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NON-MODULAR SOLUTION OF THE KANEKO-ZAGIER

EQUATIONS WITH RESPECT TO FRICKE GROUPS OF

LOW LEVELS

Toshiteru Kinjo

Abstract. Pavel Guerzhoy show that the Kaneko-Zagier equation for
SL2(Z) has mixed mock mock modular solutions in certain weights. In
this paper, we show that the Kaneko-Zagier equations for the Fricke
groups of level 2 and 3 also have mixed mock modular solutions in
certain weights.

1. Introduction

Amodular linear differential equation is a differential equation on the com-
plex upper half plane H with an invariance property under the action of some
arithmetic Fuchsian groups. In recent years, they are studied in several con-
texts in number theory, vertex operator algebra, and mathematical physics.
The Kaneko-Zagier equation

(KZk) f ′′(τ)− k + 1

6
E2(τ)f

′(τ) +
k(k + 1)

12
E′

2(τ)f(τ) = 0,

which was introduced by Kaneko-Zagier [KZ98], is one of the most basic and
interesting modular linear differetial equations. Here, τ ∈ H, ′ = 1

2πi
d
dτ , and

E2(τ) is the normalized Eisenstein series of weight 2, which is not a modular
form but is a quasimodular form. The equation (KZk) has connections to
supersingular polynomials, Atkin’s orthogonal polynomials and trace func-
tions of vertex operator algebra (see [KZ98], [KNS13]).

Recently, Guerzhoy [G15] described the non-modular solution of (KZk)
and proved (KZk) has a mixed mock modular solution for certain weights k
as a corollary of his theorem. In this paper, we will investigate non-modular
solutions of the Kaneko-Zagier equations for the Fricke groups of level 2 and
3, and show they have mixed mock modular solutions for certain weights k.
More precisely, the Kaneko-Zagier equations for the Fricke group of level 2
and 3 are given respectively by the following:

f ′′(τ)− k + 1

4
E2,2(τ)f

′(τ) +
k(k + 1)

8
E′

2,2(τ)f(τ) = 0,(KZk,2)

f ′′(τ)− k + 1

3
E2,3(τ)f

′(τ) +
k(k + 1)

6
E′

2,3(τ)f(τ) = 0,(KZk,3)
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where E2,2(τ) and E2,3(τ) are Eisenstein series of weight 2 with respect to
the Fricke groups of level 2 and 3, respectively, precise definitions being given
in the next section. The equations (KZk,2) and (KZk,3) were previously
investigated in [S11], [SS15], and [ST12].

Our main results is the following theorem:

Theorem 1.1. (1) The differential equation (KZk,2) has non-modular
solutions of the form;{

Ak,2(τ)E2(τ) +Bk,2(τ) if k ≡ 0 mod 4,

Ck,2(τ)F2,2(τ) +Dk,2(τ) if k ≡ 2 mod 4,

where E2(τ) = 2πi
∫ τ
i∞ η(τ)2η(2τ)2dz, and Ak,2(τ), Bk,2(τ), Ck,2(τ),

Dk,2(τ) are certain modular forms of weight k with respect to the Fricke
group of level 2, F2,2(τ) is an explicitly given solution of (KZ2,2) in
Proposition 4.2. In particular, when k ≡ 2 mod 4, the solution is
a mixed mock modular form.

(2) The differential equation (KZk,3) has non-modular solution of the form;{
Ak,3(τ)E3(τ) +Bk,3(τ) if k ≡ 0 mod 3,

Ck,3(τ)F1,3(τ) +Dk,3(τ) if k ≡ 1 mod 3,

where E3(τ) = 2πi
∫ τ
i∞ η(τ)2η(3τ)2d, and Ak,3(τ), Bk,3(τ), Ck,3(τ),

Dk,3(τ) are certain modular forms of weight k with respect to the Fricke
group of level 3, F1,3(τ) is an explicitly given solution of (KZ1,3) in
Proposition 4.2. In particular, when k ≡ 1 mod 3, the solution is
a mixed mock modular form.

The paper is organized as follows. In §2, we prepare some notations and
terminology. In §3, we summarize the properties of mixed mock modular
form arising from some modular elliptic curve. In §4, we state some results
on (KZk,2) and (KZk,3), and prepare some lemmas. After that, we de-
scribe non-modular solutions of (KZk,2) and (KZk,3), and prove that their
solutions are mixed mock modular forms under some conditions.

2. Preliminaries

For a function f on H, an integer k and γ =
(
a b
c d

)
∈ SL2(R), we let

(cτ + d)−kf(aτ+b
cτ+d) denote by f |kγ(τ).

Let N be a positive integer and Γ∗
0(N) be the discrete subgroup of SL2(R)

generated by the Hecke congruence subgroup Γ0(N) = {
(
a b
c d

)
∈ SL2(Z) |

c ≡ 0 mod N} and the Fricke involution wN =

(
0 − 1√

N√
N 0

)
. We call Γ∗

0(N)
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the Fricke group of level N . We note that all cusps of Γ∗
0(2) and Γ∗

0(3) are
equivalent to i∞. We put

Ek,N (τ) =
1

1 +N
k
2

(Ek(τ) +N
k
2Ek(Nτ)) (k ≥ 2),

Ek,N,−(τ) =
1

1−N
k
2

(Ek(τ)−N
k
2Ek(Nτ)) (k ≥ 2),

where Ek(τ) = 1 − 2k
Bk

∑∞
n=1

∑
d|n d

k−1qn is the Eisenstein series of weight

k with respect to SL2(Z), q = e2πiτ , and Bk is the k-th Bernoulli number.
The function Ek,N (τ) is a modular form of weight k with respect to Γ∗

0(N)
if k > 2. The function Ek,N,−(τ) is a modular form of weight k with respect
to Γ0(N) and an eigenfunction of the action of wN with the eigenvalue −1.
Also, E2,N (τ) is not a modular form, but a quasimodular form of weight 2.

To describe our proof, we need the following modular forms and modular
functions. In the case of (KZk,2), we need

g2(τ) := η(τ)2η(2τ)2

= q
1
4 − 2q

5
4 − 3q

9
4 + 6q

13
4 + 2q

17
4 + · · · ,

∆2(τ) := η(τ)8η(2τ)8

= q − 8q2 + 12q3 + 64q4 − 210q5 − 96q6 + 1016q7 + · · · ,

j∗2(τ) :=
E4,2(τ)

2

∆2(τ)

=
1

q
+ 104 + 4372q + 96256q2 + 1240002q3 + 10698752q4 + · · · .

Here, η(τ) = q1/24
∏

n≥1(1 − qn) is the Dedekind η-function. The function

g2(τ) is a modular form of weight 2 with respect to some subgroup of Γ∗
0(2),

and the function ∆2(τ) is a modular form of weight 8 with respect to Γ0(2).
The function j∗2(τ) is a Hauptmodul of Γ∗

0(2) (see [S11]). In the case of
(KZk,3) we need

I3,3(τ) :=
η(3τ)9

η(τ)3

= q + 3q2 + 9q3 + 13q4 + 24q5 + 27q6 + 50q7 + · · · ,
g3(τ) := η(τ)2η(3τ)2

= q
1
3 − 2q

4
3 − q

7
3 + 5q

13
3 + 4q

16
3 − 7q

19
3 + · · · ,

∆3(τ) := η(τ)6η(3τ)6

= q − 6q2 + 9q3 + 4q4 + 6q5 − 54q6 − 40q7 + 168q8 + 81q9 + · · · ,
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I1,3(τ) := 1 + 6
∞∑
n=1

∑
m|n

(
−3

m

) qn

= 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + · · · ,

j∗3(τ) =
I1,3(τ)

6

∆3(τ)

=
1

q
+ 42 + 783q + 8672q2 + 65367q3 + 371520q4 + · · · .

The function g3(τ) is a modular form of weight 2 with respect to some
subgroup of Γ0(3), and the function ∆3(τ) is a modular form of weight 6
with respect to Γ∗

0(3). The functions I1,3(τ) and I3,3(τ) are modular forms
of weights 1 and 3, respectively, with respect to Γ0(3) with the Kronecker
character

(−3
m

)
. The function j∗3(τ) is a Hauptmodul of Γ∗

0(3) (see [S11]).

Since (E2,2,−(τ))
2 = E4,2(τ) and (I1,3(τ))

4 = E4,3(τ), we would often

write E2,2,−(τ) and I1,3(τ) as E
1
2
4,2(τ) and E

1
4
4,3(τ).

3. Mixed mock modular form

First, we recall the definition of the mixed mock modular form. For
the detail, see [BFOR17].

A real analytic function f is called a harmonic Maass form of weight k
with respect to Γ with a character χ if (i) f |kγ = χ(γ)f for any γ ∈ Γ, (ii) f
is an eignenfunction of Im(τ)2 ∂

∂τ
∂
∂τ̄ + 2ik ∂

∂τ̄ with an eigenvalue 0, and (iii)
f is an exponential growth at every cusp.

A harmonic Maass form f has the following Fourier expansion

f = f+ + f−,

where

f+ =
∑
n∈Q

n≫−∞

anq
n,

f− =
∑
n∈Q
n<0

bnΓ(1− k,−2πnIm(τ))qn.

Here, Γ(α, x) =
∫∞
x e−ttα−1dt is the incomplete gamma function. The holo-

morphic part f+ is called a mock modular form of weght k with respect to
Γ with a character χ.

A mixed harmonic Maass form of weight k is a function of the form

h =
∑
i

figi,
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where fi is a modular form of weight ki with respect to Γ with a character
ϕi and gi is a harmonic Maass form of weght li with respect to Γ with
a character ψi, satisfying ki + li = k and ϕiψi = χ.

The holomorphic part h+ =
∑

i fig
+
i is called a mixed mock modular form

of weght k with respect to Γ with a character χ if h has at most polynomial
growth at every cusp.

Next we introduce a particular mock modular form for later use. Let L
be a lattice in C and put E = C/L. According to [W], the function

(3.1) ζ̂(z, E) = ζ(z, E) + e2(L)z +
π

Vol(E)
z̄

is a doubly periodic real analytic function with period L. Here, Vol(E) is

the volume of E, e2(L) = lim
s→0

∑
ω∈L\{0}

1

ω2|ω|s
. For modular elliptic curve E,

let z(τ) be the integral from i∞ to τ ∈ H of the normalized cusp form of
weight two associated with E. For the modular elliptic curve X0(N), there
exists a lattice LN such that C/LN is analytically isomorphic to X0(N),
and the isomorphism is given by 2πiz(τ). We put EN = C/LN . Then

ζ̂(z(τ), EN ) is a harmonic Maass form of weight 0.
We need the case of N = 32, 27. Then E32 is y

2 = x3+4x and E27 is y
2+

y = x3 − 7. It is well-known that E32 and E27 have complex multiplication,

moreover End(E32) = Z[i] and End(E27) = Z[1+
√
3i

2 ](see [LMFDB]). Then,
for N = 32, 27, there is a root of unity λN ̸= ±1 such that λNLN = LN .
Therefore,

e2(LN ) = lim
s→0

∑
ω∈L\{0}

1

ω2|ω|s

= lim
s→0

∑
ω∈L\{0}

1

(λNω)2|λNω|s

= λ−2
N lim

s→0

∑
ω∈L\{0}

1

ω2|ω|s

= λ−2
N e2(LN ),

we get e2(LN ) = 0. Specifically, z(τ) equals 2πi
∫ τ
i∞ η(4τ)2η(8τ)2dτ if N =

32, and 2πi
∫ τ
i∞ η(3τ)2η(9τ)2dτ if N = 27. Therefore, from (3.1), we have

the following proposition.

Proposition 3.1. (1) The function

ζ

(
2πi

∫ τ

i∞
η(4τ)2η(8τ)2dτ,E32

)
=

1

q
+

2

3
q3 +

1

7
q7 − 2

11
q11 + · · ·
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is a mock modular form of weight zero with respect to Γ0(32).
(2) The function

ζ

(
2πi

∫ τ

i∞
η(3τ)2η(9τ)2dτ,E27

)
=

1

q
+

1

2
q2 +

1

5
q5 +

3

4
q8 − 6

11
q11 + · · ·

is a mock modular form of weight zero with respect to Γ0(27).

We further need the following.

Proposition 3.2. There exist weak harmonic Maass forms M32(τ) and
M27(τ) such that

1

2πi

dM32

dτ
(τ) =

E4,2(4τ)

g2(4τ)
,

1

2πi

dM32

dτ̄
(τ) = t32 g2(4τ),

1

2πi

dM27

dτ
(τ) =

E4,3(3τ)

g3(3τ)
,

1

2πi

dM27

dτ̄
(τ) = t27 g3(3τ),

where t32, t27 are non-zero constants.

Proof. We show the existence of M32. Set E2 = 2πi
∫ τ
i∞ η(4z)2η(8z)2dz. We

see the relation (up to additive constant)

2πi

∫
E4,2(4τ)

g2(4τ)
dτ + 8ζ(E2, E32)

=
1

g2(4τ)

(
−1

3
E2,2,−(4τ)− 2E2,4,−(4τ) +

28

3
E2,8,−(4τ)

)
holds by comparing first several Fourier coefficients of the derivatives of
both sides, which are weakly modular forms of weight 2 lying in a finite
dimensional vector space. Therefore, if we put

M32(τ) =
1

g2(4τ)

(
−1

3
E2,2,−(4τ)− 2E2,4,−(4τ) +

28

3
E2,8,−(4τ)

)
− 8ζ̂(E2, E32),

then M32(τ) satisfies our required properties.
Similarly, we can have the relation

2πi

∫
E4,3(3τ)

g3(3τ)
dτ + 6ζ(E3, E27) =

1

g3(3τ)

(
−E2,3,−(3τ) + 6E2,9,−(3τ)

)
,

where E3 = 2πi
∫ τ
i∞ η(3z)2η(9z)2dz. Therefore, we can construct M27(τ)

similarly. □
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4. The Kaneko-Zagier equation with respect to Γ∗
0(N)

In this section, we recall some facts on the Kaneko-Zagier equation and
prove Theorem 1.1. The Kaneko-Zagier equation with respect to Γ∗

0(2) and
Γ∗
0(3) of weight k is the following second-order ordinary differential equations

respectively:

(KZk,2) f ′′(τ)− k + 1

4
E2,2(τ)f

′(τ) +
k(k + 1)

8
E′

2,2(τ)f(τ) = 0,

and

(KZk,3) f ′′(τ)− k + 1

3
E2,3(τ)f

′(τ) +
k(k + 1)

6
E′

2,3(τ)f(τ) = 0,

where ′ denotes 1
2πi

d
dτ . Define the Serre operators ∂k,2 and ∂k,3 by

∂k,2(f)(τ) = f ′(τ)− k

8
E2,2(τ)f(τ)

and

∂k,3(f)(τ) = f ′(τ)− k

6
E2,3(τ)f(τ).

Then (KZk,2) and (KZk,3) are equivalent to the following equations:

∂k+2,2 ◦ ∂k,2(f(τ)) =
k(k + 2)

64
E4,2(τ)f(τ)(KZ ′

k,2)

and

∂k+2,3 ◦ ∂k,3(f(τ)) =
k(k + 2)

36
E4,3(τ)f(τ).(KZ ′

k,3)

Since ∂k,N (f |kγ) = ∂k,N (f)|kγ for any γ ∈ Γ∗
0(N) (N = 2, 3), the solution

space of (KZk,N ) is Γ∗
0(N) invariant.

In the case of SL2(Z), the modular solutions of the Kaneko-Zagier equa-
tion (KZk) are explicitly described in terms of the hypergeometric series. In
the case of Γ∗

0(2) and Γ∗
0(3), their modular solutions have similar expression

as follows.

Theorem 4.1 (Sakai [S11], Proposition 4). (1) If k is a positive even
integer, then the modular solution fk,2(τ) of (KZk,2) whose 0-th
Fourier coefficient is equal to 1 has the following form;
(a) for k ≡ 0, 2 mod 8,

fk,2(τ) = E4,2(τ)
k
4 2F1

(
−k
8
,−k − 2

8
;−k − 3

4
;
256

j∗2(τ)

)
,

(b) for k ≡ 4, 6 mod 8

fk,2(τ) = E6,2(τ)E4,2(τ)
k−6
4 2F1

(
−k − 6

8
;−k − 4

8
− k − 3

4
;
256

j∗2(τ)

)
.
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In particular, f2,2(τ) = E4,2(τ)
1
2 .

(2) If k is a positive integer with k ̸≡ 2 mod 3, then the modular solution
fk,3(τ) of (KZk,3) whose 0-th Fourier coefficient is equal to 1 has
the following form;
(a) for k ≡ 0, 1 mod 6,

fk,3(τ) = E4,3(τ)
k
4 2F1

(
−k
6
,−k − 1

6
;−k − 2

3
;
108

j∗3(τ)

)
,

(b) for k ≡ 3, 4 mod 6,

fk,3(τ) = E6,3(τ)E4,3(τ)
k−6
4 2F1

(
−k − 4

6
;−k − 3

6
− k − 2

3
;
108

j∗3(τ)

)
.

In particular, f1,3(τ) = E4,3(τ)
1
4 .

Next two propositions give the non-modular solutions of (KZk,2) and
(KZk,3).

Proposition 4.1. There exist meromprphic functions hk,2 (for non-negative
even integer k) and hk,3 (for non-negative integer k ̸≡ 2 mod 3) satisfying

h′k,2(τ) =
g2(τ)

k+1

fk,2(τ)2
and h′k,3(τ) =

g3(τ)
k+1

fk,3(τ)2
.

Proof. Because the proof of the second equality is similar to the first one,
we only prove the first equality. Let z be a zero of fk,2(τ). Then, the order
of fk,2(τ) at z is 1 because fk,2(τ) is a solution of (KZk,2).

The function h(τ) := g2(τ)
k+1/fk,2(τ)

2 has the following Laurant expan-
sion at z:

h(τ) =
c−2

(τ − z)2
+

c−1

τ − z
+ c0 +O((τ − z)).

We will prove that c−1 is equal to zero. We see the following estimate by
an elementary calculation:

2(τ − z)h(τ) + 2πi (τ − z)2h′(τ) = c−1 +O((τ − z)).

Thus, we obtain c−1 =
(
2(τ−z)h(τ)+2πi(τ−z)2h′(τ)

)
|τ=z. Since 4g

′
2/g2 =

E2,2,

h′(τ)

h(τ)
= −2

f ′k,2(τ)

fk,2(τ)
+
k + 1

4
E2,2(τ).

Therefore,

c−1 = 2πi (τ − z)2h(τ)

(
1

πi(τ − z)
− 2

f ′k,2(τ)

fk,2(τ)
+
k + 1

4
E2,2(τ)

) ∣∣∣∣
τ=z

.
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Write fk,2(τ) = (τ − z)ϕ(τ) with a function ϕ(τ). Then we have

f ′k,2(τ)

fk,2(τ)
=

1

2πi

1

(τ − z)
+
ϕ′(τ)

ϕ(τ)

and thus

c−1 = 2πi (τ − z)2h(τ)

(
−2

ϕ′(τ)

ϕ(τ)
+
k + 1

4
E2,2(τ)

)
.

From f ′k,2(τ) =
1

2πiϕ(τ)+ (τ − z)ϕ′(τ), f ′′k,2(τ) =
1
πiϕ

′(τ)+ (τ − z)ϕ′′(τ), and

f ′′k,2(τ)−
k + 1

4
E2,2(τ)f

′
k,2(τ) +

k(k + 1)

8
E′

2,2(τ)fk,2(τ) = 0,

we obtain by letting τ → z

2ϕ′(z) =
k + 1

4
E2,2(z)ϕ(z).

Therefore, we conclude c−1 = 0. □

Proposition 4.2. Under the same notation as in Theorem 4.1 and Propo-
sition 4.1, we have the following.

(1) For non-negative even integer k, the function Fk,2(τ) := fk,2(τ)hk,2(τ)
is a solution of (KZk,2).

(2) For non-negative integer k ̸≡ 2 mod 3, the function Fk,3(τ) :=
fk,3(τ)hk,3(τ) is a solution of (KZk,3).

Proof. By Proposition 4.1, all poles of hk,N lie on the zeros of fk,N and
are simple. Thus, Fk,N is holomorphic on H. We show that Fk,N satisfies
(KZk,N ). When N = 2,

F ′′
k,2(τ)−

k + 1

4
E2,2(τ)F

′
k,2(τ) +

k(k + 1)

8
E′

2,2(τ)Fk(τ)

= (f ′′k,2(τ)−
k + 1

4
E2,2(τ)f

′
k,2(τ) +

k(k + 1)

8
E′

2,2(τ)fk,2(τ))hk,2(τ)

+ fk,2(τ)h
′′
k,2(τ) + (2f ′k,2(τ)−

k + 1

4
E2,2(τ)fk,2(τ))h

′
k,2(τ) = 0.

The proof of the case N = 3 is similar and will be omitted. □

Next we show the mixed mock modularity of the non-modular solutions
of (KZ2,2) and (KZ1,3).

Proposition 4.3. The functions F2,2(τ) and F1,3(τ) are mixed mock mod-
ular forms.
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Proof. We can obtain the relation

h2,2(4τ) =
1

256

(
E4,2,−(4τ)

E2,2,−(4τ)g2(4τ)
+ 2πi

∫
E4,2(4τ)

g2(4τ)
dτ

)
,

by comparing several Fourier coefficients, where
∫ E4,2(4τ)

g2(4τ)
dτ is a primi-

tive function of
E4,2(4τ)
g2(4τ)

, because the derivatives of both sides multiplied

by (E2,2,−(4τ)g2(4τ))
2 are modular forms of weight 10. By Theorem 3.2,

h2,2(4τ) and thus h2,2(τ) is a sum of a meromorphic modular form and
a mock modular form. Since F2,2 is holomorphic on H as shown in the proof
of Proposition 4.2, F2,2(τ) is sum of a modular form and a product of a mod-
ular form and a mock modular form.

By Proposition 4.1, F2,2(τ) = O(1) at i∞, that is, F2,2(τ) is holomorphic
at i∞. By Proposition 4.2, for any γ ∈ Γ∗(2), F2,2|2γ is a linear combina-
tion of f2,2 and F2,2. Therefore, F2,2 is holomorphic at every cusp and we
conclude that F2,2 is a mixed mock modular form.

Similarly, we obtain the relation

h1,3(3τ) =
−1

54

(
I1,3(3τ)

3 − 54I3,3(3τ)

I1,3(3τ)g27(τ)
+ 2πi

∫
E4,3(3τ)

g27(τ)
dτ

)
,

where
∫ E4,3(3τ)

g27(τ)
dτ is a primiteive function of

E4,3(3τ)
g27(τ)

, and from this we

conclude that h1,3(τ)I1,3(τ) is a mixed mock modular form. □
Denote by Lk,2 (resp.Lk,3) the space of solutions of (KZk,2) (resp.KZk,3).

There exist the following isomorphisms from Lk,2 (resp.Lk,3 ) to Lk−4,2

(resp.Lk−3,3). To prove Theorem 1.1, we will give the relation between
the solution space Lk,2 and Lk−4,2 and between Lk,3 and Lk−3,3.

Proposition 4.4. (1) For a positive even integer k > 2, define

µk,2(f(τ)) =
[f(τ), E

1
2
4,2(τ)]

(k,2)
1

∆2(τ)
.

Then µk,2 is an isomorphism from Lk,2 to Lk−4,2 sending a modular
solution to a modular solution.

(2) For a positive integer k > 1 which is not congruent 2 modulo 3,
define

µk,3(f) =
[f(τ), E

1
4
4,3(τ)]

(k,1)
1

∆3(τ)
.

Then µk,3 is an isomorphism from Lk,3 to Lk−3,3 sending a modular
solution to a modular solution.

Here [f(τ), g(τ)]
(k,l)
1 := kf(τ)g′(τ) − lf ′(τ)g(τ) (k, l are integers) is

the Rankin-Cohen bracket.
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Proof. Let gk,2 (resp. gk,3) be the modular solution of (KZk,2) (resp. (KZk,3)).
Let N be 2 or 3 and put α = 2 if N = 2, α = 1 if N = 3. We re-

mark that E
α
2
4,N (τ) is a solution of (KZN,α) by Theorem 4.1. First we show

∂k+α+2,N (∆Nµk,2(gk,N (τ))) = ∂k+α+2,N ([gk,N (τ), E
α
4
4,N (τ)]

(k,α)
1 ).

∂k+α+2,N ([gk,N (τ), E
α
4
4,N (τ)]

(k,α)
1 )

=∂k+α+2,N (kgk,N (τ)∂α,N (E
α
4
4,N (τ))− α∂α,N (gk,N (τ))E

α
4
4,N (τ))

=k(∂k,N (gk,N (τ))∂α,N (E
α
4
4,N (τ)) + gk,N (τ)∂α+2,N (∂α,N (E

α
4
4,N (τ))))

− α(∂k+2,N∂k(gk,N (τ))E
α
4
4,N (τ) + ∂k,N (gk,N (τ))∂α,N (E

α
4
4,N (τ)))

=

(
k − α

k(k + 2)

α(α+ 2)

)
gk,N (τ)∂α+2(∂α(E

α
4
4,N (τ)))

+ (k − α)∂k(gk,N (τ))∂α+2,N∂α,N (E
α
4
4,N (τ))

=
k(α− k)

α+ 2
gk,N (τ)∂α+2,N (∂α,N (E

α
4
4,N (τ)))

+ (k − α)∂k,N (gk,N (τ))∂α,N (E
α
4
4,N (τ))

=
α− k

α+ 2
[gk,N (τ), ∂α,N (E

α
4
4,N (τ))]

(k,α+2)
1 .

Next we show that

∂k+α+4,N ([gk,N , ∂α,N (E
α
4
4,N )]

(k,α+2)
1 ) = −(k − α− 2)(α+ 2)

4(6−N)2
E4,N [gk,N , E

α
4
4,N ]

(k,α)
1 .

By noting ∂α+4,N (E
α+4
4

4,N ) = α+4
α E4,N∂α,N (E

α
4
4,N ), we have

∂k+α+4,N ([gk,N , ∂α,N (E
α
4
4,N )]

(k,α+2)
1 )

= ∂k+α+4,N (kgk,N∂α+2,N (∂α,N (E
α
4
4,N ))− (α+ 2)∂k,N (gk,N )∂α,N (E

α
4
4,N ))

=
α+ 2

4(6−N)2
E4,N ( k (α∂k,N (gk,N )E

α
4
4,N + (α+ 4)gk,N∂α,N (E

α
4
4,N ))

− (k(k + 2)gk,N∂α,N (E
α
4
4,N ) + α(α+ 2)∂k,N (gk,N )E

α
4
4,N ))

= −(k − α− 2)(α+ 2)

4(6−N)2
E4,N [gk,N , E

α
4
4,N ]

(k,α)
1 .

Also, since ∂2(6−N),N (∆N ) = 0 and the Serre operator satisfies the Leib-
niz rule, µk,N (fkN (τ)) is a solution of (KZk−Nα,N ). The property that
a modular solution goes to a modular solution follows from the property of
the Rankin-Cohen bracket.
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Finally, we will check kerµk,N = 0. If µk,N (f) = {0}, a function f is

a solution of kf(τ)(E
α
4
4,N )′(τ)− lf ′(τ)E

α
4
4,N (τ) = 0. Since E

k
4
4,N is a solution

of this first order differential equation, the element of ker µk,N is equal to

E
k
4
4,N up to a constant multiple. But, if E

k
4
4,N is a solution of (KZk,N )

when k > α, it contradicts Theorem 4.1. That is, E
k
4
4,N is not contained in

Lk,N . Therefore, we conclude that kerµk,N = {0} and we have completed
the proof. □
The proof of Theorem 1.1. We will prove the case of (KZk,2). The case of
(KZk,3) can be proved in a similarly way.

The function Fk,2(τ) is holomorphic on H by Proposition 4.4. There
are αk, γk, δk ∈ C such that µk,2(fk,2) = αkfk−4,2(τ), µk,2(Fk,2(τ)) =
γkfk−4,2(τ) + δkFk−4,2(τ) and αkδk ̸= 0. Then,

µk,2(Fk,2(τ)) = µk,2(fk,2(τ)hk,2(τ))

=
[fk,2(τ), E

1
2
4,2(τ)]

(k,2)
1 hk,2(τ)− 2fk,2(τ)h

′
k,2(τ)E

1
2
4,2(τ)

∆2(τ)

= µk,2(fk,2(τ))
Fk,2(τ)

fk,2(τ)
− 2

E
1
2
2,2(τ)g2(τ)

k−3

fk,2(τ)
.

Hence µk,2(fk,2)(τ) = αkfk−4,2(τ), and we obtain that

(4.1) αkFk,2(τ) = γkfk,2(τ) + δkFk−4,2(τ)
fk,2(τ)

fk−4,2(τ)
+ 2

E
1
2
4,2(τ)(g2(τ))

k−3

fk−4,2(τ)
.

By Propositions 4.1 and 4.2, f0,2(τ) = 1, F0,2(τ) = E2(τ), f2,2(τ) =

E
1
2
4,2(τ) and F2,2(τ) = E

1
2
4,2(τ)h2,2(τ). Therefore there exist meromorphic

modular forms Ak(τ), Bk(τ), Ck(τ), Dk(τ) of weight k such that

Fk,2(τ) =

{
Ak(τ)E2(τ) +Bk(τ) (k ≡ 0 mod 4)

Ck(τ)h2,2(τ) +Dk(τ) (k ≡ 2 mod 4).

Here, Ak(τ) and Ck(τ) are equal to fk,2(τ) up to non-zero constant mul-
tiples. The function Bk(τ) is a holomorphic function because Fk,2(τ) and
Ak(τ)E2(τ) are holomorphic.

For k ≡ 2 mod 4, the function
fk,2(τ)

E
1
2
4,2(τ)

is holomorphic by Proposition 4.1.

Thus fk,2(τ)h2,2(τ) =
fk,2(τ)

E
1
2
4,2(τ)

F2,2(τ) is holomorphic. Therefore, we conclude

that Dk(τ) is a holomorphic function. The holomorphy of Fk,2 at i∞ follows
from (4.1) by induction. By Proposition 4.2, for any γ ∈ Γ∗

0(2), F2,2|2γ is
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a linear combination of f2,2 and F2,2. Therefore, Fk,2 is holomorphic at
every cusp. Since Fk,2(τ), Ak(τ)E2(τ) and Ck(τ)h2,2(τ) are holomorphic at
every cusp, Bk(τ) and Dk(τ) are holomorphic at every cusp. Moreover, by

Proposition 4.3, fk,2(τ)h2,2(τ) =
fk,2(τ)

E
1
2
2,2(τ)

F2,2(τ) is a product of a modular

form and a mixed mock modular form. Thus fk,2(τ)h2,2(τ) is a mixed mock
modular form. Since Fk,2(τ) is a sum of a modular form and a mixed mock
modular form, Fk,2(τ) is a mixed mock modular form. The proof is complete.

□
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