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Abstract

This thesis is concerned with the existence of traveling front solutions to non-

linear reaction-diffusion equations under perturbation. Traveling front solutions have

been studied for reaction-diffusion equations with various kinds of nonlinear terms.

The reaction terms influence and evaluates the rate of changes in the processes such

as chemical reactions, biological population, and transition phenomena. One of the

interesting subjects is their existence and non-existence of them. In this thesis, we

proved that, if a traveling front solution exists for a reaction-diffusion equation with a

nonlinear term, it also exists for a reaction-diffusion equation with a perturbed nonlin-

ear term. In other words, a traveling front is robust under perturbation on a nonlinear

term. There are three main results in this thesis. The first assertation is a traveling

front of a nonlinear reaction-diffusion equation is robust under perturbation by assum-

ing the derivative of the reaction term that is negative at stable rest state 1. Secondly,

a traveling front of a nonlinear reaction-diffusion equation is robust under perturbation

by assuming the derivative of the reaction term that is negative at stable rest state 0.

The last one is the traveling fronts to nonlinear reaction-diffusion equations for bistable

or multistable nonlinear terms are robust under C1[0, 1] perturbation. More precisely,

the robustness of traveling fronts is illustrated by the graphs based on the phase plane

analysis.
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Chapter 1

Introduction to traveling front
solutions and reaction-diffusion
equations

In this chapter, we study the reaction-diffusion equation, traveling front solution, and

their qualitative properties. Further, a sufficient condition for the existence and non-

existence of a traveling front solution is stated with an example.

1.1 Introduction

In a variety of scientific fields wave propagating phenomena are modeled by

reaction-diffusion equations and such wave propagations notably exist in different forms

of traveling fronts. A traveling front is a monotone wave that progresses in a particular

direction with a constant speed and keeps its shape along the propagation. Traveling

front solutions can solve physical phenomena and they play a significant role in sci-

entific research. Their applications are extensively in mathematical biology, physical

chemistry, and chemical reactions.

In this thesis, we study a traveling front solution of a reaction-diffusion equation

∂u

∂t
=

∂2u

∂x2
+ f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where initial function u0 is a given bounded and uniformly continuous function from

R to R. Here nonlinear function f is of class C1 in an open interval including [0, 1].

Let u(x, t;u0) be the desired solution of (1.1). Throughout this work we assume the

nonlinear f satisfies

f(0) = 0, f(1) = 0.
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Many scientists have been studying various perspectives on the dynamics of

traveling waves since the early twentieth century. Their interests create useful research

projects and then famous research papers come out. Especially, they have focused

on traveling front solutions with various kinds of nonlinear reaction terms. Nonlinear

reaction waves are covered a broad spectrum of many problems in science. The most

interesting subject is the existence and non-existence of traveling front solutions to the

concerning problems with nonlinear reaction terms.

Equation (1.1) with such a nonlinear term f appears in many models, and it

has often a traveling front solution. See [1, 2, 7, 8, 21, 16, 20] for a general theory of

traveling front solutions. Equation (1.1) is called a monostable type if we assume with

f ′(1) < 0. (1.3)

It is well-known the Fisher–KPP equations and a typical nonlinear term is

f(u) = u(1− u). See [9, 12, 14, 4, 21] for traveling fronts of (1.1) for the Fisher–KPP

equations. It is applicable to population genetics, the spread of epidemic problems,

flame propagation, the Brownian motion process, the nuclear reactor theory, and com-

bustion in chemical reactions.

Equation (1.1) is called bistable or multistable type if we assume f ′(0) < 0 in

addition. The nonlinear term of this case is f(u) = −u(u − a)(u − 1) for a ∈ (0, 1).

(1.1) with this reaction term is called the Nagumo equation in an excitable system of

nerve cells while the Allen-Cahn equation in general phase transition problems. See

[15, 1, 2, 5, 7, 19, 6, 18, 20] for traveling fronts of (1.1) for bistable or multistable

nonlinear case.

For traveling fronts of (1.1) for combustion models, see [10, 11, 3, 17] for in-

stance. For traveling fronts of (1.1) for degenerate monostable nonlinear terms, see

[13, 23, 24]. Many scientists are interested in the existence and non-existence of such

solutions and their robustness. For the robustness of traveling fronts, one can see

[7, 8, 1, 2, 19] for instance. They have approached and searched them by using various

kinds of methods. In this thesis, it is focused on their robustness for perturbation on

nonlinear reaction terms by using the phase plane technique.

In this Ph.D. thesis I emphasize the existence of traveling front solutions to

reaction-diffusion equations with nonlinearity under perturbation and how the speed

and the profile solution relate with the nonlinear reaction term. Further, the necessary

conditions for the existence of such solutions are analyzed. Especially, It is examined

whether a traveling front is robust or not under perturbation on a nonlinear term.
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1.2 Background materials

1.2.1 Profile solution of the reaction-diffusion equation

We know how the profile solution of (1.1) provides for the existence of a

traveling front solution to such an equation. See [7] for instance. Now we construct

the profile solution of (1.1).

If the profile U ∈ C2(R) and the speed c ∈ R satisfy
U ′′(y) + cU ′(y) + f(U(y)) = 0, y ∈ R,

U(−∞) = 1, U(∞) = 0,
(1.4)

then we have U(x− ct) and it becomes a traveling front solution to (1.1). We call (1.4)

the profile equation of (c, U), if it exists. In this case, we necessarily have

U ′(y) < 0, y ∈ R

by using [7, Lemma 2.1].

Figure 1.1: Traveling Profile U(y)
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We will use the standing assumption for comparison. Continuously, we assume

that the standing assumption nonlinear f0 is of class C1 in an open interval including

[0, 1] with

f0(0) = 0, f0(1) = 0,

and

f ′
0(1) < 0. (1.5)

Additionally, we assume that there exist U0 ∈ C2(R) and c0 ∈ R that satisfy
U ′′
0 (y) + c0U

′
0(y) + f0(U0(y)) = 0, y ∈ R,

U0(−∞) = 1, U0(∞) = 0.
(1.6)

Then we necessarily have

U ′
0(y) < 0, y ∈ R. (1.7)

Assume that f − f0 ∈ C1
0(0, 1]. Here C1

0(0, 1] is the set of functions in C1(0, 1] whose

supports lie in (0, 1] .

Our approach to the traveling front solution is based on the phase plane analy-

sis. To prove the existence of wave fronts, a trajectory is drawn off from the stationary

point to another stationary point with the constant speed c ∈ R, we reduce the system
of profile equation (1.4) from second order to a system of first order ordinary differential

equation (1.8).

In view of (1.4), we search (c, U) that satisfies

d

dy

(
U
U ′

)
=

(
U ′

−cU ′ − f(U)

)
, y ∈ R,

U ′(y) < 0, y ∈ R,

U(−∞) = 1, U(∞) = 0.

(1.8)

Equations (1.4) and (1.8) are equivalent. Using (1.6), we have (c0, U0) that satisfies

d

dy

(
U0

U ′
0

)
=

(
U ′
0

−c0U
′
0 − f0(U0)

)
, y ∈ R,

U ′
0(y) < 0, y ∈ R,

U0(−∞) = 1, U0(∞) = 0.

(1.9)
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1.2.2 Characteristics of solution equations

In general, it is difficult to evaluate the analytical solution of nonlinear reaction-

diffusion equations. The phase plane analysis provides to study of the qualitative be-

haviors of such a dynamic system of equations. We will employ this technique to obtain

information based on the existence of solutions.

We now study the following ordinary differential equations or solution equations:
p′(z) = −c− f(z)

p(z)
, 0 < z < 1,

p(z) < 0, 0 < z < 1,
p(0) = 0, p(1) = 0.

(1.10)

We write the solution of (1.10) as p(z; c, f) if it exists. There exists a solution

(c, U) to (1.8) if and only if p(z; c, f) exists. Indeed, if (c, U) satisfies (1.8), we define

p by p(U(y)) = U ′(y) for y ∈ R, and have (1.10).

If p(z; c, f) satisfies (1.10), we define

y =

∫ U

a

dz

p(z)
, 0 < z < 1, (1.11)

and have (1.8). Here a is an arbitrarily given number.

Similarly, there exists a solution (c0, U0) to (1.9) if and only if p(z; c0, f0) exists.

By the standing assumption, we have p(z; c0, f0) that satisfies
pz(z; c0, f0) = −c0 −

f0(z)

p(z; c0, f0)
, 0 < z < 1,

p(z; c0, f0) < 0, 0 < z < 1,
p(0; c0, f0) = 0, p(1; c0, f0) = 0.

(1.12)

Now we choose α0 ∈ (0, 1) such that we have

f0(u) > 0 if u ∈ [α0, 1).

Also, we choose α ∈ (0, 1) such that we have

f(u) > 0 if u ∈ [α, 1).

Now we can have |α− α0| → 0 as ∥f − f0∥C1[0,1] → 0. We set

α∗ =
1 + α0

2
. (1.13)

It suffices to assume that ∥f − f0∥C1[0,1] is small enough and we always have

α < α∗.

Next, we will study the characteristics of the solution curve.
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1.2.3 Characteristics of solution curve

As stated above to search (c, U) that satisfies (1.8) we will study the following

solution equations: 
p′(z) = −s− f(z)

p(z)
, 1− α < z < 1,

p(z) < 0, 1− α < z < 1,
p(1) = 0

(1.14)

for every speed s ∈ R, and α ∈ (0, 1). If p(z) satisfies (1.14), there exists a traveling

profile (c, U) that satisfies (1.8) by defining (1.11).

We assume ∥f − f0∥C1[0,1] and |s− c0| small enough, say,√
∥f − f0∥2C1[0,1] + |s− c0|2 < δ1

for every s ∈ R, and for any c0 ∈ R. Here δ1 is a positive number.

We define

Ω =
{
(f, s) ∈ C1[0, 1]× R

∣∣√∥f − f0∥2C1[0,1] + |s− c0|2 < δ1

}
.

Again, we define

γ =
−s+

√
s2 − 4f ′(1)

2
> 0

for every s ∈ R. Now we choose ε0 ∈ (0, γ) to be small enough such that we have

(γ + ε0)
2 + s(γ + ε0) + f ′(1) > 0,

and

(γ − ε0)
2 + s(γ − ε0) + f ′(1) < 0

for all (f, s) ∈ Ω.

For every (f, s) ∈ Ω we have

−s− f(z)

p

∣∣∣∣
p=(γ+ε0)(z−1)

< γ + ε0,

and

−s− f(z)

p

∣∣∣∣
p=(γ−ε0)(z−1)

> γ − ε0,

if z ∈ (0, 1) and |z − 1| is small enough.

Now we have

(γ + ε0)(z − 1) < p(z; c0, f0) < (γ − ε0)(z − 1),
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and

(γ + ε0)(z − 1) < p+(z; s, f) < (γ − ε0)(z − 1),

if z ∈ (0, 1) and |z − 1| is small enough, say, |z − 1| < δ1 with δ1 ∈ (0,min{1
8
, 1− α}).

By taking δ1 small enough, Ω is negatively invariant for (1.14) with respect to

1− α ≤ z ≤ 1. If ∥f − f0∥C1[0,1] goes to zero and |s− c0| goes to zero, we can assume

ε0 goes to zero. Thus we have

max
1−δ1≤z≤1

|p+(z; s, f)− p(z; c0, f0)| = 0.

We note that the trajectories move along inside the cone and they never leave

from the cone if the traveling front solutions exist. It means that if there exists

p+(z; c0, f0) for some 1− α ≤ z ≤ 1 we have p+(z; s, f) for all 1− α ≤ z ≤ 1.

Figure 1.2: Characteristics of p = p+(z; s, f).

Figure 1.2 shows the characteristics of p+(z; s, f). We will use this property of

p+(z; s, f) in the proof of main result 1.
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1.3 A sufficient condition for the existence of trav-

eling front solutions in balanced nonlinearity

We first study one of the essential features for the existence and non-existence

of traveling front solutions with balanced nonlinearity. The following facts are provided

to the sufficient condition for the existence of traveling front solutions.

Lemma 1.1. Let W ∈ C2(R) satisfy

W (0) = 0, W (1) = 0, W ′(0) = 0, W ′(1) = 0,

W ′′(0) > 0, W ′′(1) > 0, W ′′(s) > 0 if 0 < s < 1,

W (s) > 0 if 0 < s < 1.

Then Φ(x) given by

x = −
∫ Φ

1
2

dv√
2W (v)

, 0 < Φ < 1 (1.15)

satisfies 
Φ′′(x)−W ′(Φ(x)) = 0, x ∈ R,

Φ(−∞) = 1, Φ(0) = 1
2
, Φ(∞) = 0.

(1.16)

Moreover, for the speed c with −
√

W ′′(1) < c <
√
W ′′(0) and the reaction term

f(u) = −W ′(u) + c
√

2W (u), 0 < u < 1,

one has there exists (c,Φ) satisfies
Φ′′(x) + cΦ′(x) + f(Φ(x)) = 0, x ∈ R,

Φ(−∞) = 1, Φ(0) = 1
2
, Φ(∞) = 0.

(1.17)

Proof. From (1.15) we have

−Φ′(x) =
√

2W (Φ(x)), x ∈ R, (1.18)

and

−Φ′′(x) = −W ′(Φ(x)), x ∈ R.

Thus we obtain (1.16). Again, we observe that

Φ′′(x) + cΦ′(x) + f(Φ(x))

= W ′(Φ(x)) + c Φ′(x)−W ′(Φ(x)) + c
√
2W (Φ(x)) = 0, 0 < Φ < 1,

and so Φ(x) can solve (1.17). This completes the proof.
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Now we study the solution p(Φ(x); c, f) that related to the solution Φ(x).

Setting

Φ′(x) = p(Φ(x); c, f)

and using (1.18) we have

p(Φ(x); c, f) = −
√

2W (Φ(x)), 0 < Φ < 1.

For 0 < z < 1 we have

p(z; c, f) = −
√

2W (z).

It can be checked that

pz(z; c, f) = − W ′(z)√
2W (z)

=
−c
√
2W (z) + f(z)√
2W (z)

= −c− f(z)

p(z)
.

Now we obtain a solution p(z; c, f) that satisfies

pz(z; c, f) = −c− f(z)

p(z; c, f)
, 0 < z < 1,

p(0; c, f) = 0, p(1; c, f) = 0.

Using f ′(0) < 0, and f ′(1) < 0 we have the speed c with

−
√
W ′′(1) < c <

√
W ′′(0).

We note that for f(u) = −W ′(u)+c
√
2W (u) and speed c with above condition

there exists a solution (c,Φ) of (1.17) if and only if a solution p(Φ(x); c, f) exists

for bistable or multistable nonlinearity. Moreover, nonzero speed is a necessary and

sufficient condition for the existence of traveling front to such a problem.

We will show an example of the existence of solutions for some reaction terms

with zero speed. The following example gives the explicit form of the solution.

Example 1.1. We can search explicit solution of Φ(x) for given reaction term

f(u) = −u(u− 1)

(
u− 1

2
− c√

2

)
if the speed c = 0.
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We note that

f(u) = −W ′(u) if c = 0.

Then we have 
W ′(u) = u(u− 1

2
)(u− 1), 0 < u < 1,

W (u) =
u2(1− u)2

4
, 0 < u < 1,

(1.19)

We know that

p(Φ(x); c, f) = Φ′(x),

and we obtain

p(z; c, f) = −
√

2W (z), 0 < z < 1. (1.20)

From this equality we have

p(z; c, f) = − z√
2
(1− z),

and

−Φ′(x) =
1√
2
Φ(1− Φ).

It follows that we have
1

Φ
− 1 = exp

(
x√
2

)
.

From the equation

Φ(x) =
1

1 + exp( x√
2
)

we have the explicit solution

Φ(x) =
1

2
− 1

2
tanh

(
x

2
√
2

)
.

Putting c = 0, we get the explicit form of Φ(x) and that (c,Φ) satisfies equation (1.17)

for the multistable nonlinear reaction term

f(u) = −u(u− 1

2
)(u− 1).

We will show that there is a sufficient condition for the existence of a traveling

front solution in balanced nonlinearity. We now assume the nonliner f ∈ C1(R) that
satisfies

f(0) = 0, f(1) = 0,

f ′(0) < 0, f ′(1) < 0,

∫ 1

0

f(u) du = 0.
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In addition, we put

W (u) =

∫ 1

u

f(s) ds for all u ∈ (0, 1),

and

W ′(u) = −f(u), W (0) = 0, W (1) = 0.

Proposition 1.2. There exists (c,Φ) that satisfies

Φ′′(x) + cΦ′(x) + f(Φ(x)) = 0, 0 < Φ < 1, x ∈ R,

Φ(−∞) = 1, Φ(∞) = 0

if and only if

W (u) > 0 for all u ∈ (0, 1).

Proof. Multiplying (1.17) by 2Φ′(x) and integrating with respect to x over R we have

2

∫ ∞

−∞
Φ′(x)Φ′′(x) dx+ 2c

∫ ∞

−∞
Φ′(x)2 dx+ 2

∫ ∞

−∞
Φ′(x)f(Φ(x)) dx = 0.

It becomes

2c

∫ ∞

−∞
Φ′(x)2 dx =

[
−Φ′(x)2

]∞
−∞ − 2

∫ ∞

−∞
f(Φ(x)) dΦ(x) for all x ∈ R.

Since −Φ′(x) > 0 follows from [7, Lemma 2.1] and
∫ 1

0
f(u) du = 0 we have c = 0 from

the first part. Then from the latter, we obtain

Φ′(x)2 = 2

∫ 1

u

f(s) ds > 0 for s ∈ (0, 1).

It follows that ∫ 1

u

f(s) ds = W (u) > 0 for u ∈ (0, 1).

Conversely, we have

W ′(u) = −f(u) for 0 < u < 1.

Using definition (1.15), we obtain

Φ′′(x)−W ′(Φ(x)) = 0.

Then we have

Φ′′(x) + f(Φ(x)) = 0 for x ∈ R.

For c = 0 we have the desired profile equation and it completes the proof.
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As mentioned above we can say that (c,Φ) exists for some f if the function

W (u) > 0 in balanced nonlinearity. Otherwise, there is no traveling front for some f

if W (u) ≤ 0 for such case. It shows that the condition
∫ 1

u
f(s) ds > 0 is necessary for

existence of solution in balanced nonlinearity. Furthermore, zero speed is a necessary

and sufficient condition for the existence of traveling fronts in such case. It will be an

open problem for nonzero speed.
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Chapter 2

Traveling front solutions for
monostable nonlinear perturbed
reaction-diffusion equations

In this chapter, we search for a traveling front solution for the monostable nonlinear

perturbed reaction-diffusion equations. We state the detailed proof of Theorem 2.1 in

this chapter and it is also pointed out that an idea of proof by Figure 2.1. Furthermore,

the auxiliary result is stated as Corollary 2.9 in this chapter.

2.1 Main result 1

The first main result is stated as the following theorem:

Theorem 2.1. Let f0 be a function of class C1 in an open interval including [0, 1] with

f0(0) = 0, f0(1) = 0, f ′
0(1) < 0.

Assume that there exists (c0, U0) that satisfies (1.6). Assume that f − f0 ∈ C1
0(0, 1]

and let ∥f − f0∥C1[0,1] be small enough. Then there exists (c, U) that satisfies (1.4). If

∥f − f0∥C1[0,1] goes to zero, c converges to c0 and ∥U − U0∥C2(R) goes to zero.

2.2 Construction for a traveling front solution

2.2.1 Background assertion

We will use [20, Theorem 1.1] for the proof of Theorem (??). Here, the

background theorem from [20] is mentioned for convenience.
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Assume that f is of class C1[b, 1] for b ∈ R with 0 < b < 1. For any c ∈ R, there exists
unique p+(z; c, f) that satisfies

(p+)z (z; c, f) = −c− f(z)

p+(z; c, f)
, z ∈ (b, 1),

p+(z; c, f) < 0, z ∈ [b, 1),

p+(1; c, f) = 0,

(p+)z (1; c, f) =
−c+

√
c2 − 4f ′(1)

2
> 0.

Moreover, p+(z; c, f) is strictly monotone increasing in c, that is, if c1 < c2, one has

p+(z; c1, f) < p+(z; c2, f) b < z < 1.

Furthermore, one has p+(b;∞, f) = 0 and p+(b;−∞, f) = −∞. If p(z) satisfies
p′(z) = −c− f(z)

p(z)
, b < z < 1,

p(z) < 0, b < z < 1,
p(1) = 0,

(2.1)

one has p(z) = p+(z; c, f) for all b < z < 1.

Now we start with the existence of the solution for the first interval z ∈ [α, 1].

2.2.2 Existence of first solution and extended solution

Lemma 2.2 ([20]). For every s ∈ R there exists p+(z; s, f) defined for z ∈ [α, 1], such

that one has

(p+)z (z; s, f) = −s− f(z)

p+(z; s, f)
, z ∈ (α, 1), (2.2)

p+(z; s, f) < 0, z ∈ [α, 1), (2.3)

p+(1; s, f) = 0, (2.4)

(p+)z (1; s, f) =
−s+

√
s2 − 4f ′(1)

2
> 0. (2.5)

If s1 < s2, one has

p+(z; s1, f) < p+(z; s2, f), z ∈ [α, 1).

Proof. This assertion follows from [20, Theorem 1.1] and its proof.
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Since f − f0 ∈ C1
0(0, 1], we can choose z∗ ∈ (0, 1) with

f(z) = f0(z) if 0 ≤ z ≤ z∗. (2.6)

Let s ∈ R be arbitrarily given and let p+(z; s, f) be given by Lemma 2.2. We choose

M ≥ 1 large enough such that we have

|s|+
∥f∥C[0,1]

M
≤ M. (2.7)

In Lemma 2.2, p+(z; s, f) is defined only on [α, 1]. We extend p+(z; s, f) for all

possible z, say z ∈ (ζ0(s, f), 1). Then we have

ζ0(s, f) ≤ α < α∗.

Since f is defined in an open interval including [0, 1], ζ0(s, f) can be a negative value.

Now we have

(p+)z (z; s, f) = −s− f(z)

p+(z; s, f)
, z ∈ (ζ0(s, f), 1), (2.8)

p+(z; s, f) < 0, z ∈ (ζ0(s, f), 1),

p+(1; s, f) = 0,

(p+)z (1; s, f) =
−s+

√
s2 − 4f ′(1)

2
> 0.

Now we assert the following lemma.

Lemma 2.3. Let s ∈ R be arbitrarily given and let M ≥ 1 satisfy (2.7). Let p+(z; s, f)

be given by Lemma 2.2 and one extends p+(z; s, f) for all possible z, say z ∈ (ζ0(s, f), 1).

Then one has

0 < −p+(z; s, f) < 2M, ζ0(s, f) < z < 1. (2.9)

One has

p+(0; s, f) < 0, ζ0(s, f) < 0,

or one has

ζ0(s, f) ∈ [0, α), p+(ζ0(s, f); s, f) = 0. (2.10)

Proof. Assume that there exists η0 ∈ (0, 1) with

−p+(η0; s, f) ≥ 2M.
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Then we can define η1 ∈ (η0, 1] by

η1 = sup{η ∈ (η0, 1) | − p+(z; s, f) ≥ M for all z ∈ [η0, η]}.

Using p+(1; s, f) = 0, we have 0 < η0 < η1 < 1. Using (2.7) and (2.8), we obtain

− p+(η1; s, f)

=− p+(η0; s, f)−
∫ 1

0

(p+)z (θη1 + (1− θ)η0; s, f) dθ (η1 − η0)

≥2M −M(η1 − η0) > M.

This contradicts the definition of η1. Now we obtain (2.9).

If ζ0(s, f) < 0, we have p+(0; s, f) < 0. It suffices to prove (2.10) by assuming

ζ0(s, f) ≥ 0. Then necessarily we have ζ0(s, f) ∈ [0, α). Assume that (2.10) does not

hold true. Then we have

β = lim sup
z→ζ0(s,f)

(−p+(z; s, f)) ∈ (0, 2M ].

Using (2.8), we obtain

(p+)z (ζ0(s, f); s, f) = −s+
f(0)

β
.

Since the right-hand side is bounded, it is bounded on a neighborhood of (ζ0(s, f),−β)

and we can extend p+(z; s, f) for z ∈ (ζ0(s, f) − δ, ζ0(s, f)) with some δ > 0 that is

small enough. This contradicts the definition of ζ0(s, f). Thus we obtain (2.10) and

complete the proof.

Now we have

ζ0(c0, f0) = 0,

p+(z; c0, f0) = p(z; c0, f0), 0 < z < 1. (2.11)

2.3 Convergence of a traveling front solution

In this section we find the difference value of p+(z; s, f) and p+(z; c0, f0) in

order to establish the convergence of a traveling front solution. Now we assert the

following proposition. This assertion provides the convergence result of our desired

solution.
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Proposition 2.4. Let s ∈ R be arbitrarily given. Then one has

p+(z; s, f)− p+(z; c0, f0)

=

∫ 1

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < 1.

Proof. We put

w(z) = p+(z; s, f)− p+(z; c0, f0)

and have

w′(z) = −s+ c0 −
f(z)

p+(z; s, f)
+

f0(z)

p+(z; c0, f0)

for ζ0(s, f) < z < 1. Now we have

− f(z)

p+(z; s, f)
+

f0(z)

p+(z; c0, f0)
=

−f(z)p+(z; c0, f0) + f0(z)p+(z; s, f)

p+(z; s, f)p+(z; c0, f0)

and

− f(z)p+(z; c0, f0) + f0(z)p+(z; s, f)

=− f(z) (p+(z; c0, f0)− p+(z; s, f))− f(z)p+(z; s, f) + f0(z)p+(z; s, f)

=f(z)w(z)− (f(z)− f0(z)) p+(z; s, f).

Then we obtain

w′(z)− f(z)

p+(z; s, f)p+(z; c0, f0)
w(z) = −s+ c0 −

f(z)− f0(z)

p+(z; c0, f0)

for ζ0(s, f) < z < 1. Then we have

d

dz

(
w(z) exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

))
=

(
w′(z)− f(z)

p+(z; s, f)p+(z; c0, f0)
w(z)

)
× exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
=

(
−s+ c0 −

f(z)− f0(z)

p+(z; c0, f0)

)
exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
.
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Let θ′ ∈ (z, 1) be arbitrarily given. Integrating both sides of the equality stated above

over (z, θ′), we have

− w(z) exp

(∫ 1

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
+ w(θ′) exp

(∫ 1

θ′

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
=−

∫ θ′

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
exp

(∫ 1

z′

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < θ′. Now we find

w(z) = w(θ′) exp

(
−
∫ θ′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
(2.12)

+

∫ θ′

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
× exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < θ′. Using

f(ζ) > 0 if ζ ∈ (α∗, 1),

p+(ζ; s, f) < 0, p+(ζ; c0, f0) < 0, ζ0(s, f) < ζ < 1,

we have

lim
θ′→1

w(θ′) exp

(
−
∫ θ′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
= 0

and

lim
θ′→1

∫ θ′

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
× exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

=

∫ 1

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
× exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′

for ζ0(s, f) < z < 1. Passing to the limit of θ′ → 1 in (2.12), we obtain

w(z) =∫ 1

z

(
s− c0 +

f(z′)− f0(z
′)

p+(z′; c0, f0)

)
exp

(
−
∫ z′

z

f(ζ)

p+(ζ; s, f)p+(ζ; c0, f0)
dζ

)
dz′
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for ζ0(s, f) < z < 1. This completes the proof.

Now we take ε0 ∈ (0, 1− α∗) small enough such that we have

(p+)z (z; c0, f0) >
1

2
(p+)z (1; c0, f0) > 0 if z ∈ (1− ε0, 1). (2.13)

We show that |p+(α∗; s, f)− p+(α∗; c0, f0)| converges to 0 as |s − c0| + ∥f −
f0∥C1[0,1] goes to 0 in the following lemma.

Lemma 2.5. Let α∗ ∈ (0, 1) be as in (1.13) and let ε0 ∈ (0, 1 − α∗) satisfy (2.13).

Then one has

sup
z∈[α∗,1]

|p+(z; s, f)− p+(z; c0, f0)|

≤(1− α∗)|s− c0|+
(1− ε0 − α∗)∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))

+
ε0∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
.

Proof. We have

f(z) > 0 if z ∈ [α∗, 1),

p+(z; s, f) < 0 if z ∈ [α∗, 1),

p+(z; c0, f0) < 0 if z ∈ (0, 1).

Then, using Proposition 2.4, we have

max
z∈[α∗,1]

|p+(z; s, f)− p+(z; c0, f0)| ≤
∫ 1

α∗

(
|s− c0|+

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣) dz′.

Now we find ∫ 1

α∗

(
|s− c0|+

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣) dz′ (2.14)

≤ (1− α∗) |s− c0|+
∫ 1

α∗

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′.
If z′ ∈ (α∗, 1− ε0], we have∣∣∣∣f(z′)− f0(z

′)

p+(z′; c0, f0)

∣∣∣∣ ≤ ∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))
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and thus ∫ 1−ε0

α∗

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′ ≤ (1− ε0 − α∗)∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))
.

If z′ ∈ (1− ε0, 1), we have

f(z′)− f0(z
′)

p+(z′; c0, f0)
=

f ′(ζ ′)− f ′
0(ζ

′)

(p+)z(ζ ′; c0, f0)

for some ζ ′ ∈ (z′, 1). Thus, if z′ ∈ (1− ε0, 1), we find∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ ≤ ∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|

and ∫ 1

1−ε0

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′ ≤ ε0∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
.

Then we obtain∫ 1

α∗

∣∣∣∣f(z′)− f0(z
′)

p+(z′; c0, f0)

∣∣∣∣ dz′
≤

(1− ε0 − α∗)∥f − f0∥C[0,1]

minz′∈[α∗,1−ε0] (−p+(z′; c0, f0))
+

ε0∥f − f0∥C1[0,1]

minζ′∈[1−ε0,1] |(p+)z(ζ ′; c0, f0)|
.

Combining this inequality and (2.14), we complete the proof.

Lemma 2.5 asserts that |p+(z; s, f)− p+(z; c0, f0)| converges to 0 on an interval

[α∗, 1] as |s− c0|+ ∥f − f0∥C1[0,1] goes to 0. Does this convergence hold true for every

compact interval in (0, 1]? To answer this question, we assert the following lemma.

Lemma 2.6. Let s ∈ R. Let z∗ ∈ (0, 1) satisfy (2.6) and let z1 ∈ (0, z∗) be arbitrarily

given. As |s− c0|+ ∥f − f0∥C1[0,1] goes to zero, ζ0(s, f) converges to zero and

sup
z∈[z1,1]

|p+(z; s, f)− p+(z; c0, f0)|

converges to zero.

Proof. We will prove ζ0(s, f) < z1 if |s − c0| + ∥f − f0∥C1[0,1] is small enough. Let

(c0, U0) satisfy (1.9). There exists −∞ < y0 < y1 < ∞ such that we have

U0(y0) = α∗, U0(y1) =
z1
2
.

For s ∈ R, let V = V (y) satisfy

d

dy

(
V
V ′

)
=

(
V ′

−sV ′ − f(V )

)
, y ∈ R (2.15)
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with

V (y0) = α∗, V ′(y0) = p+(α∗; s, f).

Now we define

w(y) =

(
w1(y)
w2(y)

)
=

(
V (y)− U0(y)
V ′(y)− U ′

0(y)

)
, y ∈ R.

Then we have

d

dy

(
w1

w2

)
=

(
w2

−sV ′ + c0U
′
0 − f(V ) + f0(U0)

)
, y ∈ R.

Now we have

f(V )− f(U0) = [f (θV + (1− θ)U0)]
θ=1
θ=0 =

∫ 1

0

f ′(θV + (1− θ)U0) dθ (V − U0)

for y ∈ R. Now we define

h(y) =

∫ 1

0

f ′(θV (y) + (1− θ)U0(y)) dθ, y ∈ R,

A(y) =

(
0 −1

h(y) s

)
, y ∈ R,

g(y) = −
(

0
(s− c0)U

′
0(y) + f(U0(y))− f0(U0(y))

)
, y ∈ R.

Now we have

sup
y∈R

|A(y)| ≤
√

1 + s2 + ∥f∥2C1[0,1].

Here

|A| = sup
x2
1+x2

2=1

∣∣∣∣A(x1

x2

)∣∣∣∣
for a 2× 2 real matrix A. Then, we obtain

w′(y) + A(y)w(y) = g(y), y ∈ R

and

w(y) = w(y0) exp

(
−
∫ y

y0

A(y′)dy′
)
+

∫ y

y0

exp

(
−
∫ y

y′
A(y′′) dy′′

)
g(y′) dy′

for y ∈ R. Now we have

sup
y∈R

|g(y)| ≤ |s− c0|max
η∈R

|U ′
0(η)|+ ∥f − f0∥C[0,1].
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Thus, as |s− c0|+ ∥f − f0∥C[0,1] goes to zero,

max
y∈[y0,y1]

|w(y)|

converges to zero. Taking |s− c0|+ ∥f − f0∥C[0,1] small enough, we have

|w(y1)| <
z1
4
,

max
y∈[y0,y1]

|w(y)| < 1

2
min

y∈[y0,y1]
(−U ′

0(y)) .

We define p( · ; s, f) by

p(V (y); s, f) = V ′(y), y0 ≤ y < y1.

Then we have

V (y1) <
z1
2
+

z1
4

=
3

4
z1

and

pz(z; s, f) = −s− f(z)

p(z; s, f)
,

3

4
z1 < z ≤ α∗,

p(z; s, f) < 0,
3

4
z1 < z ≤ α∗,

p(α∗; s, f) = p+(α∗; s, f) < 0.

This p(z; s, f) is an extension of p+(z; s, f) given by Lemma 2.2. Thus we obtain

ζ0(s, f) < z1. Combining Lemma 2.5 and the argument stated above, we have

sup
z∈[z1,1]

|p+(z; s, f)− p+(z; c0, f0)| → 0

as |s− c0|+ ∥f − f0∥C1[0,1] goes to zero. This completes the proof.

2.4 Monotonicity of a traveling front solution

Lemma 2.2 asserts that p+(z; s, f) is strictly monotone increasing in s on

[α∗, 1). In the following lemma, we assert that p+(z; s, f) is strictly monotone increasing

in s on the whole interval (0, 1).

Lemma 2.7. Let −∞ < s1 < s2 < ∞ be arbitrarily given. Let zinit ∈ (0, 1) be

arbitrarily given. Assume that p+(zinit; s1, f) and p+(zinit; s2, f) exist and satisfy

p+(zinit; s1, f) < p+(zinit; s2, f) < 0.
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Then one has

ζ0(s1, f) ≤ ζ0(s2, f) < zinit

and

p+(z; s1, f) < p+(z; s2, f) < 0 for all z ∈ (ζ0(s2, f), zinit].

Proof. We put

q(z) = p+(z; s2, f)− p+(z; s1, f), max{ζ0(s2, f), ζ0(s1, f)} ≤ z ≤ zinit.

Then we have

q′(z) = −(s2 − s1)−
f(z)

p+(z; s2, f)
+

f(z)

p+(z; s1, f)
,

max{ζ0(s2, f), ζ0(s1, f)} < z < zinit,

q(zinit) > 0.

Consequently we get

d

dz

(
q(z) exp

(
−
∫ zinit

z

f(ζ)

p+(ζ; s1, f)p+(ζ; s2, f)
dζ

))
=− (s2 − s1) exp

(
−
∫ zinit

z

f(ζ)

p+(ζ; s1, f)p+(ζ; s2, f)
dζ

)
< 0

for

max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Then we find

q(z) exp

(
−
∫ zinit

z

f(ζ)

p+(ζ; s1, f)p+(ζ; s2, f)
dζ

)
> 0,

max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Thus we obtain

q(z) > 0, max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Then, using q(zinit) > 0, we obtain

q(z) = p+(z; s2, f)− p+(z; s1, f) > 0, max{ζ0(s2, f), ζ0(s1, f)} < z < zinit.

Now we obtain ζ0(s1, f) ≤ ζ0(s2, f). This completes the proof.
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2.5 Searching speed c

Let δ0 ∈ (0, 1) be arbitrarily given. We have ζ0(c0 + δ0, f0) ∈ [0, 1) with

p+(ζ0(c0 + δ0, f0); c0 + δ0, f0) = 0,

p+(z; c0 − δ0, f0) < p+(z; c0, f0) < p+(z; c0 + δ0, f0) < 0,

z ∈ (ζ0(c0 + δ0, f0), 1),

p+(z; c0 − δ0, f0) < 0, z ∈ (0, 1).

Taking δ0 ∈ (0, 1) small enough and applying Lemma 2.6, we have

0 ≤ ζ0(c0 + δ0, f0) < z∗.

Taking δ0 ∈ (0, 1) smaller if necessary and taking ∥f − f0∥C1[0,1] small enough, we also

have

0 ≤ ζ0(c0 + δ0, f) < z∗ (2.16)

by Lemma 2.6.

Now we have

p+(z∗; c0 − δ0, f0) < p+(z∗; c0, f0) < p+(z∗; c0 + δ0, f0) < 0.

Taking ∥f − f0∥C1[0,1] small enough and applying Lemma 2.6, we have

p+(z∗; c0 − δ0, f) < p+(z∗; c0, f0) < p+(z∗; c0 + δ0, f) < 0.

Recalling (2.6) and applying Lemma 2.7, we obtain

p+(z; c0 − δ0, f) < p+(z; c0, f0), z ∈ (0, z∗], (2.17)

p+(z; c0 − δ0, f) < p+(z; c0, f0) < p+(z; c0 + δ0, f) < 0,

z ∈ (ζ0(c0 + δ0, f), z∗]

and

p+(ζ0(c0 + δ0, f); c0 − δ0, f) < p+(ζ0(c0 + δ0, f); c0, f0)

< p+(ζ0(c0 + δ0, f); c0 + δ0, f) = 0.

Using (2.17) and p+(0; c0, f0) = 0, we have

ζ0(c0 − δ0) ≤ 0
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and

(p+)z (z; c0 − δ0, f) = −(c0 − δ0)−
f(z)

p+(z; c0 − δ0, f)
, 0 < z < 1, (2.18)

p+(z; c0 − δ0, f) < 0, 0 < z < 1, (2.19)

p+(1; c0 − δ0, f) = 0. (2.20)

To prove Theorem 2.1 we have ζ = p+(z; c0 + δ0, f) in the (z, ζ) plane in

Figure 2.1. We study ζ = p+(z; c0 − δ0, f) in the following lemma and will show the

existence of ζ = p+(z; c, f) with p+(0; c, f) = 0 for some c ∈ [c0 − δ0, c0 + δ0].

Lemma 2.8. Assume |s− c0| ≤ 1 and

∥f − f0∥C1[0,1] ≤ 1. (2.21)

Take M ≥ 1 large enough such that one has (2.7) for all s ∈ [c0 − 1, c0 + 1] and for all

f with (2.21). Assume that |s− c0|+ ∥f − f0∥C1[0,1] is small enough such that one has

(2.16). Then there exists γ ∈ [0, 2M ] such that one has

γ = lim
z→0

(−p+(z; c0 − δ0, f)) .

Proof. We define W = W (y) by

d

dy

(
W
W ′

)
=

(
W ′

−(c0 − δ0)W
′ − f(W )

)
, y ∈ R,

W (0) = α∗, W ′(0) = p+(α∗; c0 − δ0, f) < 0.

Now we have

W ′(y) = p+(W (y); c0 − δ0, f), 0 ≤ y < ∞.

Using (2.17), p+(0; c0, f0) = 0 and Lemma 2.3, we have one of the following (i) or (ii).

(i) One has

W ′(y) < 0, y ∈ [0,∞)

and

lim
y→∞

(
W (y)
W ′(y)

)
=

(
0
0

)
.

(ii) There exists y0 ∈ (0,∞) such that one has

W (y0) = 0, W ′(y0) < 0.
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In Case (i), we can extend p+(z; c0 − δ0, f) by

p+(W (y); c0 − δ0, f) = W ′(y), y ∈ [0,∞)

and obtain

γ = lim
z→0

(−p+(z; c0 − δ0, f)) = 0.

In Case (ii), we can extend p+(z; c0 − δ0, f) by

p+(W (y); c0 − δ0, f) = W ′(y), y ∈ [0, y0)

and obtain

γ = lim
z→0

(−p+(z; c0 − δ0, f)) = −W ′(y0) ∈ (0, 2M ].

This completes the proof.

2.6 Proof of Theorem 2.1

Now we are ready to prove the main theorem.

Proof of Theorem 2.1. By the assumption we have (2.16). By the definition of ζ0(c0 +

δ0, f) ∈ [0, z∗), we have

p+(ζ0(c0 + δ0, f); c0 + δ0, f) = 0.

p+(z; c0 + δ0, f) < 0, ζ0(c0 + δ0, f) < z < 1.

By Lemma 2.8, we have

lim
z→0

p+(z; c0 − δ0, f) = −γ ∈ (−∞, 0].

Recalling (2.6) and applying Lemma 2.7, we obtain c ∈ [c0 − δ0, c0 + δ0] with

lim
z→0

p+(z; c, f) = 0,

p+(z; c, f) < 0, 0 < z < 1.

See Figure 2.1. Thus p+(z; c, f) satisfies (1.10). Defining U by (1.11), we find that

(c, U) satisfies the profile equation (1.4). As ∥f − f0∥C1[0,1] goes to zero, we can take

δ0 ∈ (0, 1) arbitrarily small. Then c converges to c0. From (1.11) and Lemma 2.6,

∥U − U0∥C(R) converges to zero as ∥f − f0∥C1[0,1] goes to zero. By

U ′(y) = p+(U(y); s, f), y ∈ R

and Lemma 2.6, ∥U − U0∥C1(R) converges to zero. Then ∥U − U0∥C2(R) converges to

zero as ∥f − f0∥C1[0,1] goes to zero. This completes the proof.

30



Figure 2.1: Search c ∈ [c0 − δ0, c0 + δ0] with p+(0; c, f) = 0.

2.7 Auxiliary result

In this section, we assume

f ′
0(0) < 0 (2.22)

instead of (1.5). We assume that f0 is of class C1 in an open interval including [0, 1]

with f0(0) = 0, f0(1) = 0 and (2.22), and assume that there exist U0 ∈ C2(R) and

c0 ∈ R that satisfy (1.6). We define

g0(u) = −f0(1− u)

in an open interval including [0, 1]. Then we have

g0(0) = 0, g0(1) = 0, g′0(1) < 0.

Defining

s0 = −c0,

V0(y) = 1− U0(−y), y ∈ R,
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we have

V ′′
0 (y) + s0V

′
0(y) + g0(V0(y)) = 0, y ∈ R,

V ′
0(y) < 0, y ∈ R,

V0(−∞) = 1, V0(∞) = 0.

Let C1
0 [0, 1) be the set of functions in C1[0, 1) whose supports lie in [0, 1).

Corollary 2.9. Let f0 be of class C1 in an open interval including [0, 1] with

f0(0) = 0, f0(1) = 0, f ′
0(0) < 0.

Let f be of class C1 in an open interval including [0, 1] with

f(0) = 0, f(1) = 0.

Assume that there exists (c0, U0) that satisfies (1.6). Assume that f − f0 ∈ C1
0 [0, 1)

and let ∥f − f0∥C1[0,1] be small enough. Then there exists (c, U) that satisfies (1.4). If

∥f − f0∥C1[0,1] goes to zero, c converges to c0 and ∥U − U0∥C2(R) goes to zero.

Proof. Combining Theorem 2.1 and the argument stated above, we have this corollary.
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Chapter 3

Traveling front solutions for
bistable or multistable nonlinear
perturbed reaction-diffusion
equations

In this chapter we prove the existence of a traveling front solution to (1.1) for some

speed c ∈ R and bistable or multistable nonlinear function f under perturbation. That

is, we have to find some speed c ∈ R for which a trajectory joins the two saddle points.

Such a trajectory will correspond to a traveling front from stationary points u = 0 and

u = 1. The following theorem is prescribed for this argument.

3.1 Main result 2

Theorem 3.1. Let f0 be of class C1 in an open interval including [0, 1] with

f0(0) = 0, f0(1) = 0, f ′
0(0) < 0, f ′

0(1) < 0.

Let f be of class C1 in an open interval including [0, 1] with

f(0) = 0, f(1) = 0.

Assume that there exists (c0, U0) that satisfies (1.6). Assume that f − f0 ∈ C1[0, 1]

and let ∥f − f0∥C1[0,1] be small enough. Then there exists (c, U) that satisfies (1.4). If

∥f − f0∥C1[0,1] goes to zero, c converges to c0, and ∥U − U0∥C2(R) goes to zero.
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3.2 Background assertion

In Corollary (2.9) we assume that f0 is of class C
1 in an open interval including

[0,1] with

f0(0) = 0, f0(1) = 0, f ′
0(0) < 0.

and there exist traveling profile U0 ∈ C2(R) and c0 ∈ R that satisfy (1.6). Then we

have a traveling profile (c, U) that satisfy (1.4). From Corollary (2.9) we obtain the

following solution equations:

For some c ∈ R there exists p−(z; c, f) defined for z ∈ (0, 1) such that one has

(p−)z (z; c, f) = −c− f(z)

p−(z; c, f)
, z ∈ (0, 1), (3.1)

p−(z; c, f) < 0, z ∈ (0, 1), (3.2)

p−(0; c, f) = 0, (3.3)

(p−)z (0; c, f) =
−c−

√
c2 − 4f ′(0)

2
< 0. (3.4)

We will apply these solution equations to the proof of Theorem 3.1.

3.3 Proof of Theorem

Proof. Let δ0 ∈ (0, 1) be arbitrarily given. Assume (f, s) ∈ Ω and ∥f − f0∥C1[0,1] is

small enough. Taking δ0 ∈ (0, 1) small enough if necessary and using Theorem (2.1),

we have

p+(z; c0 − δ0, f) < p+(z; c0, f0) < p+(z; c0 + δ0, f)

for all z ∈ [1
2
, 1].

By applying Corollary 2.9, we have

p−(z; c0 + δ0, f) < p−(z; c0, f0) < p−(z; c0 − δ0, f)

for all z ∈ [0, 1
2
).

By using [20, Theorem 1.4] we have

p+(
1

2
; c0, f0) = p−(

1

2
; c0, f0),

and it follows that there exists c ∈ (c0 − δ0, c0 + δ0, ) such that one has
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p−(
1
2
; c, f) = p+(

1
2
; c, f).

We set

p(z; c, f) = p−(z; c, f) if z ∈ (0, 1
2
],

and

p(z; c, f) = p+(z; c, f) if z ∈ (1
2
, 1),

and have the solution p(z; c, f) that satisfies (1.10). Then we have profile solution

(c, U) by defining (1.11). This completes the proof.

To be more precise we describe the existence of such a traveling front

solution by a geometric approach. See Figure 3.1. The following figure shows the com-

bination of two solution curves or the matching condition of solution p+(z; c, f) and

p−(z; c, f).

Figure 3.1: Combination of orbit for p+(z; c, f) and p−(z; c, f).

Theorem 3.1 asserts that a traveling front to (1.4) for a perturbed bistable or multi-

stable nonlinearity is robust under C1[0, 1] perturbation.

35



3.4 Summary and Discussion

Theorem 2.1 asserts that a traveling front is robust under perturbation on a

nonlinear term by assuming (1.5). If we assume f ′
0(0) < 0 in addition, Theorem 3.1

shows that traveling fronts for bistable or multistable nonlinear terms are robust under

perturbation. It can be proved by using Theorem 2.1 and auxiliary result or corollary

2.9. So we observe that the assumption ∥f − f0∥C1[0,1] is small enough to be one of

the necessary and sufficient conditions for the existence of traveling front solutions to

nonlinear reaction-diffusion equations under perturbation.

The existence of (c, U) to (1.4) is an open problem if one assumes the existence

of (c0, U0) to (1.6) without assuming (1.5) and just assumes that ∥f −f0∥C1[0,1] is small

enough. Furthermore, the assumption f − f0 ∈ C1
0(0, 1] is necessarily in Theorem 2.1.

The main results might be the new steps to attack this general robustness problem of

traveling fronts.
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