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E(2)-LOCAL PICARD GRADED BETA ELEMENTS AT THE

PRIME THREE

Ryo Kato

Abstract. Let E(2) be the second Johnson-Wilson spectrum at the
prime 3. In this paper, we show that some beta elements exist in the
homotopy groups of the E(2)-localized sphere spectrum with a grading
over the Picard group of the stable homotopy category of E(2)-local
spectra.

1. Introduction

Let S denote the stable homotopy category of spectra. For spectra A
and B, we denote by [A,B] the group of morphisms from A to B in S,
and [A,B]∗ =

⊕
k∈Z[Σ

kA,B] where Σ is the suspension functor. For the
n-th Johnson-Wilson spectrum E(n) at a prime number p, we consider the
E(n)-local stable homotopy category Ln = Ln(S), where Ln : S → S is the
Bousfield localization functor with respect to E(n).

A spectrum X ∈ Ln is invertible if there exists Y ∈ Ln such that X∧Y =
LnS

0. Hereafter, for k ∈ Z, Sk denotes the k-dimensional sphere spectrum.
The Picard group Pic(Ln) of Ln is defined to be the collection of isomorphism
classes of invertible spectra in Ln. Throughout this paper, for a spectrum
A, we denote

πnX(A) = [X,LnA] for X ∈ Pic(Ln) and πn⋆ (A) =
⊕

X∈Pic(Ln)

πnX(A).

Remark that, for the ordinary homotopy group πk(LnA) for k ∈ Z, there
exists an isomorphism πk(LnA) = πn

LnSk(A). Since any LnS
k is in Pic(Ln),

we have a monomorphism

(1.1)

iAn : π∗(LnA) =
⊕

k∈Z[S
k, LnA]

=
⊕

k∈Z[LnS
k, LnA]

⊂
−→

⊕
X∈Pic(Ln)

[X,LnA] = πn⋆ (A).

Note that we have natural transformations ηnk : Ln → Lk for k ≤ n. They

give rise to inverse systems s(A) = {π∗(LnA)
(ηn+1

n )∗
←−−−−− π∗(Ln+1A)}n and

s′(A) = {πn⋆ (A)
(ηn+1

n )∗
←−−−−− πn+1

⋆ (A)}n. From the homomorphism (iAn )n : s(A)→
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24 R. KATO

s′(A) of these systems, we obtain a monomorphism

lim
n
(iAn ) : lim

n
π∗(LnA)→ lim

n
πn⋆ (A).

By the chromatic convergence theorem (cf. [9, Th. 7.5.7]), for a finite spec-
trum V , the universal homomorphism uV : π∗(V )→ limn π∗(LnV ) is an iso-
morphism. The homotopy groups π∗(V ) are contained in limn π

n
⋆ (V ) under

the composite

(1.2) π∗(V )
uV−−→
∼

lim
n
π∗(LnV )

limn(iVn )
−−−−−→
mono.

lim
n
πn⋆ (V ).

From this point of view, we expect that the groups πn⋆ (V ) have new infor-
mation of π∗(V ). For example, at (p, n) = (2.1), the element α4t+2/2 in

π∗(L1S
0) is expressed as the product 2QA4t+2/3 in π1⋆(S

0) [7, (1.3)].

We note that Pic(L0) = Z generated by L0S
1. The natural transformation

ηn0 : Ln → L0 induces the homomorphism

ℓ0 : Pic(Ln)→ Pic(L0) = Z

of groups. Since this homomorphism admits a section Z → Pic(Ln), which
sends k to LnS

k, the homomorphism ℓ0 is a splitting epimorphism. Put
Pic0(Ln) = ker ℓ0, and the group Pic0(Ln) is decomposed as

(1.3) Pic(Ln) = Z⊕ Pic0(Ln).

Here, the summand Z is generated by LnS
1. The group Pic0(Ln) is known

as follow.

Theorem 1.1 ([5, Th. A and Th. 6.1], [6, Cor. 1,4], [2, Th. 1.2]).

(1) If p > 2 and 2p− 2 ≥ n2 + n, then Pic0(Ln) = 0.
(2) At p = 2, Pic0(L1) = Z/2.
(3) At p = 3, Pic0(L2) = Z/3⊕ Z/3.

For the homology theory BP∗(−) represented by the Brown-Peterson
spectrum BP at p, we have

BP∗ = BP∗(S
0) = Z(p)[v1, v2, . . . ],

BP∗(BP ) = BP∗[t1, t2, . . . ]

with |vi| = |ti| = 2(pi − 1). The homology theory E(n)∗(−) represented by
E(n) satisfies that

E(n)∗ = E(n)∗(S
0) = v−1

n BP∗/(vn+1, vn+2, . . . ) = Z(p)[v1, v2, . . . , vn−1, v
±1
n ],

E(n)∗(E(n)) = E(n)∗ ⊗BP∗
BP∗(BP )⊗BP∗

E(n)∗

with |vi| = |ti| = 2(pi − 1). The E(n)-based Adams spectral sequence for a
spectrum A is of the form

Es,t
2 = Exts,tE(n)∗(E(n))(E(n)∗, E(n)∗(A)) =⇒ πt−s(LnA).
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Hereafter, we denote by E(n)s,tr (A) the Er-term of this spectral sequence.
For an E(n)∗(E(n))-comodule M , we abbreviate

H∗,∗M = Ext∗,∗
E(n)∗(E(n))

(E(n)∗,M).

Let Ik denote the ideal (v0, v1, . . . , vk−1) of E(n)∗, where v0 = p. Consider
the following E(n)∗(E(n))-comodules:

(1.4)
N0

k = E(n)∗/Ik,

N i+1
k = Coker

(
N i

k
⊂
−→M i

k

)
and M i

k = v−1
k+iN

i
k for i ≥ 0.

In particular, N i
k =M i

k if k+ i = n. The short exact sequence N i
0 →M i

0 →

N i+1
0 gives rise to the connecting homomorphism

(1.5) δi : H
∗N i+1

0 → H∗+1N i
0.

For k ≤ n, the k-th algebraic Greek letter elements are defined by

α
(k)
ek/ek−1,...,e1,e0

= δ0δ1 · · · δk−1

(
vekk /p

e0ve11 · · · v
ek−1

k−1

)
∈ HkN0

0 = E(n)k2(S
0)

if vekk /p
e0ve11 · · · v

ek−1

k−1 is in H0Nk
0 . In particular, we denote

αt/a = α
(1)
t/a, βt/a,b = α

(2)
t/a,b, βt/a = βt/a,1 and βt = βt/1.

By [6, Th. 1.1], for any invertible spectrum X ∈ Pic0(Ln), we have

E(n)∗,∗2 (X) = E(n)∗,∗2 (S0){gX} with |gX | = (0, 0).

If the element
α
(k)
ek/ek−1,...,e1,e0

gX ∈ E(n)∗,∗2 (X)

detects an element of π∗(X), then we may consider that the element is in
πn⋆ (S

0) as follow:

π∗(X) =
⊕

k

[Sk,X] =
⊕

k

[ΣkLnS
0,X] =

⊕

k

[ΣkX−1, LnS
0] ⊂ πn⋆ (S

0).

In the case for p > 2 and n = 1, we have π∗(L1S
0) = π1⋆(S

0) since
Pic(L1) = {L1S

k : k ∈ Z} ∼= Z. In this case, any nonzero αt/a in E(1)12(S
0)

detects a nonzero element in π∗(L1S
0) = π1⋆(S

0). At (p, n) = (2, 1), for a
nonzero integer t, we define

ν2(t) = max{i ∈ Z : 2i | t} and a(t) =

{
1 ν2(t) = 0,

ν2(t) + 2 ν2(t) > 0.

The elements αt/a(6= 0) for a ≤ a(t) are defined. (For any a > 0, the element
α0/a is defined, and however this is 0.) For

b(t) =

{
a(t)− 1 t ≡ 2 mod (4),

a(t) otherwise,
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the element αt/a survives to π∗(L1S
0) if and only if

(0 6=) t ≡ 0, 1, 2 mod (4) and a ≤ b(t).

This fact implies that some nonzero algebraic alpha elements don’t survive
to π∗(L1S

0) at p = 2. The author calculated π1⋆(S
0) at p = 2 [7, Th. 2].

In particular, for the generator Q of Pic0(L1) = Z/2, the element αt/agQ ∈

E(1)12(Q) survives to π∗(Q) ∼= [Q,L1S
0]∗ ⊂ π

1
⋆(S

0) if and only if

t 6= 0 and a ≤ b′(t) where b′(t) =

{
a(t)− 1 t ≡ 0, 1 mod (4),

a(t) t ≡ 2, 3 mod (4).

This implies that, for any t 6= 0 and a ≤ a(t), at least one of αt/a and αt/agQ
survives to π1⋆(S

0).

Conjecture 1.2 ([7, Conj. 4]). For any algebraic Greek letter element

α
(n)
t/en−1,en−2,...,e0

with t 6= 0, there exists X ∈ Pic0(Ln) such that α
(n)
t/en−1,en−2,...,e0

gX

survives to πn⋆ (S
0).

Conjecture 1.3. If the element α
(n)
t/en−1,en−2,...,e0

gX survives to A
(n)
t/en−1,en−2,...,e0

of πn⋆ (S
0), then A

(n)
t/en−1,en−2,...,e0

is in the image of limn π
n
⋆ (S

0)→ πn⋆ (S
0).

If these conjectures hold, then every algebraic Greek letter element de-
tects an element of limn π

n
⋆ (S

0), and we may express π∗(S
0) as a subring of

limn π
n
⋆ (S

0) under the monomorphism (1.2) at V = S0.

In this paper, we consider Conjecture 1.2 for βt/a = α
(2)
t/a,1 at (p, n) =

(3, 2). For a nonzero integer t, we define

(1.6) ν3(t) = max{i ∈ Z : 3i | t}, a0(t) =

{
1 3 ∤ t,

4 · 3ν3(t)−1 − 1 3 | t,

and

(1.7) b0(t) =

{
a0(t)− 1 t ≡ 3 mod (9),

a0(t) otherwise.

By [8, Th. 6.1], the element vt2/3v
a
1 is in H0N2

0 = H0M2
0 if and only if t = 0

or a ≤ a0(t). Therefore,

βt/a(6= 0) is in E(2)22(S
0) if and only if a ≤ a0(t).

Remark that the element β0/a ∈ E(2)22(S
0) is defined for any a > 0, and

β0/a = 0. By [11, Th. 2.13], the element βt/a survives to an element βt/a in

π∗(L2S
0) if and only if 0 6= t ≡ 0, 1, 2, 3, 5, 6 mod (9) and a ≤ b0(t). For an
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E(2)-local spectrum A and an integer u ≥ 0, we denote

A0 = L2S
0 and Au = A ∧ · · · ∧ A︸ ︷︷ ︸

u

if u > 0.

Recall (3) of Theorem 1.1, and we have

Pic0(L2) = Z/3{X1} ⊕ Z/3{X2}

at p = 3. Here, X1 is the invertible spectrum X given by Kamiya and
Shimomura [6, Prop. 1.5].

Theorem 1.4. At (p, n) = (3, 2), Conjecture 1.2 holds for the algebraic beta
elements βt/a. More details, the element βt/agXu

1
survive to π2⋆(S

0), where

u =





0 0 6= t ≡ 0, 1, 2, 5, 6 mod (9),

1 t ≡ 4, 8 mod (9),

2 t ≡ 3, 7 mod (9).

Acknowledgements. The author would like to thank the referee for many
useful comments.

2. Algebraic beta elements βt/a

We fix (p, n) = (3, 2). For the mod 3 Moore spectrum V (0), the Adams
v1-periodic map α : Σ4V (0) → V (0) exists. For k ≥ 1, we consider the
cofiber sequences

(2.1) Σ4kV (0)
αk

−→ V (0)
i
(k)
1−−→ V (1)k

j
(k)
1−−→ Σ4k+1V (0).

In particular, V (1)1 is the first Smith-Toda spectrum V (1). We then have

Σ4ℓ+4V (1)k
vℓ1−−−−→ Σ4V (1)k+ℓ

ĩk−−−−→ Σ4V (1)ℓ
∂ℓ,k
−−−−→ Σ4ℓ+5V (1)k∥∥∥ v1

y v1

y
∥∥∥

Σ4ℓ+4V (1)k
vℓ+1
1−−−−→ V (1)k+ℓ+1

ĩk−−−−→ V (1)ℓ+1
∂ℓ+1,k
−−−−→ Σ4ℓ+5V (1)k

Put

(2.2) W = hocolimv1V (1)ℓ,

and the diagram gives rise to the cofiber sequence

(2.3) V (1)k
f(k)

−−→ Σ4kW
vk1−→W

∂k−→ ΣV (1)k.

By applying E(2)∗,∗2 (−), the cofiber sequence (2.3) at k = 1 induces the
exact sequence

(2.4) · · ·
(∂1)∗
−−−→ H∗M0

2
f
(1)
∗−−→ H∗M1

1
v1−→ H∗M1

1
(∂1)∗
−−−→ H∗+1M0

2
f
(1)
∗−−→ · · ·
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of the Ext goups of the comodules in (1.4). We also have the short exact
sequences

(2.5) 0→ N0
1 →M0

1 →M1
1 → 0

and

(2.6) 0→ N0
0

3
−→ N0

0 → N0
1 → 0.

These short exact sequences give rise to the connecting homomorphims

(2.7) δ′ : H∗M1
1 → H∗+1N0

1 and δ : H∗N0
1 → H∗+1N0

0

(
= E(2)∗+1

2 (S0)
)
,

respectively. For elements in H∗M1
1 , we use the notation of Behrens’ type

[1]: For x ∈ H∗M0
2 , the element xt/a ∈ H

∗M1
1 for a > 0 is defined by

va−1
1 xt/a = vt2x/v1.

By [8, Th. 5.3], for an integer t,

1t/a ∈ H
0M1

1 is defined if and only if t = 0 or a ≤ a0(t)

where a0(t) is the integer in (1.6).

Lemma 2.1. δδ′(1t/a) = βt/a.

Proof. Consider the commutative diagrams

0 −−−−→ N0
1 −−−−→ M0

1 −−−−→ M1
1 −−−−→ 0

−/3

y −/3

y −/3

y

0 −−−−→ N1
0 −−−−→ M1

0 −−−−→ M2
0 −−−−→ 0

and

0 −−−−→ N0
0

3
−−−−→ N0

0 −−−−→ N0
1 −−−−→ 0

∥∥∥ −/3

y −/3

y

0 −−−−→ N0
0 −−−−→ M0

0 −−−−→ N1
0 −−−−→ 0

From them, for δi in (1.5), we obtain δδ′(1t/a) = δ0
(
δ′(1t/a)/3

)
= δ0δ1

(
(1t/a)/3

)
=

δ0δ1
(
vt2/3v

a
1

)
= βt/a. �

3. Recollection of Pic0(L2)

We recall the following result:

Theorem 3.1 ([10, Th. 5.8 ]). Let K(2)∗ = E(2)∗/(3, v1) = Z/3[v±1
2 ]. As

a K(2)∗-module, we have an isomorphism

E(2)∗,∗2 (V (1)) = P (b0)⊗E(ζ2)⊗ {1, h0, h1, b1, ξ, ψ0, b1ξ} .
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Here, P (−) and E(−) are polynomial and exterior algebras, respectively.
The generators satisfy that

|v2| = (0, 16), |h0| = (1, 4), |h1| = (1, 12),
|b0| = (2, 12), |b1| = (2, 36), |ξ| = (2, 8),
|ψ0| = (3, 16) and |ψ1| = (3, 24).

For the summand Pic0(L2) in (1.3), we have the monomorphism

(3.1) ϕ : Pic0(L2)→ E(2)5,42 (S0) = Z/3{χ1} ⊕ Z/3{χ2}

by [6, Th. 1.2]. Here, the generators χ1 and χ2 satisfy that

(3.2) ι(χ1) = v−2
2 b20h1 and ι(χ2) = v−1

2 b0ζ2ξ,

where ι is a homomorphism E(2)∗,∗2 (S0) → E(2)∗,∗2 (V (1)) induced by the

composite S0 i
−→ V (0)

i
(1)
1−−→ V (1). Here, the first map i is given by the

cofiber sequence

(3.3) S0 3
−→ S0 i

−→ V (0)
j
−→ S1,

and the second map i
(1)
1 is in (2.1). Note that (3) of Theorem 1.1 implies that

the monomorphism (3.1) is an isomorphism. By this fact, we may consider
that the generators X1 and X2 of Pic0(L2) satisfy

ϕ(Xi) = χi

and

(3.4)
X3

i = L2S
0, E(2)∗,∗2 (Xi) = E(2)∗,∗2 (S0){gXi

} with |gXi
| = (0, 0),

and d5(gXi
) = χigXi

where i ∈ {1, 2}, and d5 is the 5-th Adams differential E(2)0,05 (Xi) →

E(2)5,45 (Xi).

4. On the elements βt/agX1 and βt/agX2
1

For the generator Xi ∈ Pic0(L2), we have

E(2)0,02 (X2
i ) = E(2)0,02 (S0){gX2

1
}.

Note that
gX2

i
= (gXi

)2

under the paring E(2)∗,∗2 (Xi) ⊗ E(2)∗,∗2 (Xi) → E(2)∗,∗2 (X2
i ), and gS0 = 1 ∈

E(2)0,02 (S0).

Lemma 4.1. Let u ∈ {0, 1, 2}. For the spectrum W in (2.2), if (gXu
i
)t/a ∈

E(2)02(W ∧X
u
i ) is a permanent cycle, then βt/agXu

i
∈ E(2)22(X

u
i ) is a per-

manent cycle.
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Proof. We note that the short exact sequences (2.5) and (2.6) are obtained
from the cofiber sequences

(4.1) V (0)→ L1V (0)→W
∂′

−→ ΣV (0)

and (3.3), respectively. Therefore, by Lemma 2.1 and the geometric bound-
ary theorem, our claim at u = 0 is shown. Similarly, our claim holds at
u = 1, 2. �

Theorem 4.2 ([11, Th. 2.8]). The element 1t/a ∈ E(2)02(W ) = H0M1
1 is a

permanent cycle if t ≡ 0, 1, 2, 3, 5, 6 mod (9) and a ≤ b0(t) in (1.7).

Proposition 4.3. If vt2 ∈ E(2)02(V (1)) is a permanent cycle, then (gX1)t+3/1 ∈

E(2)02(W ∧X1) and (gX2
1
)t+6/1 ∈ E(2)02(W ∧X

2
1 ) are permanent cycles.

Proof. Consider the cofiber sequence

Σ4V (1)
v1−→ V (1)2 → V (1)→ Σ5V (1).

If vt2 ∈ E(2)02(V (1)) is a permanent cycle, then the element v1v
t
2 ∈ E

0
2(V (1)2)

is a permanent cycle. Since V (1)2 is a ring spectrum, we have the paring

E(2)∗,∗r (V (1)2)⊗ E(2)∗,∗r (V (1)2 ∧X1)→ E(2)∗,∗r (V (1)2 ∧X1).

By [3, Lemma 3.4],

(4.2) v32gX1 ∈ E(2)02(V (1)2 ∧X1) is a permanent cycle.

Therefore,

(4.3) v1v
t+3
2 gX1 = (v1v

t
2)(v

3
2gX1) ∈ E(2)02(V (1)2 ∧X1) is permanent.

For the map f (2) in (2.3), we have

dr((gX1)t+3/1) = drf
(2)
∗ (v1v

t+3
2 gX1) = f

(2)
∗ dr(v1v

t+3
2 gX1) = 0

for any r. We also have the pairing

E(2)∗,∗r (V (1)2 ∧X1)⊗ E(2)∗,∗r (V (1)2 ∧X1)→ E(2)∗,∗r (V (1)2 ∧X
2
1 ).

Therefore, by [3, Lemma 3.4] and (4.3),

dr((gX2
1
)t+6/1) = drf

(2)
∗ (v1v

t+6
2 g2X1

) = f
(2)
∗ dr((v1v

t+3
2 gX1)(v

3
2gX1)) = 0

for any r. �

By [10, Th. A],

(4.4) t ≡ 0, 1, 5 mod (9) ⇒ vt2 ∈ E(2)02(V (1)) survives to π∗(L2V (1)).

Therefore, by Lemma 4.1 and Proposition 4.3, we have the following:

Corollary 4.4. (1) If t ≡ 3, 4, 8 mod (9), then βtgX1 survives to π
2
⋆(S

0).
(2) If t ≡ 2, 6, 7 mod (9), then βtgX2

1
survives to π2⋆(S

0).
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Lemma 4.5. π31(W ∧X
2
1 ) = 0.

Proof. By [11, Th. 2.5], we have
⊕

t−s=31E(2)s,t2 (W ) = Z/3
{
(b20h0)1/2, (b

4
0h1)−1/1

}
.

(In [11, Th. 2.5], (b20h0)1/2 and (b40h1)−1/1 are denoted by v2b
2
10h10/v

2
1 and

v−1
2 b410h11/v1 in F ⊗ Z/3[b10], respectively.) This implies that

⊕

t−s=31

E(2)s,t2 (W ∧X2
1 ) = Z/3

{
(b20h0gX2

1
)1/2, (b

4
0h1gX2

1
)−1/1

}
.

From [11, (8.3) and Prop. 8.9] and [3, Lemma 3.4], we obtain

v1d9((b
2
0h0gX2

1
)1/2) = v1f

(2)
∗ d9(v

−5
2 b20h0(v

3
2gX1)

2)

= f
(1)
∗ (̃i1)∗(d9(v

−5
2 b20h0)(v

3
2gX1)

2)

= f
(1)
∗ (v−8

2 b70)(v
3
2gX1)

2

= (b70gX2
1
)−2/1

6= 0,

(b40h1gX2
1
)−1/1 = f

(1)
∗ (v−7

2 b40h1(v
3
2gX1)

2)

= f
(1)
∗ d5(v

−5
2 b20(v

3
2gX1)

2)

= d5f
(1)
∗ (v−5

2 b20(v
3
2gX1)

2)
= d5((b

2
0gX2

1
)1/1).

Therefore, both (b20h0gX2
1
)1/2 and (b40h1gX2

1
)−1/1 don’t survive to π31(W ∧

X2
1 ). �

By [4, Th. 2.24], π∗(L2V (1)2) contains the part huP (5). In particular, we
have the element hu ∈ π∗(L2V (1)2). By [4, (2.13)] and [4, p.3], this element
is detected by uh = h0 = v52h0 in E(2)12(V (1)2). We also note that v−9

2 and
v32gX1 are permanent cycles by [3, Lemma 1.6] and (4.2), respectively. Thus,
the element

y = v−9
2 (v52h0)(v

3
2gX1)

2 ∈ E(2)12(V (1)2 ∧X
2
1 )

is a permanent cycle. We denote by y ∈ π∗(V (1)2∧X
2
1 ) an element detected

by y.

Proposition 4.6. (gX2
1
)3/3 ∈ E(2)02(W ∧X

2
1 ) is a permanent cycle.

Proof. Consider the cofiber sequence

V (1)
f(1)

−−→ Σ4W
v1−→W

∂1−→ ΣV (1).

By [8, Prop. 5.4], we have

(∂1)∗((gX2
1
)3/3) = v22h0gX2

1
= (̃i1)∗(y),



32 R. KATO

which detects (̃i1 ∧ 1X2
1
)y. By Lemma 4.5, the element f

(1)
∗ ((̃i1 ∧ 1X2

1
)y) ∈

π31(W ∧X
2
1 ) is trivial. Therefore, there exists ξ ∈ π36(W ∧X

2
1 ) such that

∂1ξ = (̃i1∧1X2
1
)y. Since E(2)0,362 (W ∧X2

1 ) = Z/3{(gX2
1
)3/3} by [11, Th. 2.5],

the element ξ is detected by ±(gX2
1
)3/3. �

Proof of Theorem 1.4. By [11, Th. 2.13], for 0 6= t ≡ 0, 1, 2, 5, 6 mod (9), we
know that βt/a for a ≤ a0(t) survives to π∗(L2S

0) ⊂ π2⋆(S
0).

By Corollary 4.4, if t ≡ 4, 8 mod (9), then βt/a0(t)gX1 = βtgX1 survives to

π2⋆(S
0). Corollary 4.4 also implies that if t ≡ 7 mod (9), then βt/a0(t)gX2

1
=

βtgX2
1
survives to π2⋆(S

0).

We turn to the last case βt/a for t ≡ 3 mod (9) and a ≤ 3. Proposition

4.6 implies that the element (gX2
1
)3/a = v3−a

1 (gX2
1
)3/3 detects an element in

π∗(W ∧X
2
1 ). Put t = 9s + 3, and

dr((gX2
1
)t/a) = drf

(a)
∗ (v9s+3

2 gX2
1
) = f

(a)
∗ dr(v

9s
2 (v32gX2

1
))

= f
(a)
∗ (v9s2 dr(v

3
2gX2

1
)) = (v9s2 dr(v

3
2gX2

1
))/va1

= v9s2 (dr(v
3
2gX2

1
)/va1 ) = v9s2 dr((gX2

1
)3/a)

= 0

for any r > 1. Therefore, by Lemma 4.1, the element βt/3gX2
1
survives to

π2⋆(S
0). �

5. A note on π2⋆(V (0))

Note that

E(2)∗,∗2 (V (0) ∧X1) = E(2)∗,∗2 (V (0)){g′}.

Here, g′ = i∗(g1) where i∗ is induced by i in (3.3). In this section, we
consider the element v1g

′ in the E2-term.
The cofiber sequence (4.1) induces the long exact sequence

0→ H0N0
1 → H0M0

1 → H0M1
1

δ′
−→ H1N0

1 → · · · .

Note that v1 survives to π∗(L2V (0)), and d5(gX1) = χ1gX1 = η(v−1
2 h1b0/3v1)gX1 .

Here, η is the composite H∗M2
0

δ′′
−→ H∗+1N1

0
δ
−→ H∗+2N0

0 where δ′′ is
the connecting homomorphism associated with the short exact sequence
N1

0 →M1
0 →M2

0 . We then have

d5(v1g
′) = v1(i∗d5(gX1)) = v1i∗(χ1)gX1 .

We denote by Bt/a an element of π2⋆(S
0) detected by βt/agXu

1
in Theorem

1.4.
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Conjecture 5.1. (1) The element v1g
′ ∈ E(2)02(V (0) ∧ X1) detects a

nonzero element w1 ∈ π
2
⋆(V (0)).

(2) i∗(βt/a) 6= 0 for a ≤ a0(t).

As an analogue of [7, (1.3)], we see the following.

Proposition 5.2. If Conjecture 5.1 holds, then the homomorphism i
V (0)
2 : π∗(L2V (0))→

π2⋆(V (0)) in (1.1) satisfies that

i
V (0)
2 i∗(βt/a) =

{
w1i∗(Bt/a+1) 3 6= t ≡ 3 mod (9),

i∗(Bt/a) otherwise,

up to higher filtration.

Proof. Let t = 9s + 3, and suppose that v1g
′ converges to w1 ∈ π4(V (0) ∧

X1) = [Σ4X2
1 , L2V (0)] ⊂ π2⋆(V (0)). We note that

(v1g
′)i∗(βt/a+1gX2

1
) = i∗((v1gX1)βt/a+1gX2

1
) = i∗(v

3−a
1 vt−3

2 b1) = i∗(βt/a).

Therefore, if i∗(βt/a) 6= 0, then w1i∗(Bt/a+1) = i∗(βt/a) up to higher filtra-
tion. �
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