
Non-retroviral Endogenous Viral Elements

Vertebrate genomes contain numerous copies of 
endogenous viral elements (EVEs).  Most EVEs are 
endogenous retroviruses (ERVs),  which constitute 
approximately 8% of the human genome sequences [1].  
Retroviruses,  which are RNA viruses with positive- 
stranded RNA genomes,  synthesize complementary 
DNA (cDNA) from viral RNA by reverse transcription 
and integrate the synthesized cDNA into the genome of 
the infected cells.  Because integration is an essential 
step in the replication of retroviruses,  they leave their 
sequences in the host genome.  If ancient retroviruses 

are infected into germline cells of ancestor hosts,  the 
integrations are vertically inherited as ERVs.  ERVs have 
been co-opted with hosts during evolution and play 
roles in various biological processes,  such as host 
immune responses [2].  Examples include both 
immune-enhancing roles,  such as the enhancement of 
T-cell activation [3] and the activation of innate immu-
nity [4 , 5],  and immune-suppressing roles [6 , 7].

Some ERVs regulate biological processes by their 
encoded proteins.  For example,  syncytin,  one of the 
ERV-derived proteins,  participates in human placental 
morphogenesis [8 , 9].  ERV long terminal repeats 
(LTRs) naturally contain promoters and enhancers/
transcription factor-binding sites; these abundant LTR 
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sequences have the potential to cis-regulate gene expres-
sion [10 , 11].  For example,  LTRs are the predominant 
promoters of IL2RB (interleukin-2 receptor B) and 
NOS3 (nitric oxide synthase 3) in the placenta [12].  In 
addition,  some ERV-derived RNAs are known to play a 
role as functional non-coding RNAs (ncRNAs).  For 
example,  long ncRNAs (lncRNAs) derived from human 
endogenous retrovirus H are essential for human 
embryonic stem cell identity [13].

In 2010,  Horie and Honda et al.  [14] discovered 
another type of viral elements related to a non-retrovi-
ral RNA virus,  i.e.,  endogenous bornavirus-like ele-
ments (EBLs),  in the genomes of several mammalian 
species,  including humans,  non-human primates,  
rodents,  and elephants (Fig. 1).  After the first report of 
EBLs,  non-retroviral endogenous viral elements 
(nrEVEs) derived from a variety of viral families,  
including filoviruses [15-17],  parvoviruses [18 , 19],  
circoviruses [19],  and hepadnaviruses [20 , 21],  were 
identified in vertebrate and invertebrate genomes.  EBLs 
appear to have originated from reverse transcription 
and integration of ancient bornavirus mRNA into the 
genomes of anthropoids (Fig. 1,  (1) and (2)).  Germline 
insertions of bornavirus sequences have been inherited 
by descendant hosts thereafter,  some of which may 
exert biological functions,  such as antiviral responses.  

During host evolution,  animals with EBLs have been 
selected by surrounding conditions,  such as infection 
with ancient bornavirus-related viruses (Fig. 1,  (3)).

This review summarizes what is currently known 
about EBLs to provide an overview of nrEVE functions,  
because EBLs are one of the most extensively studied 
nrEVEs.  We then discuss the potential roles of endoge-
nous filovirus-like elements (EFLs) in filovirus ecology.  
Finally,  we suggest possible application of nrEVE func-
tion to novel antiviral approaches.

EBLs Provide Concepts How nrEVEs  
Exert Their Functions

Borna disease virus 1 (BoDV-1) is an enveloped,  
90-130 nm spherical virus that contains a linear,  nega-
tive-stranded RNA genome and belongs to the family 
Bornaviridae [22].  The genomic structure of BoDV-1 
comprises five genes arranged sequentially in the fol-
lowing order: 3'-nucleoprotein (N)-small accessory 
protein (X)/phosphoprotein (P)-matrix protein 
(M)-glycoprotein (G)-large protein (L)-5' (Fig. 2).  The 
genomic RNA and the N,  P,  and L proteins form viral 
ribonucleoprotein (RNP) complexes,  which are viral 
units for viral replication and transcription [23 , 24].  
Unlike most other RNA viruses,  which replicate in the 
cytoplasm,  BoDV-1 replicates in the nuclei of infected 
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Fig. 1　 Endogenization of bornavirus sequences in the host genome.  (1) The ancient bornavirus infects the ancestor host.  (2) The 
bornavirus sequences are integrated into the host genome in infected ancestors by chance.  When an ancient virus gains access to germ 
line cells,  the integrated sequences are vertically inherited by descendant hosts thereafter and become endogenous bornavirus-like ele-
ments (EBLs).  (3) Ancestor hosts with EBLs are selected by the surrounding conditions,  such as infection with ancient bornavirus-related 
viruses.  (4) While most EBLs likely lose their original functions by accumulating mutations during evolution,  some EBLs retain their func-
tions if they play positive roles in host survival (e.g.,  antiviral activity).



cells.  Therefore,  the nucleocytoplasmic trafficking of 
BoDV-1 proteins plays a critical role in the BoDV-1 
replication cycle [25].

EBLs are derived from ancient bornavirus mRNAs,  
as described above (Figs. 1 and 2).  EBLs derived from 
N,  M,  G,  and L (EBLNs,  EBLMs,  EBLGs,  and EBLLs,  
respectively) have been identified (Fig. 2) [26],  with the 
EBLNs being the most extensively investigated to date.  
Several functions of EBLN-derived proteins have been 
proposed based on the investigations of EBLNs.  An 
EBLN in the genome of the thirteen-lined ground 
squirrel (Ictidomys tridecemlineatus),  itEBLN,  encodes 
an open reading frame (ORF) having 77% amino acid 
sequence identity with the current BoDV-1 N [27].  The 
itEBLN protein has been shown to be associated with 
BoDV-1 RNPs and to inhibit BoDV-1 replication 
[28 , 29].  A recent study found that the Homo sapiens 
EBLN-2 (hsEBLN-2) protein interacts with apoptosis- 
associated mitochondrial proteins,  such as HCLS1-
associated protein X-1 (HAX-1) and apoptosis-induc-
ing factor mitochondria-associated 1 (AIFM),  and is 
involved in cell viability [30].  Another study has 
reported on EBLN proteins located on the rough endo-
plasmic reticulum in African elephants,  although the 
precise function of these proteins remains unclear [31].

While itEBLN retains an intact ORF homologous to 
the N protein,  most EBLNs have lost cognate ORFs.  
There is no evidence of selection to maintain the ORF of 
EBLNs in primates [32].  Nonetheless,  RNAs are 
expressed from hsEBLNs (hsEBLN-1 to -7) in at least 
one tissue.  These observations suggest that most EBLNs 
have either lost their function or have a function unre-
lated to protein-coding,  such as that of ncRNAs [33].  
The hsEBLN-1 transcript suppresses the gene expres-

sion of its neighboring COMMD3 (COMM Domain 
Containing 3) gene [34].  Because the COMMD3 gene 
encodes a protein that interacts with and inhibits the 
NF-κB pathway [35],  the presence of EBLN in this 
locus may downregulate the expression of the 
COMMD3 gene,  thereby potentiating the NF-κB path-
way to counteract invading pathogens.  Furthermore,  
some EBLNs in the rodent and primate genomes (e.g.,  
Mus musculus EBLN (mmEBLN)-3 to -5) are located 
within P-element-induced wimpy testis (PIWI)-
interacting RNA (piRNA)-generating loci,  “piRNA 
clusters,” and are expressed as piRNAs [36].  EBLN 
piRNAs may confer the host antiviral activity against 
viruses related to bornaviruses.

Based on the above-mentioned functions of EBLNs,  
the potential roles of nrEVEs can be deduced by anal-
ogy (Fig. 3).  nrEVEs containing coding sequences 
(CDSs) can be transcribed and translated into proteins 
with various functions,  including antiviral defense (e.g.,  
itEBLN [28]) and apoptosis regulation (e.g.,  hsEBLN-2 
[30]).  If nrEVEs do not contain CDSs,  they may act as 
regulatory DNA elements or ncRNAs.  nrEVE-derived 
ncRNAs play significant roles in the regulation of host 
gene expression (e.g.,  hsEBLN-1 to the neighboring 
COMMD3 gene [34]) and possibly in the antiviral 
response (e.g.,  mmEBLN-3 to -5 [36]).  In the next sec-
tion,  we use this concept to propose a potential role of 
endogenous filovirus-like elements (EFLs) in filovirus 
ecology.

EFLs May Play a Role in Filovirus Ecology

Filoviruses,  including ebolavirus and marburgvirus,  
are enveloped,  filamentous viruses that contain a linear,  
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Fig. 2　 Schematic view of the bornavirus genome,  mRNAs,  and endogenous bornavirus-like elements (EBLs).  The dashed lines connect 
viral mRNAs to homologous EBLs (i.e.,  EBLN,  EBLM,  EBLG,  and EBLL) in the host genomes.  Descriptions of precise RNA splicing are 
omitted.  The sizes of the rectangles indicating nrEVEs do not reflect their actual sizes.



negative-stranded RNA genome (approximately 19 kb 
in length),  and are classified in the family Filoviridae.  
The genomic structure of a filovirus comprises seven 
genes arranged sequentially in the following order:  
3'-nucleoprotein (NP)-viral protein (VP) 35-VP40-
glycoprotein-VP30-VP24-RNA polymerase (L)-5' 
(Fig. 4) [37].  Filovirus NP forms nucleocapsid-like 
structures,  whereas VP30 functions as a transcription 
activator [38-40].  They interact with viral RNA together 
with the polymerase complex consisting of VP35 and L 
proteins and form viral RNPs,  viral replication units 
[37].  The L protein provides the RNA-dependent RNA 
polymerase activity of the complex and VP35 is a poly-
merase complex cofactor that affects the mode of RNA 
synthesis [37].  VP35 also functions as a type I inter-
feron (IFN) antagonist by interrupting interferon regu-
latory factor 3 (IRF3) [41 , 42].  The VP40 and VP24 
proteins act as matrix proteins located on the inner side 
of the membrane [37].  VP40 plays a key role in the 
budding process,  whereas VP24 is presumed to be 
involved in nucleocapsid formation and assembly [43].  
Marburgvirus VP40 and ebolavirus VP24 also antago-

nize IFN [44-46].  The family Filoviridae contains six 
genera : Ebolavirus,  Marburgvirus,  Cuevavirus,  
Dianlovirus,  Striavirus,  and Thamnovirus [47].  Among 
these viruses,  ebolavirus and marburgvirus cause 
severe hemorrhagic fever in humans and nonhuman 
primates.  Outbreaks of filovirus infection in humans,  
i.e.,  Ebola virus disease and Marburg virus disease,  fre-
quently occur in Central Africa.  The 2014-2016 Ebola 
virus outbreak in West African countries (e.g.,  Guinea,  
Liberia,  and Sierra Leone) was the largest outbreak to 
date [48].

The ecology of filoviruses,  including zoonotic trans-
mission events followed by subsequent human-to- 
human transmission,  is still largely unknown.  
Epidemiologic evidence suggests that bats are the pri-
mary natural reservoir [49-53].  Some insectivorous 
bats and Egyptian rousette bats (Rousettus aegyptiacus) 
are susceptible to filovirus infection and exhibit sero-
conversion without any symptoms [52 , 54 , 55].  
Therefore,  bats seem to have co-evolved with filovi-
ruses to tolerate infection; they allow viral replication 
only to levels sufficient for transmission,  concurrently 

506 Ogawa et al. Acta Med.  Okayama　Vol.  76,  No.  5

Fig. 4　 Schematic view of the 
filovirus genome,  mRNAs,  and 
endogenous filovirus-like elements 
(EFLs).  The dashed lines connect 
viral mRNAs to homologous EFLs 
(i.e.,  EFLNP,  EFL35,  and EFLL) in 
the host genomes.  The sizes of the 
rectangles indicating nrEVEs do not 
reflect their actual sizes.

Fig. 3　 Categorization of the functions of 
non-retroviral endogenous viral elements 
(nrEVEs).  nrEVEs containing coding 
sequences (CDSs) can be transcribed and 
translated into proteins.  If nrEVEs do not con-
tain CDSs,  nrEVEs may act as either regula-
tory DNA elements or RNA elements.  nrEVEs 
located within PIWI-interacting RNA (piRNA) 
loci produce piRNAs that may confer antiviral 
activity against related exogeneous viruses.  
Even if nrEVEs are located within non-piRNA 
loci,  they may transcribe into functional 
non-coding RNA (ncRNA).



mounting a subdued antiviral immune 
response that controls clinical disease by 
minimizing proinflammatory responses 
[56].  Several researchers have focused 
on the bat immune system to determine 
how bats acquire disease tolerance to 
filoviruses [57-61].  For example,  bats 
have evolved unique mechanisms to limit 
v irus- induced proinf lammator y 
responses [57-62].  Since canonical 
immune systems in bats are partially 
suppressed but bats can control filovirus 
infection,  bats are thought to be 
equipped with an as-yet-unknown non-
canonical means of controlling viral 
replication [59 , 60 , 63].

EFLs derived from ancient filovirus 
NP,  VP35,  and L genes (EFLNPs,  
EFL35s,  and EFLLs,  respectively) have 
been identified in mammalian genomes,  
such as those of microbats,  tarsiers,  
wallabies,  and opossums (Fig. 4) [15-
17].  Among these EFLs,  bat genomes 
contain EFLNPs and EFL35s.  Myotis bat 
EFL35 retains an intact ORF that poten-
tially encodes a protein of ~280 amino 
acids homologous to VP35 [16].  
Previous studies using Myotis lucifugus 
EFL35 (mlEFL35) have shown that the 
mlEFL35 protein retains the ability to 
inhibit IFN-β production [64 , 65].  These 
results suggest that EFLs might also 
retain other VP35-like properties,  such 
as incorporation into viral RNPs,  and 
thereby suppress viral replication,  simi-
larly to the above-mentioned itEBLN 
function (see section 2).  If this is the 
case,  EFL-derived immunity might play 
roles in noncanonical means of estab-
lishing disease tolerance to filovirus 
infection [66 , 67].  Therefore,  future 
investigations of EFL functions could 
provide insights into how bats establish 
disease tolerance to filovirus infection 
and act as potential reservoirs.
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Fig. 5　 Antiviral activity of non-retroviral endogenous viral elements (nrEVEs).  
(A) Canonical immune responses in virus infection.  The virus stimulates the canon-
ical immune system,  such as type I interferons (IFNs) and cytokines,  thereby induc-
ing a canonical antiviral state.  (B) Antiviral activity of nrEVEs.  In cells with nrEVEs,  
nrEVEs suppress the replication of related exogenous viruses directly through nrEVE 
products and/or indirectly by regulating host gene expression,  resulting in the induc-
tion of an antiviral state without the enhancement of canonical immune systems.  
(C) Activation of nrEVEs.  If the antiviral activity of nrEVEs can be activated by an 
nrEVE activation signal,  cells with nrEVEs would be able to induce an enhanced 
antiviral state without enhancing canonical immune systems.



Conclusions

nrEVEs have been reported to play important roles 
in host defenses.  Virus infections generally induce 
canonical immune responses,  such as the production of 
type I IFN and cytokines (Fig. 5A).  Although an appro-
priate level of immunity is required to combat infec-
tious agents,  excessive responses lead to host damage.  
As we summarized in this review,  some nrEVE proteins 
and RNAs might directly suppress the replication of 
nrEVE-related exogenous viruses (Fig. 5B).  In addition,  
nrEVEs might function as regulatory DNA sequences of 
host gene expression that leads to an antiviral state 
(Fig. 5B).

Over the past decades,  bats have been reported to be 
important reservoirs and vectors of zoonotic viruses 
causing emerging infectious diseases,  including Ebola 
and Marburg virus diseases,  severe acute respiratory 
syndrome (SARS),  Nipah and Hendra viral infections,  
and rabies [68].  The etiological agent of coronavirus 
disease 2019 (COVID-19) [69],  SARS coronavirus 2,  
shares many genetic similarities with bat-borne 
beta-coronavirus [70 , 71],  suggesting that bats play a 
key role as coronavirus reservoirs.  A large number of 
nrEVEs have been discovered in bat genomes [15].  This 
may explain,  at least in part,  why bats act as reservoir 
hosts for many viruses.  Thus,  we can hypothesize that 
bats have developed a system to assimilate viral 
sequences into their genomes and renovate them to 
combat related viruses without enhancing their canoni-
cal immune systems.  As a result,  bats may readily 
acquire disease tolerance to various viruses.  Further 
research will be needed to verify this hypothesis.

Finally,  it is conceivable that activation of nrEVEs 
could lead to the enforcement of antiviral activity with-
out excessive activation of canonical immunity that may 
damage the host (Fig. 5C).  To develop such a novel 
approach for the antiviral state,  ways to enhance the 
antiviral activity of nrEVEs,  e.g.,  the way inducing 
nrEVE expression,  should be explored.
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