$E(2)$-LOCAL PICARD GRADED BETA ELEMENTS AT THE PRIME THREE

Ryo Kato

Abstract

Let $E(2)$ be the second Johnson-Wilson spectrum at the prime 3. In this paper, we show that some beta elements exist in the homotopy groups of the $E(2)$-localized sphere spectrum with a grading over the Picard group of the stable homotopy category of $E(2)$-local spectra.

1. Introduction

Let \mathcal{S} denote the stable homotopy category of spectra. For spectra A and B, we denote by $[A, B]$ the group of morphisms from A to B in \mathcal{S}, and $[A, B]_{*}=\bigoplus_{k \in \mathbb{Z}}\left[\Sigma^{k} A, B\right]$ where Σ is the suspension functor. For the n-th Johnson-Wilson spectrum $E(n)$ at a prime number p, we consider the $E(n)$-local stable homotopy category $\mathcal{L}_{n}=L_{n}(\mathcal{S})$, where $L_{n}: \mathcal{S} \rightarrow \mathcal{S}$ is the Bousfield localization functor with respect to $E(n)$.

A spectrum $X \in \mathcal{L}_{n}$ is invertible if there exists $Y \in \mathcal{L}_{n}$ such that $X \wedge Y=$ $L_{n} S^{0}$. Hereafter, for $k \in \mathbb{Z}, S^{k}$ denotes the k-dimensional sphere spectrum. The Picard group $\operatorname{Pic}\left(\mathcal{L}_{n}\right)$ of \mathcal{L}_{n} is defined to be the collection of isomorphism classes of invertible spectra in \mathcal{L}_{n}. Throughout this paper, for a spectrum A, we denote

$$
\pi_{X}^{n}(A)=\left[X, L_{n} A\right] \text { for } X \in \operatorname{Pic}\left(\mathcal{L}_{n}\right) \quad \text { and } \quad \pi_{\star}^{n}(A)=\bigoplus_{X \in \operatorname{Pic}\left(\mathcal{L}_{n}\right)} \pi_{X}^{n}(A)
$$

Remark that, for the ordinary homotopy group $\pi_{k}\left(L_{n} A\right)$ for $k \in \mathbb{Z}$, there exists an isomorphism $\pi_{k}\left(L_{n} A\right)=\pi_{L_{n} S^{k}}^{n}(A)$. Since any $L_{n} S^{k}$ is in $\operatorname{Pic}\left(\mathcal{L}_{n}\right)$, we have a monomorphism

$$
\begin{align*}
i_{n}^{A}: \pi_{*}\left(L_{n} A\right) & =\bigoplus_{k \in \mathbb{Z}}\left[S^{k}, L_{n} A\right] \\
& =\bigoplus_{k \in \mathbb{Z}}\left[L_{n} S^{k}, L_{n} A\right] \tag{1.1}\\
& \subset \bigoplus_{X \in \operatorname{Pic}\left(\mathcal{L}_{n}\right)}\left[X, L_{n} A\right]=\pi_{\star}^{n}(A) .
\end{align*}
$$

Note that we have natural transformations $\eta_{k}^{n}: L_{n} \rightarrow L_{k}$ for $k \leq n$. They give rise to inverse systems $s(A)=\left\{\pi_{*}\left(L_{n} A\right) \stackrel{\left(\eta_{n}^{n+1}\right)_{*}}{\rightleftarrows} \pi_{*}\left(L_{n+1} A\right)\right\}_{n}$ and $s^{\prime}(A)=\left\{\pi_{\star}^{n}(A) \stackrel{\left(\eta_{n}^{n+1}\right)_{*}}{\leftrightarrows} \pi_{\star}^{n+1}(A)\right\}_{n}$. From the homomorphism $\left(i_{n}^{A}\right)_{n}: s(A) \rightarrow$

[^0]$s^{\prime}(A)$ of these systems, we obtain a monomorphism
$$
\lim _{n}\left(i_{n}^{A}\right): \lim _{n} \pi_{*}\left(L_{n} A\right) \rightarrow \lim _{n} \pi_{\star}^{n}(A)
$$

By the chromatic convergence theorem ($c f .[9$, Th. 7.5.7]), for a finite spectrum V, the universal homomorphism $u_{V}: \pi_{*}(V) \rightarrow \lim _{n} \pi_{*}\left(L_{n} V\right)$ is an isomorphism. The homotopy groups $\pi_{*}(V)$ are contained in $\lim _{n} \pi_{\star}^{n}(V)$ under the composite

$$
\begin{equation*}
\pi_{*}(V) \xrightarrow[\sim]{u_{V}} \lim _{n} \pi_{*}\left(L_{n} V\right) \xrightarrow[\text { mono. }]{\lim _{n}\left(i_{n}^{V}\right)} \lim _{n} \pi_{\star}^{n}(V) \tag{1.2}
\end{equation*}
$$

From this point of view, we expect that the groups $\pi_{\star}^{n}(V)$ have new information of $\pi_{*}(V)$. For example, at $(p, n)=(2.1)$, the element $\alpha_{4 t+2 / 2}$ in $\pi_{*}\left(L_{1} S^{0}\right)$ is expressed as the product $2_{Q} A_{4 t+2 / 3}$ in $\pi_{\star}^{1}\left(S^{0}\right)$ [7, (1.3)].

We note that $\operatorname{Pic}\left(\mathcal{L}_{0}\right)=\mathbb{Z}$ generated by $L_{0} S^{1}$. The natural transformation $\eta_{0}^{n}: L_{n} \rightarrow L_{0}$ induces the homomorphism

$$
\ell_{0}: \operatorname{Pic}\left(\mathcal{L}_{n}\right) \rightarrow \operatorname{Pic}\left(\mathcal{L}_{0}\right)=\mathbb{Z}
$$

of groups. Since this homomorphism admits a section $\mathbb{Z} \rightarrow \operatorname{Pic}\left(\mathcal{L}_{n}\right)$, which sends k to $L_{n} S^{k}$, the homomorphism ℓ_{0} is a splitting epimorphism. Put $\operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right)=\operatorname{ker} \ell_{0}$, and the group $\operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right)$ is decomposed as

$$
\begin{equation*}
\operatorname{Pic}\left(\mathcal{L}_{n}\right)=\mathbb{Z} \oplus \operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right) \tag{1.3}
\end{equation*}
$$

Here, the summand \mathbb{Z} is generated by $L_{n} S^{1}$. The group $\operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right)$ is known as follow.

Theorem 1.1 ([5, Th. A and Th. 6.1], [6, Cor. 1,4], [2, Th. 1.2]).
(1) If $p>2$ and $2 p-2 \geq n^{2}+n$, then $\operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right)=0$.
(2) At $p=2, \operatorname{Pic}^{0}\left(\mathcal{L}_{1}\right)=\mathbb{Z} / 2$.
(3) At $p=3, \operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right)=\mathbb{Z} / 3 \oplus \mathbb{Z} / 3$.

For the homology theory $B P_{*}(-)$ represented by the Brown-Peterson spectrum $B P$ at p, we have

$$
\begin{gathered}
B P_{*}=B P_{*}\left(S^{0}\right)=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right] \\
B P_{*}(B P)=B P_{*}\left[t_{1}, t_{2}, \ldots\right]
\end{gathered}
$$

with $\left|v_{i}\right|=\left|t_{i}\right|=2\left(p^{i}-1\right)$. The homology theory $E(n)_{*}(-)$ represented by $E(n)$ satisfies that

$$
\begin{gathered}
E(n)_{*}=E(n)_{*}\left(S^{0}\right)=v_{n}^{-1} B P_{*} /\left(v_{n+1}, v_{n+2}, \ldots\right)=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}^{ \pm 1}\right], \\
E(n)_{*}(E(n))=E(n)_{*} \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} E(n)_{*}
\end{gathered}
$$

with $\left|v_{i}\right|=\left|t_{i}\right|=2\left(p^{i}-1\right)$. The $E(n)$-based Adams spectral sequence for a spectrum A is of the form

$$
E_{2}^{s, t}=\operatorname{Ext}_{E(n)_{*}(E(n))}^{s, t}\left(E(n)_{*}, E(n)_{*}(A)\right) \Longrightarrow \pi_{t-s}\left(L_{n} A\right)
$$

Hereafter, we denote by $E(n)_{r}^{s, t}(A)$ the E_{r}-term of this spectral sequence. For an $E(n)_{*}(E(n))$-comodule M, we abbreviate

$$
H^{*, *} M=\operatorname{Ext}_{E(n)_{*}(E(n))}^{*, *}\left(E(n)_{*}, M\right)
$$

Let I_{k} denote the ideal $\left(v_{0}, v_{1}, \ldots, v_{k-1}\right)$ of $E(n)_{*}$, where $v_{0}=p$. Consider the following $E(n)_{*}(E(n))$-comodules:

$$
\begin{gather*}
N_{k}^{0}=E(n)_{*} / I_{k}, \\
N_{k}^{i+1}=\operatorname{Coker}\left(N_{k}^{i} \hookrightarrow M_{k}^{i}\right) \quad \text { and } \quad M_{k}^{i}=v_{k+i}^{-1} N_{k}^{i} \quad \text { for } i \geq 0 . \tag{1.4}
\end{gather*}
$$

In particular, $N_{k}^{i}=M_{k}^{i}$ if $k+i=n$. The short exact sequence $N_{0}^{i} \rightarrow M_{0}^{i} \rightarrow$ N_{0}^{i+1} gives rise to the connecting homomorphism

$$
\begin{equation*}
\delta_{i}: H^{*} N_{0}^{i+1} \rightarrow H^{*+1} N_{0}^{i} . \tag{1.5}
\end{equation*}
$$

For $k \leq n$, the k-th algebraic Greek letter elements are defined by

$$
\bar{\alpha}_{e_{k} / e_{k-1}, \ldots, e_{1}, e_{0}}^{(k)}=\delta_{0} \delta_{1} \cdots \delta_{k-1}\left(v_{k}^{e_{k}} / p^{e_{0}} v_{1}^{e_{1}} \cdots v_{k-1}^{e_{k-1}}\right) \in H^{k} N_{0}^{0}=E(n)_{2}^{k}\left(S^{0}\right)
$$

if $v_{k}^{e_{k}} / p^{e_{0}} v_{1}^{e_{1}} \cdots v_{k-1}^{e_{k-1}}$ is in $H^{0} N_{0}^{k}$. In particular, we denote

$$
\bar{\alpha}_{t / a}=\bar{\alpha}_{t / a}^{(1)}, \quad \bar{\beta}_{t / a, b}=\bar{\alpha}_{t / a, b}^{(2)}, \quad \bar{\beta}_{t / a}=\bar{\beta}_{t / a, 1} \quad \text { and } \quad \bar{\beta}_{t}=\bar{\beta}_{t / 1}
$$

By [6, Th. 1.1], for any invertible spectrum $X \in \operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right)$, we have

$$
E(n)_{2}^{*, *}(X)=E(n)_{2}^{*, *}\left(S^{0}\right)\left\{g_{X}\right\} \quad \text { with } \quad\left|g_{X}\right|=(0,0)
$$

If the element

$$
\bar{\alpha}_{e_{k} / e_{k-1}, \ldots, e_{1}, e_{0}}^{(k)} g_{X} \in E(n)_{2}^{*, *}(X)
$$

detects an element of $\pi_{*}(X)$, then we may consider that the element is in $\pi_{\star}^{n}\left(S^{0}\right)$ as follow:

$$
\pi_{*}(X)=\bigoplus_{k}\left[S^{k}, X\right]=\bigoplus_{k}\left[\Sigma^{k} L_{n} S^{0}, X\right]=\bigoplus_{k}\left[\Sigma^{k} X^{-1}, L_{n} S^{0}\right] \subset \pi_{\star}^{n}\left(S^{0}\right)
$$

In the case for $p>2$ and $n=1$, we have $\pi_{*}\left(L_{1} S^{0}\right)=\pi_{\star}^{1}\left(S^{0}\right)$ since $\operatorname{Pic}\left(\mathcal{L}_{1}\right)=\left\{L_{1} S^{k}: k \in \mathbb{Z}\right\} \cong \mathbb{Z}$. In this case, any nonzero $\bar{\alpha}_{t / a}$ in $E(1)_{2}^{1}\left(S^{0}\right)$ detects a nonzero element in $\pi_{*}\left(L_{1} S^{0}\right)=\pi_{\star}^{1}\left(S^{0}\right)$. At $(p, n)=(2,1)$, for a nonzero integer t, we define

$$
\nu_{2}(t)=\max \left\{i \in \mathbb{Z}: 2^{i} \mid t\right\} \quad \text { and } \quad a(t)= \begin{cases}1 & \nu_{2}(t)=0 \\ \nu_{2}(t)+2 & \nu_{2}(t)>0\end{cases}
$$

The elements $\bar{\alpha}_{t / a}(\neq 0)$ for $a \leq a(t)$ are defined. (For any $a>0$, the element $\bar{\alpha}_{0 / a}$ is defined, and however this is 0 .) For

$$
b(t)= \begin{cases}a(t)-1 & t \equiv 2 \bmod (4) \\ a(t) & \text { otherwise }\end{cases}
$$

the element $\bar{\alpha}_{t / a}$ survives to $\pi_{*}\left(L_{1} S^{0}\right)$ if and only if

$$
(0 \neq) t \equiv 0,1,2 \bmod (4) \quad \text { and } \quad a \leq b(t)
$$

This fact implies that some nonzero algebraic alpha elements don't survive to $\pi_{*}\left(L_{1} S^{0}\right)$ at $p=2$. The author calculated $\pi_{\star}^{1}\left(S^{0}\right)$ at $p=2$ [7, Th. 2]. In particular, for the generator Q of $\operatorname{Pic}^{0}\left(\mathcal{L}_{1}\right)=\mathbb{Z} / 2$, the element $\bar{\alpha}_{t / a} g_{Q} \in$ $E(1)_{2}^{1}(Q)$ survives to $\pi_{*}(Q) \cong\left[Q, L_{1} S^{0}\right]_{*} \subset \pi_{\star}^{1}\left(S^{0}\right)$ if and only if

$$
t \neq 0 \quad \text { and } \quad a \leq b^{\prime}(t) \quad \text { where } \quad b^{\prime}(t)= \begin{cases}a(t)-1 & t \equiv 0,1 \bmod (4) \\ a(t) & t \equiv 2,3 \bmod (4)\end{cases}
$$

This implies that, for any $t \neq 0$ and $a \leq a(t)$, at least one of $\bar{\alpha}_{t / a}$ and $\bar{\alpha}_{t / a} g_{Q}$ survives to $\pi_{\star}^{1}\left(S^{0}\right)$.

Conjecture 1.2 ([7, Conj. 4]). For any algebraic Greek letter element $\bar{\alpha}_{t / e_{n-1}, e_{n-2}, \ldots, e_{0}}^{(n)}$ with $t \neq 0$, there exists $X \in \operatorname{Pic}^{0}\left(\mathcal{L}_{n}\right)$ such that $\bar{\alpha}_{t / e_{n-1}, e_{n-2}, \ldots, e_{0}}^{(n)} g_{X}$ survives to $\pi_{\star}^{n}\left(S^{0}\right)$.

Conjecture 1.3. If the element $\bar{\alpha}_{t / e_{n-1}, e_{n-2}, \ldots, e_{0}}^{(n)} g_{X}$ survives to $A_{t / e_{n-1}, e_{n-2}, \ldots, e_{0}}^{(n)}$ of $\pi_{\star}^{n}\left(S^{0}\right)$, then $A_{t / e_{n-1}, e_{n-2}, \ldots, e_{0}}^{(n)}$ is in the image of $\lim _{n} \pi_{\star}^{n}\left(S^{0}\right) \rightarrow \pi_{\star}^{n}\left(S^{0}\right)$.

If these conjectures hold, then every algebraic Greek letter element detects an element of $\lim _{n} \pi_{\star}^{n}\left(S^{0}\right)$, and we may express $\pi_{*}\left(S^{0}\right)$ as a subring of $\lim _{n} \pi_{\star}^{n}\left(S^{0}\right)$ under the monomorphism (1.2) at $V=S^{0}$.

In this paper, we consider Conjecture 1.2 for $\bar{\beta}_{t / a}=\bar{\alpha}_{t / a, 1}^{(2)}$ at $(p, n)=$ $(3,2)$. For a nonzero integer t, we define

$$
\nu_{3}(t)=\max \left\{i \in \mathbb{Z}: 3^{i} \mid t\right\}, \quad a_{0}(t)= \begin{cases}1 & 3 \nmid t \tag{1.6}\\ 4 \cdot 3^{\nu_{3}(t)-1}-1 & 3 \mid t\end{cases}
$$

and

$$
b_{0}(t)= \begin{cases}a_{0}(t)-1 & t \equiv 3 \bmod (9) \tag{1.7}\\ a_{0}(t) & \text { otherwise }\end{cases}
$$

By [8, Th. 6.1], the element $v_{2}^{t} / 3 v_{1}^{a}$ is in $H^{0} N_{0}^{2}=H^{0} M_{0}^{2}$ if and only if $t=0$ or $a \leq a_{0}(t)$. Therefore,

$$
\bar{\beta}_{t / a}(\neq 0) \text { is in } E(2)_{2}^{2}\left(S^{0}\right) \text { if and only if } a \leq a_{0}(t)
$$

Remark that the element $\bar{\beta}_{0 / a} \in E(2)_{2}^{2}\left(S^{0}\right)$ is defined for any $a>0$, and $\bar{\beta}_{0 / a}=0$. By [11, Th. 2.13], the element $\bar{\beta}_{t / a}$ survives to an element $\beta_{t / a}$ in $\pi_{*}\left(L_{2} S^{0}\right)$ if and only if $0 \neq t \equiv 0,1,2,3,5,6 \bmod (9)$ and $a \leq b_{0}(t)$. For an
$E(2)$-local spectrum A and an integer $u \geq 0$, we denote

$$
A^{0}=L_{2} S^{0} \text { and } A^{u}=\underbrace{A \wedge \cdots \wedge A}_{u} \text { if } u>0
$$

Recall (3) of Theorem 1.1, and we have

$$
\operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right)=\mathbb{Z} / 3\left\{X_{1}\right\} \oplus \mathbb{Z} / 3\left\{X_{2}\right\}
$$

at $p=3$. Here, X_{1} is the invertible spectrum X given by Kamiya and Shimomura [6, Prop. 1.5].
Theorem 1.4. At $(p, n)=(3,2)$, Conjecture 1.2 holds for the algebraic beta elements $\bar{\beta}_{t / a}$. More details, the element $\bar{\beta}_{t / a} g_{X_{1}^{u}}$ survive to $\pi_{\star}^{2}\left(S^{0}\right)$, where

$$
u= \begin{cases}0 & 0 \neq t \equiv 0,1,2,5,6 \bmod (9) \\ 1 & t \equiv 4,8 \bmod (9) \\ 2 & t \equiv 3,7 \bmod (9)\end{cases}
$$

Acknowledgements. The author would like to thank the referee for many useful comments.

2. Algebraic beta elements $\bar{\beta}_{t / a}$

We fix $(p, n)=(3,2)$. For the mod 3 Moore spectrum $V(0)$, the Adams v_{1}-periodic map $\alpha: \Sigma^{4} V(0) \rightarrow V(0)$ exists. For $k \geq 1$, we consider the cofiber sequences

$$
\begin{equation*}
\Sigma^{4 k} V(0) \xrightarrow{\alpha^{k}} V(0) \xrightarrow{i_{1}^{(k)}} V(1)_{k} \xrightarrow{j_{1}^{(k)}} \Sigma^{4 k+1} V(0) . \tag{2.1}
\end{equation*}
$$

In particular, $V(1)_{1}$ is the first Smith-Toda spectrum $V(1)$. We then have

$$
\begin{gathered}
\Sigma^{4 \ell+4} V(1)_{k} \xrightarrow{v_{1}^{\ell}} \Sigma^{4} V(1)_{k+\ell} \xrightarrow{\widetilde{i}_{k}} \Sigma^{4} V(1)_{\ell} \xrightarrow{\partial_{\ell, k}} \Sigma^{4 \ell+5} V(1)_{k} \\
v_{1} \downarrow \\
v_{1} \downarrow
\end{gathered}
$$

Put

$$
\begin{equation*}
W=\operatorname{hocolim}_{v_{1}} V(1)_{\ell} \tag{2.2}
\end{equation*}
$$

and the diagram gives rise to the cofiber sequence

$$
\begin{equation*}
V(1)_{k} \xrightarrow{f^{(k)}} \Sigma^{4 k} W \xrightarrow{v_{1}^{k}} W \xrightarrow{\partial_{k}} \Sigma V(1)_{k} . \tag{2.3}
\end{equation*}
$$

By applying $E(2)_{2}^{*, *}(-)$, the cofiber sequence (2.3) at $k=1$ induces the exact sequence

$$
\begin{equation*}
\cdots \xrightarrow{\left(\partial_{1}\right)_{*}} H^{*} M_{2}^{0} \xrightarrow{f_{*}^{(1)}} H^{*} M_{1}^{1} \xrightarrow{v_{1}} H^{*} M_{1}^{1} \xrightarrow{\left(\partial_{1}\right)_{*}} H^{*+1} M_{2}^{0} \xrightarrow{f_{*}^{(1)}} \cdots \tag{2.4}
\end{equation*}
$$

of the Ext goups of the comodules in (1.4). We also have the short exact sequences

$$
\begin{equation*}
0 \rightarrow N_{1}^{0} \rightarrow M_{1}^{0} \rightarrow M_{1}^{1} \rightarrow 0 \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow N_{0}^{0} \xrightarrow{3} N_{0}^{0} \rightarrow N_{1}^{0} \rightarrow 0 \tag{2.6}
\end{equation*}
$$

These short exact sequences give rise to the connecting homomorphims

$$
\begin{equation*}
\delta^{\prime}: H^{*} M_{1}^{1} \rightarrow H^{*+1} N_{1}^{0} \text { and } \delta: H^{*} N_{1}^{0} \rightarrow H^{*+1} N_{0}^{0}\left(=E(2)_{2}^{*+1}\left(S^{0}\right)\right) \tag{2.7}
\end{equation*}
$$

respectively. For elements in $H^{*} M_{1}^{1}$, we use the notation of Behrens' type [1]: For $x \in H^{*} M_{2}^{0}$, the element $x_{t / a} \in H^{*} M_{1}^{1}$ for $a>0$ is defined by

$$
v_{1}^{a-1} x_{t / a}=v_{2}^{t} x / v_{1}
$$

By [8, Th. 5.3], for an integer t,

$$
1_{t / a} \in H^{0} M_{1}^{1} \text { is defined if and only if } t=0 \text { or } a \leq a_{0}(t)
$$

where $a_{0}(t)$ is the integer in (1.6).
Lemma 2.1. $\delta \delta^{\prime}\left(1_{t / a}\right)=\bar{\beta}_{t / a}$.
Proof. Consider the commutative diagrams

$$
\begin{gathered}
0 \longrightarrow N_{1}^{0} \longrightarrow M_{1}^{0} \longrightarrow M_{1}^{1} \longrightarrow 0 \\
-/ 3 \downarrow \\
0 \longrightarrow N_{0}^{1} \longrightarrow M_{0}^{1} \longrightarrow M_{0}^{2} \longrightarrow 0
\end{gathered}
$$

and

$$
\begin{gathered}
0 \longrightarrow N_{0}^{0} \longrightarrow N_{0}^{0} \longrightarrow N_{1}^{0} \longrightarrow 0 \\
\| \\
0 \longrightarrow N_{0}^{0} \longrightarrow M_{0}^{0} \longrightarrow N_{0}^{1} \longrightarrow 0
\end{gathered}
$$

From them, for δ_{i} in (1.5), we obtain $\delta \delta^{\prime}\left(1_{t / a}\right)=\delta_{0}\left(\delta^{\prime}\left(1_{t / a}\right) / 3\right)=\delta_{0} \delta_{1}\left(\left(1_{t / a}\right) / 3\right)=$ $\delta_{0} \delta_{1}\left(v_{2}^{t} / 3 v_{1}^{a}\right)=\bar{\beta}_{t / a}$.

3. Recollection of $\operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right)$

We recall the following result:
Theorem $3.1([10$, Th. 5.8$])$. Let $K(2)_{*}=E(2)_{*} /\left(3, v_{1}\right)=\mathbb{Z} / 3\left[v_{2}^{ \pm 1}\right]$. As a $K(2)_{*}$-module, we have an isomorphism

$$
E(2)_{2}^{*, *}(V(1))=P\left(b_{0}\right) \otimes E\left(\zeta_{2}\right) \otimes\left\{1, h_{0}, h_{1}, b_{1}, \xi, \psi_{0}, b_{1} \xi\right\}
$$

Here, $P(-)$ and $E(-)$ are polynomial and exterior algebras, respectively. The generators satisfy that

$$
\begin{gathered}
\left|v_{2}\right|=(0,16), \quad\left|h_{0}\right|=(1,4), \quad\left|h_{1}\right|=(1,12), \\
\left|b_{0}\right|=(2,12), \quad\left|b_{1}\right|=(2,36), \quad|\xi|=(2,8), \\
\left|\psi_{0}\right|=(3,16) \quad \text { and } \quad\left|\psi_{1}\right|=(3,24) .
\end{gathered}
$$

For the summand $\operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right)$ in (1.3), we have the monomorphism

$$
\begin{equation*}
\varphi: \operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right) \rightarrow E(2)_{2}^{5,4}\left(S^{0}\right)=\mathbb{Z} / 3\left\{\chi_{1}\right\} \oplus \mathbb{Z} / 3\left\{\chi_{2}\right\} \tag{3.1}
\end{equation*}
$$

by [6, Th. 1.2]. Here, the generators χ_{1} and χ_{2} satisfy that

$$
\begin{equation*}
\iota\left(\chi_{1}\right)=v_{2}^{-2} b_{0}^{2} h_{1} \quad \text { and } \quad \iota\left(\chi_{2}\right)=v_{2}^{-1} b_{0} \zeta_{2} \xi \tag{3.2}
\end{equation*}
$$

where ι is a homomorphism $E(2)_{2}^{*, *}\left(S^{0}\right) \rightarrow E(2)_{2}^{*, *}(V(1))$ induced by the composite $S^{0} \xrightarrow{i} V(0) \xrightarrow{i_{1}^{(1)}} V(1)$. Here, the first map i is given by the cofiber sequence

$$
\begin{equation*}
S^{0} \xrightarrow{3} S^{0} \xrightarrow{i} V(0) \xrightarrow{j} S^{1}, \tag{3.3}
\end{equation*}
$$

and the second map $i_{1}^{(1)}$ is in (2.1). Note that (3) of Theorem 1.1 implies that the monomorphism (3.1) is an isomorphism. By this fact, we may consider that the generators X_{1} and X_{2} of $\operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right)$ satisfy

$$
\varphi\left(X_{i}\right)=\chi_{i}
$$

and

$$
\begin{gather*}
X_{i}^{3}=L_{2} S^{0}, \quad E(2)_{2}^{*, *}\left(X_{i}\right)=E(2)_{2}^{*, *}\left(S^{0}\right)\left\{g_{X_{i}}\right\} \text { with }\left|g_{X_{i}}\right|=(0,0) \tag{3.4}\\
\text { and } d_{5}\left(g_{X_{i}}\right)=\chi_{i} g_{X_{i}}
\end{gather*}
$$

where $i \in\{1,2\}$, and d_{5} is the 5 -th Adams differential $E(2)_{5}^{0,0}\left(X_{i}\right) \rightarrow$ $E(2)_{5}^{5,4}\left(X_{i}\right)$.
4. On the elements $\bar{\beta}_{t / a} g_{X_{1}}$ and $\bar{\beta}_{t / a} g_{X_{1}^{2}}$

For the generator $X_{i} \in \operatorname{Pic}^{0}\left(\mathcal{L}_{2}\right)$, we have

$$
E(2)_{2}^{0,0}\left(X_{i}^{2}\right)=E(2)_{2}^{0,0}\left(S^{0}\right)\left\{g_{X_{1}^{2}}\right\}
$$

Note that

$$
g_{X_{i}^{2}}=\left(g_{X_{i}}\right)^{2}
$$

under the paring $E(2)_{2}^{*, *}\left(X_{i}\right) \otimes E(2)_{2}^{*, *}\left(X_{i}\right) \rightarrow E(2)_{2}^{*, *}\left(X_{i}^{2}\right)$, and $g_{S^{0}}=1 \in$ $E(2)_{2}^{0,0}\left(S^{0}\right)$.

Lemma 4.1. Let $u \in\{0,1,2\}$. For the spectrum W in (2.2), if $\left(g_{X_{i}^{u}}\right)_{t / a} \in$ $E(2)_{2}^{0}\left(W \wedge X_{i}^{u}\right)$ is a permanent cycle, then $\bar{\beta}_{t / a} g_{X_{i}^{u}} \in E(2)_{2}^{2}\left(X_{i}^{u}\right)$ is a permanent cycle.

Proof. We note that the short exact sequences (2.5) and (2.6) are obtained from the cofiber sequences

$$
\begin{equation*}
V(0) \rightarrow L_{1} V(0) \rightarrow W \xrightarrow{\partial^{\prime}} \Sigma V(0) \tag{4.1}
\end{equation*}
$$

and (3.3), respectively. Therefore, by Lemma 2.1 and the geometric boundary theorem, our claim at $u=0$ is shown. Similarly, our claim holds at $u=1,2$.

Theorem 4.2 ([11, Th. 2.8]). The element $1_{t / a} \in E(2)_{2}^{0}(W)=H^{0} M_{1}^{1}$ is a permanent cycle if $t \equiv 0,1,2,3,5,6 \bmod (9)$ and $a \leq b_{0}(t)$ in (1.7).

Proposition 4.3. If $v_{2}^{t} \in E(2)_{2}^{0}(V(1))$ is a permanent cycle, then $\left(g_{X_{1}}\right)_{t+3 / 1} \in$ $E(2)_{2}^{0}\left(W \wedge X_{1}\right)$ and $\left(g_{X_{1}^{2}}\right)_{t+6 / 1} \in E(2)_{2}^{0}\left(W \wedge X_{1}^{2}\right)$ are permanent cycles.
Proof. Consider the cofiber sequence

$$
\Sigma^{4} V(1) \xrightarrow{v_{1}} V(1)_{2} \rightarrow V(1) \rightarrow \Sigma^{5} V(1) .
$$

If $v_{2}^{t} \in E(2)_{2}^{0}(V(1))$ is a permanent cycle, then the element $v_{1} v_{2}^{t} \in E_{2}^{0}\left(V(1)_{2}\right)$ is a permanent cycle. Since $V(1)_{2}$ is a ring spectrum, we have the paring

$$
E(2)_{r}^{*, *}\left(V(1)_{2}\right) \otimes E(2)_{r}^{*, *}\left(V(1)_{2} \wedge X_{1}\right) \rightarrow E(2)_{r}^{*, *}\left(V(1)_{2} \wedge X_{1}\right)
$$

By [3, Lemma 3.4],

$$
\begin{equation*}
v_{2}^{3} g_{X_{1}} \in E(2)_{2}^{0}\left(V(1)_{2} \wedge X_{1}\right) \text { is a permanent cycle. } \tag{4.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
v_{1} v_{2}^{t+3} g_{X_{1}}=\left(v_{1} v_{2}^{t}\right)\left(v_{2}^{3} g_{X_{1}}\right) \in E(2)_{2}^{0}\left(V(1)_{2} \wedge X_{1}\right) \text { is permanent. } \tag{4.3}
\end{equation*}
$$

For the map $f^{(2)}$ in (2.3), we have

$$
d_{r}\left(\left(g_{X_{1}}\right)_{t+3 / 1}\right)=d_{r} f_{*}^{(2)}\left(v_{1} v_{2}^{t+3} g_{X_{1}}\right)=f_{*}^{(2)} d_{r}\left(v_{1} v_{2}^{t+3} g_{X_{1}}\right)=0
$$

for any r. We also have the pairing

$$
E(2)_{r}^{*, *}\left(V(1)_{2} \wedge X_{1}\right) \otimes E(2)_{r}^{*, *}\left(V(1)_{2} \wedge X_{1}\right) \rightarrow E(2)_{r}^{*, *}\left(V(1)_{2} \wedge X_{1}^{2}\right)
$$

Therefore, by [3, Lemma 3.4] and (4.3),

$$
d_{r}\left(\left(g_{X_{1}^{2}}\right)_{t+6 / 1}\right)=d_{r} f_{*}^{(2)}\left(v_{1} v_{2}^{t+6} g_{X_{1}}^{2}\right)=f_{*}^{(2)} d_{r}\left(\left(v_{1} v_{2}^{t+3} g_{X_{1}}\right)\left(v_{2}^{3} g_{X_{1}}\right)\right)=0
$$

for any r.
By [10, Th. A],

$$
\begin{equation*}
t \equiv 0,1,5 \bmod (9) \Rightarrow v_{2}^{t} \in E(2)_{2}^{0}(V(1)) \text { survives to } \pi_{*}\left(L_{2} V(1)\right) \tag{4.4}
\end{equation*}
$$

Therefore, by Lemma 4.1 and Proposition 4.3, we have the following:
Corollary 4.4. (1) Ift $\equiv 3,4,8 \bmod (9)$, then $\bar{\beta}_{t} g_{X_{1}}$ survives to $\pi_{\star}^{2}\left(S^{0}\right)$.
(2) If $t \equiv 2,6,7 \bmod (9)$, then $\bar{\beta}_{t} g_{X_{1}^{2}}$ survives to $\pi_{\star}^{2}\left(S^{0}\right)$.

Lemma 4.5. $\pi_{31}\left(W \wedge X_{1}^{2}\right)=0$.
Proof. By [11, Th. 2.5], we have $\bigoplus_{t-s=31} E(2)_{2}^{s, t}(W)=\mathbb{Z} / 3\left\{\left(b_{0}^{2} h_{0}\right)_{1 / 2},\left(b_{0}^{4} h_{1}\right)_{-1 / 1}\right\}$. (In [11, Th. 2.5], $\left(b_{0}^{2} h_{0}\right)_{1 / 2}$ and $\left(b_{0}^{4} h_{1}\right)_{-1 / 1}$ are denoted by $v_{2} b_{10}^{2} h_{10} / v_{1}^{2}$ and $v_{2}^{-1} b_{10}^{4} h_{11} / v_{1}$ in $F \otimes \mathbb{Z} / 3\left[b_{10}\right]$, respectively.) This implies that

$$
\bigoplus_{t-s=31} E(2)_{2}^{s, t}\left(W \wedge X_{1}^{2}\right)=\mathbb{Z} / 3\left\{\left(b_{0}^{2} h_{0} g_{X_{1}^{2}}\right)_{1 / 2},\left(b_{0}^{4} h_{1} g_{X_{1}^{2}}\right)_{-1 / 1}\right\}
$$

From [11, (8.3) and Prop. 8.9] and [3, Lemma 3.4], we obtain

$$
\begin{aligned}
v_{1} d_{9}\left(\left(b_{0}^{2} h_{0} g_{X_{1}^{2}}\right)_{1 / 2}\right) & =v_{1} f_{*}^{(2)} d_{9}\left(v_{2}^{-5} b_{0}^{2} h_{0}\left(v_{2}^{3} g_{X_{1}}\right)^{2}\right) \\
& =f_{*}^{(1)}\left(\widetilde{i}_{1}\right)_{*}\left(d_{9}\left(v_{2}^{-5} b_{0}^{2} h_{0}\right)\left(v_{2}^{3} g_{X_{1}}\right)^{2}\right) \\
& =f_{*}^{(1)}\left(v_{2}^{-8} b_{0}^{7}\right)\left(v_{2}^{3} g_{X_{1}}\right)^{2} \\
& =\left(b_{0}^{7} g_{X_{1}^{2}}\right)_{-2 / 1} \\
& \neq 0, \\
\left(b_{0}^{4} h_{1} g_{X_{1}^{2}}\right)_{-1 / 1} & =f_{*}^{(1)}\left(v_{2}^{-7} b_{0}^{4} h_{1}\left(v_{2}^{3} g_{X_{1}}\right)^{2}\right) \\
& =f_{*}^{(1)} d_{5}\left(v_{2}^{-5} b_{0}^{2}\left(v_{2}^{3} g_{X_{1}}\right)^{2}\right) \\
& =d_{5} f_{*}^{(1)}\left(v_{2}^{-5} b_{0}^{2}\left(v_{2}^{3} g_{X_{1}}\right)^{2}\right) \\
& =d_{5}\left(\left(b_{0}^{2} g_{X_{1}^{2}}^{2}\right)_{1 / 1}\right) .
\end{aligned}
$$

Therefore, both $\left(b_{0}^{2} h_{0} g_{X_{1}^{2}}\right)_{1 / 2}$ and $\left(b_{0}^{4} h_{1} g_{X_{1}^{2}}\right)_{-1 / 1}$ don't survive to $\pi_{31}(W \wedge$ X_{1}^{2}).

By [4, Th. 2.24], $\pi_{*}\left(L_{2} V(1)_{2}\right)$ contains the part $h u P(5)$. In particular, we have the element $h u \in \pi_{*}\left(L_{2} V(1)_{2}\right)$. By [4, (2.13)] and [4, p.3], this element is detected by $u h=\bar{h}_{0}=v_{2}^{5} h_{0}$ in $E(2)_{2}^{1}\left(V(1)_{2}\right)$. We also note that v_{2}^{-9} and $v_{2}^{3} g_{X_{1}}$ are permanent cycles by [3, Lemma 1.6] and (4.2), respectively. Thus, the element

$$
\bar{y}=v_{2}^{-9}\left(v_{2}^{5} h_{0}\right)\left(v_{2}^{3} g_{X_{1}}\right)^{2} \in E(2)_{2}^{1}\left(V(1)_{2} \wedge X_{1}^{2}\right)
$$

is a permanent cycle. We denote by $y \in \pi_{*}\left(V(1)_{2} \wedge X_{1}^{2}\right)$ an element detected by \bar{y}.

Proposition 4.6. $\left(g_{X_{1}^{2}}\right)_{3 / 3} \in E(2)_{2}^{0}\left(W \wedge X_{1}^{2}\right)$ is a permanent cycle.
Proof. Consider the cofiber sequence

$$
V(1) \xrightarrow{f^{(1)}} \Sigma^{4} W \xrightarrow{v_{1}} W \xrightarrow{\partial_{1}} \Sigma V(1) .
$$

By [8, Prop. 5.4], we have

$$
\left(\partial_{1}\right)_{*}\left(\left(g_{X_{1}^{2}}\right)_{3 / 3}\right)=v_{2}^{2} h_{0} g_{X_{1}^{2}}=\left(\widetilde{i}_{1}\right)_{*}(\bar{y})
$$

which detects $\left(\widetilde{i}_{1} \wedge 1_{X_{1}^{2}}\right) y$. By Lemma 4.5 , the element $\left.f_{*}^{(1)}\left(\widetilde{i_{1}} \wedge 1_{X_{1}^{2}}\right) y\right) \in$ $\pi_{31}\left(W \wedge X_{1}^{2}\right)$ is trivial. Therefore, there exists $\xi \in \pi_{36}\left(W \wedge X_{1}^{2}\right)$ such that $\partial_{1} \xi=\left(\widetilde{i}_{1} \wedge 1_{X_{1}^{2}}\right) y$. Since $E(2)_{2}^{0,36}\left(W \wedge X_{1}^{2}\right)=\mathbb{Z} / 3\left\{\left(g_{X_{1}^{2}}\right)_{3 / 3}\right\}$ by [11, Th. 2.5], the element ξ is detected by $\pm\left(g_{X_{1}^{2}}\right)_{3 / 3}$.

Proof of Theorem 1.4. By [11, Th. 2.13], for $0 \neq t \equiv 0,1,2,5,6 \bmod (9)$, we know that $\bar{\beta}_{t / a}$ for $a \leq a_{0}(t)$ survives to $\pi_{*}\left(L_{2} S^{0}\right) \subset \pi_{\star}^{2}\left(S^{0}\right)$.

By Corollary 4.4, if $t \equiv 4,8 \bmod (9)$, then $\bar{\beta}_{t / a_{0}(t)} g_{X_{1}}=\bar{\beta}_{t} g_{X_{1}}$ survives to $\pi_{\star}^{2}\left(S^{0}\right)$. Corollary 4.4 also implies that if $t \equiv 7 \bmod (9)$, then $\bar{\beta}_{t / a_{0}(t)} g_{X_{1}^{2}}=$ $\bar{\beta}_{t} g_{X_{1}^{2}}$ survives to $\pi_{\star}^{2}\left(S^{0}\right)$.

We turn to the last case $\bar{\beta}_{t / a}$ for $t \equiv 3 \bmod (9)$ and $a \leq 3$. Proposition 4.6 implies that the element $\left(g_{X_{1}^{2}}\right)_{3 / a}=v_{1}^{3-a}\left(g_{X_{1}^{2}}\right)_{3 / 3}$ detects an element in $\pi_{*}\left(W \wedge X_{1}^{2}\right)$. Put $t=9 s+3$, and

$$
\begin{aligned}
d_{r}\left(\left(g_{X_{1}^{2}}\right)_{t / a}\right) & =d_{r} f_{*}^{(a)}\left(v_{2}^{9 s+3} g_{X_{1}^{2}}\right)=f_{*}^{(a)} d_{r}\left(v_{2}^{9 s}\left(v_{2}^{3} g_{X_{1}^{2}}\right)\right) \\
& =f_{*}^{(a)}\left(v_{2}^{9 s} d_{r}\left(v_{2}^{3} g_{X_{1}^{2}}\right)\right)=\left(v_{2}^{9 s} d_{r}\left(v_{2}^{3} g_{X_{1}^{2}}\right)\right) / v_{1}^{a} \\
& =v_{2}^{9 s}\left(d_{r}\left(v_{2}^{3} g_{X_{1}^{2}}\right) / v_{1}^{a}\right)=v_{2}^{9 s} d_{r}\left(\left(g_{X_{1}^{2}}\right)_{3 / a}\right) \\
& =0
\end{aligned}
$$

for any $r>1$. Therefore, by Lemma 4.1, the element $\bar{\beta}_{t / 3} g_{X_{1}^{2}}$ survives to $\pi_{\star}^{2}\left(S^{0}\right)$.

5. A Note on $\pi_{\star}^{2}(V(0))$

Note that

$$
E(2)_{2}^{*, *}\left(V(0) \wedge X_{1}\right)=E(2)_{2}^{*, *}(V(0))\left\{g^{\prime}\right\}
$$

Here, $g^{\prime}=i_{*}\left(g_{1}\right)$ where i_{*} is induced by i in (3.3). In this section, we consider the element $v_{1} g^{\prime}$ in the E_{2}-term.

The cofiber sequence (4.1) induces the long exact sequence

$$
0 \rightarrow H^{0} N_{1}^{0} \rightarrow H^{0} M_{1}^{0} \rightarrow H^{0} M_{1}^{1} \xrightarrow{\delta^{\prime}} H^{1} N_{1}^{0} \rightarrow \cdots .
$$

Note that v_{1} survives to $\pi_{*}\left(L_{2} V(0)\right)$, and $d_{5}\left(g_{X_{1}}\right)=\chi_{1} g_{X_{1}}=\eta\left(v_{2}^{-1} h_{1} b_{0} / 3 v_{1}\right) g_{X_{1}}$. Here, η is the composite $H^{*} M_{0}^{2} \xrightarrow{\delta^{\prime \prime}} H^{*+1} N_{0}^{1} \xrightarrow{\delta} H^{*+2} N_{0}^{0}$ where $\delta^{\prime \prime}$ is the connecting homomorphism associated with the short exact sequence $N_{0}^{1} \rightarrow M_{0}^{1} \rightarrow M_{0}^{2}$. We then have

$$
d_{5}\left(v_{1} g^{\prime}\right)=v_{1}\left(i_{*} d_{5}\left(g_{X_{1}}\right)\right)=v_{1} i_{*}\left(\chi_{1}\right) g_{X_{1}}
$$

We denote by $B_{t / a}$ an element of $\pi_{\star}^{2}\left(S^{0}\right)$ detected by $\bar{\beta}_{t / a} g_{X_{1}^{u}}$ in Theorem 1.4.

Conjecture 5.1. (1) The element $v_{1} g^{\prime} \in E(2)_{2}^{0}\left(V(0) \wedge X_{1}\right)$ detects a nonzero element $w_{1} \in \pi_{\star}^{2}(V(0))$.
(2) $i_{*}\left(\bar{\beta}_{t / a}\right) \neq 0$ for $a \leq a_{0}(t)$.

As an analogue of $[7,(1.3)]$, we see the following.
Proposition 5.2. If Conjecture 5.1 holds, then the homomorphism $i_{2}^{V(0)}: \pi_{*}\left(L_{2} V(0)\right) \rightarrow$ $\pi_{\star}^{2}(V(0))$ in (1.1) satisfies that

$$
i_{2}^{V(0)} i_{*}\left(\beta_{t / a}\right)= \begin{cases}w_{1} i_{*}\left(B_{t / a+1}\right) & 3 \neq t \equiv 3 \bmod (9), \\ i_{*}\left(B_{t / a}\right) & \text { otherwise },\end{cases}
$$

up to higher filtration.
Proof. Let $t=9 s+3$, and suppose that $v_{1} g^{\prime}$ converges to $w_{1} \in \pi_{4}(V(0) \wedge$ $\left.X_{1}\right)=\left[\Sigma^{4} X_{1}^{2}, L_{2} V(0)\right] \subset \pi_{\star}^{2}(V(0))$. We note that

$$
\left(v_{1} g^{\prime}\right) i_{*}\left(\bar{\beta}_{t / a+1} g_{X_{1}^{2}}\right)=i_{*}\left(\left(v_{1} g_{X_{1}}\right) \bar{\beta}_{t / a+1} g_{X_{1}^{2}}\right)=i_{*}\left(v_{1}^{3-a} v_{2}^{t-3} b_{1}\right)=i_{*}\left(\bar{\beta}_{t / a}\right) .
$$

Therefore, if $i_{*}\left(\bar{\beta}_{t / a}\right) \neq 0$, then $w_{1} i_{*}\left(B_{t / a+1}\right)=i_{*}\left(\beta_{t / a}\right)$ up to higher filtration.

References

[1] M. Behrens, The homotopy groups of $S_{E(2)}$ at $p \geq 5$ revisited, Adv. Math. 230 (2012), 458-492.
[2] P. Goerss, H.-W. Henn, M. Mahowald and C. Rezk, On Hopkins' Picard groups of the prime 3 and chromatic level 2, J. Topol. 8 (2015), 267-294.
[3] I. Ichigi and K. Shimomura, $E(2)$-invertible spectra smashing with the Smith-Toda spectrum $V(1)$ at the prime 3, Proc. Amer. Math. Soc. 132 (2004), 3111-3119.
[4] I. Ichigi and K. Shimomura, On the Picard graded homotopy groups of a finite type two $K(2)$-local spectrum at the prime three, to appear in Homology, Homotopy and Applications.
[5] M. Hovey and H. Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. 60 (1999), 284-302.
[6] Y. Kamiya and K. Shimomura, A relation between the Picard group of the $E(n)$ local homotopy category and $E(n)$-based Adams spectral sequence, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math., 346 (Amer. Math. Soc., Providence, RI, 2004), 321-333.
[7] R. Kato, The $E(1)$-local Picard graded homotopy groups of the sphere spectrum at the prime two, Hiroshima Math. J. 50 (2020), 137-150.
[8] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[9] D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, 128 (Princeton University Press, Princeton, NJ, 1992).
[10] K. Shimomura, The homotopy groups of L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850.
[11] K. Shimomura, The homotopy groups of the L_{2}-localized $\bmod 3$ Moore spectrum, J. Math. Soc. Japan 52 (2000), 65-90.

Ryo Kato
Faculty of Fundamental Science
National Institute of Technology, Nifhama college
Nilhama, 792-8580 Japan
e-mail address: ryo_kato_1128@yahoo.co.jp
(Received March 30, 2021)
(Accepted October 30, 2021)

[^0]: Mathematics Subject Classification. Primary 55Q45; Secondary 55Q52.
 Key words and phrases. Stable homotopy of spheres, Picard group.

