
H ormone receptor-positive (HR+)/human epider-
mal growth factor receptor 2-negative (HER2−) 

breast cancer with high Ki67 levels is a subtype of a 
luminal B-like breast cancer,  which is associated with a 
poor prognosis [1].  Historically,  clinical pathological 
markers,  especially immunohistochemistry (IHC) Ki67 
levels and histologic grade,  have been widely used by 
clinicians to identify which patients with early-stage 
HR+/HER2− breast cancer should receive adjuvant 
chemotherapy [2].  Recently,  genomic signatures that 
are highly associated with cell proliferation have been 

used to estimate prognoses and response to chemother-
apy and are being used to guide decisions on adjuvant 
systemic chemotherapy because they may have better 
predictive power than classical pathological biomarkers 
(e.g.,  histological grade and IHC-Ki67) [3 , 4].  Several 
genomic prognostic markers for early-stage HR+/
HER2− breast cancers in the adjuvant setting have been 
tested [5].  The National Comprehensive Cancer Network 
(Version 8.2021) recommends using the 21-gene recur-
rence score with NCCN category “1” as both a prognos-
tic and predictive marker for HR+/HER2− breast can-
cers.  Reducing unnecessary chemotherapy brings 
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numerous benefits to patients as well as to the medical 
community.  However,  the high cost of genomic signa-
ture testing limits clinical access to this diagnostic tech-
nology in many countries outside of the US and some 
regions in Europe.  Furthermore,  most patients with 
HR+/HER2− breast cancers are prescribed hormone 
therapy (HT) as an adjuvant therapy,  regardless of their 
response to HT; so far,  there is no clinically available 
genomic signature to predict response to HT [6].  

Recently,  it was reported that IHC-Ki67 levels after 
two weeks of preoperative HT showed better prognostic 
power than baseline IHC-Ki67,  and patients with high 
(≥ 10%) baseline IHC-Ki67 were sub-divided into poor 
and good prognostic groups based on low or high 
IHC-Ki67 after short-term HT,  respectively [7].  Several 
gene expression analyses have been performed between 
before and after short-term HT.  Miller et al.  assessed 
gene expression patterns before and two weeks after 
letrozole (2.5 mg/day) treatment and showed that oes-
trogen receptor (ER) and proliferation-associated genes 
in tumors were downregulated after treatment [8].  
Similarly,  Dunbier et al.  reported that proliferation and 
oestrogen-associated genes were strongly downregu-
lated after HT,  whereas collagens and chemokines were 
upregulated [9].  Interestingly,  higher expressions of 
immune response-related genes such as SLAMF8 and 
TNF,  as well as lymphocytic infiltration,  were associ-
ated with a worse response to HT [9].  We also com-
pared the predictive power of IHC-Ki67 after two weeks 
of HT using 30 paired cases (60 samples) and showed 
that IHC-Ki67 after HT predicted more low-risk cases 
(83.3%,  25/30) than did the genomic signature (66.7%:  
20/30) [10].  We assumed that luminal B-like breast 
cancers could be potentially classified by response to 
HT.  However,  the differences in gene expression pro-
files in luminal B-like breast cancers between groups 
with high and low IHC-Ki67 after short-term HT are 
unclear.

To address this gap in knowledge,  this study aimed:  
1) to evaluate pre-treatment gene expression differences 
between luminal B-like breast cancer patients with good 
and poor prognosis; and 2) to explore novel therapeu-
tic targets for the poor prognostic group.

Materials and Methods

Patients and cohort. Publicly available cDNA 
microarray data of 77 primary HR+/HER2− breast can-

cer patients who received letrozole (2.5 mg/day) for two 
weeks before surgery were retrieved from the NCBI 
Gene Expression Omnibus (GEO https://www.ncbi.
nlm.nih.gov/geo/: accessed date: Jan.,  2019) reposito-
ries GSE80077 (19 cases) [10] and GSE20181 (58 cases) 
[8].  These data were from paired samples of patients 
before and after receiving short-term aromatase inhibi-
tor (AI) treatment.  All patients were postmenopausal 
women without evidence of distant metastatic disease.  
Hormone and HER2 statuses were determined in the 
diagnostic core needle biopsy samples before any thera-
pies.  ER and progesterone (PgR) status were assessed 
using IHC.  Cases with ≥ 1% positive nuclear staining 
for ER and/or PgR were considered HR+.  Cases with 
either 0 or 1 positive IHC staining for HER2 or with an 
HER2 gene copy number < 2.0 as detected by fluores-
cent in situ hybridization analysis were considered 
HER2-negative.  We also assigned low or high prolifer-
ation status to each sample based on MKI67 mRNA 
expression (probe set ‘‘212022_s_at’’).  The thresholds 
for defining low or high proliferation status based on 
MKI67 expression values were determined in an inde-
pendent prognostic data set by Wang et al.  (GSE2034) 
[11],  as previously described [3].  Briefly,  we used the 
Youden index to identify optimal cut-off values on the 
receiver operating characteristic curves for 10-year dis-
tant event-free survival in the Wang data set.  Patients 
with MKI67 mRNA expression levels of greater than 
8.489 were considered to have high Ki67 and the others 
to have low Ki67; these thresholds were applied to our 
analyses without further modification.  All paired sam-
ples were stratified into three groups based on Ki67 
levels before and after short-term AI: the L→L,  H→L,  
and H→H groups.

This research study was conducted retrospectively 
from data obtained from public databases.  Ethical 
approval was waived in view of the retrospective nature 
of the study.  Informed consent was not required for this 
retrospective analysis.

Gene expression analysis. Data were annotated 
using the Affymetrix Human Genome Array system 
(Affymetrix Inc.,  Santa Clara,  CA,  USA).  All gene 
expression data were generated using Affymetrix gene 
chips and normalized using the MAS5 algorithm 
(http://www.bioconductor.org: accessed Jan.,  2019),  
with the mean expression centered to 600 and log 2 
transformation.  Probe sets with the lowest 15% mean 
expression value were removed from all higher-level 
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analyses to reduce noise from low-expression probe sets.  
When one gene had two or more probe sets,  we 
retained only one probe set with the highest average 
gene expression.  After applying these criteria,  11,192 
probe sets were left for further analysis.  All statistical 
analyses were performed using BRB Array Tools soft-
ware (version 4.6.0; https://brb.nci.nih.gov/BRB-
ArrayTools/: accessed Jan.,  2019) and R software (ver-
sion 3.5.1; https://www.r-project.org/: accessed Jan.,  
2019).

First,  we compared the gene expression levels for 
three well-established clinical breast cancer markers 
(ESR1,  PGR,  and ERBB2) in pre-treatment samples 
between the H→L and H→H groups using the 
Wilcoxon rank sum test.  We also performed a similar 
class comparison test for three immune-related gene sets 
(TILs-GS [12],  B cell/plasma cell metagene [13] and 
dendritic cell metagene [13] and for one immune- and 
one inflammatory-related gene (SLAMF8 and TNF) in 
two groups to assess the association between immune 
microenvironment and response to HT.  High expres-
sion of immune-related genes such as SLAMF8 and TNF 
were previously reported to be associated with a poor 
response to anastrozole [9].

Next,  we performed a class comparison test for all 
11,192 genes to identify broad molecular differences 
between the two groups.  To adjust for the multiple 
comparisons,  we calculated false discovery rates (FDR) 
and also assessed Global Significance using BRB Array 
tools.  The FDR was calculated with the significance 
analysis of microarrays tool as the median number of 
false-positive genes from permutation testing divided 
by the number of nominally significant genes defined 
from the unperturbed data [14].

We also examined differential expression of a priori 
defined gene sets using gene set analysis (GSA) in pre- 
treatment samples.  The goal of GSA is to determine 
whether members in a set of genes that correspond to a 
particular biological pathway tend to occur toward the 
top or the bottom of a rank-ordered gene list (rank 
ordered by differential expression between the H→H 
and H→L groups).  The total number of gene sets 
included in this analysis was 178 from the KEGG 
PATHWAY Database (https://www.genome.jp/kegg/
pathway.html: accessed Jan.,  2019).  Gene sets with a 
minimum number of 10 and maximum of 100 genes 
were selected for inclusion in this analysis.  We used the 
Efron and Tibshirani GSA method to test whether gene 

sets were differentially expressed between the H→H and 
H→L groups,  with statistical significance being deter-
mined by a permutation test [15].  Significance was 
estimated with the permutation test (n = 1,000).  The 
null hypothesis was that the average degree of differen-
tial expression of members of a given gene set between 
the H→H and H→L groups would be the same as 
expected from a random set of genes of a similar size.  
Pre-treatment samples were used for the preceding 
analysis in order to confirm the essential difference 
between the two groups of patients with luminal B-like 
breast cancer with different responses to hormone ther-
apy.

Finally,  we selected 41 genes that either had been 
targeted by US FDA-approved drugs or had been 
assessed through clinical trials as molecular target 
agents for various solid cancer types including breast 
cancer.  For these genes,  we explored the possibility of 
novel adjuvant therapies added to the standard adjuvant 
AI for the H→H group with poor prognosis after the AI 
by the Wilcoxon rank sum test in post-treatment sam-
ples.  These analyses were performed by post-treatment 
samples because gene expression differences caused by 
short-term AI may be associated with target therapy.  
Information on anticancer therapy drugs was obtained 
by reference to previous studies [16 , 17] from the 
National Cancer Institute (https://www.cancer.gov/
about-cancer/treatment/drugs: accessed Jan.,  2019),  
Drug@FDA (https://www.accessdata.fda.gov/scripts/
cder/daf/: accessed Jan.,  2019),  and ClinicalTrials. gov 
(https://clinicaltrials.gov/: accessed Jan.,  2019).  The 
41 selected genes belonged to the following pathways or 
functions (Table 1): associated with breast cancer (AR,  
ERBB3,  and p53); DNA damage repair pathways and 
BRCA functions (BRCA1,  BRCA2,  PARP1,  and 
PARP2); the cyclin-dependent kinase (CDK) pathway 
(CDK2,  CDK4,  CDK6,  CCND1,  CDKN2A,  and RB1);  
vascular endothelial growth factor (VEGF) and VEGF 
receptor pathways (VEGF-A,  VEGF-B,  VEGF-C,  EGFR,  
KDR,  PGF,  and FLT4); modulation of DNA methyla-
tion and histone acetylation (HDAC1,  HDAC2,  
HDAC3,  DNMT1,  DNMT3A,  and DNMT3B) ;  
immune responses (PDCD1LG2) and the mTOR path-
way (PIK3CA); and targeted by US FDA-approved 
drugs or under investigation (AKT1,  ALK,  RAF1,  
CTNNB1,  MET,  STK11,  PTEN,  NF1,  ROS1,  
NOTCH1,  ATM,  KITL,  and KRAS).
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Results

A total of 77 paired samples were analyzed in this 
study.  Patient characteristics for the 19 cases from 
GSE80077 are shown in Table 2.  The median age was 66 
years (range: 51-88).  All cases were lymph node-nega-
tive and ER-positive.  Five (26.3%) of 19 cases were 
PgR-negative.  Almost half of them (52.6%: 10/19) 
were histological grade 1.  Unfortunately,  patient char-
acteristics were not available for the remaining 58 cases 
from GSE20181,  although the characteristics for 15 of 
the 58 who were clinically resistant to AI were previ-
ously reported [7].

Among the total 77 samples,  30 paired samples that 
had low Ki67 levels both before (pre-Ki67) and after 
(post-Ki67) short-term preoperative AI treatment were 
assigned to the L→L group.  Two cases had low pre-Ki67 
and high post-Ki67 levels (L→H).  The remaining 45 
paired samples were used in subsequent analyses to 
assess the differences between the H→H (N = 26) and 
H→L (N = 19) gene expression groups.

Class comparison test between the H→H and H→L 

groups. To explore the associations between short-
term AI response and potential expression levels of 
breast cancer clinical markers,  we compared the mRNA 
gene expression levels of ESR1,  PGR,  and ERBB2 in 
pre-treatment samples between the H→H and H→L 
groups.  There were no significant differences in the 
expressions of any of the three genes between the two 
groups (Fig. 1).  A similar class comparison test was 
done for three immune response-related signature 
genes,  one immune-related gene and one inflammato-
ry-related gene,  in the pre-treatment samples.  A signif-
icant difference was found only for TNF mRNA: it was 
significantly under-expressed in the H→H group 
(Fig. 2).  Next,  we performed a class comparison test for 
all 11,192 genes by FDR in pre-treatment samples.  
There was no gene that showed a significant difference 
in expression level between the two groups (FDR < 0.1),  
indicating that the molecular differences between the 
two groups were subtle.

Gene sets analyses between the H→H and H→L 
groups. Individual gene level tests suggested rela-
tively small differences in gene expressions between the 
two groups.  Next,  we investigated whether we could 
detect coordinated but relatively small-scale differences 
in the expression of gene sets belonging to functional 
pathways.  We tested 178 gene sets from the KEGG 
PATHWAY Database (https://www.genome.jp/kegg/
pathway.html: accessed Jan.,  2019) in pre-treatment 
samples.  Eighteen gene sets showed significantly higher 
expression in the H→L group compared with the H→H 
group (p < 0.05) (Table 3).  Of these,  11 gene sets were 
associated with various metabolic pathways (trypto-
phan metabolism,  propionate metabolism,  beta- 
alanine metabolism,  valine,  leucine and isoleucine 
degradation,  arginine and proline metabolism,  pentose 
and glucuronate interconversions,  valine,  leucine and 
isoleucine biosynthesis,  alanine,  aspartate and gluta-
mate metabolism,  glyoxylate and dicarboxylate metab-
olism,  and fatty acid degradation).  In contrast,  9 gene 
sets had significantly higher expressions in the H→H 
group than in the H→L group (p < 0.05).  Interestingly,  
3 of these 9 genes sets were also associated with metab-
olism.

Molecular target makers according to short-term AI 
response. Next,  we analyzed 41 molecular target 
markers to explore the efficacy of AI as a novel adjuvant 
therapy for patients with poor prognosis in the H→H 
group and performed a class comparison test between 
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Table 1　 Patient Characteristics (GSE80077)

Age Median (min.-max)
66 (51-88)

Number of cases

cTumor size
　T1 11
　T2 7
　T3 1
cN
　positive 0
　negative 19
ER
　positive 19
　negative 0
PgR
　positive 14
　negative 5
HER2
　positive 0
　negative 19
Historogical grade
　1 10
　2 7
　3 2

ER,  estrogen receptor; PgR,  progesteron receptor; HER2,  human 
epidermar growth factor 2.



the H→H and H→L groups using the post-treatment 
samples.  We found 5 target genes (PARP2: p = 0.004;  
CDK6 : p = 0.005 ; FLT4 : p = 0.023 ; PDCD1LG2 :  
p= 0.021; and MET: p= 0.046) with significantly higher 
expressions in the H→H group than in the H→L group 
(Fig. 3).

Discussion

To our knowledge,  this is the first study to assess 
gene expression data in luminal B-like breast cancers in 
patients with high versus low Ki67 levels after short-
term preoperative AI administration (post-Ki67).  
Moreover,  we also explored candidate target genes for 
patients who are resistant to AI.  Luminal B breast can-
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Table 2　 The list of selected 41 genes that are targeted by FDA-approved drugs or have been investigated with clinical trials as molec-
ular target agents

Symbol Name Probe Set

AR androgen receptor 211110_s_at
ERBB3 erb-b2 receptor tyrosine kinase 3 202454_s_at
TP53 tumor protein p53 201746_at
BRCA1 breast cancer 1,  early onset 211851_x_at
BRCA2 breast cancer 2,  early onset 214727_at
PARP1 poly (ADP-ribose) polymerase 1 208644_at
PARP2 poly (ADP-ribose) polymerase 2 204752_x_at
PDCD1LG2 programmed cell death 1 ligand 2 220049_s_at
CDK2 cyclin-dependent kinase 2 204252_at
CDK4 cyclin-dependent kinase 4 202246_s_at
CDK6 cyclin-dependent kinase 6 214160_at
CCND1 cyclin D1 208712_at
CDKN2A cyclin-dependent kinase inhibitor 2A 209644_x_at
RB1 retinoblastoma 1 203132_at
VEGF-A vascular endothelial growth factor A 210512_s_at
VEGF-B vascular endothelial growth factor B 203683_s_at
VEGF-C vascular endothelial growth factor C 209946_at
EGFR epidermal growth factor receptor 201984_s_at
PGF placental growth factor 209652_s_at
KDR kinase insert domain receptor 203934_at
FLT4 fms-related tyrosine kinase 4 210316_at
HDAC1 histone deacetylase 1 201209_at
HDAC2 histone deacetylase 2 201833_at
HDAC3 histone deacetylase 3 206846_s_at
DNMT1 DNA (cytosine-5-)-methyltransferase 1 201697_s_at
DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha 218457_s_at
DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta 220668_s_at
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase,  catalytic subunit alpha 204369_at
AKT1 v-akt murine thymoma viral oncogene homolog 1 207163_s_at
ALK anaplastic lymphoma receptor tyrosine kinase 208211_s_at
RAF1 Raf-1 proto-oncogene,  serine/threonine kinase 201244_s_at
CTNNB1 catenin (cadherin-associated protein),  beta 1,  88kDa 201533_at
MET MET proto-oncogene,  receptor tyrosine kinase 211599_x_at
STK11 serine/threonine kinase 11 41657_at
PTEN phosphatase and tensin homolog 204053_x_at
NF1 neurofibromin 1 212676_at
ROS1 ROS proto-oncogene 1,  receptor tyrosine kinase 207569_at
NOTCHI notch 1 218902_at
ATM ATM serine/threonine kinase 210858_x_at
KITL KIT ligand 207029_at
KRAS Kirsten rat sarcoma viral oncogene homolog 214352_s_at
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Fig. 2　 Comparison of mRNA expression levels for immune-related gene sets and immune- and inflammatory-related genes between 
patients with high and low Ki67 levels.  Boxplots show the distribution of mRNA gene expression based on a five-number summary (“mini-
mum”,  first quartile,  median,  third quartile,  and “maximum”) for TILs-GS (A),  B cells (B),  Dendritic cells (C),  SLAMF8 (D) and TNF (E).  
P values were calculated by Wilcoxon test comparing differences between the high- and low-Ki67 subgroups.
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Fig. 1　 Comparison of mRNA expression levels for 3 genes related to breast cancer treatment between patients with high and low Ki67 
levels.  Boxplots showed the distribution of mRNA gene expression based on a five number summary (“minimum”,  first quartile,  median,  
third quartile,  and “maximum”) for ESR1 (A),  PgR (B) and ERBB2 (C).  P values were calculated by the Wilcoxon test comparing differ-
ences between the high- and low-Ki67 subgroups.  HR,  hormone receptor; HER2,  human epidermal growth factor receptor 2.



cer is a heterogeneous disease characterized by a higher 
proliferation rate [18].  In spite of combination thera-
pies,  such as adjuvant AI and chemotherapy,  luminal B 
has a poorer prognosis than luminal A,  because of its 
high malignant potential and resistance to these thera-
pies [1].  So far,  no clinically available genomic marker 
has been identified which can help with decision-mak-
ing regarding the adjuvant AI regimen [6].  Therefore,  
the majority of patients with HR+ breast cancer are 
prescribed an AI regardless of their response to it.  The 
use of a short-term AI to predict the response to AIs is 
more affordable than genomic testing and has few criti-
cal side effects.

First,  we evaluated gene expression levels in luminal 
B-like patients,  comparing those with H→H and H→L 
expressions.  In a global comparison of the H→H versus 
H→L groups,  we found no significant intergroup dif-
ferences in gene expression at the level of individual 
genes after adjusting for multiple comparisons.  Indeed,  
this is consistent with the current understanding that 
there are no clinically available genomic markers that 
can detect resistance to HT,  except for IHC ER and PgR 
status.  Several gene expression signatures to predict 
prognosis and response to treatments have been devel-
oped for breast cancer patients,  and various other 
genomic signatures have been shown to predict specific 
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Table 3　 Pathways identified as differentially expressed between H→H and H→L by gene set comparison analysis＊

Pathway description Number of genes P-value

H→H>H→L

1 Maturity onset diabetes of the young 11 <0.005
2 Linoleic acid metabolism 19 0.010
3 Pancreatic secretion 79 0.015
4 alpha-Linolenic acid metabolism 11 0.015
5 African trypanosomiasis 29 0.020
6 Cytosolic DNA-sensing pathway 40 0.020
7 Olfactory transduction 50 0.025
8 Long-term depression 61 0.030
9 Glycosphingolipid biosynthesis - lacto and neolacto series 21 0.040

H→L>H→H

1 Tryptophan metabolism 32 <0.005
2 Propanoate metabolism 28 <0.005
3 beta-Alanine metabolism 20 <0.005
4 SNARE interactions in vesicular transport 31 0.005
5 Nucleotide excision repair 42 0.005
6 Butanoate metabolism 26 0.015
7 Valine,  leucine and isoleucine degradation 42 0.015
8 Arginine and proline metabolism 42 0.020
9 Pentose and glucuronate interconversions 13 0.020

10 Parkinsonʼs disease 97 0.025
11 Valine,  leucine and isoleucine biosynthesis 10 0.025
12 Alanine,  aspartate and glutamate metabolism 27 0.025
13 Glyoxylate and dicarboxylate metabolism 15 0.030
14 Protein export 19 0.030
15 RNA polymerase 22 0.035
16 Homologous recombination 26 0.040
17 Fatty acid degradation 39 0.040 
18 Peroxisome 69 0.045

＊Gray-highlighted rows: metabolism-associated pathways.



clinical outcomes.  However,  the majority of genomic 
signatures yielded low accuracy and reproducibility in 
the independent cohort [19].  A previous report showed 
that immune- and inflammatory-related genes were 
associated with resistance to the HT [9].  Another paper 
reported that neither change nor increase in the expres-
sion level of genes responsible for proliferation were 
observed in the cases with resistance to HT [8].  
Importantly,  these previously published papers assessed 
gene expression data comparing pre- and post-treat-
ment conditions in a number of different cancers.  In the 
current study,  we compared H→H and H→L only 
among luminal B patients.

Next,  we performed gene expression analyses at the 
level of gene sets to search for subtle differences 
between the two groups with the aim of identifying 
related biological pathways.  We found that various 
metabolism-related pathways were associated with the 
efficacy of AI.  Indeed,  7 of the top 10 gene sets with 

higher expression in the H→L patients were associated 
with metabolism,  and the most highly expressed set,  
the tryptophan metabolic pathway,  has already been 
assessed in the study of balance between Treg and Th17,  
the two associated populations of CD4+ T cells with 
opposing functions during immune response [20].  The 
levels of expression of IDO1,  IDO2,  and TDO2 in the 
early segments of the kynurenine pathway of trypto-
phan metabolism were correlated with high AHR 
expression and shown to play an important role in 
breast tumorigenesis [21].  Moreover,  ER status in 
breast cancer likely influenced the AHR activity 
involved in tryptophan metabolism [21].  The gene set 
with the second-highest expression,  propionate metab-
olism,  also plays important roles in the regulation of the 
hormone environment during carcinogenesis.  Propionate 
reduces BaF3 cell growth through a cAMP-dependent 
pathway [22].  Furthermore,  the activation of free fatty 
acid receptor 2,  a Gi/Gq-protein-coupled receptor that 
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Fig. 3　 Comparison of mRNA expression levels for 5 potentially targeted genes between patients with high and low Ki67 levels.  
Boxplots show the distribution of mRNA gene expression based on a five-number summary (“minimum”,  first quartile,  median,  third quar-
tile,  and “maximum”) for PARP2 (A),  CDK6 (B),  FLT4 (C),  PDCD1LG2 (D) and MET (E).  P values were calculated by Wilcoxon test 
comparing differences between the high- and low-Ki67 subgroups.



binds propionate,  reduced the proliferation of BaF3 and 
human cancer cell lines [22].  Interestingly,  Budczies et 
al.  reported associations between several metabolic 
pathways and breast cancer subtypes using GC–
TOFMS-based metabolomics,  and the pathway with 
the 3rd-highest expression,  associated with beta- 
alanine metabolism,  showed the greatest difference 
between ER-positive and -negative breast cancers [23].  
Further,  beta-alanine treatment reduced extracellular 
acidity,  a constituent of the invasive microenvironment 
that promotes breast cancer progression; it was also 
shown to reduce both breast cancer cell migration and 
proliferation without causing cytotoxicity [24].  As far as 
we know,  these previously published papers might not 
show direct associations between hormone resistance 
and breast cancer progression.  These findings should be 
validated in other independent data sets in a future 
analysis.

Finally,  we performed gene expression analysis of 41 
molecular target markers to explore novel therapeutic 
targets for the poor prognostic group.  Our results sug-
gested that 5 genes had a potential for target therapy in 
addition to standard adjuvant therapy.  Our findings 
suggested that the efficacy of  therapeutic targets in this 
subtype of breast cancer based on gene expression anal-
yses is still poorly understood.  Further clinical studies 
to validate the efficacy of these targeted candidate ther-
apies are needed.

This study had several limitations.  First,  the sample 
sizes were relatively small in each group; therefore,  
some valid but weaker variables might not have been 
detected as significant in our study.  Future validation 
studies are needed in a different external dataset with 
the larger sample size.  Second,  some of the cases show-
ing resistance to an AI might be sensitive to the chemo-
therapy and therefore might not require additional tar-
geted therapies.  The HR+/HER2− subgroup with high 
recurrence risk might be treated by chemotherapy and 
AI as the adjuvant standard therapy,  although so far,  we 
have no clinically available biomarkers to predict a 
response to co-administration of chemotherapy and AI.  
Third,  we assessed mRNA data for gene expression to 
seek the novel target genes; however,  these might not 
be true targetable driver genes.  These genes should be 
validated in future trials.  Unfortunately,  as far as we 
know,  there is no other gene expression dataset con-
taining information for pre- and post-HT.  Finally,  we 
defined high and low Ki67 by mRNA gene expression 

level and not by the IHC assay that was originally 
reported from POETIC trial [7].  These assays may be 
similar,  but they do not show the same level of expres-
sion [25].  Such subtle differences might have had an 
effect on our results.

In conclusion,  several metabolism-related pathways 
were associated with sensitivity to AI in two groups 
stratified by post-Ki67 levels.  Several candidate targets 
for cases with resistance to AI were suggested as novel 
add-on treatments.  Our observations support the need 
for further investigation of the mechanisms of resis-
tance to AIs and validations in future clinical trials.
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