophoto captured during the G20.3 

campaign in a no-leaf condition (Figure 2.4b, right). The targeted region had some 

high-density bamboo areas combined with some trees. However, in orthophotographs, 

trees with leaf-on states are challenging to differentiate from bamboo. Consequently, 

in true label mapping, the study primarily preferred orthophotos from the late winter 

(G20.3) over the other two seasonal high-resolution orthophotos with leaf-on 

conditions. Mapping clarified that, in a few cases, herbaceous species under larger 

trees were visualized and were depicted in the true label, which might be difficult in 

leaf-on conditions. Furthermore, despite the existence of short or mowed herbaceous 

species near the river banks (Figure 2.4b, right; Figure 2.5c), these species were 

labeled as bare ground. This consideration in labeling herbaceous species was 

attributable to the fact that, in the newly proposed LCC methodology (see section 

2.4.2.1), up to 0.3 m of the GLS-derived digital canopy model (DCM) values were 

regarded as bare ground. Figure 2.5b, for example, shows five sampled true labels 

along with their corresponding aerial images from the targeted period.  
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Figure 2.5 (a) True label mapping using ground-truth evidence, (b) sampled high 

spatial resolution aerial images (from G20.3 campaign) with corresponding true labels, 

and (c) photographs taken locally and images gathered from aerial footage 

(September 2020) for true label preparation. 
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In the referenced mapping, the spatial distributions of the targeted three-set 

vegetation species, specifically the dominant woody and bamboo varieties, were also 

confirmed from earlier field observation experience, including local photographs and 

aerial photographs sampled from UAV-based video footage in September 2020 

(Figure 2.5c).  

 

Furthermore, whereas the true label mapping was based primarily on aerial 

photographs taken in late winter (G20.3), the tree-dominant and bamboo-dominant 

areas were additionally confirmed and modified as necessary based on other seasonal 

aerial images (G20.10 and G21.4; leaf-on condition) and field visits, which aided us 

in distinguishing those species by providing critical information according to texture 

and color differences. In addition, a few parts of the overland areas were labeled as 

others or background (white-colored part) because of some machinery, 

anthropogenic barriers, concrete structures, cars, and so on used for river 

management works. Although the true label prepared herein was reasonably 

confirmed based on the ground-truth evidence, a few uncertainties about this 

benchmarked mapping remain because it was drawn entirely from the perspective of 

human eyes. 

 

2.4 Applications and Discussion 

2.4.1 Evaluation of topo-bathymetric and hydraulic quantities 

2.4.1.1 Comparison of topo-bathymetric mapping and field surveys 

Figure 2.6a depicts color contour mapping of riverbed deformation, particularly in 

shallow water regions, using processed DTM data of 2 m squared mesh from the 
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currently studied multi-seasonal GLS and existing ALB surveys. The plus and minus 

sign values respectively represent deposition and scouring throughout the 

deformation mapping. As stated earlier (see section 2.3.2.3), the GLS data was 

updated with previously available February 2019 ALB (A19.2) (Yoshida et al., 2021) 

data to account for missing GLS measures in deeper water. To verify the data revision, 

we assessed the riverbed change between the G20.3 and A19.2 campaigns (Figure 

2.6a, left), which revealed no marked variation at the shallower zones, except for the 

black-dotted areas, because of anthropogenic works confirmed from seasonal 

orthophotos and field visits. Such an illustration verifies that no flooding occurred 

during the one-year gap separating the two targeted LiDAR surveys, and also 

supports the earlier graphical representation of the studied river's flow overview 

(Figure 2.1b). From this perspective, it can be inferred that bed deformation in deeper 

waters was negligible during the GLS data updates. Finally, using the difference in 

updated DTMs of G21.4 and G20.3, considerable deformation of 1.5–2.0 m (Figure 

2.6a, right; see red-dotted areas) was identified, except for the black-dotted regions 

that were deformed because of artificial works for river management measures, 

despite minor flooding between the survey periods (Figure 2.1b). Figure 2.6a also 

confirmed the anthropogenic works between the survey periods using aerial 

photographs captured concurrently during LiDAR campaigns. Figure 2.6b depicts the 

numerically estimated water depth over the targeted domain, with the maximum 

being approximately 2.08 and 1.64 m, respectively, using updated data of G20.3 and 

G21.4 measures, excluding the revised missing data areas. Furthermore, the 

mappings were spatially superimposed with their respective high-resolution 

orthoimages to validate the bathymetry maps' water edges. Aside from image 

validation, the water edge positions were reasonably confirmed after plotting the 
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field-surveyed data. 

 

Figure 2.6 (a) Riverbed deformation mapping using digital terrain model (DTM) data 

(black-dotted, deformation because of artificial works, where red-dotted, substantial 

riverbed changes because of flooding); and (b) numerically simulated flow depth 

mapping (2 m squared mesh). 

 

Furthermore, GLS point clouds from various periods over a year aided in identifying 
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riverbed changes in underwater measures and even in densely vegetated floodplains 

(Figure 2.7) caused by the recent minor flood in July 2020.  

 

Figure 2.7 Cross-sectional illustration of topo-bathymetric attributes measured 

across 14.8 KP from left to right bank during three periods using GLS point clouds 

(Red, G20.3; Yellow, G20.10; and White, G21.4). 
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Seasonal GLS also approximated shallow bathymetry of less than 2 m by 

differentiating between LiDAR yields from the water surface and from the riverbed. 

Those yields varied with turbidity over time. For that reason, the method provides 

reliable support for flow model estimates.  

 

Consequently, continuous 3-D data connecting the land and shallower water parts 

were generated, which is typically challenging to obtain using traditional techniques 

(e.g., sonar) because these systems are intended primarily for use in greater depths, 

although shallow bathymetry is crucial for diverse fluvial and ecological functions 

(Kaeser et al., 2013). However, the current bathymetric results were partially 

consistent with those reported in a recent review by Mandlburger et al. (2020), who 

stated that the current laser can penetrate up to 2 m in turbid waters. The earlier 

report highlights the absence of survey periods with detailed measurement conditions 

and river transparency indices, despite this information being important for various 

scientific applications. In contrast, the present study showed detailed measurement 

valuations to address the more recent drawbacks. Additionally, the bathymetric study 

results revealed that the current GLS outperformed another UAV-borne topo-

bathymetric LiDAR reported recently by Kinzel et al. (2021), who observed bed 

returns of up to 0.95 m of water in a coarser-bedded reach with a 6 Nephelometric 

Turbidity Unit at 4 m flying height above the water surface. Furthermore, to address 

the GLS accuracy in elevation measures, the DTM data under varying conditions were 

compared with the respective field surveys, revealing that the root-mean-square 

error (RMSE) values for the G20.3, G20.10, and G21.4 campaigns were 0.068, 0.090 

and 0.123 m (underwater); 0.020, 0.050 and 0.078 m (bare ground); and 0.121, 

0.129 and 0.140 m (under canopy) (Figure 2.8). Despite the presence of turbid water 
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(Table 2.1), bed materials with diameters in the tens of centimeters (Maeno & 

Watanabe, 2008; Yoshida et al., 2020a), and densely vegetated floodplains, GLS 

performance of bed elevation measurements were closer to the respective ground-

truth information. 

 

 

 

Figure 2.8 GLS accuracy in elevation data captures for various conditions compared 

to corresponding local measures. ABS, absolute; RMSE, root-mean-square error 

 

To validate the riverbed deformation mapping described above, Figure 2.9a presents 

comparison of field surveys of bed elevation with the targeted GLS-derived DTMs 

along the six local transects (Figure 2.1a), addressing both shallow and deep waters. 

Because ground-truth surveys were conducted at 1–2 m intervals, the study chose a 

finer mesh size of 2 m for numerical analysis.  
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Figure 2.9 Comparison of field-surveyed (a) riverbed elevation (Z), (b) flow depth 

(h), and (c) sensor-recorded water level (H) with corresponding model estimates 

using LiDAR-derived DTMs. FS, field survey; L, left bank; R, right bank; RMSE, root-

mean-square error; and TP, Tokyo Peil as referenced data level signifying the mean 

sea level of Tokyo Bay in Japan. 
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Herein, LiDAR-based DTMs were generated for simulation using the previously 

processed raw data of mesh size 1 m, considering the nearest grid points. Based on 

comparisons between before (G20.3) and after (G20.10 and G21.4) flooding datasets, 

as well as respective field measurements, the significant deposited (red-dotted) and 

eroded (blue-dotted) areas were identified along the targeted cross-sections, except 

for the T1 and T2 sections (Figure 2.9a). The findings indicate that seasonal GLS 

measures reasonably validated the riverbed change, with a maximum of around 1.5 

m (T6 section) because of the minor flooding event (Figure 2.1b) between the survey 

periods. Furthermore, for the T1 and T2 cross-sections, the study compared the 

targeted 2 m mesh-based elevation data to those from the referenced 4 m mesh, 

revealing that the current mesh significantly improved the estimated RMSE values 

compared to the referenced mesh findings. The T1 section also demonstrated that 

using finer mesh in GLS data improved the elevation accuracy to about two times 

that of ALB data. This variation is most likely attributable to the ALB measure’s lower 

and non-uniform point density (Yoshida et al., 2021). Additionally, the 2 m mesh-

based bed elevations were compared with smoothed DTMs data processed from 

spatially distributed raw point clouds using locally weighted scatterplot smoothing 

(lowess) fit technique (Helsel & Hirsch, 2002), revealing no significant difference in 

the estimated RMSE values (T3 and T4 sections; Figure 2.9a). Therefore, considering 

the accuracy valuations, streamflow simulation using GLS data of 2 m mesh can be 

expected to perform better than using the referenced 4 m, even though 

computational costs are higher in the current setting. Furthermore, to validate the 

spatial mapping of simulated water depths presented earlier, Figure 2.9b presents a 

comparison between GLS-based numerical estimates and field-surveyed values along 

the two local sections (T1 and T2), demonstrating that the simulated depths were 
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closer to the field observations, except for a few points at the right end, because of 

both steep sloppy and woody vegetated areas. In terms of estimated RMSEs, a 

comparison of findings of depth elucidation revealed that 2 m mesh-based simulation 

was more effective than the 4 m estimates. In addition, Figure 2.9c reasonably 

confirmed the model estimates of water levels using seasonal GLS data in comparison 

to the corresponding pressure-type, sensor-based information at various KP positions 

(Figure 2.1a). However, in a more recent report (Yoshida et al., 2020a), pilot-operated 

ALB was used for topo-bathymetric measurements in fluvial environments, 

demonstrating that the LiDAR performance was nearly identical to that of local 

observations. The study reported herein compared G20.3-based findings with those 

from previously available A19.2 data (T1 and T2 sections; Figures 2.9a,b) because 

no significant flooding event occurred between the two targeted measures. 

Comparative results revealed that GLS-based estimates were aligned with evidence 

gathered using the airborne technique in the case of 4 m mesh, but for 2 m mesh, 

the current UAV-based approach produced better simulation than the ALB. The 

findings also validated ALB data that had been used previously to revise the missing 

GLS data as input in numerical modeling. Therefore, the current GLS would be 

deemed a practical option for the more common airborne (e.g., Yoshida et al., 2020a) 

and other remotely sensed (e.g., Legleiter & Kinzel, 2021) approaches for shallow 

and clear-flowing river bathymetric measurements. 

2.4.1.2 Reproduction of hydraulic infrastructure with surrounding 

deformation 

Figure 2.10a depicts elevation step mapping of a submerged infrastructure using GLS 

returns obtained at around 15.0 KP on the left bank. It was possible to reproduce its 

block-shaped patterns and mark the locations where some blocks were collapsed 
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using the G20.3 point clouds. The G20.3-based reproduction was validated by 

comparing its orthophoto, captured concurrently during the LiDAR survey. 

Furthermore, the shape and patterns were ensured from a photographic view of the 

hydraulic structure during construction work in 2006.  

 

Figure 2.10 (a) Elevation mapping of hydraulic infrastructure and (b) deformation 

of its surrounding riverbed using LiDAR returns. The black-dotted enclosure 

represents the original area of the artificial object during construction. 
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The study also observed the following three structural consequences based on step 

mapping (G20.3) and aerial image analyses (Figure 2.10a). First, although the 

structure might have had a usual sloppy pattern during construction, the white-

dotted area demonstrates such a unique phenomenon indicating that the object has 

begun to move or displace from its original position, most likely because of landslides. 

Then the blue-dotted areas represent a few blocks that have already fallen randomly. 

Finally, the red-dotted regions indicate that the hydraulic structure has been damaged 

severely (i.e., white areas showing missing data of deeper waters inside the black-

dotted enclosure). Such structural damage might also be attributed to the recent 

catastrophic flood in July 2018, which recorded a peak flow rate of around 4500 m3/s 

(Yoshida et al., 2021). Furthermore, despite the higher water turbidity in the G21.4 

measure, the current infrastructure patterns were reasonably confirmed, indicating 

that the more recent minor flood in July 2020 induced no significant failure to the 

targeted object. For comparison with GLS findings, the study presented the hydraulic 

structure using A19.2 point clouds, revealing that the current status of the target was 

not visualized because of the airborne technique's non-uniform point density. 

Furthermore, Figure 2.10b captures riverbed changes around the targeted structure 

using the LiDAR point clouds. Using the differences in G20.3 and A19.2 returns, the 

results ascertained that the surrounding areas were nearly identical between the two 

campaigns, except for a few sections deposited (red-dotted) with bed materials at 

the upper end of the structure (Figure 2.10b, left). In contrast, using the differences 

between the G21.4 and G20.3 point clouds, the severe scouring at the upper back 

(blue-dotted) and deposition at the lower end (red-dotted) were shown to result from 

minor flooding between the targeted surveys (Figure 2.10b, right). Based on the 

findings, the new advanced GLS was functional in identifying the specifics of river 
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submerged structure and its surrounding deformation, which will be useful for 

ongoing river engineering maintenance tasks intended for preventing hydraulic 

structural failure. 

2.4.1.3 Comparison of STIV-derived velocities with flow model estimates 

Figure 2.11a depicts contour mapping of model estimates of depth-averaged 

resultant flow velocity (left) and flow vectors (right) using processed DTMs from the 

G20.3 and G21.4 measures.  

 

 

 

Figure 2.11 (a) Depth-averaged flow velocity distribution using GLS-derived DTMs 

in finer mesh (2 m)-based hydrodynamic modeling, and (b) comparison of observed 

flow velocities (V) with the respective modeled data along the two cross-streams 

locally surveyed. 
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Such spatial representations using seasonal GLS data can have important implications 

for elucidating how streamflow velocities are distributed in larger cross-sections over 

changing periods. Furthermore, to validate the spatial distributions of simulated 

velocities, Figure 2.11b compares numerical estimates and field measures, 

demonstrating that the modeled data were closer to the benchmarked observations, 

except for a few points at the right end (i.e., black-dotted areas in T1 section) 

because of the mislabeled DTMs in steep sloppy and vegetated areas described 

earlier and also at the central part (i.e., blue-dotted areas in T2 section), which might 

be attributable to field survey errors caused by the use of digital current meters in 

deeper water. In terms of estimated RMSEs, comparison of the results of depth-

averaged velocities verified that the 2 m mesh-based simulation was more effective 

than the 4 m estimates, especially when using GLS data versus the referenced ALB 

data. 

 

Furthermore, the present study estimated surface flow velocities for areas with 

shallower (S1 and S2 sections), deeper (S3 and S5), and higher flows with partially 

submerged vegetation (S4) using aerial vertical shooting with deep-learning 

automated STIV analysis (Figure 2.12a). Figure 2.12b presents comparison of STIV-

converted depth-averaged estimates (i.e., STIV*0.85) to a digital current meter (S1 

section) and model (S2–S5 sections)-derived velocities for the specific cross-streams. 

As described herein, considering convenience and safety concerns, field observations 

were merely conducted along a local cross-section in shallower water (S1) to validate 

STIV analysis results because surveying in deeper and higher streamflow areas is 

always dangerous.  
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Figure 2.12 (a) Velocity vectors (red arrows) with estimated surface flow velocities 

(m/s; yellow) over the specified search lines (blue lines) parallel to the main flow 

direction generated by deep learning-based STIV within captured frames, (b) 

comparison of STIV estimates with local measurements and flow modeled data along 

the targeted cross-streams from left to right, and (c) accuracy valuation of STIV-

derived flow velocities inferred from results of linear regression. 
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Furthermore, the study did not perform hydrodynamic-numerical simulation for the 

specific section of S1 because it was shot one month earlier than the other four 

targeted sections, and there was no downstream boundary condition (water level) 

data for numerical modeling during that period. Moreover, STIV analysis revealed a 

complicated flow pattern for the S4 section at approximately 22–26 m (blue-dotted 

part; Figure 2.12b), as confirmed by the earlier illustration of flow velocity vectors 

from 2-D modeling using the G21.4 dataset (Figure 2.11a; B section).  

 

The accuracy of depth-averaged estimates from STIV*0.85 was assessed using linear 

regression (Figure 2.12c). STIV-analyzed results compared to modeled data revealed 

strong agreement (R2 = 0.850–0.959) and regression lines with slopes of 

approximately one for the most-targeted cross-stream sections. The model 

comparisons also revealed that the estimated RMSEs were 0.048–0.057 m/s, except 

for section S4 (0.247 m/s), although this specific section demonstrated better 

goodness-of-fit (R2 = 0.959) than other sections. The higher RMSE is probably 

attributable to the imaging approach considering the partially submerged vegetation 

condition during flow estimation, whereas the flow model only used the riverbed 

elevation as input despite the presence of vegetation. Furthermore, comparison to 

the current meter measures showed that imaging analysis for the S1 section greatly 

underestimated the velocities for the last two searching lines 14 and 15 (red-dotted 

part), leading to poor agreement (R2 = 0.742) with an estimated RMSE value of 0.160 

m/s. Such an underestimation in the S1 section resulted from the fact that significant 

portions of the specific searching lines (14 and 15) of 11.50 m length were marked 

on the ground surface during STIV analysis. In addition to the S1 transect, the S3 

yielded poorer goodness-of-fit (R2 = 0.850; Figure 2.12c) for a few points when 
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compared to the other three sections (S2, S4 and S5) findings because STIV 

overestimated the model values at a distance of approximately 30–40 m for the 

specific section (black-dotted part; Figure 2.12b). This variation is most likely because 

STIV estimates velocities based on user-defined parallel search lines to the main flow 

direction, whereas the hydrodynamic model simulates depth-averaged values using 

actual flow vectors. Figure 2.13 shows, using the S4 section as an example, how the 

current imaging technique estimates surface velocities for defined searching lines 

while taking the average slope of line patterns into account (i.e., yellow lines towards 

the lower right corner). 

 

Figure 2.13 Space-time images (STIs) obtained (a) from original image sequences 

and (b) with histogram equalization for defined searching lines in S4 section as an 

example. 
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Furthermore, the searching line lengths were 8.00 to 11.90 m, except for the S4 

(28.50 m) because of the presence of partially submerged woody vegetation. 

Because of the obstacles in the targeted area, such a long length was necessary for 

imaging analysis, which would serve as a reference for future research. Overall, it 

was inferred that the current STIV method can produce good results, except for a 

few points that produced overestimations or underestimations, which could then be 

adjusted by application of manual correction after varying the length of searching 

lines. In addition, the deep-learning-based estimations reasonably validate depth-

averaged hydrodynamic-numerical model-based findings (and vice versa) without the 

need for any manual adjustment of a line pattern gradient for a specific cross-section, 

whereas other conventional imaging techniques (Fujita et al., 2019; Yoshida et al., 

2020b) might yield anomalous values and might require frequent manual corrections. 

Finally, because the deep learning approach provides faster calculations than the 

traditional imaging method while maintaining higher accuracy, the current STIV can 

be used for real-time river flow measurements. 

2.4.1.4 Remotely sensed river discharges versus model estimates 

The study used STIV-estimated velocities and LiDAR-derived water depths to 

estimate the incremental discharges in the targeted sites at the time these UAV-

based datasets were collected. The remotely sensed water depths were calculated 

by distinguishing between the water surface and riverbed returns, retrieving spatial 

information where the two sorts of returns coincided, and subtracting the riverbed 

height from the constant water level. The workflows of the methodology used to 

estimate non-contact river discharges for this study are depicted in Figure 2.14.  
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Figure 2.14 Schematic overview of the methodology used to estimate non-contact 

incremental river discharges (GCPs, ground control points; STIs, space–time images). 

 

Figure 2.15 shows how STIV estimates of surface flow velocities and GLS-derived 

depths varied from left to right end across the specific channels. The dotted line in 
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the figure also represents the left and right corners of each vertical as estimated 

discharge increments. Results from the figure showing surface flow velocities were 

converted to depth-averaged values (STIV*0.85) using the typical conversion factor 

of 0.85 (e.g., Rantz et al., 1982) to calculate incremental discharge. Furthermore, the 

illustrations showed clearly that, because both the water depth and flow velocity 

increase with distance from the left end, a large proportion of the streamflow volume 

inside the channels was nearer to the right bank, except for section S5. 

 

 

 

Figure 2.15 Depiction of STIV estimates, GLS-derived bed elevation and water 

depths used to calculate incremental discharge for targeted cross-streams. 
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The total discharge for each transect was calculated by adding the discharge 

increments which occurred laterally across the particular channel, as presented in 

Table 2.5. In section S1, it was described that the remotely sensed approach 

underestimated the discharge by around 15% relative to the ground-truth estimates. 

The disparity in all discharges for the shallower first section was partly attributable 

to the imaging analyses’ marked underestimation of surface flow velocities along the 

last two searching lines, as described earlier in section 2.4.1.3. It might also be 

attributable to errors in local surveys. In contrast, compared to flow model estimates, 

the remotely sensed discharges were overestimated by approximately 1–11%, except 

for section S5, which was underestimated by about 4%.  

 

Table 2.5 Hydraulic quantities estimated using remotely sensed data in space–time 

image velocimetry (STIV), corresponding field measures, and flow model estimates 

for specified cross-streams on the lower Asahi River in Japan 

 

Hydraulic quantities Cross-streams 

S1 S2 S3 S4 S5 

 

Mean depth-averaged 

velocity (m/s) 

STIV*0.85 0.50 0.24 0.23 0.68 0.33 

Field 0.56 - - - - 

Modeled (2 m mesh) - 0.26 0.21 0.82 0.36 

 

 

Total discharge 

(m3/s) 

STIV*0.85 2.88 0.76 14.91 13.06 18.31 

Field 3.38 - - - - 

Modeled (2 m mesh) - 0.72 13.42 13.03 19.02 

 

Furthermore, because the total cross-sectional flow volume passing through the S3 

channel was divided into two paths (S2 and S4), summing the remotely sensed 

discharge increments laterally across those two distributaries caused a total discharge 
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of 13.82 m3/s, which reasonably supports the main channel estimate (14.91 m3/s). 

In addition, combining the discharges passing through the cross-streams of S2 and 

S5 yields a total of 19.07 m3/s (Table 2.5) flowing through the entire targeted domain, 

which was closer to the upstream boundary discharge (19.67 m3/s) of numerical 

modeling (Table 2.4). Therefore, the incremental discharges calculated from entirely 

remotely sensed datasets were reasonably consistent with field measures and model 

estimates, except for a few points that were overestimated or underestimated 

because a referenced value was used for the velocity conversion index and for 

considering the constant water level from GLS data. That referred value affected the 

cross-sectional flow volume considerably. Table 2.5 also shows that the STIV-derived 

mean depth-averaged velocity for the S4 transect was 17% lower than the model 

estimate, whereas the imaging technique showed excellent performance for the other 

studied sections. This variation resulted from a longer searching length for all the 

lines considered in STIV analysis for the specific cross-stream with partially 

submerged woody vegetation at the left end. The finding of underestimation implies 

that longer search lengths should be designated for obstacle parts, except for other 

lines of remaining common areas where a shorter length can be considered for more 

reasonable estimation. Overall, comparisons of river discharge estimates 

demonstrate that the hydraulic quantities derived by GLS and STIV approaches can 

be reliable as input and validation in hydrodynamic models. 

2.4.1.5 Uncertainties in remotely sensed hydraulic quantities 

The STIV findings are typically based on a uniform grid of velocity vectors with 

spacing determined using step size parameters set by the user. Such consistent 

sampling might result in a spatially varying profile of flow velocities. Despite such 

apparent benefit, one important shortcoming of the recent approach is that it only 



67 

 

generates surface flow velocities, which must be transformed to depth-averaged 

values before streamflow rate calculation. However, this limitation applies to any 

image-based or surface-based velocity appraisal approach. This conversion is usually 

accomplished by multiplying the STIV estimates by a factor of less than one. In such 

a way, it yielded imaging-based velocities for the Asahi River targeted cross-sections 

within an acceptable range of the reference measurements (i.e., current meter-

based) and flow modeled data gathered along specified transects (Figure 2.12). The 

present study used the foremost typical velocity index of 0.85 (e.g., Rantz et al., 

1982), but a slightly higher value would have offered better correspondence between 

the STIV and benchmarked estimates. Using a constant factor of 0.85 

underestimation for most depth-averaged velocities led to findings of positive 

intercepts for the regression equations in Figure 2.12c, indicating that the STIV-

derived estimates were biased relative to the other reference quantities. Although 

the present findings were nearly identical to the standards, underestimating depth-

averaged velocities might engender uncertainty in remotely sensed incremental river 

discharge calculation. In general, the conversion index is affected by the flow field's 

vertical structure. The index differs between rivers and even spatially within a single 

reach. For instance, in a recent survey, Legleiter et al. (2017) used velocity conversion 

factors of 0.82–0.93 to estimate reliable discharge using multiple image sequences 

within five rivers. Therefore, any hydraulic quantity estimates derived from remotely 

sensed information might contain multiplicative uncertainty because of the index's 

variability. 

 

Furthermore, bias in LiDAR bathymetry or a constant water level used as an input in 

the STIV software might also cause the remotely sensed river discharge to be 
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overstated or understated. When comparing GLS bathymetry to benchmarked 

measures, one source of uncertainty was the riverbed characteristics. Although the 

channel bed was mainly sand with numerous gravel bars, there were some 

submerged and lodged plants and dense floodplain vegetation. In such a case, some 

laser pulses might be bounced off the surface of the substrate (gravel bars, 

vegetation canopies, etc.). In addition, in local surveys, measuring rods are more 

likely to be placed at possible lower elevations within the bed materials or any plants' 

base. Consequently, unfiltered LiDAR data might be expected to underestimate river 

bathymetry in comparison to results obtained from local surveys. Furthermore, rather 

than directly capturing water depth, GLS computes it by comparing the distance 

between the water surface and the riverbed, as defined by the distance of the laser 

pulses back to the scanner. Any deviation in determining the water surface's position 

can be expected to influence the depth estimate. However, the current GLS can 

reasonably distinguish between the water surface and riverbed returns, which is 

usually complicated for traditional bathymetric LiDARs (e.g., Kinzel et al., 2007), 

particularly in shallow areas. Overall, such practical issues must be considered when 

remotely estimating hydraulic quantities. 

 

2.4.2 Floodplain vegetation attribute appraisal 

2.4.2.1 LiDAR-based LCC mapping and normalized confusion matrices 

Figure 2.16a portrays the LCC for the targeted domain, specifically the spatial 

distribution of riparian vegetation species, using GLS-based processed attributes. 

Such LiDAR-derived features from no-leaf (G20.3) and leaf-on (G20.10 and G21.4) 

campaigns particularly include positional data (X, Y, and Z), DCM values, reflection 
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intensity counted from DTM (INT_DTM), voxel-based criterion (i.e., Under % = 

(VOX_CNT50/VOX_CNT) x 100; see Figure 2.4a), and slope of the vegetation canopy 

surface (Figure 2.17).  

 

 

 

Figure 2.16 (a) Land cover classification (LCC) using data-filtered elements from 

UAV-borne GLS measures, and (b) normalized confusion matrix of GLS-based LCC 

prediction versus the respective ground-truth evidence-based true label. 

 

Aside from LiDAR data, the study considered color-coded attributes (red–green–blue), 

particularly for GLS-derived missing data in deeper waters and distinguishing water 

regions from bare ground areas precisely. The LCC mapping derived from a single 

G20.3 campaign (Figure 2.16a) was validated using pixel-based normalized confusion 
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matrix (Figure 2.16b, left) calculated by comparing GLS-based prediction to 

referenced true label mapping, as shown in Figure 2.16a.  

 

 

Figure 2.17 Proposed algorithms for GLS-based LCC mapping. 

 

Furthermore, the other two individual LCC mapping for different seasonal leaf–

dressed (G20.10 and G21.4) campaigns were evaluated qualitatively based on their 

orthophotos and field observations. During qualitative assessment, it was revealed 

that the dominant areas of woody and bamboo species on the leaf-on LCC mappings 

were reasonably matched with standard, although the true label was prepared using 

other different seasonal (no-leaf) information. By contrast, other attributes, such as 
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water, bare ground, and herbaceous species, differed slightly from the referenced 

mapping, although those labels were compatible with their respective high spatial 

resolution aerial images captured concurrently during GLS surveys. This marginal 

variation can be attributed to different water flow conditions, vegetation wash-out 

caused by minor flooding between targeted GLS measures, herbaceous species 

growth and decay over time, and the removal of a few sections of the bamboo grove 

upstream for river management tasks. 

 

Findings from the G20.3 prediction revealed that the dominant bamboo trees in the 

targeted domain were classified as reasonably accurate (65%), whereas 30% got to 

the class of woody species (Figure 2.16b, left). It is worth noting that, although the 

proposed methodology identified the younger bamboo trees, the study merged that 

type of vegetation with the bamboo groves for the accuracy evaluation compared to 

true label mapping. Furthermore, the classification demonstrated that most dominant 

woody species were labeled with accuracy of 68%, whereas some of their patches 

were classified by bamboo (17%) and 12% by herbaceous species. This bamboo-

misclassified area can be attributed to new woody vegetation species coexisting with 

older patches that appear to be bamboo species. It was also noticed during the 

ground-truth survey that the woody vegetation in the targeted floodplain did not 

always stand straight with a single main stem, with larger branches growing low and 

isolated from the tree's main stem. In addition, overhanging woody vegetation parts 

were misjudged as bamboo trees. Consequently, in such cases, the behavior of voxel-

based parameters for woody species might be nearly identical to that of bamboo 

trees. Furthermore, woody species mislabeled 22% of herbaceous species (Figure 

2.16b, left). Regarding the differentiation between younger woody vegetation and 
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herbs, the present study proposed a methodology with up to 5.0 m of DCM values 

(Figure 2.17). In this case, the voxel criteria for both species were identical. It was 

challenging to differentiate between those species with such a particular condition 

during true label mapping. In addition, 16% of bare ground areas were attributed to 

the class of herbaceous species (Figure 2.16b, left). From the LCC workflows (Figure 

2.17), it was noticed that a DCM value of 0.3 m was set to distinguish bare ground 

from herbs, whereas, in true label mapping, it is more difficult to distinguish bare 

ground from these species using only human vision and field visits. Therefore, 

because of such uncertainty, mislabeling of bare ground as herbaceous is a common 

occurrence in true label mapping. However, minor misclassified data points might 

have a negligible effect on estimation of spatially distributed vegetation roughness 

coefficients in hydrodynamics or flood modeling. Additionally, it was strongly evident 

that OA of around 77% was obtained for the individual G20.3 measure, except for 

background parts, which might be attributed to good LiDAR returns in no-leaf 

conditions. 

 

Ultimately, this study proposed a novel integrated approach (Figure 2.17) to minimize 

the misclassified data points in the G20.3 measure between woody and bamboo 

species. The new combined method primarily considered data filtering parameters 

used for the individual earlier G20.3-based classification (winter, no-leaf condition), 

as well as a few processed attributes of the G20.10 measure (autumn, leaf-on 

condition). Because the integrated method's water, bare ground, and herbaceous 

labels were nearly identical to those of the G20.3-based classification, the OA of the 

new technique was compared to the true label prepared for the G20.3 campaign. 

Finally, the accuracy of the woody class was improved by 18%, with areas mislabeled 



73 

 

as bamboo species reduced from 17% to 2%. By contrast, the bamboo-labeled 

accuracy was slightly lower than in the previous no-leaf-based approach (Figure 

2.16b, right). This decrease in accuracy after combination with the G20.10 dataset 

can be attributed to the difficulty in identifying a few bamboo trees visualized in 

woody-dominant areas by the earlier no-leaf campaign. Consequently, the winter 

survey would be preferred over the other seasonal datasets for distinguishing 

bamboo from densely wooded vegetation. Compared to the earlier single seasonal 

measure, the integrated method's overall performance was improved by 3% (Figure 

2.16b). Although the OA of the proposed methodologies might be affected because 

of a few uncertainties in the true label considered herein, single-seasonal or multi-

seasonal GLS-based attributes with such a consistent trend can be practical for 

floodplain vegetation classification. 

 

A report of an earlier study (Geerling et al., 2007) labeled riparian vegetation species 

into five classes using airborne LiDAR data, demonstrating that the OA was 

inadequate at 41%, although their performance was improved to 81% by combining 

compact airborne spectrographic imager information and LiDAR data. Furthermore, 

researchers in a recent study (Yoshida et al., 2020a) used ALB-derived characters 

(e.g., voxel-based laser points and estimated vegetation heights) to perform LCCs for 

the river explored here. Their results qualitatively revealed that some terrestrial areas 

were misclassified as water bodies, thus contradicting their respective high-resolution 

aerial images. They also had difficulty distinguishing between the dominant bamboo 

forests and woody species, which could impact their hydrodynamic-numerical 

simulations that consider the effects of floodplain vegetation conditions. Under such 

perspectives, the proposed method of relying solely on current GLS-based attributes 



74 

 

has primarily overcome the challenges identified in previous studies. Therefore, the 

workflows proposed herein, particularly for vegetated rivers in Japan, are expected 

to be an efficient method of classifying vegetation species that are important in 

predicting hydraulic roughness, namely, woody and bamboo groves. Furthermore, 

this novel measure can be used globally after varying the weights of the suggested 

parameters based on GLS-based measurement conditions and existing vegetation 

species for a specific floodplain. 

2.4.2.2 Riparian vegetation structural changes assessment 

Multi-seasonal GLS-based LCC mappings (Figure 2.16a) revealed that bamboo and 

woody (i.e., willow) species dominate the vegetation upstream and downstream of 

the study site, respectively. Therefore, proper assessment and management of such 

species are significant in governing river flows during potential floods. Consequently, 

in addition to LCC mappings, accurately evaluating the vertical structure and 

estimating the heights of riparian vegetation is of crucial importance not only for 

ecological studies but also for hydrodynamic modeling of vegetated rivers, as it is 

one of the critical characteristics from which roughness (flow resistance) parameters 

in hydrodynamic models are derived (Straatsma & Middelkoop, 2006). Because 

vegetation attributes vary spatially and change over time, detailed and up-to-date 

information is required to define the roughness of hydrodynamic modeling and 

implement practical river management actions. Based on these perspectives, the 

current study identifies structural changes and the rate of riparian vegetation growth 

between the targeted GLS campaigns. 

 

Figure 2.18a characterizes the vertical structures of woody vegetation at around 15.2 

KP (right bank) using different seasonal GLS point clouds.  
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Figure 2.18 (a) Side and profile views of individual woody vegetation using GLS 

returns; (b) confirmation of vegetation overgrowth and artificial cut-down for river 

management work. 
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The side and profile views were reasonably confirmed using a local photograph taken 

during the most recent GLS campaign in April 2021. Such an illustration represents 

the structural changes in the tree canopy during no–leaf (G20.3) and leaf–on (G20.10 

and G21.4) states, which may be used to derive changes in floodplain roughness for 

hydrodynamic–numerical modeling. Furthermore, the aerial photograph taken during 

the G20.3 survey shows that the bamboo forest was thriving on the right bank around 

15.8 KP (Figure 2.18b, top), whereas the image from the G20.10 campaign presents 

that part of the bamboo grove had been cut down between the first two LiDAR 

surveys (Figure 2.18b, middle). Because the point clouds were influential not only on 

the top surface of the tree canopy, but also on the mid-level and the ground surface 

underneath the foliage, overgrowth and human-induced cut-down areas could be 

represented using different LiDAR returns (Figure 2.18b). 

 

Since vegetation overgrowth near riverbanks affects water levels during floods, such 

findings from the GLS return will provide crucial information on the current status 

and challenges, especially in inaccessible areas of heavily vegetated rivers, and will 

be useful for flood management and favorable riverine ecosystems. However, a 

recent study by Mandlburger et al. (2016) evaluated a UAV-mounted green laser 

profiler on riparian understory trees structure, presenting that the sensor partially 

probed the vegetative layers and returned fewer echoes from the floor beneath the 

canopies. In addition, Yoshida et al. (2020a) used ALB point clouds to show the 

vertical structure of bamboo groves in the same river studied here, demonstrating 

that the laser characterized the canopy edge, with little return from the vertical 

stratum and almost none from the grounds below the tree canopy, even when the 

leaves were off. 
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2.4.2.3 Vegetation growth rate approximation 

Figure 2.19a presents spatial mappings of vegetation growth variation over the 

floodplain studied herein using raster differences of processed DCMs with QGIS 

Ver.3.16.1 software. The study approximated a variation rate of approximately 1.0–

1.5 m per year from vegetation growth mappings that included both no-leaf (G20.3 

and A19.2) and leaf-on (G20.10 and G21.4) conditions, particularly for the dominant 

woody and bamboo species at the study site.  

 

 

 

Figure 2.19 (a) Spatial mapping of vegetation growth variation between targeted 

LiDAR campaigns, and (b) verification of GLS-estimated vegetation heights (color-

shaded values from Table 2.6) versus corresponding field measures. TS herein stands 

for the total station. 

 

In addition to identifying the decay of herbaceous species (light blue parts) over 
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seasonal changes caused by various environmental factors, their annual growth rates 

of approximately 0.5–1.0 m were mapped. Because growth variation can be limited 

by various factors, including soil types, nutrients, bed materials, climatic conditions, 

flooding events, etc., selecting a single growth rate value for the respective species 

is complex. Furthermore, negative values in growth mappings (dark blue parts) show 

the removal of riparian vegetation between targeted surveys, which might be 

attributable to wash-out conditions during flooding events and for areas that are cut 

down (as also shown in Figure 2.6a) for river management purposes. The 

recommended values for vegetation growth rate in this study are expected to be 

useful for future vegetated riverine research, particularly for the river under 

consideration here. 

 

Furthermore, Table 2.6 compares the woody vegetation heights surveyed in April 

2021 at around 15.2–15.5 KP (Figure 2.1a) with GLS datasets-based estimates. The 

respective vegetation heights were approximated using buffered approaches (Table 

2.6), in addition to the usual technique via TS-based information, because the 

surveying rod could be inclined during field measurements. Finally, estimations 

revealed that GLS-based heights were reasonably accurate concerning the TS-

surveyed points, whereas the buffered approach of 1 m rather than 10 cm could also 

be considered due to a few uncertainties in the ground-truth surveys. Furthermore, 

Figure 2.19b compares locally-surveyed vegetation heights to GLS-estimated 

reasonable values from the various approaches (Table 2.6; color-shaded estimations), 

presenting good correspondence between ground-truth measures and GLS estimates 

with outperforming accuracy. Although this graphical comparison validates the GLS 

projections, it was unable to verify the growth variation mapping because the 

estimated heights via multi-seasonal LiDAR measures were compared with only a 
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single period of field-surveyed data, and the vegetation heights were locally observed 

at specific canopy points rather than the usual top ends of vegetation for convenience 

considering comparatively larger sizes. 

 

Table 2.6 Comparison of GLS-based estimates to the local or total station (TS)-

surveyed vegetation height. Colored values denote reasonable estimates from 

particular GLS measure compared to field surveys 

 

 

No. 

 

Local 

heights (m) 

(April 2021) 

GLS-based estimates, m 

TS-based 

information 

Buffered approach 

10 cm 1 m 

G20.3 G20.10 G21.4 G20.3 G20.10 G21.4 G20.3 G20.10 G21.4 

W-1 4.39 4.16 4.13 4.33 0.02 4.13 0.07 4.16 4.20 4.50 

W-2 3.02 2.85 2.93 2.99 1.80 1.13 2.40 2.21 3.52 3.06 

W-3 5.94 5.89 6.03 5.91 0.04 0.03 3.74 6.05 6.17 6.32 

W-4 10.40 10.43 10.25 10.27 9.99 10.16 10.46 10.76 10.76 11.02 

W-5 4.67 4.57 4.50 4.51 0.13 5.34 2.75 5.44 5.34 5.62 

W-6 7.29 7.10 7.05 7.03 7.51 7.31 6.74 7.76 7.31 7.37 

W-7 7.89 6.78 7.92 7.69 0.08 7.31 6.95 6.80 9.01 8.93 

W-8 6.71 6.51 6.56 6.49 6.30 0.04 5.49 6.62 6.59 6.65 

W-9 5.55 4.89 5.23 5.17 4.72 5.14 4.16 5.00 5.64 5.27 

W-10 5.00 4.60 4.66 4.70 4.16 0.14 4.91 4.73 4.69 4.91 

W-11 9.19 9.16 9.01 8.94 8.94 0.12 8.74 9.28 9.16 9.14 

W-12 6.67 6.66 6.55 6.57 2.86 9.30 0.10 8.71 9.50 9.48 

W-13 9.29 9.00 8.94 8.88 8.84 8.15 8.58 9.18 9.72 10.45 

W-14 7.61 7.68 7.20 7.51 6.31 6.02 6.69 7.11 8.22 7.51 

W-15 5.15 4.62 4.78 4.65 2.95 3.69 0.09 4.01 4.05 4.41 

W-16 2.80 1.24 2.62 2.66 0.13 2.48 0.00 0.65 2.94 2.78 

W-17 8.78 8.81 8.77 8.80 6.90 10.41 9.82 9.16 9.57 9.82 

W-18 2.96 1.88 2.89 2.63 0.63 3.33 0.67 1.88 4.80 4.32 

W-19 11.76 10.11 11.40 11.34 9.90 11.40 10.28 10.11 11.40 10.93 

W-20 4.13 3.60 3.91 3.94 3.68 6.38 3.97 3.68 7.80 7.50 
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However, the G21.4 estimates were, on average, 0.142 m lower than the ground-

surveyed data, with an estimated RMSE of 0.215 m. The marginal variation could be 

attributed to field survey error, most likely due to the irregular pattern of the canopy 

edges. An earlier report (Yoshida et al., 2020a) compared woody vegetation heights 

surveyed locally at the same river studied here with those estimated by ALB data 

(no–leaf condition), presenting that the LiDAR findings were on average about 0.60 

m lower than the ground-truth measures, with a maximum error of 1.11 m. Finally, 

taking into account the shortcomings of earlier studies, it can be revealed that the 

current GLS would be a viable platform for the characterization of riparian vegetation 

attributes because it performs almost consistently in all seasons. 

 

2.5 Conclusions and Future Research Directions 

This study served as a pilot survey of the feasibility of remotely sensing riverbed 

deformation, submerged infrastructure, hydraulic quantities (depth, velocities and 

discharge), and riparian vegetation attributes (types, heights, growth rates and 

vertical structures) via recent advanced UAV-based LiDAR and imaging velocimetry 

technologies and also highlighted some key facts for further research. The efficacy 

of these methodologies was determined by comparing remotely sensed estimates to 

ground-truth measurements and hydrodynamic model-based results. The 

experimental GLS confirmed the current state of the hydraulic structure, although 

the sensor approximated shallow bathymetry of fewer than 2 m attributable to turbid 

river environments and insufficient laser power. Furthermore, when surface flow 

velocity estimates from AI-assisted STIV analysis were multiplied by the typical 

conversion factor of 0.85, they agreed reasonably (R2 = 0.742–0.959) with estimated 

RMSEs of 0.048–0.247 m/s in comparison to both current meter measurements and 



81 

 

depth-averaged model-derived calculations. The STIV analysis also showed a 

complicated flow pattern for one cross-section, which was reasonably confirmed by 

flow vectors from depth-averaged modeling. The river discharges calculated using 

remotely sensed velocities and depths at multiple cross-sections were compared to 

benchmarked field and model estimates, demonstrating that the UAV-based 

approach produced reasonable quantity to verify upstream boundary discharge 

required in depth-averaged flow modeling. Therefore, using remotely sensed 

information to extract river flow as verification data in hydrodynamic–numerical 

modeling would be a distinctive technique. Using GLS-based data filtering algorithms, 

the study also classified land cover features with OA of 80%, and approximation of 

0.5–1.5 m per year for vegetation growth that varies among species. To conclude, 

currently used remote sensing techniques can be deemed as cost-effective and well-

proven tools for characterizing hydraulic and floodplain vegetation attributes, which 

will be useful for streamflow simulation and desirable ecosystem management tasks. 

 

Although the LiDAR and imaging systems used in this study fulfilled their primary 

purpose, further development and testing of both sensors are required before these 

approaches can be widely applied. For example, to ascertain the potential penetration 

depth limit via the green LiDAR, it is recommended to hover the UAV at the lowest 

possible altitude in relatively clear flowing water. Also, the study recommends 

increasing the LiDAR power and testing its practicability in deeper areas, specifically 

the missing parts evident herein. Furthermore, because the present research used 

the image velocimetry approach to monitor on-site streamflow features in normal 

flow conditions, it is necessary to apply this new technique during flooding events 

with varying different conditions (e.g., surface waves, obstacles, background shadow 
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projected on the water surface, light, rain, wind effects, etc.) for widespread use in 

scientific platforms. Besides, it is essential to examine its accuracy compared with 

the traditional ADCP and other image velocimetry approaches reported in previous 

studies to benchmark its performance.  

 

Furthermore, in the current field evaluation, the camera to capture multiple moving 

image sequences for STIV analysis and the green LiDAR were mounted separately 

on different UAVs, but this instrumentation setup could be implemented from a 

common platform in further studies. Such integration would increase the payload's 

weight and shorten the flight duration, making it only worthwhile if both systems 

could extract useful information from the same flying altitude. Another common 

concern that needs to be addressed further is identifying a more reasonable 

conversion coefficient than the one used here to transform STIV estimates to depth-

averaged values before estimating discharge. It is also suggested that the current 

STIV algorithms be improved to add another distinguishing feature that generates 

continuous coverage of velocity estimates across the targeted portions of an image 

rather than a single specific cross-stream. Such improvement may provide users with 

more functionality when combining velocity findings with other attributes (e.g., 

bathymetry). Furthermore, the study deployed GCPs in the field to scale the moving 

images captured for the STIV analysis; however, employing positional and orientation 

data logged on-board the UAV to instantly georeference would be a more viable 

approach. Consequently, such an alternative framework might eliminate the need to 

set GCPs along the river's banks or at specified areas' left and right ends. If in situ 

geometric coordinates are not required for a specific application, the image-based 

analysis can be undertaken using only the pixel scale factor. Such a factor can be 
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defined by employing a laser range finder to detect the length from the UAV to the 

water's surface and estimating the GSD using the camera's focal length. Ultimately, 

this option would eliminate the need for hydrographers to collect data in the field, 

offering them more flexibility. In addition, further advancements in GLS processing 

algorithms may enable users to visualize the laser point cloud on the ground. Such 

real-time feedback would confirm that remotely sensed velocity and depth 

measurements are accurate enough. Furthermore, although the novel frameworks 

proposed herein to elucidate floodplain vegetation features were successful in their 

intended purpose, they are suggested to be validated across various vegetated 

reaches in future studies to become benchmarked methodologies in the relevant 

fields. 
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CHAPTER 3 

Porous model-based 3-D numerical simulation of floods 

in river corridor with complex vegetation quantified 

using airborne LiDAR imagery 

 

3.1 Abstract 

Excessive flood flow over the historic diversion weir in the vegetated Asahi River in 

Okayama Prefecture, Japan, was recently recorded for the first time after its 

renovation as part of a river improvement project. Fluvial researchers analyzed the 

diversion discharge for flood mitigation measures through laboratory studies and 

conventional two-dimensional (2-D) depth-averaged simulations. The existing model 

was insufficient for simulation of certain phenomena such as flow resistance caused 

by vegetation branches and leaves and vertical flow distribution the river corridor. 

Therefore, the present study developed a three-dimensional (3-D) vegetation 

resistance porous model by estimating topography, land cover, and vegetation 

distribution from airborne light detection and ranging (LiDAR) topo-bathymetry (ALB) 

data of the river channel. Afterward, for recent flooding events in 2020 (minor) and 

2018 (major), numerical simulations of the 3-D flow around the diversion area were 

conducted. Findings confirmed that the water level and flow regime at low discharge 

(2020 flood) agreed well with the referenced 2-D calculations, STIV data, and field 

measurements. Results show that the flow regime at high discharge (2018 flood) was 

more reproducible than by 2-D simulations. Furthermore, the proposed model 

showed a significant advantage over the traditional one by revealing the vertical flow 

distribution, as well as free surface and near-bed flow fields around the targeted 
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structure. The 3-D model also demonstrated that changing vegetation distribution 

had a significant impact on streamlines at both the free-surface and near-bed levels. 

In contrast, such flow patterns with highlighted vegetation distribution cannot be 

apparent in 2-D modeling. In addition, the diversion discharge designed using the 

proposed model is feasible with the current riverbed and vegetation conditions. To 

summarize, the current results can assist policymakers in developing a balanced and 

rational scenario for flood control measures that take best vegetation management 

practices into account around river corridors. 

 

3.2 Introduction 

Recent flooding events around the world, as mentioned in Chapter 1, highlight the 

importance of detailed flood flow modeling that incorporates actual complicated flow 

regimes under real land cover and is used to prevent devastation through proper 

river engineering measures. The main river targeted in this study is the vegetated 

lower Asahi River, Okayama Prefecture, Japan, details of which are described 

hereinafter, which has had a plan of flood control measures since the 1970s to defend 

Okayama city through a project of river improvement (Fujikane et al., 2016). The 

renovation works included strengthening of river dikes, developing a river mouth 

barrier of a distributary channel, the Hyakken River, and reconstruction of a fixed 

historic diversion weir (known locally as 'Ichinoarate weir') at the bifurcation point. 

Because the project was nearly completed in early 2018, Okayama city was spared 

damage during the 2018 flood. However, some fixed weirs, sandbars, and thick trees 

exist around the diversion weir in the lower reaches of the Asahi River, causing a 

complicated flow regime. Furthermore, the diversion discharge over the fixed weir 

might depend on the vegetation distribution and topographical changes that occur 
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around the river corridor. Therefore, study of how the riverbed deformation and 

vegetation changes during flooding affects actual diversion discharges in the river 

channel are necessary. In earlier works, flood flow conditions, including the water 

level and distributary discharge around the corridor were examined using a 

conventional unsteady two-dimensional (2-D) depth-averaged numerical approach, 

but their reproducibility has been confirmed only qualitatively (e.g., Yoshida et al., 

2020a). However, when using the existing 2-D model, quantifying the flood flow 

across the diversion area, including its vertical flow distribution, is difficult. In addition, 

because of the densely vegetated floodplain near the diversion site, local scouring 

from turbulent flow at near-bed might occur, which is impossible to depict using 2-D 

modeling. Therefore, a new three-dimensional (3-D) flow model was constructed for 

the comprehensive study of both free surface and near-bed flow regimes, including 

the vertical flow field around the diversion weir, by estimating topography, land cover, 

and 3-D vegetation distribution within the study reach. 

 

To date, hydraulic phenomena attributable to riparian vegetation have attracted a 

remarkable amount of attention from fluvial scientists for river management purposes 

(Corenblit et al., 2007; Gurnell, 2014; Nepf, 2012a). Furthermore, a considerable 

amount of research has already examined the modeling of open-channel flow and 

parameterization of hydraulic resistance attributable to vegetation distributed both 

on a laboratory scale and reach scale using various one-dimensional (1-D) (Fathi-

Moghadam et al., 2011) and 2-D approaches (Yoshida et al., 2020a) to numerical 

simulations; however, many unclear aspects remain to be explored. Elucidating the 

complex flow environment around actual riparian vegetation is a challenging task 

using the yields of the 1-D and 2-D numerical approaches which have been developed 
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to date. Therefore, a detailed 3-D interpretation is necessary to enhance physical 

insights into flow phenomena, including aids to river engineering measures. However, 

although higher-dimensional approaches are appropriate for replicating laboratory 

experiment results, recalibration for each flow condition, considering vegetation 

effects, is an important impediment that hinders field applications. Some leading 

researchers have recently validated 3-D numerical approaches to simulate open-

channel flow characteristics, considering vegetation attributes and distribution or 

arrangement, compared to physical models in laboratory studies where vegetation is 

idealised with a high degree of abstraction (Brito et al., 2016; Fischer-Antze et al., 

2001; Li & Zeng, 2009). For instance, as described in an earlier report (Brito et al., 

2016), researchers validated a 3-D turbulence model to simulate compound 

horizontal and rectangular open-channel flows in laboratory flume experiments, 

whereas submerged vegetation was arranged vertically (i.e., column-based) with a 

given simple geometry and rigid conditions. Their findings related to flow field 

analysis might not meet practical demands at the river channel under such idealised 

conditions. By contrast, only minimal research has been conducted at a reach-scale 

(Stoesser et al., 2003; Wilson et al., 2006) to verify natural river flow attributes, 

considering the footprint of distributed riparian vegetation. However, related to the 

reach-scale vegetation turbulence modeling related to stream resistance (Nepf, 

2012b), the marked shortcomings include reproduction of vegetation distribution 

over widely various rivers and difficulties in observing flood flow as verification data. 

 

Related to the limitations described above, recent river survey technologies using 

ground-based or terrestrial laser scanning (TLS) (Manners et al., 2013; Straatsma et 

al., 2008), airborne laser scanning or airborne light detection and ranging (LiDAR) 
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method (Straatsma & Baptist, 2008), airborne LiDAR topo-bathymetry (ALB) (Yoshida 

et al., 2020a), unmanned aerial vehicle (UAV)-borne LiDAR (Islam et al., 2022), and 

others have been improved considerably for rapid reproduction of 3-D topographical 

information. Although these techniques are still under development, one can 

estimate the ground cover and vegetation species at an approximate order of several 

meters. For instance, Manners et al. (2013) used LiDAR-based TLS data to 

parameterise riparian vegetation patch-scale-based (submeter) hydraulic roughness 

patterns for 2-D flow field simulations. Also, Yoshida et al. (2020a) estimated flow 

resistance parameters in vegetated rivers using ALB data with extracting spatially 

explicit vegetation conditions, including 2-D land cover classification (LCC) data, 

vegetation vertical structures, and heights. Therefore, the application of LiDAR-based 

approaches is not limited to improving the accuracy of river flow analysis when 

considering distributed vegetation conditions. 

 

Despite the advancement in remote sensing techniques for extracting distributed 

hydrodynamic parameters, the uncertainty of parameter estimation in flood flow 

simulation has been highlighted in earlier reports (e.g., Yoshida et al., 2020a) due to 

the long time lag between the acquisition of measurement data and flood occurrence, 

as well as a lack of observation data for model verification. Based on such a context, 

the current study applied the ALB approach (Yoshida et al., 2020a) to field-scale 

investigations before and after targeted flooding occurred in the vegetated lower 

Asahi River of Okayama Prefecture in Japan. Furthermore, no report of the relevant 

literature describes comprehensive research that numerically simulates flood flows in 

a vegetated river channel/floodplain using standard turbulence modeling, with 

specific examination of the reach-scale-based 3-D distribution of vegetation elements. 
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Given that background, this research is the first of a study that constructed and 

evaluated a fully 3-D flood simulation model with k–ε parameterization of turbulence 

by obtaining information related to topography, ground cover, and vegetation 

distribution from seamless ALB data. Subsequently, flood flow conditions, including 

longitudinal profile of water levels, depth-averaged flow velocity distribution, and 

vertical and horizontal flow fields around the targeted river's diversion weir were 

quantitatively confirmed. It is noteworthy that this study includes examination of the 

recent 2020 (low discharge) and 2018 (high discharge) floods in the river under study. 

Furthermore, accuracy of the 3-D simulation was evaluated in comparison to 2-D 

hydrodynamic-numerical model reported earlier (Yoshida et al., 2020a), in addition 

to space-time image velocimetry (STIV)-derived (Fujita et al., 2007; Yoshida et al., 

2020b) flood flow data, and field observations. Specifically, the overarching goal of 

the current study was to ascertain the flood flow response to the distributed 

vegetation conditions around the diversion area. Findings of this study are expected 

to provide useful information related to management tasks for such hydraulic 

structures, which are designed to drain heavy rains or flood waters in vegetated 

rivers safely. Results of the current study can help policymakers develop a balanced 

and rational scenario for flood control measures that incorporates consideration of 

best vegetation management practices around river corridors. 

 

3.3 Numerical Methodology 

3.3.1 Governing equations 

The proposed 3-D flood flow model used the concept of a porous model described 

by the volumetric-average of 3-D Reynolds-averaged Navier–Stokes (RANS) 

equations with the Cartesian coordinate system (Brito et al., 2016). Herein, the 

fractional area and volume obstacle representation (FAVOR) approach (Hirt & Sicilian, 
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1985) was incorporated into governing equations such that the model can be applied 

to flow fields with complex topography to estimate the fractional area ratios used for 

this study (Figure 3.1). 

 

Figure 3.1 Specified directions for each fractional area ratio (γx, γy, γz) of 3-D flow. 

Δx, Δy, and Δz respectively denote the grid sizes in the x, y, and z directions. 

 

The following basic governing equations introduced by the FAVOR method explicitly 

were used in the currently proposed flow model. 

 

[Continuity equation] 
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     (2) 

 

Therein, the following variables are used: t represents time; subscripts i = 1, 2, 3; 

dummy indices j = 1, 2, 3; (x1, x2, x3) = (x, y, z) in Cartesian coordinates (x, y, and 

z respectively represent the longitudinal, cross-sectional, and vertical directions for a 
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main river flow); ui stands for the flow velocity component in the xi direction [(u1, u2, 

u3) = (u, v, w)]; γv denotes the fractional volume ratio or the vegetation porosity in 

a calculation grid; γ(i) expresses the fractional area ratio in the xi direction elucidated 

in Figure 3.1 [(γ(1), γ(2), γ(3)) = (γx, γy, γz)]; g signifies the acceleration of gravity; δ 

is Kronecker's delta; P = p + 2/3ρk; p signifies the pressure; ρ stands for the fluid 

density; k denotes the turbulent kinetic energy; ν is the coefficient of kinematic 

viscosity; νt is the coefficient of eddy viscosity; and Fi expresses the component of 

vegetation resistance in the i direction. 

 

3.3.2 Physical modeling and parameters 

As earlier works have demonstrated, to clarify the vegetation's resistance behaviour, 

one must define its spatial distribution (e.g., Nepf, 2012b) considering different 

natural conditions of vegetation: flexural rigidity (e.g., Aberle & Järvelä, 2013), 

vegetation density (e.g., Stone & Shen, 2002), porosity (e.g., Brito et al., 2016), 

emergence and submergence (e.g., Wu et al., 1999), local turbulence (e.g., Stoesser 

et al., 2010), and so on. Accordingly, for this study, by employing the respective ALB 

data of distributed vegetation characteristics, the local drag force was incorporated 

into the proposed model for 3-D flow computations. The following equation was used 

to estimate vegetation resistance in this study. 

 

   1

2
i D i j jF C u u u  (3) 

 

In which, CD is the drag coefficient; λ denotes the vegetation density. 

 

In addition to estimation of the eddy viscosity coefficient, the standard k–ε turbulence 

model proposed by the principle of renormalisation group theory (Yakhot et al., 1992) 

was used, with the effect of vegetation resistance also considered (López & García, 
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1998). 

 

[k equation] 
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[ε equation] 
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Therein, the following variables are used: ε signifies the turbulent energy dissipation 

rate; Fj denotes the component of vegetation resistance in the j direction; Cμ, σk, σε, 

Cε1 and Cε2 stand for the turbulent constants; and Cfk and Cfε are coefficients related 

to the vegetation resistance. 

Furthermore, in the k–ε model used herein, the following standard values were 

assigned to the respective constants: Cμ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 

= 1.92 (Yakhot et al., 1992). The following conditions were applied for coefficients 

related to vegetation resistance: Cfk = 1.0 and Cfε = CfkCε2/Cε1 (López & García, 1998). 

 

3.3.3 Numerical scheme 

The governing equations were discretised using finite-volume method on a collocated 

grid system. In this model, the highly simplified mark-and-cell (HSMAC) method in 

the collocated grid arrangement proposed by Ushijima and Nezu (2002) was adopted 

to satisfy the local continuity equation and to solve pressure. The definition of flow 

variables located on the x–z plane is presented in Figure 3.2. 
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Figure 3.2 Definitions of computation points of flow variables on the x–z plane. 

 

Furthermore, Figure 3.3 presents an outline of the main steps followed herein for 3-

D flow calculation. In the numerical procedure, first, the known pressure pn defined 

in the cell center was split into static pressure p0
n and anomaly pressure p'n. The 

momentum equations used herein are regarded as an estimate of presumed 

velocities uc(wc) in the cell center using the known velocities un(wn), which were 

exempted from the anomaly pressure expression; where n is the number of the time 

steps. To achieve high-order accuracy and to estimate discontinuous flows stably, 

the advection terms of the momentum equation were discretised using the fifth-order 

weighted non-oscillatory (WENO) scheme (Shu, 2003). Furthermore, time integration 

was performed using the second-order Adams–Bashforth approach. Second, by linear 

interpolation, the presumed velocity on the cell boundary ub(wb) was calculated using 

the presumed velocity in the cell center uc(wc), whereas the HSMAC technique solved 

both the new anomaly pressure p'n+1 and the new velocity on the cell boundary 
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ub
n+1(wb

n+1). Afterwards, using the central difference value of the new anomaly 

pressure p'n+1, the new velocity in the cell center un+1(wn+1) was ascertained from 

the presumed velocity in the cell center uc(wc). Ultimately, the water surface position 

was updated using the new velocity on the cell boundary ub
n+1, after integrating the 

continuity equation in the vertical direction. In addition, the advection terms of the 

k–ε model were discretised by application of the WENO scheme. 

 

 

Figure 3.3 Schematic overview of the main steps in the 3-D flow calculation. 

 

3.3.4 Boundary conditions 

Based on flow records, the discharge and water level data obtained at the study 

reach ends were adopted as the numerical computation boundary conditions. As the 

upstream boundary conditions, the velocity distribution according to the log law in 

the vertical direction was used to achieve the prescribed flood flow discharge. The 

turbulent values were assigned using some equations proposed by Kuhnle et al. 

(2008). 
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   2 1k C u z z h  
    (8) 

In those equations, the following are used: u* denotes the shear velocity; z' 

represents the distance from the riverbed in the vertical upward direction; h stands 

for the flow depth; and κ is the von Karman constant (= 0.41). 

 

The prescribed water level and the condition of zero gradient in the flow direction for 

the velocities and the turbulent values were given at the downstream boundary. 

Moreover, at the wall boundary, the shear resistance according to the log law was 

inferred for the flow velocities. Turbulent values were estimated using the following 

wall functions (Rodi, 2000). 

 
2u

k
C

  (9) 

 
3u





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 (10) 

Therein, Δ represents the distance from the solid wall boundary to the nearest 

calculation point. 

 

Furthermore, the free-slip condition was applied to the velocities and to water surface 

turbulence. For the numerical simulation, in addition to the free surface condition, a 

fixed riverbed was considered for simplicity. In the context of drying situation 

assessment, a water threshold depth of 0.1 m was considered, based on approximate 

numerical estimates, to prevent uncertainty that might arise from high velocities close 

to the wet–dry boundary. Furthermore, a velocity of zero was assumed for 

computation nodes in the dry bed state, whereas the slip-velocity was used near the 

water edge. 

 

3.4 Study Site and Data Acquisition and Processing 

 

3.4.1 Asahi River Basin 

The Asahi River, a first-grade river in Japan due to its economic or other significance, 
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flows down through the Okayama prefecture into the Seto Inland Sea (Figure 3.4a).  

 

(a) 

 

(b) 

 

Figure 3.4 (a) Asahi River Basin in Okayama, Japan and (b) location of various 

hydraulic structures and stations around the targeted bifurcation point in the studied 

domain, with kilo post (KP) values signifying the longitudinal distance (km) from the 

river mouth. 
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Figure 3.4b depicts the study reach, including various hydraulic structures and 

stations around the fixed diversion weir, specifically examined for this study. The 

study reach comprises two channels; herein, the main channel is a 2.0 km long, 

approximately 300 m wide compound open channel (lower Asahi River, 11.0 KP to 

13.0 KP) with a mean bed slope of 1:670. The other distributary channel is 1.1 km 

long, with an average width of approximately 200 m (Hyakken River, 12.8 KP to 13.9 

KP) and a bed slope of about 1:1000. Hereinafter, the kilo post (KP) signifies the 

longitudinal distance from the respective river mouth in kilometers (km). However, 

within the investigated main channel, the annual mean maximum flow rate is around 

1400 m3/s; the representative grain diameter of the bed is 40–70 mm (Maeno & 

Watanabe, 2008). The river channels originally had numerous gravel bars. Watanabe 

et al. (2006) reported that establishment of multipurpose dams in upstream areas 

led to river forestation, with limited gravel bars. Because the river forestation might 

create several difficulties, the distributed vegetation in the targeted reach has 

recently drawn significant concern for flooding risks and ecosystem management 

tasks. 

 

 

3.4.2 ALB data 

3.4.2.1 Data acquisition and processing 

In the targeted river reaches, both river topo-bathymetry and vegetation attribute 

measurements were conducted in November 2017 (before the 2018 flood) and 

February 2019 (after the 2018 flood), with a normal water level using an ALB device 

(Leica Chiroptera II; Leica Corp.) with near-infrared and green lasers, mounted on 

the aircraft. A typical view of ALB measurement is portrayed in Figure 3.5.  
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Figure 3.5 Typical view of airborne LiDAR topo-bathymetry (ALB) measurement for 

overland and underwater surveys. 

 

Such measures are usually conducted under no-leaf vegetation and under low-

turbidity water conditions, providing good penetration through deciduous woody 

vegetation (e.g., willows) and underwater areas. To collect data with the desired 

properties (i.e., data density, uniform distribution, spacing, and accuracy), 

overlapping coverage was achieved through several flight operations during each 

LiDAR measurement. Table 3.1 presents the main specifications of the airborne 

LiDAR device with the measurement conditions used for this study. ALB point clouds 

were analyzed using a full-waveform approach (Zhu et al., 2015), enabling us to 

distinguish bare earth from objects (e.g., vegetation) on the ground.  

 

For initial data processing, first, a Cartesian grid consisting of 3-D voxels, each with 

0.5 m side length, was established within the targeted region to filter out noise from 
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the laser point clouds. Then, because of inhomogeneous laser point density caused 

by overlapping flight operations, only the highest point data from the ALB 

measurement were kept rather than all points in each voxel (Yoshida et al., 2017). 

Second, a horizontal 2-D cell with 2 m width, comprising 3-D point clouds, was 

developed. 

 

Table 3.1 Specifications of the current ALB device with measurement conditions 

used in this study 

* Kaolin suspension, Hydrological Water Quality Database (Asahi River, Otoizezeki 

Water Quality Observatory) 

 

Subsequently the ground level was found by filtering the laser points near the lower 

portion of the 2-D cell (i.e., digital terrain model, DTM). The vegetation height was 

assessed further by considering the highest data point in each 2-D cell (i.e., digital 

surface model, DSM). Voxel-based initial data processing for the 3-D laser point 

clouds is depicted schematically in Figure 3.6. 

Measurement time (yyyy.mm) 2017.11 2019.02 

Equipment 
Specifications 

 
Laser wavelength (nm) 

near-
infrared 

1,064 

green 515 

 
 

Measurement 
Specifications 

Number of laser pulses 
per second 

near-
infrared 

200,000 148,000 

green 35,000 

Flight altitude (m) 500 

Flight speed (km/h) 220 110 

 
Density of laser points 

(1/m2) 

near-
infrared 

8.0 64.0 

green 2.0 4.5 

Water Quality Turbidity* 3.2 1.7 
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Figure 3.6 Initial data processing for 3-D laser point cloud using voxels. 

 

3.4.2.2 Topo-bathymetric data 

The present study extracted river terrain data, particularly addressing both overland 

and underwater areas before and after the targeted floods, particularly for the event 

in 2018. No recent ALB measurement was taken following the small flooding event 

of July 2020. It was reported from a past overview that ALB measurements are 

typically conducted after larger-scale flooding events. Furthermore, after minor 

floods such as the one in 2020, riverbed deformation might not be so great compared 

to the more destructive event. However, a more recent report by Yoshida et al. 

(2020a) described comparisons of ALB with ground-truth observations in the river 

studied herein, revealing that the LiDAR-derived DTM values were almost identical to 

the field-observed bed elevations with accuracy of about 10 cm. In addition, the root-

mean-square-error values of the LiDAR measurements (i.e., vertical errors) 

compared with findings of field surveys were approximately 0.08, 0.10, and 0.2 m, 

respectively, for the gravel riverbed, the vegetated bed, and the underwater bed. 

Therefore, based on earlier findings, the ALB datasets used in this study can be 

expected to be valid for the 2020 and 2018 flood simulations. 
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3.4.2.3 Vegetation attributes 

A remarkable variety of vegetation species has been recorded at the targeted site. 

That reality notwithstanding, the riparian vegetation comprises three groups based 

on stream resistance: herbaceous species, arborous or woody species, and bamboo 

grove. An earlier report by Yoshida et al. (2020a) evaluated ALB data for comparison 

with the woody vegetation (i.e., willow) heights observed around the historic 

diversion site examined in this study, demonstrating that estimates made using ALB 

data were almost consistent with the results obtained from ground surveys, although 

the LiDAR-based measurements were around 60 cm smaller, on average, than the 

field observations. Such a trend was also reported by Straatsma & Baptist (2008), 

who attributed it to the fact that willow branch ends are so thin that the laser cannot 

identify the trees’ top edge precisely. Therefore, the ALB datasets can reasonably, 

but not precisely, show the vegetation attributes to estimate the flow resistance for 

flood simulations. 

 

Figure 3.7a depicts the concept of a horizontal 2-D vegetation distribution model 

using pre-processed data of voxel-based laser points and vegetation height, where 

the model can only consider one plant height at a single point on the horizontal plane. 

In the area surrounded by the red-dotted frame in the figure, the laser hits the 

branches and leaves to provide data for determination of whether the vegetation is 

herbaceous or woody based on the criteria presented in Table 3.2.  
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Figure 3.7 (a) Concept of vegetation distribution focused on a 2-D model and (b) 

example of vegetation distribution in the 10 m mesh of 2-D flood flow analysis. 

 

Table 3.2 Criteria developed for 2-D land cover classification (LCC) using ALB data  

LCC Number of laser points 

within 2-D cell of 10 m 

× 10 m area nl 

Vegetation 

height 

l (cm) 

Bare ground and Underwater 

areas 

0–4 l ≤ 30 

Herbaceous plants 5–12 l > 30 

Woody vegetation or Bamboo 

grove* 

13– l > 30 

 

* Bamboo is not distinguished from woody vegetation using the nl and l parameters 

of ALB data. In this case, vertical structure of ALB point clouds and high spatial 

resolution aerial images were considered to differentiate between those species 

(Figure 3.8). 
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Figure 3.8 Vertical structure of ALB point clouds extracted around the diversion weir 

to distinguish between woody and bamboo species. Top, aerial image; bottom, point 

clouds along A–B line. 

 

Consequently, using this model might reduce the reproducibility of vegetation data. 

The vegetation distribution was produced herein using initially processed voxel-based 

ALB data with a square grid of 2 m mesh (Figure 3.6). The calculation grid width 

used in the 2-D flood flow analysis of this study is about 10 m for practical use. 

Therefore, vegetation information (vegetation height, vegetation species, etc.) from 

the nearest ALB-based 2 m mesh was inserted into each of the 25 grid cells of the 

mesh used for the flow analysis (Figure 3.7b). In this case, the vegetation resistance 

was calculated by considering the ratio of the number of grid cells occupied by each 

type of vegetation to the total number of cells in the mesh (25). Some examples are 
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the ratio of herbaceous vegetation to the mesh = 9/25 (Figure 3.7b). The model 

used to calculate flow resistance assumes all vegetation as cylindrical. Furthermore, 

the vegetation height of each vegetation species in the 10 m mesh was calculated 

by taking the average value of each vegetation species in the divided mesh. In 

contrast, the 3-D vegetation distribution scheme (Figure 3.9a) includes not only 

multiple vegetation information in the vertical direction but also its spatial distribution. 

 

 

Figure 3.9 (a) Concept of vegetation distribution emphasizing a 3-D model and (b) 

vegetation distribution centered on a 3-D flow computational grid. 

 

Fundamentally, the present study used 2-D LCC data, which are presented later in 

Figure 3.13a. The pre-processed ALB data with a single vegetation point on a 0.5 m 

cube were used to generate vegetation distribution data by dropping them onto a 3-

D flow computational grid (5 m × 5 m × 0.25 m) applied for the current study, as 
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shown in Figure 3.9b. The main difference between this model and the 2-D model is 

that the trunks and branches of trees were newly classified and then their resistance 

were considered. In this case, the vertical mesh of 3-D analysis was used to 

reproduce the vegetation distribution more closely. Finally, the vertical resistance 

changes at the same horizontal x and y points were produced (black-dotted circle; 

Figure 3.9a) and the void between the canopy and the grass on the ground surface 

were identified (Figure 3.9a). Using void data, it was possible to identify the existence 

of herbaceous plants under the branches of woody species. 

 

 

Figure 3.10 3-D distribution of vegetation data (2017 ALB) along the Asahi River 

around 12.3 KP section.  
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Figure 3.10 portrays the 3-D distribution of vegetation data established for the Asahi 

River cross-section around the diversion weir side. Herein, Tokyo Peil (TP) is the 

datum used throughout this study, signifying the average sea level of Tokyo Bay in 

Japan. It was observed that the ground cover attributes differ vertically. It was also 

observed that the void between the branches and leaves, as well as the herbaceous 

vegetation on the ground surface, can be reproduced. For this study, vegetation 

elements at more than 3 m above the ground surface were treated as woody plants 

because the ALB data sometimes identified woody plants' leaves such as herbaceous 

plants. The vegetation resistance was modeled in proportion to the flow velocity 

square using the drag coefficient to differentiate woody vegetation (trunk region), 

herbaceous plants, and bamboo forests. The drag forces representing flow resistance 

due to the distributed vegetation in the targeted area have already been detailed in 

equation (3), as shown in section 3.3.2. Furthermore, the flow resistance to the tree's 

leafy branches was modeled as a porous body with enormous voids. Under these 

conditions, the coefficient of inertial force in this analysis was set to 0 for simplicity 

(Li et al., 2006). However, determining the leafy parts of individual trees from ALB 

data is difficult. Consequently, the study assumed that the leafy parts to be at least 

half the trees' height (l/2; Figure 3.9a). In this case, the study did not define one 

vegetation height (l) for each tree, although the height was estimated considering 

the DSM minus DTM data at each horizontal x and y point. Furthermore, for flow 

resistance parameterization, this study included consideration of density for the 

targeted vegetation species, as described later in section 3.4.4. 
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3.4.3 Flooding in 2020 and 2018 

3.4.3.1 Flood hydrograph 

Two hydraulic stations operate in the targeted domain for the water levels 

observation: Mino station (11.7 KP) at the main Asahi River and Nakahara station 

(12.2 KP) near the distributary Hyakken River (Figure 3.4b). During the lower Asahi 

River flood in mid-July 2020, the river's discharge at Shimomaki Station (19 KP), 

which is upstream beyond the current target domain, was calculated using the H–Q 

relation. In contrast, for the July 2018 event, the study used discharge values 

estimated from flow simulation results at the upstream site rather than the empirical 

relation. It is noteworthy that no confluence of large tributaries exists from 19 KP to 

13 KP (upper end of the computational domain). Figure 3.11 shows the observed 

water levels and estimated discharges for both events.  

 

Figure 3.11 Observed water level and estimated discharge during Asahi River 

flooding in (a) 2020 and (b) 2018. 

 

The recorded data were treated as the boundary conditions for the numerical 

simulations conducted in this study. For the 2020 flood in the Asahi River, a maximum 

discharge of about 1,561 m3/s was recorded at 11:20 on 14 July, with only one peak 
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(Figure 3.11a). By contrast, in the 2018 flood, a peak discharge of approximately 

4,251 m3/s was reported at 1:40 on 7 July, with the two peaks highlighted in the 

hydrograph (Figure 3.11b). The 2018 event produced record stages and had a 40-

year return interval based on the hydrologic record. Despite that historical context, 

such intense flooding might be occurring because of severe climate changes in recent 

years. 

3.4.3.2 Flooding effects on vegetation and riverbed changes 

Figure 3.12 depicts the states of the fixed historic diversion weir at the Asahi River's 

bifurcation point during the targeted floods, as photographed by drone and closed-

circuit television (CCTV) cameras.  

 

Figure 3.12 States of the diversion area during the 2020 and 2018 floods on the 

left bank of the Asahi River at about 12.2 KP. 
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Figure 3.13a portrays the 2-D LCC obtained according to the methodology already 

presented in Table 3.2, using the processed 2017 ALB dataset extracted for the study 

region.  

 

Figure 3.13 (a) Land cover classification before 2018 flooding and (b) changes in 

vegetation conditions because of 2018 flooding. 

 

Using ALB-derived attributes (i.e., number of laser points within 2-D cell and 

vegetation heights; Figure 3.6), it was evident that bamboo is not distinguished from 

woody vegetation (Yoshida et al., 2020a). In this case, vertical structure of ALB point 

clouds and high spatial resolution aerial images were considered to differentiate 

between those species (Figure 3.8). However, this classification depicts vegetation 

species on gravel bars and floodplains before the 2018 event, demonstrating that the 

mapping was reasonably identical to the corresponding high-resolution aerial image 

(Figure 3.14a). Furthermore, Figure 3.13b presents changes in vegetation conditions 

as a result of flooding in 2018, as estimated based on vegetation heights derived 

from two ALB datasets before and after the flooding event. The mapping of 
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vegetation changes revealed that the targeted 2018 flood washed out and lodged 

some of the woody vegetation, but the bamboo grove remained unchanged. A 

detailed examination of aerial images obtained before and after the flood revealed 

that the changes visible in the red-dotted area in Figure 3.13b were not caused by 

the recent flood, because the wash-out of the trees in that region was attributable 

to artificial construction work conducted immediately before the 2018 flooding as 

part of the river improvement project (Fujikane et al., 2016). 

 

 

 

Figure 3.14 Drone-captured aerial images of the targeted region: (a) before 2018 

flooding (May 22, 2018) and (b) after 2018 flooding (July 20, 2018)). 

 

Figure 3.15(a) depicts a 3-D view of the riverbed elevation mapping using the existing 

ALB dataset extracted before the 2018 flood. Furthermore, Figure 3.15(b) 

demonstrates the bed deformation retrieved using the difference in the LiDAR survey 

results. Records of peak water levels observed by the Asahi River office and river 
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improvement project planning (Fujikane et al., 2016) confirmed that the elevation of 

the riverbed, particularly in areas encircled by the black-dotted line in this figure, was 

altered by human-induced construction work, irrespective of the flood. Results 

showed that the bed deposition of approximately 1 m was noticeable around the 

downstream of the multipurpose fixed weirs, locally designated as 'Myojo weir' and 

'Sanchobi weir' (Figure 3.15b).  

 

Figure 3.15 (a) 3-D bathymetric contour maps using ALB data extracted before 

2018 flooding and (b) riverbed deformation because of 2018 flooding. 

 

The yellow-circle eroded area inside the green-marked region (Figure 3.15b) shows 

parts of the 'Myojo weir' that were damaged because of the 2018 flood. The eroded 

part was also visible in drone-captured aerial photographs after the flooding (Figure 

3.14b). Furthermore, marked riverbed changes were evident at the upstream reach 

of the main Asahi River at around 13.0 KP (Figure 3.15b). The riverbed's deformation 
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around the targeted bifurcation point was caused partly by sand accumulation in 

front of the diversion area during the flood. Moreover, because no ALB measurement 

was taken after the small flood in 2020, this study did not demonstrate any change 

in vegetation or river bed conditions for the particular flooding. However, during such 

minor flooding, the riverbed elevation and vegetation conditions that cause flow 

resistance remain nearly unchanged (Islam et al., 2022). 

3.4.3.3 Image-based data acquisition and STIV analysis 

For both river monitoring and facility regulation during a normal water level, multiple 

CCTV cameras have been placed in the Asahi River. Some CCTV cameras were 

operated effectively at the lower Asahi River during the 2018 flooding. However, 

primarily in the targeted reach of this study, one CCTV camera was frequently 

operated at 12.8 KP (locally known as the 'Ninoarate' area) to track flood flows and 

rising water levels. During the smaller 2020 flood, the river flow was monitored using 

another CCTV camera around the diversion section at about 12.2 KP.  

 

Figure 3.16 Sampled images for STIV analysis and their corresponding space-time 

images (STIs) at different cross-sectional locations: (a) around the diversion weir's 

downstream side (12.2 KP) in Hyakken River during 2020 flood, and (b) Ninoarate 
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area (12.8 KP) in Hyakken River during 2018 flood. * Blue lines across the river 

represent search lines used for STIV analysis. 

Figure 3.16 portrays sample CCTV images captured during the 2020 and 2018 floods. 

Herein, to perform STIV analysis, the recorded sample images were superimposed 

with blue search lines across the river. Table 3.3 reports the main specifications of 

the CCTV camera and the STIV analysis conducted for the current study. By 

employing deep-learning-based commercial software (Hydro-STIV; Hydro 

Technology Institute Co., Ltd., Japan), the longitudinal surface flow velocities on 

specified search lines were computed automatically for the sampled images during 

the overall analysis period of 60 s. 

Table 3.3 Specifications of CCTV camera and STIV analysis used in this study 

 

 

 

 

 

Figure 3.16 elucidates the space-time images (STIs) at different cross-sectional 

locations for the respective sampled photographs captured during flooding events. 

Each STI had such a line pattern that was angled towards the lower right corner. The 

average slope of the line patterns is shown by the red line, which was drawn 

automatically by the STIV software. The STIs for the 2020 flooding (Figure 3.16a) 

revealed that their gradient and sharpness were smooth when compared to results 

for the 2018 flooding (Figure 3.16b). Consequently, estimation of surface flow 

velocities in 2018 might be affected by noise, caused by low-quality sampled images 

 

CCTV 

camera 

Spatial resolution of the camera 

image (pixels) 

1920  1080 

 

Time interval for each image (Hz) 

30 (normal mode) 

3 (night mode) 

 

STIV 

analysis 

Software for STIV Hydro-STIV 

Searching line length (m) 25 

Analysis period (s) 60 
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because of a lack of night lighting and raindrops on the camera lens. 

 

3.4.4 Numerical conditions for flood flow simulations 

The present study used the 3-D and 2-D (Yoshida et al., 2020a) numerical models 

described above for flood flow simulations. The 2-D flow modeling approach is based 

on a conservative boundary-fitted coordinate system. The governing equations were 

discretised in a staggered mesh using the finite volume method. To compute the 

time development of the flow variables explicitly, the second-order Adams–Bashforth 

scheme was used. In contrast, the second-order central scheme was used to 

discretise spatial derivatives, except for advection terms, which were computed using 

the first-order upwind scheme. In addition, for the 2-D modeling, the eddy viscosity 

coefficient was estimated by depth-averaging a simple empirical parabolic 

distribution. Table 3.4 presents the numerical conditions applied for the 3-D 

computation of the targeted 2018 and 2020 flood flows over the domain examined 

for this study. For flood flow analyses, the targeted period was 36 hours, from 12:00 

on 13 July to 0:00 on 15 July in 2020, and from 18:00 on 6 July to 6:00 on 8 July in 

2018. Numerical computations were performed for both fixed-bed and current 

vegetation distribution using the existing ALB datasets acquired in 2017 and 2019. 

Although large bed deformation was observed in the targeted domain after the 2018 

flooding (Figure 3.15b), for simplicity, the model did not consider transient changes 

in bed elevation. Additionally, the washed-out vegetation condition was not included 

in the numerical calculations because mainly herbaceous species were washed out 

by the flood waters (Figure 3.13b), which presumably did not affect the flow 

simulation to any marked degree. 
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Table 3.4 Analytical conditions for flood flow simulations 

 

*Yoshida et al. (2018); **Maeno et al. (2005); ***STIV measurements were taken 

around the peak flow rate during the 2020 flooding 

 

In the flood flow simulations, Manning's coefficient values for the bed roughness of 

the main channel and floodplains were assigned respectively as 0.028 and 0.026 m–

1/3/s (Maeno et al., 2005; Yoshida et al., 2020a). However, the current study did not 

distinguish between the riverbed and the targeted weirs by roughness. Because 

porosity (γv) varies with vegetation species and floodplain conditions, a constant 

 

Discrete 

interval 

 

2-D 

Time step Δt = 0.02 s 

Grid size Δx = Δy = 10.0 m (Typical) 

 

3-D 

Time step Δt = 0.05 s 

Grid size Δx = Δy = 5.0m, Δz = 0.25 m 

 

 

 

Vegetation 

Woody (branch and leaf) void 

ratio, γv 

0.7 (Constant value) 

 

 

Density, 

λ (m) 

Woody (trunk)* Tree height below 5 m: 0.023 

more than 5 m: 0.013 

Bamboo grove** 0.286 

Herbaceous** 0.031 

Drag coefficient, CD 1.0 

 

Manning's roughness coefficient, n 

(1/m1/3s)** 

 

Main channel: 0.028 

Floodplains: 0.026 

 

 

 

Downstream 

Water Level 

 

2020 

Flood 

At peak flow 

rate*** 

Q =  1,561 m3/s 

Asahi River (11.0 KP): 5.232 m 

Hyakken River (12.8 KP): 5.960 

m 

 

 

2018 

Flood 

 

At peak flow rate 

Q = 4,251  m3/s 

Asahi River 11.0 KP: 7.180 m 

Hyakken River 12.8 KP: 8.190 m 

STIV measurement 

time 

Q = 4,146  m3/s 

Asahi River 11.0 KP: 7.141 m 

Hyakken River 12.8 KP: 8.158 m 
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value of 0.7 for the trees (branches and leaves) (Table 3.4) was used after checking 

the sensitivity of flow analysis through preliminary examination with γv of 0.6–0.8. 

The density values assigned herein (Table 3.4), particularly for woody and bamboo 

species, were reasonably confirmed in comparison to fieldwork estimates conducted 

by Yoshida et al. (2020a). In addition, average density was estimated by taking into 

account the spatially explicit vegetation distribution data in each computational mesh 

of the flood flow analyses (Figures 3.7b and 3.9b). Using ALB data, the proportion of 

each vegetation type presented in equation (11) was calculated. 

 

λa = αλh + βλw + γλb , α + β + γ = 1                (11) 

 

In which, λa is the average vegetation density in each numerical mesh for flow 

resistance estimation; α, β and γ denote the ALB-derived proportion of herbaceous, 

woody and bamboo species, respectively, in each flow computational mesh; and λh, 

λw and λb represent constant density value assigned to herbaceous, woody and 

bamboo species, respectively. Those fixed values of densities were assigned by the 

earlier study of Maeno et al. (2005). 

 

Based on earlier studies of flow resistance attributable to the riparian vegetation, the 

CD value was inferred for three categories: 1.0 (Stoesser et al., 2003), 1.2 

(Rameshwaran & Shiono, 2007), and 1.5 (Wilson et al., 2006). However, the 

computation results' variation considering different coefficient values is minimal for 

vegetation established in the targeted river reach (Yoshida et al., 2020a). 

Consequently, the value of 1.0 was assigned as a drag coefficient. Finally, the stream 

resistance was estimated based on the mixture distribution of the three targeted 

vegetation types in each numerical mesh. 
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3.5 Application 

3.5.1 Longitudinal profile of water levels 

Figure 3.17 presents a comparison of the left-bank-side and right-bank-side observed 

water levels profiles with the values simulated using the 3-D and 2-D models at peak 

flood stage in 2020 and 2018.  

 

 

Figure 3.17 Observed and simulated water levels along the targeted reaches of the 

Asahi River at the time of the peak water-stage for flooding in (a) 2020 and (b) 2018. 

RMSE represents root-mean-square error. 
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As reference data, sensor-based (S&DL mini EC meter, 4821; OYO Corp., Japan) 

peak water levels at specific KP points are shown for the minor 2020 flooding (Figure 

3.17a), whereas flood marks at both river banks are included for the more intense 

2018 flooding (Figure 3.17b). During the 2020 flooding, the sensors recorded the 

water level every ten minutes. Both model simulations were reasonably consistent 

with the observed water levels (Figure 3.17a). This suggests that the 3-D model will 

perform acceptably at lower discharges. 

 

In contrast, in the 2018 case with a higher flow, the 2-D simulated water level was 

approximately 0.5 m lower than the observed level upstream from 12.4 KP in the 

diversion area, but the recorded water levels were reproduced in both models 

downstream from 12.2 KP (Figure 3.17b). Although the results of the two simulations 

agreed well for both cases, root-mean-square error values estimated with respect to 

observed data (sensor/flood marks and water levels recorded at hydraulic gauging 

stations) show that the 3-D estimates slightly outperformed the 2-D results.  

Furthermore, from the case with excessive flooding, results showed that the 2-D 

simulated water level was a maximum of 0.30 m lower than the observed peak at 

the Nakahara hydraulic station, whereas the 3-D result was 0.12 m less than the 

observed. The gauging station at Nakahara is close to the targeted diversion weir. 

Therefore, such a significant relative difference was observed. However, the targeted 

weirs' shape and roughness coefficient can result in better water level reproduction, 

particularly for the 2018 flood modeling. In addition, the models' performance might 

have been influenced by the use of fixed λ values (Table 3.4) based on earlier 

research findings (Maeno et al., 2005; Yoshida et al., 2020a) because the present 

study did not locally survey densities of targeted vegetation species. Figure 3.18 



119 

 

presents a 2-D distribution of vegetation in underwater areas during peak flooding in 

2020 and 2018, demonstrating that woody vegetation submergence conditions 

predominated in the 2018 flood event compared to 2020. Such a vegetation 

distribution, including leaves and branches, in the meshes of the flow computational 

domain facilitates accurate estimation of flow resistance, which can affect water level 

simulation. 

 

Figure 3.18 2-D distribution of submerged woody vegetation during peak stage of 

flooding in (a) 2020 and (b) 2018. 

3.5.2 Depth-averaged flow fields and STIV comparisons 

The analytical boundary of the Hyakken River was slightly different between the two 
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model simulations (Figure 3.19), but the change in flow regime caused by the 

diversion weir was not captured in 2-D modeling.  

 

 

 

Figure 3.19 Depth-averaged flow velocity vectors at peak flooding in (a) 2020 and 

(b) 2018. Targeted section is depicted in Figure 3.4b. 
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Figure 3.19 depicts the depth-averaged flow velocity vectors for peak flooding in 

2020 and 2018 using both models. For the 2020 case, the depth-averaged flow 

velocity vectors were remarkably similar in both models (Figure 3.19a), indicating the 

validity of the new 3-D model for shallow-water flow conditions. In contrast, for the 

high discharge case, 3-D simulation revealed a distinct separation vortex on the 

diversion side of the Hyakken River (black-dotted rectangle part; Figure 3.19b, top). 

The 2-D model could not reproduce such a flow regime (Figure 3.19b, bottom). This 

variation can be attributed to differences in the 3-D and 2-D coordinate systems, the 

estimation methods of eddy viscosity coefficient, and different discretisation methods 

for advection terms used in 3-D modeling. 

 

Furthermore, Figure 3.20 presents a comparison of the cross-sectional distribution of 

surface velocity estimated using the STIV analysis (Figure 3.16) with the numerical 

results of flow velocities using the 3-D and 2-D models for both floods. Herein, the 

2-D simulation result only showed the depth-averaged velocity distribution, whereas 

the proposed 3-D model additionally examined other surface and near-bed flow 

velocities. For the 2020 (Figure 3.20a) and 2018 (Figure 3.20b) flooding cases, 

respectively, one black line was added for the cross-sectional fixed bed elevation 

using 2019 and 2017 ALB data. Based on 3-D modeling, another grey-coloured line 

represents the water surface level in both cases. For the 2018 case (Figure 3.20b), 

the study confirmed the model-based water level as consistent with the surface level, 

shown in the CCTV image. Furthermore, for minor flooding in 2020 (Figure 3.20a), 

the 3-D model agreed well with the image-based findings, although both model-

derived flow velocities were almost identical to the STIV-based estimation, with a 

few exceptions near both bank sides.  
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Figure 3.20 Cross-sectional distribution of flow velocities estimated using numerical 

simulations and STIV analysis (Figure 3.16): (a) 2020 flooding in the Hyakken River 

around the diversion weir's downstream side (12.2 KP) and (b) 2018 flooding in the 

Hyakken River at Ninoarate (12.8 KP). RMSEs were calculated with respect to STIV 

estimates. DAV, depth-averaged velocity; SV, surface velocity 
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In contrast, during the severe 2018 flooding, the STIV-derived surface flow velocity 

was not necessarily correct near the left-bank side (green-dotted enclosure; Figure 

3.20b) because of transverse propagation of surface waves caused by a sudden 

change in bed elevation and water depth around the Ninoarate weir (Figure 3.16b). 

For such a flaw in STIV analysis, the surface flow velocity was estimated by particle 

tracking velocimetry (PTV) (Maas et al., 1993) approach, using floating objects such 

as individual driftwood, reasonably agreed with the model-based estimates. 

Furthermore, comparison of the imaging (STIV and PTV) estimation and the surface 

velocities simulated using 3-D model revealed that the simulated velocities on the 

left bank of the river were overestimated up to a cross-sectional distance of y' = 30 

m (black-dotted enclosure; Figure 3.20b), but were nearly consistent towards the 

right-bank side, except for a few points. By contrast, for 2-D computation, the depth-

averaged velocity was considerably lower on the river's left bank by the cross-

sectional distance of y' = 70 m, and concentrated on the river's right side. However, 

in 2-D modeling, only depth-averaged velocities can be generated, which cannot be 

compared directly with STIV results or 3-D model-based findings, except for depth-

averaged estimates. If the 2-D model-based results are converted to surface flow 

velocities by dividing by a typical velocity index of 0.85, then the results might 

overestimate the STIV-based surface velocities. Consequently, based on RMSE 

estimates (Figure 3.20), the 3-D simulated surface velocities are reasonably 

consistent with STIV estimates when compared to the 2-D numerical results. 

 

3.5.3 Free-surface and near-bed flow fields 

In addition, the 3-D model presents considerable advantages over the 2-D model in 

that it reveals the free-surface and near-bed flow fields. Figure 3.21 depicts a 3-D 
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horizontal flow field at the free-surface and near-bed surface (Δz/2 above the 

riverbed) for the targeted peak flooding cases around the diversion weir.  

 

 

 

Figure 3.21 Horizontal flow fields of free-surface (left) and near-bed (right) flow 

using a 3-D model at peak flooding in (a) 2020 and (b) 2018. Targeted section is 

depicted in Figure 3.4b. 
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The results showed that the flow velocity, including its direction, differ considerably 

between the water surface and the bottom in the area surrounded by the red-dashed 

circle (Figure 3.21b).  

 

 

Figure 3.22 Vertical flow field during peak flooding in (a) 2020 and (b) 2018 using 

the 3-D model at the A–A' (top) and B–B' (bottom) sections depicted in Figure 3.21. 

 

In addition, Figure 3.22 presents the vertical flow velocity vectors for the A-A' and B-
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B' cross-sections (Figure 3.21) during both peak flooding events, revealing the 

formation of a 3-D flow regime with a mix of mainstream submergence and 

separation beneath the Myojo weir, as shown by the red-dotted circle. In general, 

when a flow forms a control section over a weir, flows of two types are known to 

occur downstream of the weir: "surface wave flow," by which the mainstream flows 

in waves near the water surface; and "plunging jet flow," by which the mainstream 

flows near the riverbed (Fritz & Hager, 1998). Particularly during the plunging jet 

flow, the strong current near the riverbed scours the area directly below the weir. 

Also, a risk exists of the weir collapsing. The A-A' cross-section in Figure 3.22(b) 

shows that the occurrence of submerged jet flow is simulated directly below the 

Myojo weir. This section coincides with the weir collapsed position in Figure 3.15(b). 

Therefore, the weir collapse during the 2018 flood might have been caused by such 

a submerged jet flow. The conventional 2-D model was unable to predict the 3-D 

flow regime around such structures.  

 

Furthermore, Figure 3.23 shows that changing vegetation distribution had a 

significant impact on streamlines at both the free-surface and near-bed levels. 

Because of the higher flow resistance, streamlines around the C–C' section were 

separated into two paths in the cases of actual vegetation and only bamboo. In 

contrast, because of the lower resistance, streamlines were nearly parallel in the only 

woody case. Because of such effects on horizontal flow field distribution, the vertical 

flow field illustration (blue-dotted part; Figure 3.24) revealed that the flow velocity 

at the near-bed varied greatly with changing vegetation types. In contrast, such flow 

patterns with highlighted vegetation distribution cannot be apparent in 2-D modeling. 

The superiority of the proposed 3-D model was confirmed in this respect. 
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Figure 3.23 Horizontal streamlines around different vegetation types using 3-D 

model at peak flooding in 2018. 
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Figure 3.24 Vertical flow field around different vegetation types with (a) vector lines 

and (b) detailed vegetation distribution during peak flooding in 2018 using the 3-D 

model at the C–C' section depicted in Figure 3.23; color-circled points represent the 

targeted vegetation types. 
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3.5.4 Distributary discharge 

The 3-D and 2-D numerical simulations examined the diversion discharge to the 

distributary Hyakken River under various flow rate conditions. The computational 

conditions are the same as those presented in Table 3.4. The analysis flow rate 

conditions are presented in Table 3.5. Herein, to analyse effects of the failure of the 

Myojo weir (Figure 3.15b) on the distributary flow, the topographic conditions were 

examined numerically using the current ALB datasets. 

 

Table 3.5 Diversion discharges for the Hyakken River simulated using flow models 

under various analysis conditions 

*Peak discharge in 2020 flooding; **Peak discharge in 2018 flooding 

 

Figure 3.25 depicts the comparison of the distributary discharge analyzed using 3-D 

and 2-D models for various flow conditions and targeted peak floods, along with the 

planned discharge flowing through the targeted domain during flooding, as 

designated by the Asahi River office. Results demonstrated that the flow rate 

differences increased by a few per cent after the Myojo weir was damaged and after 

Before 

diversion 

Flow, 

Q ( m3/s) 

Water level 

in Asahi 

River at 

11.0 KP 

(m) 

Water level 

in Hyakken 

River at 

12.8 KP (m) 

3-D Diversion 

flow rate 

( m3/s) 

2-D Diversion 

flow rate 

( m3/s) 

2017 

ALB 

2019 

ALB 

2017 

ALB 

2019 

ALB 

1,000 4.822 5.355 8 16 30 36 

  1,561* 5.232 5.960 – 195 – 237 

2,000 5.552 6.402 341 340 353 352 

3,000 6.282 7.314 668 750 704 760 

  4,251** 7.180 8.190 1,214 1,262 1,203 1,308 

5,000 7.676 8.682 1,552 1,601 1,505 1,641 

5,800 8.205 9.117 1,865 2,007 1,869 2,001 
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the riverbed deformed during the 2018 flooding, but no marked change was found 

from that before the weir's failure.  

 

 

Figure 3.25 Comparison of simulated distributary discharges for various flow 

conditions and peak floods in 2020 and 2018 (Table 3.5) with planned (as designated 

by the Asahi River office) values. 

 

In addition, both the 3-D and 2-D model-based findings showed good agreement 

with the planned flow distribution, thereby confirming the validity of the 3-D model. 

Figure 3.25 also compares the planned values with the diversion discharge to the 

distributary Hyakken River for the targeted peak floods in 2020 and 2018, as 
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calculated using the new 3-D and conventional 2-D flow models under the same 

computation conditions (Table 3.4) and individual ALB datasets. Although the results 

of the two models agreed reasonably well in both targeted flooding cases, the 3-D 

simulation was closer to the reference planned discharge values when the weir and 

topographic conditions before and after flooding were taken into account. Overall, 

the diversion can occur as expected under the current vegetation scenario. 

 

3.6 Conclusions and Future Research Directions 

For this study, a 3-D flood flow model with k–ε parameterization of turbulence was 

constructed based on a porous model considering the vegetation distribution in the 

targeted river reaches. Accuracy of the proposed model was tested using field 

measurements, STIV data, and existing depth-averaged flow model-based results. 

Using ALB data, a 3-D vegetation distribution model related to flow resistance was 

developed for the targeted domain. For minor flooding, the 3-D model agreed well 

with field observations and 2-D hydrodynamic model-based findings. In contrast, the 

3-D model reproduced the flow regime better than the existing 2-D model at higher 

flows. The current simulation also reproduced the vertical flow distribution, as well 

as free surface and near-bed flow fields around the targeted hydraulic structures. 

Furthermore, flow rate analysis conducted with changing flow conditions revealed 

that the 3-D model agreed well with the planned flow rate when compared to 2-D 

model results. Despite the conclusions presented above, the 3-D model used for this 

study did not account for the wash-out and lodging conditions of the vegetation or 

for the riverbed deformation. Therefore, future research related to the current study 

must include vegetation dynamics and topographical change analysis during flooding 

in the proposed 3-D flood modeling to better elucidate fluvial response. Furthermore, 
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although the point density of the current ALB data was reasonable for generating 3-

D vegetation data, it would be preferable to use UAV-borne LiDAR data with a more 

detailed point density (Chapter 2; Islam et al., 2022) to ascertain the porosity and 

proportion of vegetation branches and leaves. 
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CHAPTER 4 

Concluding Remarks 

 

This research presents the first experimental evidence of the feasibility of remotely 

sensing riverbed deformation, submerged hydraulic structure, flow and riparian 

vegetation quantities using advanced UAV-based green LiDAR and deep learning-

based imaging velocimetry, as well as highlighting some key facts for future studies. 

The efficacy of these methodologies was determined by comparing remotely sensed 

estimates to ground-truth measurements and hydrodynamic model-based results. 

Furthermore, when surface flow velocity estimates from AI-assisted STIV analysis 

were multiplied by the typical conversion factor of 0.85, they agreed reasonably (R2 

= 0.742–0.959) with estimated RMSEs of 0.048–0.247 m/s in comparison to both 

current meter measurements and depth-averaged model-derived calculations. The 

river discharges calculated using remotely sensed velocities and depths at multiple 

cross-sections were compared to benchmarked field and model estimates, 

demonstrating that the UAV-based approach produced reasonable quantity to verify 

upstream boundary discharge required in depth-averaged flow modeling. Therefore, 

using remotely sensed information to extract river flow as verification data in 

hydrodynamic–numerical modeling would be a distinctive technique. Using GLS-

based data filtering algorithms, the study also classified land cover features with OA 

of 80%, and approximation of 0.5–1.5 m per year for vegetation growth that varies 

among species. Although the LiDAR and imaging systems used in this study 

accomplished their objectives, further development and testing of both sensors is 

required before these approaches can be widely used. To summarize, current remote 

sensing techniques can be regarded as cost-effective and well-proven tools for 
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characterizing hydraulic and floodplain vegetation attributes, which will be useful for 

streamflow simulation and desirable ecosystem management tasks. 

 

This study also evaluates the performance of a newly constructed porous model-

based (k–ε parameterization of turbulence) 3-D numerical modeling of floods in river 

corridor with complex vegetation quantified using airborne LiDAR imagery. The 

proposed model's accuracy was evaluated using field measurements, STIV data, and 

existing depth-averaged flow model-based results. Using ALB data, a 3-D vegetation 

distribution model related to flow resistance was developed for the targeted domain. 

The 3-D model agreed well with field observations and 2-D hydrodynamic model-

based findings for minor flooding. At higher flows, however, the 3-D model 

reproduced the flow regime better than the existing 2-D model. The proposed model 

outperformed the traditional depth-averaged flow model by depicting the vertical flow 

distribution as well as free surface and near-bed flow fields around the targeted 

structure. The 3-D model estimates also revealed that differing vegetation 

distribution had a significant effect on streamlines at both the free-surface and near-

bed levels. Furthermore, flow rate analysis was performed revealing that the 

diversion discharge designed using the proposed model is feasible with the current 

riverbed and vegetation conditions. The study also suggested that, while the point 

density of current airborne LiDAR data was adequate for generating 3-D vegetation 

data, using UAV-borne green LiDAR data with a more detailed point density would 

be preferable for determining the porosity and proportion of vegetation branches and 

leaves. To conclude, the current findings can help policymakers develop a balanced 

and rational scenario for flood control measures that take best vegetation 

management practices around river corridors into account. 
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