
A Design and Implementation of user-PC Computing
System Platform using Docker

September, 2022

Hein Htet

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulfillment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, September 2022.

ToWhom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Hein Htet

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Recently, the computing ability of a personal computer (PC) has been greatly increased with the
faster CPU clock cycle, the more number of CPU cores, the larger memory size, and the higher
storage capacity/access speed. Besides, a PC can be available with a low cost. As a result, the
collection of PCs that are owned by users in an organization, called user-PCs in this thesis, will
provide a significantly efficient computing platform with a very small cost for complex computa-
tional projects by running them on the idling resources of user-PCs.

To realize this concept, in this thesis, I present the design and implementation of the user-PC
computing (UPC) system platform for a low-cost and high performance distributed computing
based on the master-worker model. The UPC system offers computation capabilities for the mem-
bers in an organization by using the idling computing resources of their PCs.

In the UPC system platform in this thesis, a user can submit a job from the web browser. Then,
the web server sends the job to the UPC master. Besides, a user application program can submit
a job to the master through the shared storage or the FTP service. When the master accepts a job,
it will assign the job to an idling UPC worker, and receive the result from it after the completion.
After that, the UPC master will return the result to the web browser of the user.

As the first contribution of the thesis, I present the design and implementation of the UPC
system platform. The Docker container technology is adopted in the UPC system to solve envi-
ronment dependency problems at running various jobs on various PCs. Docker is a software tool
that has been designed to make it easier to create, deploy, and run an application program on var-
ious platforms using the container technology by bundling the required software. The container
allows the application developer to package up the required software to run the application pro-
gram, such as libraries, middleware, parameters, and other dependencies, into one package called
the container image, to be shipped out. By using Docker, the UPC system allows various jobs or
applications to run on user-PCs as workers with different platforms and environments.

As the second contribution of the thesis, I implement the UPC web interface using HTML,
CSS, and JavaScript. The web server is implemented using Node.js that is the open source server
that offers the running environment of JavaScript programs. The users can easily submit the job
and download the results by accessing to the web interface through the web browser.

As the third contribution of the thesis, I implement the two online job acceptance functions.
Previously, the UPC system only accepts jobs from local users manually using the web interface
and the UPC web server runs in private networks due to cost and security concerns. Some appli-
cation systems will need to submit the jobs automatically to the UPC system for speeding up their
job processing time. The first function uses Secure Shell File Transfer Protocol (SFTP) to interact
the UPC web server with the files in the application system over the reliable data stream. The sec-
ond function uses cloud storage to share the files with the application system. For evaluations, we
adopt Android programming learning assistance system (APLAS) and Exercise and performance
learning assistant system (EPLAS) as the application systems, which require the more CPU ability

i

and have been developed in our group. The experiment results show that all jobs from the both
systems are successfully accepted and the total CPU time is reduced by 90.5% for APLAS and
55.1% for EPLAS of the original, respectively.

As the fourth contribution of the thesis, I implement the job migration function. By adopting
this job migration, the UPC system can accelerate the job completion by dynamically migrating or
moving it to a faster PC when it becomes idling. The function is implemented using the two open-
source software named Checkpoint Restore in Userspace (CRIU) and Podman. CRIU can save all
the data related to the running job into image files, which is called Checkpointing. Podman can
manage the containers with the same permissions as the user who launched the containers. CRIU
can create the checkpoint and restore the running containers (jobs.) To evaluate the implemented
function, we conducted extensive experiments using the testbed UPC system with 14 jobs, six
workers of different specifications, and three job scheduling algorithms considering the migration.
In these experiments, first, we verified the validity of the implemented migration function. Then,
we confirmed the effectiveness of the function by comparing the job completion performances
when three scheduling algorithms were adopted. The results show that the total CPU time and
makespan by the algorithms are significantly reduced by improving the resource utilizations and
balancing the workloads of the workers through the dynamic migration.

As the last contribution of the thesis, I implement the job running backup function. Some
jobs may require the long CPU time to be completed. Then, it can increase the probability of
causing a failure of the worker while running a job. To avoid it, the current state of running the job
on the worker should be automatically backed up so that the job should run from the backed up
state on another healthy worker. CRIU is periodically applied to capture the job running state of
the running job at a worker and it is controlled by the Python script. When the master detects the
failure, it automatically migrates the job to another worker. To evaluate the function, we conducted
experiments using the testbed UPC system with 14 jobs and six workers of different specifications,
and confirmed that the proposal successfully resumes the job running from the interrupted point at
another worker.

The automatic Docker image generation for a newly submitted job, the use of GPU devices
for workers, the automatic join/leave of workers, and the collaboration of multiple masters for the
scalable UPC system will be in future works.

ii

Acknowledgements

It is my great pleasure to express my heartiest thankfulness to those who gave me the valuable time
and supported me in making this dissertation possible. I believe that you are the greatest blessing
in my life. Thanks to all of you for making my dream successful.

I owe my deepest sense of gratitude to my honorable supervisor, Professor Nobuo Funabiki for
his excellent supervision, meaningful suggestions, persistent encouragements, and other fruitful
help during each stage of my Ph.D. study. His thoughtful comments and guidance helped me to
complete my research papers and present them in productive ways. Besides, he was always patient
and helpful whenever his guidance and assistance were needed in both of my academic and daily
life in Japan. I have really been lucky in working with a person like him. Needless to say, it would
not have been possible to complete this thesis without his guidance and active support.

I am indebted to my Ph.D. co-supervisors, Professor Satoshi Denno and Professor Yasuyuki
Nogami, for taking their valuable time to give me advice, guidance, insightful comments, and
proofreading of this thesis.

I want to express my profound gratitude to Associate Professor Minoru Kuribayashi in Okayama
University for his valuable discussions during my research. I would like to thank all my course
teachers during my Ph.D. study for sharing their great ideas and knowledge with me. I would also
like to give special thanks to Professor Wen-Chung Kao of National Taiwan Normal University
and Professor Shinji Sugawara of Chiba Institute of Technology, for their advices and supports,
especially in proofing my papers before submissions.

I would like to acknowledge the Ministry of Education, Culture, Sports, Science, and Technol-
ogy of Japan (MEXT) for financially supporting my Ph.D. study at Okayama University.

I would like to convey my appreciations to all the members of FUNABIKI Lab. Especially,
I would like to give special thanks to Dr. Nobuya Ishihara, Ms. Keiko Kawabata, Dr. Htoo
Htoo Sandi Kyaw, Mr. Ariel Kamoyedji, Mr. Xudong Zhou, Mr. Xu Xiang, Dr. Yan Watequlis
Syaifudin, Dr. Kwenga Ismael Munene, Dr. Pradini Puspitaningayu, Dr. Md Mahbubur Rahman,
Ms. Soe Thandar Aung, Ms. Ei Ei Htet, Ms. Shune Lae Aung, Ms. San Haymar Shwe, Mr. Lynn
Htet Aung, Ms. Irin Tri Anggraini, Mr. Sujan Chandra Roy, Mr. Yuanzhi Huo, and all members in
general. To share the time with these people in Okayama gave great experiences and unforgettable
moments to me. Thank you so much for your great supports and helpfulness in this study and my
daily life.

I would also like to express my special gratitude to my Japanese Language teachers, especially
Dr. Yin Moe Thet, Dr. Rie Kuroe, and Dr. Miho Sato for their dedicated teaching.

Last but not least, my special thanks go to my beloved parents, and brother who always en-
courage and support me throughout my life.

Hein Htet
Okayama University, Japan

September 2022

iii

List of Publications

Journal Papers
1. Hein Htet, Nobuo Funabiki, Ariel Kamoyedji, Minoru Kuribayashi, Fatema Akhter, and

Wen-Chung Kao, “An implementation of user-PC computing system using Docker con-
tainer,” International Journal of Future Computer and Communication (IJFCC), Vol. 9, No.
4, pp. 66-73 (2020).

International Conference Papers

2. Hein Htet, Nobuo Funabiki, Ariel Kamoyedji, Xudong Zhou, and Minoru Kuribayashi, “An
implementation of job migration function using CRIU and Podman in Docker-based user-
PC computing system,” 9th International Conference on Computer and Communications
Management (ICCCM 2021), pp. 92-97 (Singapore, Singapore, 2021).

3. Hein Htet, Nobuo Funabiki, Ariel Kamoyedji, Xudong Zhou, Yan Watequlis Syaifudin,
Irin Tri Anggraini, and Minoru Kuribayashi, “Implementations of online job acceptance
functions in user-PC computing system,” IEEE 4th Global Conference on Life Sciences and
Technologies (LifeTech 2022), pp. 121-122 (Osaka, Japan, 2022).

4. Hein Htet, Nobuo Funabiki, Ariel Kamoyedji, Xudong Zhou, Xu Xiang, Shinji Sugawara,
and Wen-Chung Kao, “An implementation of job running backup function in user-PC com-
puting system,” IEEE 4th International Conference on Computer Communication and the
Internet (ICCCI 2022), pp. 156-161 (Chiba, Japan, 2022).

Other Papers

5. Hein Htet, Nobuo Funabiki, Ariel Kamoyedji, and Minoru Kuribayashi, “Design and imple-
mentation of improved user-PC computing system,” IEICE Technical Report, NS2020-28,
pp. 37-42 (Online, Japan, 2020).

v

List of Figures

1.1 Overview of UPC system. 2

2.1 Usage of Docker in UPC system. 6
2.2 Docker image generation process at master. 7
2.3 Memory usage rate without job control. 9
2.4 Memory usage rate with job control. 9

3.1 Operation flow of job submission and results accessing. 11
3.2 UPC web server platform. 12
3.3 Uploaded jobs and their processing status on UPC web interface. 13
3.4 Upload and download files on UPC web interface using fs module. 13
3.5 Use of JavaScript functions for web interface submission. 14

4.1 UPC online job acceptance using SFTP. 16
4.2 UPC online job acceptance using cloud storage. 16

5.1 State capturing at PC. 20
5.2 State restoring at new PC. 20
5.3 Run Docker container on Windows with WSL. 22
5.4 Job migration between same OS worker PCs. 22
5.5 Scenarios for validating migration function. 25
5.6 CPU time of job migration from PC1. 25
5.7 CPU time of job migration from PC2/PC3. 25
5.8 CPU time of job migration from PC4. 26
5.9 CPU time of job migration from PC5. 26
5.10 CPU time of job migration from PC6. 26
5.11 FCFS L2H algorithm with and without migration. 28
5.12 FCFS H2L algorithm with and without migration. 29
5.13 Hjob L2H algorithm with and without migration. 29

6.1 Job check-pointing at worker and backup saving at master. 32
6.2 Noticing worker failure and job restoration at healthy worker. 32

vii

List of Tables

4.1 PC specifications in experiments. 17
4.2 CPU time for APLAS. 17
4.3 CPU time for EPLAS. 18

5.1 Worker specifications. 23
5.2 Job specifications. 24
5.3 Jobs standard processing time. 24
5.4 Total CPU time improvement rates by migration. 27
5.5 Comparison of with and without migration for 10 random cases. 28
5.6 Analysis of CPU time and makespan results. 28
5.7 Migrated job conditions. 30
5.8 Makespan results (H:M:S). 30
5.9 Total CPU time results (H:M:S). 30

6.1 Number of checkpoints and average loads. 35
6.2 CPU time for two jobs (H:M:S). 35

ix

Contents

Abstract i

Acknowledgements iii

List of Publications v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2

1.2.1 Docker based UPC System Platform . 2
1.2.2 Web Interface Submission . 2
1.2.3 Online Job Acceptance . 2
1.2.4 Dynamic Job Migration . 3
1.2.5 Job Running Backup . 3

1.3 Contents of This Dissertation . 3

2 Implementation of Docker based UPC System Platform 5
2.1 Web Server . 5

2.1.1 Three Basic Functions . 5
2.2 UPC Master . 5

2.2.1 MySQL and Docker . 6
2.2.2 Four Basic Functions . 6
2.2.3 Docker Image Generation . 6
2.2.4 Worker Management . 7

2.3 UPC Worker . 8
2.3.1 Five Basic Functions . 8
2.3.2 Job Control Function . 8

2.4 Summary . 9

3 Implementation of Web Interface Submission 11
3.1 Operation Flow . 11
3.2 Web Server Platform . 12

3.2.1 HTTP Web Server . 12
3.2.2 Web Interface . 12

xi

3.2.3 File System Control . 13
3.3 Summary . 14

4 Implementation of Online Job Acceptance Function 15
4.1 Online Job Acceptance Function . 15

4.1.1 Online Job Acceptance Function using SFTP 15
4.1.2 Online Job Acceptance Function Using Cloud Storage 16

4.2 Evaluation of Online Job Acceptance Function 16
4.2.1 Evaluation Setup . 16
4.2.2 Results for APLAS Jobs with SFTP . 17
4.2.3 Results for EPLAS Jobs with Cloud Storage 18

4.3 Summary . 18

5 Implementation of Job Migration Function 19
5.1 Job Migration Function . 19

5.1.1 Job Migration Process . 19
5.1.1.1 State Capturing . 19
5.1.1.2 State Restoring . 20

5.1.2 Software Tools . 21
5.1.3 Worker Search for Migration . 21
5.1.4 Procedure of Job Migration Function . 21
5.1.5 WSL Layer in Windows PC . 22
5.1.6 Job Migration Limitation . 22

5.2 Evaluation of job migration function . 23
5.2.1 Evaluation Setup . 23
5.2.2 Validity of Migration Function . 23
5.2.3 Job Scheduling Algorithms with and without migration 28

5.2.3.1 Analysis of Migrated Jobs . 29
5.2.3.2 Makespan Results . 29

5.3 Summary . 30

6 Implementation of Job Running Backup Function 31
6.1 Job Running Backup Function . 31

6.1.1 Job Check-Pointing Process . 31
6.1.2 Job Restoring Process . 32
6.1.3 Software Tools . 33
6.1.4 Worker Search for Checkpoint Restoration 33
6.1.5 Procedure of Job Running Backup Function 33

6.2 Evaluation of job running backup function . 34
6.2.1 Correctness of Checkpoint Execution . 34
6.2.2 Correctness of Job Running Backup . 34

6.3 Summary . 35

7 Related Works in Literature 37

8 Conclusion 41

References 43

xii

Chapter 1

Introduction

1.1 Background
Recently, the computing ability of a personal computer (PC) has been greatly increased with the
faster CPU clock cycle, the more CPU cores, the larger memory size, and the higher storage ca-
pacity/access speed. PCs are usually available with very low costs. As a result, the collection of
PCs that are owned by users in an organization, called user-PCs in this thesis, will provide a sig-
nificantly efficient platform with very small costs for complex computational projects by running
them on their idling resources. To realize this concept, we have studied the User-PC Computing
(UPC) system as a low-cost and high performance distributed computing platform based on the
master-worker model [1].

The UPC system offers high computational powers for the members in the organization by
using the idling computing resources of their PCs [2]. In addition, the UPC system is different
from the Volunteer Computing (VC) system [3], it can achieve the high dependency by using the
trusted PCs in the same organization or group. Figure 1.1 illustrates the UPC system overview. In
the UPC system, a user may submit a job from the web browser to the web server. Then, the web
server sends the job to the UPC master, which will assign the job to a UPC worker and receive
the result from it after the completion. After that, the UPC master will return the result to the web
browser of the user.

The UPC system allows various application programs to run on various PC environments for
workers using Docker [4]. Docker is a popular software tool that has been designed to make it
easier to create, deploy, and run an application program on various platforms using the container
technology [5]. The Docker container image is a lightweight, standalone, and executable package
containing all the software that need to run the application program. It includes the source codes,
the runtime environments, the system tools, the system libraries, and the setting parameters.

The usage flow of the UPC system consists of seven steps: 1) a user submits computing projects
(jobs) from the Web browser to the UPC master via the Web server, 2) the master generates the
Docker image for each job, 3) the master finds the schedule of assigning the jobs to the UPC
workers, 4) the master transmits the Docker images of the jobs to the scheduled workers, 5) the
UPC worker computes the assigned job using the Docker container and transmits the result to the
master when it is finished, 6) the master receives the job result from the worker, and 7) the master
returns the project result to the user when it receives the results for all the jobs from workers.

1

Figure 1.1: Overview of UPC system.

1.2 Contributions
In this thesis, I have carried out the following research contributions.

1.2.1 Docker based UPC System Platform
The first contribution of the thesis is the design and implementation of the UPC system platform
using Docker [1]. By adopting Docker, the UPC system allows various jobs or applications to
run on user-PCs as workers with different platforms and environments. There are three main
components in the UPC system: the web server, the UPC master, and UPC workers. The user
submitted jobs are transformed into the container based jobs, so called, Docker image at the UPC
master. The Docker image consists of all the necessary software to run the application program
(job), such as the libraries, the middleware, the parameters, and the other dependencies, and this
images are distributed to the UPC workers for carrying out the execution process.

1.2.2 Web Interface Submission
The second contribution is the implementation of the web interface in the UPC system for job
submissions by the users [4]. The UPC web interface is implemented using HTML, CSS, and
JavaScript for submitting the jobs and downloading the results by the user. It is hosted on the web
server, which is implemented using Node.js [6]. Node.js is the open source server that can run on
multi-platforms of Linux, Windows, and Mac OS, and offers the running environment of JavaScript
programs on the server.

1.2.3 Online Job Acceptance
The third contribution is the implementation of the two online job acceptance functions for sub-
mitting the jobs by the outside application systems [7]. For the first function, we adopt SSHFS as
the filesystem client [8]. The application system needs to install ssh client, creates job and result
directory, and allows port 22. Then, the web server can interact with the remote file system via

2

SFTP for accessing and transferring files over reliable data streams. For the second function, we
adopt pCloud as a free cloud storage service [9]. Directories of the jobs and the results are made in
pCloud where the application system can freely access to them via http protocol. For the file access
to pCloud API from the web server, the downloading and uploading functions are implemented by
JavaScript at the web server.

1.2.4 Dynamic Job Migration
The fourth contribution is the implementation of the job migration function [10]. By adopting
this job migration, the UPC system can accelerate the job completion by dynamically migrating
or moving it to a faster PC when it becomes idling. It is implemented using the two open-source
software, named Checkpoint Restore in Userspace (CRIU) and Podman. CRIU can save all the data
related to the running job into image files, which is called Checkpointing. Podman can manage
the Docker containers. Besides, since these tools have been developed for Linux OS, Windows
Subsystem for Linux (WSL) is added at the additional layer to cover for the PCs running on Windows
OS. WSL enables the PC to run Linux distributions directly on Windows10 alongside Windows
applications, without the overhead of a traditional virtual machine.

1.2.5 Job Running Backup
The fifth contribution is the implementation of the job running backup function [11]. Some jobs
may require the long CPU time to be completed. Then, it can increase the probability of causing
a failure of the worker while running a job. To avoid it, the current state of running the job on
the worker should be automatically backed up so that the job should run from the backed up state
on another healthy worker. CRIU is periodically applied to capture the job running state of the
running job at a worker and it is controlled by the Python script. When the master detects the
failure, it automatically migrates the job to another worker.

1.3 Contents of This Dissertation
The remaining part of this thesis is organized as follows: Chapter 2 presents the design and imple-
mentation of the UPC system platform using Docker. Chapter 3 presents the implementation of the
web interface for job submissions. Chapter 4 presents the implementations of the online job accep-
tance functions and the evaluations. Chapter 5 presents the implementation of the job migration
function and the evaluations. Chapter 6 presents the implementation of the job running backup
function and the evaluations. Chapter 7 reviews relevant works in literature. Finally, Chapter 8
concludes this thesis with some future works.

3

Chapter 2

Implementation of Docker based UPC
System Platform

In this section, we present the design and implementation of UPC system platform using Docker
[1]. The UPC system is composed of the three components, the web server, the UPC master, and
UPC workers, shown in Figure 1.1. The implementations of the basic functions in each component
will be discussed.

2.1 Web Server
The web server is implemented by using Node.js [6]. Node.js is an open source server environment
and can run on various platforms including Linux, Windows, and Mac OS. It offers the running
environment of JavaScript programs on the server [6]. Thus, the following three basic functions
are implemented by JavaScript programs.

2.1.1 Three Basic Functions
In the web server, the following three functions are implemented with different threads.

• The job acceptance thread accepts the jobs submitted from the web browser. One job usually
consists of the source codes, the required platforms, and the library lists.

• The job transmission thread transfers the submitted jobs to the UPC master using SSH File
Transfer Protocol (SFTP) [8].

• The result reception thread receives the results of the jobs from the UPC master and stores
them so that user can download them.

In our implementation, the Linux OS is adopted. The built-in module in Node.js is used to
listen to the server ports and give the responses to the UPC master. The browser page programs
are implemented using HTML5, CSS, and JavaScript.

2.2 UPC Master
The programs in the UPC master are implemented using Python. The Python multi-threaded mod-
ule supports powerful and high-level threads [12]. Multiple workers are connected with the UPC

5

master, where one thread in the server program is allocated to each worker.

2.2.1 MySQL and Docker
MySQL [13] is adopted as the database system to manage the data of the UPC system.

The Docker container technology [14] is used to provide the flexibility and portability for
running various jobs on different worker platforms. It builds the Docker image to offer the software
environment for running each job, including source codes, libraries, middle ware, and parameters,
so that the job can run on any worker PC without considering the installed software.

2.2.2 Four Basic Functions
In the UPC master, the following four basic functions are implemented with different threads.

• The job management thread receives the request for a new job from the web server by detect-
ing the newly updated files using SFTP. Then, it prepares a new job by unzipping, inserting
and modifying the Docker file template, and builds and saves the complete job running en-
vironment.

• The worker management thread receives the joining request from a UPC worker. When
the master receives the request, it creates a new thread for the new worker, collects the
information on the worker, and stores them at the master’ database.

• The job transmission thread sends a job in the job queue to the assigned worker. It is repeated
until the job queue is empty.

• The result uploading thread sends the result from the worker to the web server using SFTP.

2.2.3 Docker Image Generation
The UPC master accepts the jobs from the web server. Then, for each job, it prepares the Docker
file that contains the list of the instructions to build the Docker image that bundles the environ-
ments and the applications, and executes it as a Docker container, shown in Figure 2.1. In our
implementation, the Docker file is automatically created by analyzing the list of the requirements
for the job from the user and the extensions of source codes.

Figure 2.1: Usage of Docker in UPC system.

6

Figure 2.2 shows the details of the process. The UPC master performs the following steps to
generate the Docker Image for each submitted job.

1. It unzips the job, examines the program type, and explores the requirement list.

2. It compares and checks the information obtain in step 1 with the log data under the temporary
information directory that stores the previously built Docker image information.

3. It refers the previous built Docker image if the running environment, libraries, and depen-
dencies are almost similar with the current job’s requirements.

4. If not, it refers the base image of the previously built Docker image when only the running
environment is same.

5. Otherwise, it generates a new Docker image for the current job by following the instructions
of the generated Docker file.

6. It accesses to Public Remote Repository to download and install the necessary images, li-
braries, and platforms, and chooses the small and light package to reduce the image size to
a minimum.

7. It saves them as a Docker image when successfully finished, and adds it in the correspon-
dence job list.

Figure 2.2: Docker image generation process at master.

2.2.4 Worker Management
When a PC joins the UPC system as a new worker, the UPC master collects the static performance-
related information of the PC, such as the memory size, the CPU clock rate, the number of cores,
and the hard disk size using psutil [15]. The master also periodically collects the dynamic perfor-
mance information of the PC, such as the percentage of the current resource usage and the available
resource status. The UPC master keeps all the information in the database. Thus, if the worker
cannot keep running the job because of the resource usage shortage, the UPC master can send the
stop alert of the running job to the worker, and the resume alert when resources are available to
use.

7

2.3 UPC Worker
The programs of the UPC worker are also implemented using Python. The Docker container
technology is installed to run the Docker image for each job on the worker assigned by the UPC
master.

2.3.1 Five Basic Functions
The following five basic functions of the UPC worker are implemented with different threads:

• The connection initiation thread finds the address and the port of the UPC master from the
socket. Then, the worker is connected to the master by sending the necessary information.

• The job reception thread receives the Docker image for the job with the .tar file and tem-
porarily allocates it in the disk space of the worker.

• The job execution thread starts to load and run the received Docker image as a container.

• The job restoring thread saves the current running states of the jobs in the hard disk and
sends the state to the master when the worker runs out all the available resources.

• The result transmission thread transfers the result of the job when successfully completing
it.

2.3.2 Job Control Function
In the UPC system, any running job on a worker must not disturb the use of the PC by the owner.
Thus, the job control function is implemented to stop the running container job and free the mem-
ory when the memory usage rate exceeds the given threshold, where 90% is selected from our
experiment results [4]. The suspended job would be reloaded to the memory for resuming the job
when it falls below the threshold. We discuss the implementation of worker PC memory control
on Linux or Windows operating system.

First, we discuss the implementation for Linux. ‘kill’ command is used to stop the job. Then,
‘kill -STOP #ProcessName’ command is used to free the memory. If the job can run there again,
‘kill -CONT #ProcessName’ command is used to resume the job.

Next, we discuss the implementation for Windows. ‘taskkill’ command is used to stop the job.
Then, ‘Stop-Process -Name #ProcessName’ command is used to free the memory. If the job can
run there again, ‘Cont-Process -Name #ProcessName’ command is used to resume the job.

Figure 2.3 shows the change of the memory usage rate of the Convolutional Neural Network
(CNN) job program. The PC does not work properly at the fourth run. When it exceeds 90%, the
PC is hung up and needs to be rebooted, where all the running processes are lost. Therefore, the
memory usage rate for the UPC job must be carefully controlled to avoid the problem.

Figure 2.4 shows the change of the memory usage rate when the same CNN job program runs
on the PC five times. Every time the rate exceeds the given threshold 90%, the job is automatically
stopped and about 36% of the memory is released to keep running daily processes by the PC owner.

8

Figure 2.3: Memory usage rate without job control.

Figure 2.4: Memory usage rate with job control.

2.4 Summary
In this chapter, we presented the design and implementation of UPC system platform using Docker.
We discussed the job control function and it can be avoided losing the PC owner’s processes due to
the running of the UPC jobs while the memory usage is high. In the next chapter, we will present
the implementation of UPC web interface for job submission.

9

Chapter 3

Implementation of Web Interface
Submission

In this section, we present the implementation of the UPC web interface. The users of the UPC
system can submit the jobs and download the results by accessing to this web interface through the
web browser. The implementation details will be discussed.

3.1 Operation Flow
Figure 3.1 illustrates the overview of the operation flow for submitting the jobs and accessing the
results using the UPC web interface.

Figure 3.1: Operation flow of job submission and results accessing.

1. Upload Job: the user sends the http request to the web server for uploading the jobs by
calling the web interface. The jobs can be uploaded by clicking the NEW JOB UPLOAD
button. The jobs and result directories are prepared at the web server storage for keeping the
user uploaded jobs and the results from the master.

11

2. Synchronize Job and Result: the jobs and results directories at web server are mounted with
the directories of the file system at the UPC master. Thus, the jobs and result files can be
synchronized between the web server and the UPC master using the SFTP protocol. The
UPC master will transform the submitted jobs into the container-based jobs using Docker
for processing at the workers and keeps the results from them.

3. Accessing Result: The http response will be sent to the user to download the results when
the master receives the results. The result files are synchronized between the UPC master
and the web server. The files appear on the web interface under the RESULTS DOWNLOAD
label. The user can easily download them by clicking the result files.

3.2 Web Server Platform
For the web server platform, we adopted the Linux for the operating system, Node.js for the
framework of implementing the HTTP web server and running JavaScript programs on the server,
HTML5, CSS, and JavaScript for designing the web pages and controlling the file system as shown
in the Figure 3.2.

Figure 3.2: UPC web server platform.

3.2.1 HTTP Web Server
Node.js is adopted for implementing the HTTP web server. Node.js has a built-in module called
HTTP, to allow transferring data over the Hyper Text Transfer Protocol (HTTP). The HTTP module
can create the HTTP server that listens to the server ports and gives the response back to the client.
Node.js also offers the running environment of JavaScript programs on the server. Due to the cost
and security concerns, the UPC web server runs on the private network in our implementation of
the UPC system.

3.2.2 Web Interface
The UPC web interface is implemented using HTML, CSS, and JavaScript. CSS stands for Cas-
cading Style Sheets and it is used to format the layout of a web page. In our implementation, the
internal CSS is used to define a style for the web interface.

12

The two functions, uploadFile() and showUploadedFiles(), are implemented by JavaScript to
listen the user’s requests for uploading the jobs and showing the uploaded jobs and their processing
status, as shown in the Figure 3.3.

The HTTP POST request method is used in the uploadFile() function for carrying the data to
be written to the web server storage from an HTML form.

The HTTP GET request method is used in the showUploadedFiles() function for retrieving the
data from the web server storage and showing them on the UPC web interface as the response.

Figure 3.3: Uploaded jobs and their processing status on UPC web interface.

3.2.3 File System Control
Managing the files (jobs/results) is one of the most important task for the Node.js web server.
Node.js provides the file system module (fs), for reading, creating, updating, and deleting the files.
As shown in Figure 3.4, the user can easily upload the jobs and download the results using the
Node.js file system module.

Figure 3.4: Upload and download files on UPC web interface using fs module.

13

The following three JavaScript functions are implemented in the web server for managing the
files:

1. The sendListOfUploadedFiles() function performs sending the list of the files to be uploaded
to the UPC web server by the user. The process is initiated when the POST request is
obtained from the uploadFile() function. In this function, the fs.readdir() method is used to
asynchronously read the contents of the user’s directory. The callback of this method returns
the list of all the file names in the directory.

2. The sendUploadedFile() function sends the files in the list obtained from the sendListOfU-
ploadedFiles() function. In this function, the fs.readFile() method is used to read the data
from the file. It will read all the data and save them into the buffer.

3. The saveUploadedFile() function saves the data from the buffer obtained from the sendU-
ploadedFile() function. In this function, the fs.createWriteStream() method is used to make
the writable stream for writing data in the file. This method is much better than fs.writeFile(),
when it is needed to write very large amounts of data.

Figure 3.5: Use of JavaScript functions for web interface submission.

3.3 Summary
In this chapter, we presented the implementation of the UPC web interface. The users can easily
submit the jobs and access to the results through the web interface. In the next chapter, we will
present the implementation of online job acceptance function.

14

Chapter 4

Implementation of Online Job Acceptance
Function

Previously, the UPC system only accepts jobs from local users manually through the UPC web
interface. Besides, the UPC web server runs in private networks due to cost and security concerns.
However, some application systems request to submit jobs online to the UPC system to enhance
their processing capabilities. In this section, we present the implementation of the two online job
acceptance functions. The implementation details will be discussed.

4.1 Online Job Acceptance Function
Some application systems will need to submit the jobs automatically to the UPC system for speed-
ing up their job processing time. To realize it, two approaches using Secure Shell File Transfer
Protocol (SFTP) and a cloud storage are considered and implemented for the online job accep-
tance functions in the UPC system.

For the first approach, we adopted SSHFS as the filesystem client [16]. The UPC web server
interacts with the files (jobs) in the application system over the reliable data stream via the SFTP
data communication protocol.

For the second approach, we adopted pCloud as a free cloud storage service [9]. The storage
space can be accessed by calling the pCloud API for getting the jobs and sending the results to the
pCloud directory of application systems by the web server.

4.1.1 Online Job Acceptance Function using SFTP
The first approach, online job acceptance function using SFTP, is implemented at the web server
using JavaScript. SSHFS is actually adopted, because it can mount and interact with directories
and files located on a remote server as the filesystem client using:

$ sudo sshfs app system@public ip address:/ upc web server@private ip address:/
The web server can interact with the remote file system via SFTP by providing the file access,

file transfer, and file management over any reliable data stream. Then, the application system only
needs to prepare the directories for jobs and results at its own storage space and allow port-22
for SSH with authorized access by the UPC web server. As shown in Figure 4.1, an application
system, which has its own public server, can use this approach to send the jobs, and process them
at the UPC system.

15

Figure 4.1: UPC online job acceptance using SFTP.

4.1.2 Online Job Acceptance Function Using Cloud Storage
The second approach, online job acceptance function using a cloud storage, is implemented at the
web server using JavaScript. pCloud is adopted as the free secure cloud storage. For file access to
the pCloud API, pcloudCLient.downloadFile(fileLink, file.name) and pcloudCLient.uploadFile
(localResultsFile.name, localResultsFile.path, cloudFilePath) are used by the web server. The
directories for adding jobs and accessing results are prepared in pCloud. As shown in Figure 4.2,
an application system, which runs on the private server, can use this approach to send the jobs and
process them at the UPC system.

Figure 4.2: UPC online job acceptance using cloud storage.

4.2 Evaluation of Online Job Acceptance Function
For evaluations, we adopt Android programming learning assistance system (APLAS) [17] and Ex-
ercise and performance learning assistant system (EPLAS) [18] as the application systems, which
require the high CPU capabilities and have been developed in our group.

4.2.1 Evaluation Setup
Table 4.1 shows the specifications of the master PC and the six worker PCs that are connected with
the master through the 100Mbps wired in our experiments, and the specification of the servers for

16

APLAS and EPLAS.
For processing the APLAS jobs, we apply the multi-threading technique to increase the effi-

ciency of worker PCs. Extensive measurements were conducted to find the best number of threads
for each worker PCs. Table 4.1 also shows the different number of threads usage on each PCs for
executing the APLAS jobs.

Table 4.1: PC specifications in experiments.

PC CPU # of
core

cloc.
freq.

mem.(GB) disk (GB) # of
Threadavl. total avl. total

PC-1 corei3 4 1.7 2 4 64 500 1
PC-2 corei5 4 2.6 2 4 64 500 1
PC-3 corei5 4 2.6 2 4 64 500 1
PC-4 corei7 8 3.4 4 8 64 500 4
PC-5 corei9 16 3.6 8 16 64 500 5
PC-6 corei9 20 3.7 8 16 64 500 6

Master corei5 4 3.2 8 8 225 225
APLAS
server AMD Opteron 4core 4 2.6 11 11 100 100

EPLAS
server corei5 4 2.2 8 8 1000 1000

4.2.2 Results for APLAS Jobs with SFTP
Currently, APLAS [17] offers six assignments of Android applications to the students, called Bas-
icAppX1, BasicAppX2, ColorGame, SoccerMatch, AnimalTour, and MyLibrary. Table 4.2 shows
the number of jobs, the CPU time at using the APLAS server only, and the CPU time at using the
UPC system together for each assignment. The total CPU time can be reduced by 90.5% by using
the UPC system together through the online job acceptance function with SFTP.

Table 4.2: CPU time for APLAS.

Type of job Assign APLAS jobs in UPC #. of
job

CPU time

PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 APLAS APLAS
with UPC

BasicAppX1 2 4 4 6 10 24 50 06:02:19 00:24:39
BasicAppX2 2 3 3 8 15 19 50 04:04:29 00:26:54
ColorGame 1 3 3 8 15 20 50 04:19:06 00:27:06
SoccerMatch 2 3 3 11 20 24 50 04:32:29 00:28:11
AnimalTour 0 4 4 8 15 27 50 03:52:19 00:20:34
MyLibrary 1 4 4 11 20 24 50 03:16:48 00:20:44

Total 335 26:07:30 02:28:08

17

4.2.3 Results for EPLAS Jobs with Cloud Storage
Currently, EPLAS [18] offers contents to practice five Yoga poses, namely, Mountain pose, Side-
bend pose, Warrior pose, Seated 1 pose, and Seated 2 pose.Table 4.3 shows the number of jobs,
the CPU time at using the EPLAS server only, and the CPU time at using the UPC system together
for each pose. The total CPU time can be reduced by 55.1% by using the UPC system together
through the online job acceptance function with pCloud. It is noted that in the UPC system, the
jobs cannot run on three workers, PC-1, PC-2, and PC-3 due to the memory shortage. By installing
additional memories or new worker PCs with sufficient memories, it is expected to further reduce
the CPU time by the UPC system.

Table 4.3: CPU time for EPLAS.

Type of job Assign EPLAS jobs in UPC #. of
job

CPU time

PC-4 PC-5 PC-6 EPLAS EPLAS
with UPC

Mountain pose 12 14 15 41 00:20:37 00:09:17
Side-bend pose 12 14 15 41 00:11:22 00:09:06
Warrior pose 12 14 15 41 00:27:43 00:09:26
Seated 1 pose 12 14 15 41 00:24:47 00:09:13
Seated 2 pose 12 14 15 41 00:18:42 00:09:15

Total 205 01:43:11 00:46:17

4.3 Summary
In this chapter, we presented the implementations of the online job acceptance functions using
the SFTP and a cloud storage in the UPC system. The experiment results using APLAS jobs and
EPLAS jobs showed that the jobs were successfully accepted from the application systems, and
the total CPU time of completing the jobs was reduced by 90.5% for APLAS jobs and 55.1%
for EPLAS jobs respectively. In the next chapter, we will present the implementation of the job
migration function.

18

Chapter 5

Implementation of Job Migration Function

In this chapter, we present the implementation of the dynamic job migration function in the UPC
system. It uses two open-source software named Checkpoint-Restore in Userspace (CRIU) and
Podman. CRIU can save all the data related to the running job into image files, which is called
Checkpointing. Podman can manage the Docker containers. Besides, since these tools have been
developed for Linux OS, Windows Subsystem for Linux (WSL) is added at the additional layer to
cover for the PCs running on Windows OS. WSL enables the PC to run Linux distributions di-
rectly on Windows10 alongside Windows applications, without the overhead of a traditional virtual
machine.

5.1 Job Migration Function
In the UPC system, any job is processing inside the Docker container, which allows the dynamic
migration of a job that is currently running on one worker, to another one. After the job is migrated,
it can continue executing the remaining part of the job. By adopting this job migration function, the
UPC system can accelerate the job completion by dynamically migrating it to a faster PC when it
becomes idling. Besides, the system can avoid job completion failures due to the memory shortage,
the full occupation of the CPU cores, or the hardware trouble.

5.1.1 Job Migration Process
The job migration is the process of moving all the resources associated with the running job on
a worker to another one. The migration process actually consists of: (a) saving the states of the
memory and CPU including the registers and the data processing elements (pipeline) in the current
PC, and (b) initiating them in the new PC.

For this function, Linux allows the user to access the /proc file system which stores the infor-
mation related to the running processes. Using CRIU (Checkpoint and Restore in User space) tool
[19], the process state can be captured and initiated at the specified points.

5.1.1.1 State Capturing

To capture the state of the job on a PC, CRIU collects the following information of the process and
dumps them into the image files, as shown in Figure 5.1:

1. Process’s threads under /proc/$pid/task/ directory,

19

2. Children threads under /proc/$pid/task/$tid/children directory,

3. Memory contents under /proc/$pid/smaps and /proc/ $pid/map files directories,

4. File descriptors under /proc/$pid/fd directory, and

5. Core(pipes) parameters for the pipeline from /proc/$pid/stat file.

In the UPC system, any job is executing inside the Docker container, where CRIU cannot
correctly create checkpoint and restore the jobs. To overcome this limitation, we adopt the Pod-
man container management tool [20]. It can manage the entire container ecosystem and support
multiple container image formats, including Docker images. Podman does not require a daemon
running as root to launch and manage containers. It can run with the same permissions as the user
who launched the containers. Therefore, it enables CRIU to create the checkpoint and restore the
running containers (jobs).

Figure 5.1: State capturing at PC.

5.1.1.2 State Restoring

To restore the captured state on a new PC, CRIU reads the image files, and restores the shared files
and the memory areas by creating the corresponding processes at the PC. Then, it recreates the
processes by repeatedly calling the fork() process creation function until the basic task resources
such as the memory mappings for exact location, the timers, the credentials, and the threads are
successfully restored.

Figure 5.2: State restoring at new PC.

20

5.1.2 Software Tools
The job migration function at a UPC worker is implemented using Podman 1.6.2 and CRIU 3.14,
and Python codes to control them.

Podman 1.6.2 is used to manage the Docker container jobs during the job migration process at
the UPC worker.

CRIU 3.14 is used to create the checkpoint and restore the jobs in the Docker container during
the job migration process at the UPC worker. It restores the job programs into one or multiple
image files.

5.1.3 Worker Search for Migration
The following steps are performed to search for an available worker to be migrated.

1. The jobs are requested by the relevant worker one after the other until the queue becomes
empty.

2. The master changes the worker status into ‘busy’ while job is processing at the worker.

3. The master changes the worker status into ‘free’ when all jobs in the queue are finished.

4. The master finds the ‘busy’ worker, where the job is running that has maximum CPU time
reduction.

5. The master sends the ‘checkpoint’ alert to the selected ‘busy’ worker and ‘restore’ alert to
the ‘free’ worker.

5.1.4 Procedure of Job Migration Function
The job migration function can migrate the currently running job on a worker to another one by
the following steps. Any command is issued at UPC master through SSH. The migration function
is called after source (’busy’) and destination (’free’) workers are selected for the job migration.

1. Suspend the running container in the current worker when checkpoint alert is received by:
$ sudo podman container stop job:latest

2. Make the checkpoint image file to save the job state by:
$ sudo podman container checkpoint -l –export=job.tar.gz

3. Remove the job from the job queue in the worker by:
$ sudo os.remove(upc@upcworker1:/worker1/ queue/job)

4. Send the checkpoint image file to the UPC master by:
$ sudo scp upc@upcworker1:/job.tar.gz upc@upcmaster :/checkpoints/worker1/

5. Send the checkpoint image file to the worker that receives the restore alert by:
$ sudo scp upc@ upcmaster:/checkpoints/worker1/job.tar.gz upc@upcworker2:/

6. Restore the running state of the job from the checkpoint image file in the worker by:
$ sudo podman container restore –import=job.tar.gz

7. Run the restored job in the worker by:
$ sudo podman run -d -it –name jobrestore job:latest

21

5.1.5 WSL Layer in Windows PC
Windows Subsystem for Linux (WSL) allows users to run the applications on Windows without
the overhead of a traditional virtual machine. By adding WSL layer on the Windows as shown in
Figure 5.3, CRIU and Podman can be installed on the Linux kernel of the host OS (Windows).
In the UPC system, the jobs are running as the Docker container at the workers using the full
resources of the host OS. The running container can be managed from the WSL Linux terminal for
carrying out the migration process.

Figure 5.3: Run Docker container on Windows with WSL.

5.1.6 Job Migration Limitation
To migrate a job (process), it is necessary to save the several resources such as the CPU state,
the memory state, the network state, and the disk state as the image files. The resource formats
are different among different OS. As shown in Figure 5.4, a job can be successfully migrated
(checkpoint/restore) from one PC to another which is running the same OS.

Figure 5.4: Job migration between same OS worker PCs.

22

5.2 Evaluation of job migration function
In this section, we evaluate the implemented job migration function in the UPC system through
extensive experiments using the testbed system.

5.2.1 Evaluation Setup
Table 5.1 shows the specifications of the UPC master and the six UPC workers. The workers are
connected with the master through the 100Mbps wired in our experiments. These workers can be
classified into two groups by the number of CPU cores. PC-1, PC-2, and PC-3 are into the first
group. PC-4, PC-5, and PC-6 are into the second group. As the running jobs with the different
number of threads usage in the UPC system, five C, two C++ and seven Python programs are
selected as shown in Table 5.2.

Table 5.1: Worker specifications.

PC #
CPU

of
core

clock
freq.

memory(GB) disk(GB)
aval. total aval. total

PC1 i3 4 1.7 2 4 64 500
PC2 i5 4 2.6 2 4 64 500
PC3 i5 4 2.6 2 4 64 500
PC4 i7 8 3.4 4 8 64 500
PC5 i9 16 3.6 8 16 64 500
PC6 i9 20 3.7 8 16 64 500

Master i5 4 3.2 8 8 225 225

Table 5.3 shows the measured CPU time when each job runs on each worker. The two C
programs, Network Simulator, Optimization Algorithm, are single-thread programs for wireless
networks [21]. They have been developed in our group. The CPU time is not much different
among the workers except PC-1, because it does not have the maximum turbo frequency feature.
The remaining C programs [22], FFmpeg, multimedia content resizing, and multimedia format
changing, use multi-thread. The CPU time is much different among the workers.

The two C++ physics simulation programs, Palabos [23] and Flow [24], use two or four
threads. The CPU time is not much different among the workers. The next four neural-network [25]
related jobs, Deep Convolutional Generative Adversarial Networks (DCGAN), Recurrent Neural
Network (RNN), Convolutional Neural Network (CNN), and Covid-19 detection are Python pro-
grams using multi-thread. The CPU time is much different between the two worker groups, because
the number of cores in the CPU is different among them. The remaining three Python programs
[26], Converter, Blockchain mining, Covid-19 outbreak prediction, use one or four threads. The
CPU time is not much different between the two groups.

5.2.2 Validity of Migration Function
First, we verify the implemented function by migrating the 14 jobs between the six worker PCs
at three different job completion rates of 25%, 50%, and 75% for the migration checkpoint. We
checked the validity of the migration function by the scenarios in Figure 5.5. A total of 1260
combinations are executed.

23

Table 5.2: Job specifications.

Job # job name # of threads
disk usage

(GB)
job1 Network Simulator 1 0.392
job2 Optimization Algorithm 1 1.5
job3 DCGAN 17 1.9
job4 RNN 17 1.9
job5 CNN 17 1.9
job6 FFmpeg 18 2.8
job7 Converter 1 1.1
job8 Palabos 2 6.7
job9 Flow 4 0.438
job10 Blockchain mining 1 0.92
job11 Covid-19 detection 23 2.95
job12 Covid-19 outbreak prediction 4 1.84
job13 multimedia content resizing 18 2.8
job14 multimedia format changing 18 2.8

Table 5.3: Jobs standard processing time.

job # PC1 PC2 PC3 PC4 PC5 PC6
job1 2:14:46 1:06:44 1:06:41 0:54:21 0:39:40 0:36:09
job2 0:41:43 0:26:38 0:26:35 0:20:27 0:13:53 0:13:10
job3 1:37:14 1:09:28 1:09:29 0:22:44 0:12:45 0:11:15
job4 0:17:43 0:12:01 0:12:04 0:07:03 0:05:37 0:04:49
job5 0:26:04 0:22:22 0:22:17 0:07:07 0:05:24 0:04:47
job6 0:46:37 0:31:49 0:31:51 0:13:23 0:07:59 0:06:54
job7 0:17:09 0:11:34 0:11:30 0:05:41 0:04:53 0:04:15
job8 0:12:51 0:08:38 0:08:37 0:05:24 0:04:29 0:03:19
job9 0:25:20 0:14:45 0:14:44 0:11:08 0:08:32 0:07:55
job10 0:36:28 0:09:09 0:09:07 0:07:53 0:05:59 0:04:14
job11 0:39:35 0:24:53 0:24:57 0:10:42 0:04:08 0:03:16
job12 0:13:12 0:06:35 0:06:38 0:05:09 0:03:55 0:03:01
job13 0:34:50 0:19:47 0:19:45 0:12:33 0:07:48 0:07:10
job14 0:36:33 0:24:56 0:24:53 0:10:55 0:05:45 0:04:19

Figures 5.6, 5.7, 5.8, 5.9, and 5.10 illustrate the migration of job3 (DCGAN) from one PC to the
others at three different job completion rates of 25%, 50%, and 75% for the migration checkpoint
and show the total job execution time. The results show that this job was successfully migrated
between different workers, and the migration from the slow worker to the faster one reduced the
total CPU time. It is also observed that the faster migrating the slower worker’s job, the shorter the
total CPU time. It is an important factor to be considered for designing the scheduling algorithm
combining with the job migration. In some cases, the total CPU time is longer due to migration
of the job from the fast worker to the slower one. As one thing, PC2 and PC3 have the same
specifications, therefore, it is only showed the PC2’s validation results of migration function. The

24

Figure 5.5: Scenarios for validating migration function.

CPU time of job migration from the PC3 is considered as same as the PC2.

Figure 5.6: CPU time of job migration from PC1.

Figure 5.7: CPU time of job migration from PC2/PC3.

25

Figure 5.8: CPU time of job migration from PC4.

Figure 5.9: CPU time of job migration from PC5.

Figure 5.10: CPU time of job migration from PC6.

To demonstrate the effectiveness of the implemented function, Table 5.4 shows the improved
percentage obtained by Eq.4 based on the data in Figures 5.6, 5.7, 5.8, 5.9, and 5.10. It is noted
that the longer running at the slow worker will not be greatly improved to the total CPU time

26

Table 5.4: Total CPU time improvement rates by migration.

migrate from slow to
faster workers

Improvement by migration of job-3 on three different
migration checkpoints (ImprovedPercentage)

25% migration 50% migration 75% migration
PC-1 + (PC-2/3/4/5/6) 49.17% 31.89% 14.60%
PC-2/3 + (PC-4/5/6) 53.97% 34.81% 15.64%
PC4 + (PC-5/6) 23.08% 11.98% 0.82%
PC5 + PC6 * no improvement (Tmig overhead > Ti+1,a f ter, and PC5 ≈ PC6)

by applying the job migration function. It can be clearly seen by comparing the total CPU time
improvement rates upon the three different migration checkpoints in Table 5.4.

Ni =COUNT (PCi+1 : PCn) (1)

Ti,avg =
1
Ni

n∑
j=i+1

(Ti,be f ore+Tmig overhead+

Ti+1,a f ter), (j < n) (2)

Timprove = Tw/o−Ti,avg (3)

ImprovedPercentage =
Timprove

Tw/o
∗100% (4)

where,

• n represents the total number of PCs and it is arranged in ascending order (PC1, PC2,...PCn,),

• Ni represents the total number of faster PCs than PCi,

• Ti,avg represents the average total CPU time with migration (from PCi to the faster PCs),

• Tw/o represents the total CPU time at PCi without migration,

• Ti,be f ore represents the total CPU time at PCi (before migration),

• Tmig overhead represents the migration overhead from PCi to PCi+1,

• Ti+1,a f ter represents the total CPU time at PCi+1 (after migration),

• Timprove represents the total CPU time improvement by migration.

Next, we proved the effectiveness of the migration function by conducting the extensive ex-
periments. We randomly select six jobs among 14 jobs and randomly assign to the six workers.
Table 5.5 shows the total CPU time and makespan comparison of with and without migration for
10 random cases. For migration, when a faster worker becomes idle, the job that has the maximum
CPU time reduction will be migrated to that idle worker. The maximum CPU time reduction is
considered by deducting the remaining CPU time on current worker to the addition of migration
overhead and CPU time on new worker. Table 5.6 shows the total CPU time and makespan can be
reduced 34.62%, and 49.72%, respectively, by migration.

27

Table 5.5: Comparison of with and without migration for 10 random cases.

Random
cases

without migration (w/o) with migration (w)
total CPU

time makespan total CPU
time makespan #. of migration

time
1 1:51:53 0:39:57 1:06:20 0:17:04 3
2 1:06:20 0:17:04 0:55:25 0:14:32 4
3 1:38:51 0:25:32 1:14:18 0:18:39 3
4 1:45:31 0:34:55 1:06:27 0:16:16 2
5 1:53:07 0:36:34 1:05:34 0:14:01 3
6 1:23:15 0:22:44 1:04:08 0:16:48 2
7 1:39:52 0:41:48 1:03:29 0:17:05 3
8 1:29:59 0:34:56 0:46:07 0:12:32 2
9 1:27:21 0:24:58 1:02:32 0:15:10 2

10 1:09:22 0:24:49 0:40:53 0:10:17 3
Average 1:32:33 0:30:20 1:00:31 0:15:14 3

Table 5.6: Analysis of CPU time and makespan results.

w/o migration w migration Reduction time Reduction rate
Average total CPU time 1:32:33 1:00:31 0:32:02 34.62%
Average makespan 0:30:20 0:15:14 0:15:05 49.72%

5.2.3 Job Scheduling Algorithms with and without migration
Next, we evaluate the CPU time reduction by the migration. Three scheduling algorithms called
FCFS L2H, FCFS H2L, and Hjob L2H, are implemented and applied. The first two algorithms
follow the First Come First Serve approach. FCFS L2H assigns the first arriving job to the slowest
available worker PC. FCFS H2L assigns the first arriving job starting from the highest available
worker PC. Hjob L2H assigns the longest CPU time job starting from the slowest worker PC.
Figures 5.11, 5.12, and 5.13 show the total CPU time comparison of each PC with and without
applying the job migration upon three scheduling algorithms respectively.

Figure 5.11: FCFS L2H algorithm with and without migration.

28

Figure 5.12: FCFS H2L algorithm with and without migration.

Figure 5.13: Hjob L2H algorithm with and without migration.

5.2.3.1 Analysis of Migrated Jobs

Table 5.7 shows the migrated jobs in each algorithm. In FCFS L2H algorithm, the two jobs, job1
and job14, are migrated from PC1 to PC6 and from PC4 to PC5, respectively. The CPU time is
greatly improved. In FCFS H2L algorithms, job6 is migrated from PC1 to PC4 and job14 is from
PC2 to PC5. In Hjob L2H algorithm, job1 is migrated into two times from PC1 to PC5 and PC5
to PC6. Job3 is migrated from PC2 to PC6 and the total CPU time is reduced significantly. The
workers are efficiently used by migrating running jobs.

5.2.3.2 Makespan Results

Table 5.8 compares the makespan of three scheduling algorithms with and without using migra-
tion. The makespan was reduced by 53.73% on average. “with migration” outperforms “without
migration” in terms of makespan.

29

Table 5.7: Migrated job conditions.

migrated
job

from to

Source
worker

partially
finished

percentage

CPU
time

Destination
worker

Remaining
executed

percentage

CPU
time

FCFS L2H
job1 PC1 14.69% 00:21:14 PC6 85.31% 00:30:50

job14 PC4 63.18% 00:06:57 PC5 36.82% 00:02:07

FCFS H2L
job6 PC1 54.45% 00:33:35 PC4 45.55% 00:06:06

job14 PC3 16.71% 00:04:10 PC6 83.29% 00:03:35

Hjob L2H
job1 PC1 18.25% 00:27:49 PC5 18.78% 00:07:51
job3 PC2 33.85% 00:28:14 PC6 66.15% 00:07:26
job1 PC5 18.78% 00:07:51 PC6 62.57% 00:22:59

Table 5.9 compares the total CPU time for 14 jobs by three scheduling algorithms with and
without the migration. The total CPU time was reduced by 26.45% on average. The total CPU
time can be reduced significantly, especially, in Hjob L2H with the migration.

Table 5.8: Makespan results (H:M:S).

without migration with migration Reduction time Reduction rate
FCFS L2H 02:15:35 00:52:04 01:23:31 61.59%
FCFS H2L 00:59:07 00:42:07 00:17:00 28.76%
Hjob L2H 02:15:35 00:58:39 01:16:56 56.75%

average 01:50:06 00:50:57 00:59:09 53.73%

Table 5.9: Total CPU time results (H:M:S).

without migration with migration Reduction time Reduction rate
FCFS L2H 04:29:30 03:02:27 01:27:03 32.31%
FCFS H2L 04:11:42 03:46:47 00:24:55 9.89%
Hjob L2H 05:27:09 03:34:47 01:52:22 34.35%

average 04:42:47 03:28:00 01:14:47 26.45%

5.3 Summary
In this chapter, we presented the implementation of the dynamic job migration function using
CRIU and Podman. This function can speed up the job completion and is useful to overcome the
memory overuse, or avoid hardware trouble. The experimental results confirmed the validity of the
implemented function, and the effectiveness in improving the resource utilizations of workers and
reducing the total CPU time and makespan. In the next chapter, we will present the implementation
of the running job backup function.

30

Chapter 6

Implementation of Job Running Backup
Function

In this section, we present the implementation of the job running backup function in the UPC
system, by extending the dynamic job migration function. It periodically check-points the running
job in a worker, and automatically migrates it to another healthy worker when the current worker
meets a trouble.

6.1 Job Running Backup Function
In the UPC system, some jobs, such as physics simulations and neural networks, require the long
CPU time to be completed. Then, the probability of causing a failure of the running worker will
be increased due to the memory shortage, the full occupations of the CPU cores, the power outage,
or some hardware troubles. They may cause restarting or shutdown of the worker. This runtime
failure can delay the completion of the job.

To avoid it as much as possible, the current state of running the job on the worker should
be automatically backed up, and the job should run from the backed up state on another healthy
worker. Therefore, the job running backup function is implemented by extending the dynamic job
migration function. Checkpoint-Restore in Userspace (CRIU) is periodically applied to capture the
job running state of the running job at a worker.

6.1.1 Job Check-Pointing Process
The job check-pointing process is implemented to save the resources that are associated with the
currently running job on the worker. As shown in Figure 6.1, first, it captures the states of the
memory and the CPU, including the registers and the data processing elements (pipeline) in the
current worker, which will be dumped and compressed into the tar file. Next, it sends the backup
compressed file to the master that stores the latest checkpoint image to recover from job failure.

Linux allows the user to access the /proc file system that stores the information related with the
running processes. Using the CRIU tool [19], the process state can be captured and initiated at the
specified points.

31

Figure 6.1: Job check-pointing at worker and backup saving at master.

6.1.2 Job Restoring Process
When the master detects the failure of the worker as shown in Figure 6.2, it will find the healthy
worker among the available workers that has the higher performance than the failed one, and send
the original job and the backup file to this selected worker. To restore the captured states at a new
worker, CRIU reads the image files, and restores the shared files and the memory areas by creating
the corresponding processes at the PC. It recreates the processes by repeatedly calling the fork()
process creation function until the basic task resources such as the memory mappings for the exact
locations, the timers, the credentials, and the threads are successfully restored.

Figure 6.2: Noticing worker failure and job restoration at healthy worker.

32

6.1.3 Software Tools
Job running backup function is the extension of the dynamic job migration function, and so, Pod-
man 1.6.2 and CRIU 3.14, are re-applied for the implementation of backup function. In the dy-
namic job migration function, CRIU is used to generate the checkpoint, when the faster worker is
free, and available to accept the job from the slow worker. However, in the job running backup
function, CRIU is used to periodically generate the checkpoint of running job, and it is saved as
the backup file at the master.

Podman 1.6.2 manages the Docker container jobs during the check-pointing process at the UPC
worker.

CRIU 3.14 creates the checkpoint and restores the jobs in the Docker container. It saves the
running job’s state into one or multiple image files and restores the job from the saved state.

These tools are controlled by the Python programs. They correctly perform the backup process
when the current worker meets a trouble during executing the job.

6.1.4 Worker Search for Checkpoint Restoration
The following steps are performed to search a new worker to restore the interrupted job.

1. The worker receives the jobs that are existing in the master’s job queue, one after another.

2. The master changes the worker status to ‘busy’ when the job is processed at the worker.

3. The worker sends the checkpoint file of the current job every one minute.

4. The master keeps the latest checkpoint file of the job from each worker.

5. The master changes the worker status to ‘corrupt’ when the connection is lost.

6. The master changes the worker status to ‘free’ when all the assigned jobs are completed.

7. The master sends the ‘restore’ alert and the checkpoint file of the ‘corrupt’ worker to the
‘free’ worker.

6.1.5 Procedure of Job Running Backup Function
The job running backup function saves all the data related to the running job and restores the
crashed job. The function is called when the jobs are processing at the workers.

1. Generate the checkpoint of the running job every one minute by:
$ sudo podman container checkpoint -l –ignore-rootfs -R –export=./job.tar.gz

2. Send the checkpoint image file to the UPC master by:
$ sudo scp upc@upcworker1:./job.tar.gz upc@upcmaster :/checkpoints/worker1/

3. Update the latest checkpoint image file of each worker at the master by:
$ sudo rm -r upc@upcmaster :/checkpoints/worker1/<old>job.tar.gz

4. Send the original image of interrupted job to the worker that receives the ‘restore’ alert by:
$ sudo scp upc@upcmaster:/worker1/ original-job.xtar upc@upcworker2:/

33

5. Send the checkpoint file of interrupted job to the worker that receives the ‘restore’ alert by:
$ sudo scp upc@upcmaster:/checkpoints/worker1/ job.tar.gz upc@upcworker2:/

6. Load the original image of the interrupted job at new worker by:
$ sudo podman load -i original-job.xtar

7. Restore the interrupted worker job from the checkpoint image file in the free worker by:
$ sudo podman container restore –import=job.tar.gz

6.2 Evaluation of job running backup function
As the setup, we used the same experimental setup that was applied in the dynamic job migration
function. To verify the effectiveness of the implemented function, we conducted extensive exper-
iments with 14 jobs, in Table 5.2, on the testbed UPC system with six workers that have various
specifications, as shown in Table 5.1. In the experiments, first, we verified the validity of the im-
plemented job running backup function. Then, we confirmed the effectiveness of the function of
reducing the CPU time loss when the worker is shutdown unexpectedly while running a job.

6.2.1 Correctness of Checkpoint Execution
First, we verify the correctness of the checkpoint execution in the job running backup function by
applying it to 14 jobs on the six worker PCs. The checkpoint of the running job was generated
every one minute, considering the required time and file size. The latest checkpoint was kept in
the master. Table 6.1 shows the number of generated checkpoints and their average CPU time and
file size. Any checkpoint was successfully generated and saved in the files. The average time for
one checkpoint is 2.62sec and the average file size is 42.7MB, which does not increase the load of
the UPC system.

6.2.2 Correctness of Job Running Backup
Next, we verify the correctness of the job running backup function implementation, when an un-
expected shutdown will occur at the worker. job-1 (Network simulator) and job-3 (DCGAN neural
network) were selected in this experiment. They ran at PC-1 and PC-2 respectively, while the
states were check-pointed every one minute. After running the jobs for sufficiently long time, we
manually shut-downed the workers, and observed that they were automatically migrated to PC-5
and PC-6, and resumed to run there from the last check-pointed states.

Table 6.2 shows the CPU time to complete the two jobs. For job-1, the original worker PC-1
was shut-downed after 49min 5sec passed since it started running. For job-3, the first worker PC-2
was shut-downed after 32min 42sec passed since it started running. With the job running backup
function, the job could continue running at the new worker from the check-pointed state when the
original worker was shut-downed. The total CPU time could be reduced by 16.61% and 15.17%,
respectively, from the cases of rerunning the whole job at the new workers from the beginning.

34

Table 6.1: Number of checkpoints and average loads.

job # PC1 PC2 PC3 PC4 PC5 PC6
checkpoint loads

time (sec)
size

(MB)
job1 132 64 64 52 37 34 1.6 0.83
job2 39 24 24 18 11 9 1.4 0.074
job3 95 66 66 20 10 9 2.0 38.7
job4 15 10 10 6 4 3 1.7 34.4
job5 24 20 20 7 5 3 1.5 27.6
job6 44 29 29 11 6 5 2.1 39.9
job7 15 9 9 5 4 3 4.1 6.0
job8 10 8 8 5 4 3 2.8 2.1
job9 24 13 13 9 7 5 3.6 155.6

job10 35 9 9 7 5 4 2.2 44.7
job11 37 24 24 10 4 3 4.3 191.3
job12 13 6 6 5 3 3 1.3 9.4
job13 32 18 18 12 7 5 4.5 36.4
job14 36 22 22 10 5 4 3.6 10.8

average 39 23 23 13 8 7 2.62 42.7

Table 6.2: CPU time for two jobs (H:M:S).

job1 job3
Worker CPU time Worker CPU time

before shutdown PC-1 00:49:05 PC-2 00:32:42
after shutdown

by backup PC-5 00:24:56 PC-6 00:04:35

after shutdown
by rerunning PC-5 00:39:40 PC-6 00:11:15

Improvement 00:14:44 (16.61%) 00:06:40 (15.17%)

6.3 Summary
In this chapter, we presented the implementation of the job running backup function in the UPC
system. Checkpoint-Restore in Userspace (CRIU) is periodically applied to capture the job running
state at a worker. When the master detects the failure of the worker, it automatically migrates the
job running at another worker. The results confirmed that the proposal successfully resumed the
job running from the interrupted point at another worker after the original worker was shutdown
suddenly, and could reduce the total CPU time by migrating the job to a faster worker.

35

Chapter 7

Related Works in Literature

In this section, we introduce related works to this thesis. Several works have discussed the ef-
fectiveness of containerization, using Docker container technology, rather than virtualization, for
processing resource intensive applications in computational environments. Moreover, a significant
amount of research works has addressed checkpoint creations for migrations of Virtual Machines
(VMs) and the container workloads to recover from node failures and balance the resource utiliza-
tions in parallel and distributed environments, High Performance Computing (HPC) environments,
and cloud computing environments.

In [27], Benjamin et al. presented comparisons of the behaviors of four virtualization tools
in grid computing environments. The authors measured the CPU, memory, disk, and network
usages by executing the micro benchmark programs in each VM tool, and evaluated the linearity,
overhead, and performance isolation. This work helps the user to select the suitable tool according
to the application’s nature.

In [28], Xavier et al. presented performance evaluations between the containerization and the
virtualization for HPC applications. The authors found that the containerization is the lightweight
alternative to the virtualization for HPC applications.

In [29], Park et al. presented a container-based cluster management platform to provide dy-
namic distributed computing environments desired by users. The authors compare the perfor-
mance between the Docker-based execution and the native one by using two benchmark tools
implemented with C, Java, Python, and R, and showed that Docker offers almost the native perfor-
mance.

In [30], Jaikar et al. focused on executions of scientific jobs that require intensive resources in
cloud computing environments. They proved that the Docker container outperforms the OpenStack
virtual machine to execute the CPU and memory intensive jobs. Besides, the Docker container
consumes the less power while executing scientific jobs.

In [31], Sindi et al. presented migrations of HPC workloads from the faulty node to the spare
node using CRIU for OpenVZ containers. The authors showed that HPC applications written with
C++, C, and FORTRAN were successfully migrated without modifying the application programs.

In [32], Zeynep et al. focused on data security during live migrations of containers. The authors
proposed a secure model and proved the efficiency of the migration system both for stateless and
stateful sample applications upon LXC (Linux Containers) using CRIU and complementary tools.

In [33], Ansel et al. demonstrated the check pointing and restarting of over 20 well known
applications using DMTCP (Distributed Multithreaded Check pointing). The authors showed that
the applications were successfully checked and restarted on both centralized and distributed com-
putation nodes.

37

In [34], Alrajeh et al. discussed the methodology of the responsive migration model in the
High-Throughput Computing (HTC) system, and introduced six migration policies to determine
the selection of the target computer when a migration is needed. It is demonstrated that the proposal
could reduce the number of job evictions approximately by 92% when it is used as a fault-tolerance
mechanism.

In [35], Yu et al. presented a logging and replay approach for live migrations of Docker con-
tainers. The authors observed that the container based technique is more portable, efficient, and
easier to management. Both the down time and total migration time can be greatly reduced for live
migrations of Docker containers compared with the approach for traditional virtual machines.

In [36], Fan et al. proposed locality live migrations of Docker containers. The simulation
results showed that the proposed method improvesd the utilization of resources of servers, and
balanced all kinds of resources on the physical machine.

In [37], Stoyanov et al. reported the causes of significant delays in live migration due to the
large amount of memory use by the applications inside the container, especially when checkpoint-
ing the process using CRIU. This issue is addressed using the CRIU feature, the so-called “image
cache/proxy”, which keeps all the memory pages in a cache buffer rather than storing them on disk.

In [38], Junior et al. investigated container migrations in large-scale geo-distributed platforms.
Long-distance migrations have significant impacts on the migration downtime. The authors pro-
posed a model that will transfer Docker container volumes’ contents that are not being actively
modified prior to the actual container migration. Thus, only a small number of “hot” files must be
transferred during the downtime.

In [39], Fukai et al. introduced BLMVisor as an OS-independent and lightweight live migration
scheme for bare-metal clouds. The live migration is not supported in bare-metal clouds. BLMVisor
utilizes a very thin hypervisor to allow pass-through accesses to physical devices from the guest
OS.

In [40], Alshahrani et al. discussed existing solutions to secure the virtual machine live mi-
gration. To use the live migration in cloud computing might lead to a lot of attacks. Thus, it is
necessary to implement the security requirements in the virtual machine live migration.

In [41], Nagarajan et al. adopted Xen’s live migration mechanism for a guest operating system
(OS) to migrate a task from the unhealthy node to the healthy one. They proved that the live
migration reduced the cost of relocating the guest OS with the task.

In [42], Wang et al. designed the novel process-level live migration mechanism for the jobs by
adopting the Berkeley Lab Checkpoint/Restart (BLCR) tool. The authors showed that the process
level migration is significantly less expensive than migrating the entire OS images under the Xen
virtualization.

In [43], Cores et al. presented a checkpoint-based approach to proactively migrate parallel ap-
plications when impending failures are notified. The authors adopted the CPPC framework, which
is the portable and transparent checkpointing infrastructure. This approach is implemented at the
application level, and thus, it is independent upon the operating system or a particular implemen-
tation.

In [44], Polze et al. proposed an architectural blueprint for the proactive virtual machine migra-
tion before a failure occurs. This architecture comprises the multi-level online failure prediction.
The system is monitored ranging from the hardware to the application level for detecting errors
that might lead to a failure. It is also observed that the virtual machine live migration is supported
in popular hypervisors such as VMWare ESX, Citrix XenServer, and KVM.

In [45], Purushotham et al. proposed a new method for computing segmented backup for
recovering from node and link failures in real-time IP communications. The proposed scheme

38

gives more number of backup segments computed by the Min SegBak algorithm, and it gives
better results in terms of the faster failure recovery and the efficient reuse of primary path. The
authors showed that their proposal can recover the delay from component failures and guarantees
on the message delivery latency for the distributed real-time applications, such as medical imaging,
traffic control, and video conferencing, and so on.

In [46], Helmy and Rasheed presented an intelligent scheduling algorithm in the grid environ-
ment, which uses the Fuzzy c-means (FCM) clustering technique for predicting three classifications
of job workloads and the Ant Colony Optimization (ACO) algorithm for allocating them to different
grid nodes. For each part on the completion time of a node and the waiting time of each job, the
experimental results showed that the scheduling system using the proposed algorithm outperforms
all other algorithms and gives the optimal results.

In [47], Rawas et al. presented an Energy-Efficient and Bandwidth-Aware workload allocation
(EEBA) method for data-intensive applications in geo-distributed data centers (DCs). The au-
thors formulated the allocation problem as a multi-objective optimization problem, and proposed
a meta-heuristic genetic algorithm to find a near-optimal solution. They proved that the energy
consumption of the cloud DCs can be reduced due to load balancing the workload.

In [48], Bindu et al. proposed the Optimized Scheduling mechanism using ACO algorithm
(OSACO) to schedule the task to the resources based on the minimization of the cost, execution
time, and energy consumption. The simulation results proved that the client tasks are efficiently
allocated to the available resources due to the ability of resource adjustment at run time.

In [49], Singhal et al. presented the algorithm based on the Mutative ACO algorithm (MACO)
that adjusts the loads to be balanced in the cloud environment. MACO reduces the makespan
time and further develops the fitness function, while keeping up with other QoS parameters. The
algorithm deals with the resources successfully distributes over the data centers and shows the
instances can be shifted between the servers depending on the available resources.

39

Chapter 8

Conclusion

In this thesis, I presented the study of the user-PC Computing System (UPC). The UPC system
allows various application programs to run on various PC environments for the UPC workers using
the Docker container technology. Several useful functions are implemented. The effectiveness of
each function is verified by conducting the extensive experiments using the testbed UPC system.

Firstly, I presented the design and implementation of the UPC system platform using Docker.
By adopting Docker, the UPC system can accept various jobs or applications to run on user-PCs
as the UPC workers with different platforms and environments. The user submitted jobs are trans-
formed into the container based jobs, so called, Docker image at the UPC master. The Docker
image consists of all the necessary software and it is distributed to the UPC workers for carrying
out the execution process.

Secondly, I presented the implementation of the web interface in the UPC system for job sub-
missions by the users. The web server is implemented using Node.js. It runs in a private network
due to cost and security concerns. The users can easily submit the job and download the results by
accessing to the web interface through the web browser.

Thirdly, I presented the implementation of the two online job acceptance functions for accept-
ing the jobs from the application systems to enhance their processing capabilities. The application
systems can submit their jobs to the UPC master through the shared storage or the FTP service. For
evaluations, I adopt APLAS and EPLAS that have been developed in our group as the application
systems. They require the high CPU capabilities. The experimental results showed that the jobs
were successfully accepted from the application systems, and the total CPU time of completing
the jobs was reduced by collaborating with the UPC system.

Fourthly, I presented the implementation of the job migration function, using the two open-
source software, CRIU and Podman. This function will speed up the job completion and will be
useful to overcome the memory overuse, or avoid hardware trouble. In the evaluations, I veri-
fied the validity of the implemented function and confirmed the effectiveness of the function by
comparing the job completion performances when three scheduling algorithms were adopted. The
results show that the total CPU time and makespan by the algorithms are significantly reduced
by improving the resource utilizations and balancing the workloads of the workers through the
dynamic migration.

Lastly, by extending the dynamic job migration function, I presented the implementation of the
job running backup function in the UPC system. It periodically check-points the running job in
a worker, and automatically migrates it to another healthy worker when the current worker meets
a trouble. In the experiments, first, I verified the validity of the implemented job running backup
function. Then, I confirmed the effectiveness of the function in reducing the CPU time loss when

41

the worker is shutdown unexpectedly while running a job.
In future studies, I will study the automatic Docker image generation for a newly submitted

job, the use of GPU devices for workers, the automatic join/leave of workers, and the collaboration
of multiple masters for the scalable UPC system.

42

Bibliography

[1] H. Htet, N. Funabiki, A. Kamoyedji, M. Kuribayashi, F. Akhter, and W.-C. Kao, “An im-
plementation of user-PC computing system using Docker container,” Int. J. Future Comput.
Commun. (IJFCC), vol. 9, no. 4, pp. 66-73, Dec. 2020.

[2] N. Funabiki, K. S. Lwin, Y. Aoyagi, M. Kuribayashi, and W.-C. Kao, “A user-PC computing
system as ultralow-cost computation platform for small groups,” Appl. Theo. Comput. Tech.,
vol. 2, no. 3, pp. 10-24, Mar. 2017.

[3] L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer com-puting system,” Fu-
ture Gen. Com. Sys., vol. 18, no. 4, pp. 561-572, Aug. 2002.

[4] H. Htet, N. Funabiki, A. Kamoyedji, and M. Kuribayashi, “Design and implementation of
improved user-PC computing system,” IEICE Tech. Report, NS2020-28, vol. 120, no. 69, pp.
37-42, Jun. 2020.

[5] A. Mouat, Using Docker: developing and deploying software with containers, O’Reilly Me-
dia, Inc., Dec. 2015.

[6] D. Herron, Node.js web development, 5th Ed., Packt Pub., Jul. 2020.

[7] H. Htet, N. Funabiki, A. Kamoyedji, X. Zhou, Y. W. Syaifudin, I. T. Anggraini, and M. Kurib-
ayashi, “Implementations of online job acceptance functions in user-PC computing system,”
in Proc. IEEE 4th Global Conf. Life Sci. Tech. (LifeTech), pp. 121-122, Mar. 2022.

[8] “SFTP,” Internet: https://www.ssh.com/ssh/sftp, (Accessed 13 Apr., 2022).

[9] “pCloud,” Internet: https://docs.pcloud.com/, (Accessed 13 Apr., 2022).

[10] H. Htet, N. Funabiki, A. Kamoyedji, X. Zhou, and M. Kuribayashi, “An implementation of
job migration function using CRIU and Podman in Docker-based user-PC computing sys-
tem,” in Proc. Int. Conf. Com. Commun. Manag. (ICCCM), pp. 92-97, Jul. 2021.

[11] H. Htet, N. Funabiki, A. Kamoyedji, X. Zhou, S. Sugawara, and W.-C. Kao, “An implemen-
tation of job running backup function in user-PC computing system,” in Proc. IEEE 4th Int.
Conf. Comput. Commu. Internet (ICCCI), pp. 156-161, Jul. 2022.

[12] A. Ratan, E. Chou, P. Kathiravelu, and M. O. Faruque Sarker, Python network programming:
conquer all your networking challenges with the powerful python language, Packt Pub., Jan.
2019.

[13] B. Schwartz, P. Zaitsev, and V. Tkachenko, High performance MySQL: optimization, back-
ups, and replication, 3rd Ed., O’Reilly Media, Mar. 2012.

43

https://www.ssh.com/ssh/sftp
https://docs.pcloud.com/

[14] R. McKendrick, Monitoring Docker, Packt Pub., Dec. 2015.

[15] G. Rodola, “Efficient I/O with zero-copy & psutil,” Internet: https://gmpy.dev/static/
efficient-io-with-zerocopy-syscalls.pdf, (Accessed 13 Apr., 2022).

[16] “SSHFS,” Internet: https://github.com/libfuse/sshfs, (Accessed 13 Apr., 2022).

[17] Y. W. Syaifudin, N. Funabiki, M. Mentari, H. E. Dien, I. Mu’aasyiqiin, M. Kuribayashi,
and W.-C. Kao, “A web-based online platform of distribution, collection, and validation for
assignments in Android programming learning assistance system,” Eng. Letter., vol. 29, no.
3, pp. 1178-1193, 2021.

[18] I. T. Anggraini, A. Basuki, N. Funabiki, X. Lu, C.-P. Fan, Y.-C. Hsu, and C.-H. Lin, “A
proposal of exercise and performance learning assistant system for self-practice at home,”
Adv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 5, no. 5, pp. 1196-1203, 2020.

[19] “CRIU,” Internet: https://www.criu.org/Main_Page, (Accessed 13 Apr., 2022).

[20] H. Gantikow, S. Walter, and C. Reich, “Rootless containers with Podman for HPC,” in Proc.
Int. Conf. High Perform. Comput. (HiPC), pp. 343-354, Oct. 2020.

[21] M. M. Islam, N. Funabiki, M. Kuribayashi, S. K. Debnath, K. I. Munene, K. S. Lwin, R.
W. Sudibyo, and M. S. A. Mamun, “Dynamic access-point configuration approach for elastic
wireless local-area network system and its implementation using Raspberry Pi,” Int. J. Netw.
Comput. (IJNC), vol. 8, no. 2, pp. 254-281, Jul. 2018.

[22] “FFmpeg,” Internet: https://github.com/FFmpeg/FFmpeg, (Accessed 13 Apr., 2022).

[23] J. Latt, et al., “Palabos: parallel lattice Boltzmann solver,” Comput. Math. Appli., vol. 81, pp.
334-350, Apr. 2021.

[24] “Open Porous Media (OPM) flow,” Internet: https://opm-project.org/?p=1412, (Ac-
cessed 13 Apr., 2022).

[25] “Neural network using TensorFlow,” Internet: https://github.com/aymericdamien/
TensorFlow-Examples/tree/master/examples/3_NeuralNetworks, (Accessed 13
Apr., 2022).

[26] “Converter,” Internet: https://github.com/andyp123/mp4_to_mp3, (Accessed 13 Apr.,
2022).

[27] B. Quetier, V. Neri, and F. Cappello, “Selecting a virtualization system for grid/p2p large
scale emulation,” in Proc. EXPGRID Workshop, pp. 19-23, Jun. 2006.

[28] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. De Rose,
“Performance evaluation of container-based virtualization for high performance computing
environments,” in Proc. 16th Euro Micro Conf. Paral. Dist. Netw-Based Process. (PDP), pp.
233-240, Feb. 2013.

[29] P. J. Won and H. Jaegyoon, “Container-based cluster management system for user-driven
distributed computing,” KIISE Trans. Comput. Pract., vol. 21, no. 9, pp. 587-595, Sep. 2015.

44

https://gmpy.dev/static/efficient-io-with-zerocopy-syscalls.pdf
https://gmpy.dev/static/efficient-io-with-zerocopy-syscalls.pdf
https://github.com/libfuse/sshfs
https://www.criu.org/Main_Page
https://github.com/FFmpeg/FFmpeg
https://opm-project.org/?p=1412
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/andyp123/mp4_to_mp3

[30] A. Jaikar, S. Bae, H. Han, B. Kong, SA. Shah, and SY. Noh, “OpenStack and docker com-
parison for scientific workflow w.r.t. execution and energy,” in Proc. 4th Int. Workshop Effi.
Data Cent. Sys. (EDCS), pp. 1-5, Jun. 2016.

[31] M. Sindi and J. R. Williams, “Using container migration for HPC workloads resilience,” in
Proc. IEEE Conf. High Perf. Ext. Comput. (HPEC), pp. 1-10, Sep. 2019.

[32] M. Zeynep and P. Angin., “A secure model for efficient live migration of containers,” J. Wirel.
Mob. Netw. Ubiqui. Comput. Depend. Appl. (JoWUA), vol. 10, no. 3, pp. 21-44, Sep. 2019.

[33] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: transparent check pointing for cluster com-
putations and the desktop,” in Proc. Int. Symp. Paral. Dist. Process. (IPDPS), pp. 1-12, May
2009.

[34] O. Alrajeh, M. Forshaw, and N. Thomas, “Using virtual machine live migration in trace-
driven energy-aware simulation of High-Throughput computing systems,” Sustainable Com-
put.: Info. Sys., vol. 29, p. 100468, Mar. 2021.

[35] C. Yu and F. Huan, “Live migration of Docker containers through logging and replay,” in
Proc. Int. Conf. Mech. Indus. Info., pp. 623-626, Oct. 2015.

[36] W. Fan, Z. Han, P. Li, J. Zhou, J. Fan, and R. Wang, “A live migration algorithm for containers
based on resource locality,” J. Signal Process. Sys., vol. 91, no. 10, pp. 1077–1089, Oct. 2019.

[37] R. Stoyanov and M. J. Kollingbaum, “Efficient live migration of Linux containers,” in Proc.
High Perf. Comput. (HiPC), pp. 184-193, Jun. 2018.

[38] P. S. Junior, D. Miorandi, and G. Pierre, “Stateful container migration in geo-distributed
environments,” in Proc. IEEE Int. Conf. Cloud Comput. Tech. Sci., pp. 49-56, Dec. 2020.

[39] T. Fukai, T. Shinagawa, and K. Kato, “Live migration in bare-metal clouds,” IEEE Tran.
Cloud Comput., vol. 9, no. 1, pp. 226-239, Jan. 2021.

[40] H. Alshahrani, A. Alshehri, R. Alharthi, A. Alzahrani, D. Debnath, and H. Fu, “Live migra-
tion of virtual machine in cloud: survey of issues and solutions,” in Proc. Int. Conf. Secur.
Manag. (SAM), pp. 280-285, 2016.

[41] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive fault tolerance for
HPC with Xen virtualization,” in Proc. Int. Conf. Supercomput. (ICS), pp. 23-32, Jun. 2007.

[42] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive process-level live migration
in HPC environments,” in Proc. IEEE Supercomput. Conf. (SC), pp. 1-12, Nov. 2008.

[43] I. Cores, G. Rodriguez, P. Gonzalez, and M. J. Martin, “An application level approach for
proactive process migration in MPI applications,” in Proc. IEEE Int. Conf. Paral. Distri. Com-
put., Appl. Tech. (PDCAT), pp. 400-405, Oct. 2011.

[44] A. Polze, P. Troger, and F. Salfner, “Timely virtual machine migration for pro-active fault tol-
erance,” in Proc. IEEE Int. Symp. Object/Comp./Service-Orient. Real-Time Distrib. Comput.
Works. (ISORCW), pp. 234-243, Mar. 2011.

45

[45] B. Purushotham, C.D. Rao, and N. Padmaja, “An efficient recovery scheme for node and
link failures in real-time IP communications,” IAENG Int. J. Comput. Sci., vol. 37, no. 2, p.
156-163, Jun. 2010.

[46] T. Helmy and Z. Rasheed, “Independent job scheduling by Fuzzy C-mean clustering and an
Ant optimization algorithm in a computation grid,” IAENG Int. J. Comput. Sci., vol. 37, no.
2, p. 136-145, Jun. 2010.

[47] S. Rawas and A. Zekri, “EEBA: Energy-Efficient and Bandwidth-Aware workload allocation
method for data-intensive applications in cloud data centers,” IAENG Int. J. Comput. Sci.,
vol. 48, no. 3, pp. 703-715, Sep. 2021.

[48] G. Bindu, K. Ramani, and C. S. Bindu, “Optimized resource scheduling using the meta
heuristic algorithm in cloud computing,” IAENG Int. J. Comput. Sci., vol. 47, no. 3, pp.
360– 366, Aug. 2020.

[49] S. Singhal and A. Sharma, “Mutative ACO based load balancing in cloud computing,” Eng.
Letter., vol. 29, no. 4, pp. 546-555, Dec. 2021.

46

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	Contributions
	Docker based UPC System Platform
	Web Interface Submission
	Online Job Acceptance
	Dynamic Job Migration
	Job Running Backup

	Contents of This Dissertation

	Implementation of Docker based UPC System Platform
	Web Server
	Three Basic Functions

	UPC Master
	MySQL and Docker
	Four Basic Functions
	Docker Image Generation
	Worker Management

	UPC Worker
	Five Basic Functions
	Job Control Function

	Summary

	Implementation of Web Interface Submission
	Operation Flow
	Web Server Platform
	HTTP Web Server
	Web Interface
	File System Control

	Summary

	Implementation of Online Job Acceptance Function
	Online Job Acceptance Function
	Online Job Acceptance Function using SFTP
	Online Job Acceptance Function Using Cloud Storage

	Evaluation of Online Job Acceptance Function
	Evaluation Setup
	Results for APLAS Jobs with SFTP
	Results for EPLAS Jobs with Cloud Storage

	Summary

	Implementation of Job Migration Function
	Job Migration Function
	Job Migration Process
	State Capturing
	State Restoring

	Software Tools
	Worker Search for Migration
	Procedure of Job Migration Function
	WSL Layer in Windows PC
	Job Migration Limitation

	Evaluation of job migration function
	Evaluation Setup
	Validity of Migration Function
	Job Scheduling Algorithms with and without migration
	Analysis of Migrated Jobs
	Makespan Results

	Summary

	Implementation of Job Running Backup Function
	Job Running Backup Function
	Job Check-Pointing Process
	Job Restoring Process
	Software Tools
	Worker Search for Checkpoint Restoration
	Procedure of Job Running Backup Function

	Evaluation of job running backup function
	Correctness of Checkpoint Execution
	Correctness of Job Running Backup

	Summary

	Related Works in Literature
	Conclusion
	References

