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Visual hallucinations in dementia 
with Lewy bodies originate 
from necrosis of characteristic 
neurons and connections 
in three‑module perception model
Shigetoshi Nara1*, Hiroshi Fujii2, Hiromichi Tsukada3 & Ichiro Tsuda 4

Mathematical and computational approaches were used to investigate dementia with Lewy bodies 
(DLB), in which recurrent complex visual hallucinations (RCVH) is a very characteristic symptom. 
Beginning with interpretative analyses of pathological symptoms of patients with RCVH‑DLB in 
comparison with the veridical perceptions of normal subjects, we constructed a three‑module scenario 
concerning function giving rise to perception. The three modules were the visual input module, the 
memory module, and the perceiving module. Each module interacts with the others, and veridical 
perceptions were regarded as a certain convergence to one of the perceiving attractors sustained 
by self‑consistent collective fields among the modules. Once a rather large but inhomogeneously 
distributed area of necrotic neurons and dysfunctional synaptic connections developed due to network 
disease, causing irreversible damage, then bottom‑up information from the input module to both the 
memory and perceiving modules were severely impaired. These changes made the collective fields 
unstable and caused transient emergence of mismatched perceiving attractors. This may account for 
the reason why DLB patients see things that are not there. With the use of our computational model 
and experiments, the scenario was recreated with complex bifurcation phenomena associated with 
the destabilization of collective field dynamics in very high‑dimensional state space.

For several decades, dementia with Lewy bodies (DLB hereafter) has been an area of interest for many people in 
medicine, neurology, pharmacology, psychiatry, and brain sciences research. One of the reasons for this inter-
est is that, in addition to typical symptoms of dementia, DLB patients exhibit a very peculiar symptom called 
“recurrent complex visual hallucinations (RCVH)” with high probability at rather early or intermediate stages 
of pathological progression. A very characteristic feature of RCVH-DLB is that patients with DLB see things 
that are not there. Moreover, the subject of the hallucinations is not inconsistent with environmental situations 
surrounding the patients; for example, patients see persons, animals, insects, flowers, and so on. The majority 
of patients manage to communicate with family members or doctors regarding such hallucinations and are able 
to describe their hallucinatory images. Figure 1 shows an illustration of a hallucinatory image drawn by one of 
the authors (S.N.) based on the oral description by a patient with RCVH-DLB, who said “strangers are in the 
bathroom, so I am scared and cannot enter the room”. Let us note that Fig. 1 is an imaginary illustration with use 
of the oral description of hallucination told by a patient. Readers are able to get more accurate medical data of 
symptoms in the references  (see1,2 shown later). However, aside from the medical symptom data, to investigate 
the information processing supposed to occur in patients’ brain, objective methods to visualize the hallucinatory 
image may be necessary.

A large number of papers have been published, even when only considering the rather theoretical research, 
but searching all of these papers is nearly impossible. In noteworthy papers for the  authors1–10, one of the typical 
reviews that investigated pathological data and considered their phenomenological aspects was published in 
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Behav. & Brain Sci. This paper emphasized the pharmacological aspects concerning neuromodulator impairments 
in the cortex  (see1). Collerton et.al investigated a large number of pathological cases of visual hallucinations, and 
after careful consideration regarding various kinds of models reported before 2005, they proposed their model, 
which they called the “Perception and Attention Deficit model (PAD)”; however, the essential understanding of 
RCVH is still obscured by the brain’s hypersuperior complexities.

In the successive review paper published in J. Conscious. Stud.,  (see2), various data published during the 
decade following the previous review are shown and detailed considerations are given. The main points of this 
review focused on neuro-psychological aspects but incorporated novel trials, as much as possible, with theoretical 
viewpoints based on mathematical sciences and nonlinear physics. Below, we summarize several important points 
of their review, which were necessary for us to construct our computational model proposed in the present paper. 

(1) Measurement technologies to observe biological cells, systems, and organs from the microscopic to mac-
roscopic levels have advanced greatly in the past decade. These tools enable us to obtain biophysical, bio-
chemical, physiological, pharmacological data with finer space-time resolution. For example, it has become 
possible to record the activities of neural networks on a very large spatiotemporal scale by noninvasive 
methods, such as diffusion-tensor imaging of magnetic resonance (DTI-MR), functional MR imaging 
(fMRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), 
etc. Essentially, these techniques result in the situations to request researchers to analyze large amounts of 
data, called “big data”, in computer science &  technology11–20.

(2) Despite the substantial developments in noninvasive technologies that allow individuals to observe neural 
activities, a detailed understanding of the functional roles of neuromodulators (transmitters) remains quite 
insufficient. A large number of papers have discussed the effects of pharmacological interventions on DLB 
and many brain diseases as well; however, most researchers have difficulties in getting quantitative data 
because it is impossible to expose patients with brain diseases to arbitrary administration of neuromodula-
tors, such as acetylcholine and dopamine, as medical treatments. Instead, a large number of experiments 
have been conducted in the brains of animals, such as rats or mice; however, obtaining quantitative data 
about the influence of these treatments on advanced functions is quite difficult in such animals.

(3) RCVH may be attributed to dynamic disorders distributed rather widely among visual perceptual systems 
and is typically considered to be a network disease, as suggested by  ffytche5. These disorders originate not 
only from neuronal atrophy and dysfunction of synaptic connections in several separate fields caused by 

Figure 1.  An illustration of a hallucinatory image drawn by one of the authors (S.N.) based on the oral 
description by a patient with RCVH-DLB who said as follows in an interview for a TV educational program of 
Japanese broadcast station. The patient said “strangers are in the bathroom, so I am scared and cannot enter the 
room”.
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aggregated Lewy bodies (LBs) but also from impairment of neuromodulator release over widely entangled 
regions of axons and dendrites. It may participate in destabilizing interactive dynamics among several fields, 
per se, normal release works to maintain functional self-consistency in veridical perceptions, particularly 
in visual fields of the occipital cortex and frontal cortex, including neural links among these two regions 
and the temporal cortex.

Therefore, although various forms of anatomical and functional deterioration in the visual perception network 
in DLB patients have been discovered via a large number of measurements with the use of advanced technologies, 
as noted above, there is insufficient knowledge concerning the neuropathological origins of RCVH in patients 
with DLB. More specifically, widely distributed necrotic neurons in complex neural networks has prevented 
us from specifying these origins. Thus, computational modeling provides a meaningful, systematic method to 
investigate the primary effects of neuron necrosis in the visual system since there is considerable uncertainty in 
measured data even when they are obtained with modern observation technologies.

Computational model of visual perception and destabilization of perceiving 
attractors
Perceiving attractors as an interpretative scenario of veridical perception. Considering the fac-
tors stated in the previous section, we suggest an improved scenario of visual perception processes mainly based 
on the viewpoints of mathematical science and nonlinear-nonequilibrium physics. This scenario would respect 
the suggestion of  Marr21, in which the three stages that one should go through to understand information-pro-
cessing task are suggested, i.e., computational theory ⇒ algorithmic representation ⇒ hardware implementation 
(experiment). Therefore, in the first stage, the idea of perceiving attractors to represent convergence of neural 
processing to veridical visual perceptions is evoked. Such computational ideas and approaches based on the 
concept of an attractor framework have been used in many works since the Hopfield model was  developed22. A 
typical treatment is shown  in6.

Our computational idea includes the following characteristic features, which are presented in a list to allow 
us to emphasize the important points. 

(a) It is well known that the visual information stream from the occipital cortex takes two main paths: the 
superior (dorsal) longitudinal  pathway23,24 and the inferior (ventral) longitudinal  pathway25,26. Association 
fibers to support the former stream are generally called the “superior longitudinal fasciculus”, and the latter 
are called the “inferior longitudinal fasciculus”.

(b) Once input is transmitted to the visual cortex, “bottom-up information” is generated in the visual cortex 
and sent to both the frontal cortex and temporal cortex via the two aforementioned pathways, including 
visual information processing performed by occipital and peripheral cortexes.

(c) Responding to this input, the frontal and temporal cortex interact with each other via the hippocampal 
region. The frontal cortex generates a perceptual prior, the concept of which was first proposed by one of 
the authors (I. Tsuda)27. The temporal cortex recalls parts of memories, one by one, that contain bottom-
up information and simultaneously forms “scene (context) candidates” in subconscious state, which may 
correspond to the concept of active inference introduced by Friston et al.4,28.

(d) Interactions between the temporal and frontal cortices produce two types of “top-down information” that 
are then sent to the visual cortex. The first is from the temporal cortex and compensates or even overcom-
pensates insufficiencies, when there is inadequate bottom-up information, to enable for individuals to 
recall correct parts and scene (context) in visual inputs. The second is from the frontal cortex and includes 
attention in arousal consciousness; this information is intended to generate updated visual information to 
eliminate or at least decrease errors.

(e) In visual perceptions, on the other hand, it has been generally accepted that a few neuromodulators, such 
as acetylcholine, are critically important in advanced functions of the human brain. It is also accepted that 
cholinergic cells exist in the basal ganglia; in particular, the nucleus basalis of Meynert (nbM) elongates 
long axon fibers to very wide fields of the neocortex from the frontal lobe to even the occipital  lobe1,2. 
Though pertinent mechanisms have not yet been fully clarified, it has at least been verified that acetylcholine 
released by cholinergic cells regulates activity levels of advanced functions, for instance, attention, arousal, 
intention, etc.

(f) According to two top-down pieces of information transmitted to the visual cortex, new bottom-up infor-
mation is generated and is sent to the temporal & frontal cortices. These processes are recurrently repeated 
until veridical perception is achieved and accepted by one’s consciousness in the arousal state.

These considerations lead us to a three-module model of visual perception and an interpretative scenario of 
veridical visual perceptions, as shown in Fig. 2, which we call a “perceiving attractor”. After inputs to the visual 
cortex are provided, neural activity in the three regions-the visual, temporal, and frontal cortices-reaches a certain 
converged state and results in veridical perception produced by the frontal cortex. Via this process, a normal 
subject is able to recognize a specific person quite easily from incoming visual inputs containing abundant image 
data, for example, many photographs and many scenes. This recognition function is one of the typical examples 
of veridical perception; in other words, one forms concepts with respect to the specific person. Mathematically 
speaking, this function is regarded as embedding many-to-one correspondence mapping into the state space 
of neural cooperative activity in several fields of the brain, whereas the activity is represented as rather low-
dimensional (weak) chaos or may be regarded as a limit  cycle29. Given these considerations, it is possible to intro-
duce a hypothesis that such low-dimensional weak chaos in neural activity contributes to resulting in veridical 



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14172  | https://doi.org/10.1038/s41598-022-18313-6

www.nature.com/scientificreports/

perception and corresponds to perceiving attractors in a huge dimensional space of neural activity. Moreover, 
in our model, this weak chaotic attractor is approximated to be a new type of attractor, in which both the limit 
cycle and fixed pattern are incorporated together into one attractor, as shown in later computer experiments.

Finally, it should be noted that in the present model, we suggest that detailed information such as  context30 
or  attention1, which have been considered in previous works, are included in collective fields, where they are not 
explicitly examined but may be encompassed in the collective field to generate hodological functions introduced 
by  ffytche5.

Destabilization phenomena of perceiving attractors corresponding to RCVH in DLB. It is gen-
erally accepted that many brain diseases are attributed to large unrecoverable necrosis of neurons and synaptic 
connections over widespread regions of the brain. Depending on the inhomogeneous distribution of such necro-
sis, many typical features of pathological neuron-network activities corresponding to each brain disease have 
been observed. MRI, including more advanced techniques, such as fMRI, and DTI-MR, are appropriate methods 
to detect differences in anatomical and pathological data between a brain with a disease and a normal brain.

So, let us start with a comparison of neuropathological and/or neuroanatomical properties between normal 
subjects and patients with DLB, then we introduce these properties into our model as factors that destabilize 
perceiving attractors due to necrosis of neural cells and synaptic connections or due to a neuromodulator releas-
ing disorder. Various measured data were roughly classified into the following four kinds of atrophy data. 

(1) Volume loss of Gray matter observed by means of voxel-based morphometry (VBM) or region of interest 
(ROI) analysis of MRI scans.

(2) White matter (association fibers) atrophy detected by MRI and DTI-MR.
(3) PET, SPECT, and fMRI measurements to inspect hypometabolism and hypoperfusion in the brain.
(4) Subcortical degeneration observed by means of MRI, SPECT, etc.

Each topic has been investigated by many researchers, for instance in the review of Watson in  detail31, but let 
us pick up several important points that support our consideration stated later. First, with respect to (1), MRI 
data indicate that gray matter loss in the brains of DLB patients occurs over the entire region of the brain in 
comparison with that in normal subjects, although atrophy of the temporal lobe is not yet so severe in DLB patients 
at the initial and/or intermediate stages of the disease. However, the data are not quantitatively accurate because 
there is a rather wide distribution of data among individual patients. For instance, a few  papers32–34 report the 
rates of cerebral atrophy, but data vary widely, and it is difficult to specify a particular degree of neuronal necrosis. 

Figure 2.  A three-module model of visual processing that enables veridical perception. (a) A well-known 
illusion that shows a representative example of compensation resulting from the subconscious interaction 
between the visual cortex and temporal cortex. (b) A figure painted by Giuseppe Arcimboldo in 1591 called 
Vertumnus, porträttet av Rudolf II, which induces a typical subconscious function of memory recall of parts, one 
by one (vegetable & fruits, etc.), and empirical imaging of the entire scene or context in the mind. Portions were 
omitted to show image examples of “pareidolia”. (c) A typical example of attentional eye movement reported 
by A. L. Yarbus (1967) driven by top-down information transmitted from the frontal cortex. The basal ganglia 
regulate and adjust the functional activities of all fields (cortices) by means of fine control of the inhomogeneous 
release of neuromodulators (transmitters).
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Additionally, Firbank et al.35 employed the following expression: “DLB: less hippocampal atrophy in CA1 and 
subiculum compared to AD”, which shows that it is difficult to quantify the degree of necrosis among neurons 
corresponding to DLB in our computer experiments.

Regarding (2), two methods are used to obtain data, i.e., white matter hyperintensity (WMH) measurements 
in MRI, fractional anisotropy (FA) and mean diffusivity (MD) measurements in DTI-MR. There is a wide variety 
of WMH data reported by many researchers also, and a representative statement is given as “As expected, there 
was a trend toward less WMH in the control group when compared with AD and DLB”31. Such a situation is 
similar with respect to measurements of FA and MD. Data are described as “decreased FA” or “increased MD” 
in comparison with the measurements of normal subjects. Furthermore, there is a great difficulty in evaluating 
DTI-MR data because DTI scans do not indicate the direction of signal propagation (inward or outward). DTI 
scans only show axon connections between two regions in gray matter since the measured diffusion constant 
data indicate only the anisotropic diffusion direction of water molecules in three dimensions. Thus, although it 
is difficult to find the quantitative data necessary to accurately take in neuronal necrosis and synaptic connec-
tions disorder in our computer experiments, these  data11–17,31–40  are interpreted as described below and can be 
employed in our experiments as parameter-dependent factors. 

(a) Atrophy does exist over the entire region of the brain but relatively little atrophy of the temporal lobes is 
present in patients in comparison with that in normal subjects.

(b) Reduced FA and increased MD are clearly observed in the region of the inferior longitudinal fasciculus 
(occipital-temporal connection) in patients in comparison with that in normal subjects.

(c) Additionally, reduced FA and increased MD are clearly observed in the region of the superior longitudinal 
fasciculus (occipital-parietal-frontal connection) in patients in comparison with that in normal subjects.

Concerning (3), signal imaging of PET and SPECT revealed hypometabolism and hypoperfusion in the occipital 
 cortex39,40, which suggests considerable necrosis of neurons and surrounding synaptic connections. It should be 
noted that the authors included disorders of the optic radiation in the posterior thalamic area that were observed 
on DTI-MR scans, in which the main stream of visual information is transferred from the lateral geniculate 
nucleus (LGN).

Regarding (4), degeneration of cholinergic cells (particularly nbM) and dopaminergic cells (particularly 
striatal cells)36 have been detected in DLB patients using MRI and SPECT. There are many neuromodulators 
that influence visual information processing and various advanced functions in the brain. Many publications 
have examined acetylcholine from the molecular and pharmacological perspectives, e.g., nicotinic acetylcholine 
 receptors38. However, most of the papers related to mental diseases are about global trends of the association 
between the amount of acetylcholine in the brain and behavioral observations among humans and rodents. It is 
quite difficult to determine the causal links of the concentration of acetylcholine in the brain with a quantitative 
evaluation of the performance of advanced functioning (e.g., attention, arousal), the pathological symptoms of 
DLB and hallucinations. Many studies have examined impairments of acetylcholine-releasing cell-groups in the 
brain stem, but the detailed mechanism how to influence DLB and/or hallucinations has not yet been clarified. 
However, activity over a rather wide field can be regulated by the controlled release of acetylcholine. Therefore, 
in the present paper, we introduce a threshold fluctuation in each module as a symbolic effect of acetylcholine 
release impairment.

Therefore, the situations stated above indicate that a parameter-surveying investigation using a computational 
model concerning neuronal necrosis and synaptic connections is meaningful to investigate what and how large 
deficits in neural activity due to degeneration of neural cells in the occipital lobe (visual fields). This approach 
would also be useful for investigating the effects of substantial atrophy of neural connections between occipital-
temporal and occipital-frontal  lobes5,12. Moreover, this technique could be used to shed light on the issues 
observed in the transmission of information during visual processing that leads to perception.

Now, these observed results and their considerations bring us the following interpretative scenario of RCVH-
DLB within the framework shown in Fig. 2. First, there was considerable atrophy in the input (visual) module. 
There was relatively less atrophy in the memory module and perceiving module. Second, bottom-up information 
from the input module to both the memory and perceiving modules included serious deficits; therefore, both 
modules were insufficient to use to construct plausible representations of prior perception in the perceiving 
module and plausible representations of context prior in the memory module. Third, attention information sent 
to the input module from the perceiving module (top-down information) was prevented by degeneration of the 
superior longitudinal fasciculus and surrounding connections, which results in attention  deficits41. Additionally, 
compensation by the memory module to the input module (the other top-down information provided) that was 
achieved subconsciously was hindered due to damage to the inferior longitudinal fasciculus, which could cause 
overcompensation. Fourth, in these pathological environments, prior perception generated by the perceiving 
module and constructed context in the memory module affected by overcompensation could become inconsistent 
and interact via the uncinate fasciculus. Neither inevitably nor coincidentally, the uncinate fasciculus connecting 
perceiving module and memory module was essentially intact in patients with DLB in the present observation 
at rather initial or intermediate stages of pathological progression. It should be noted that the three authors in 
the present paper  (see30) discussed RCVH and emphasized the primary role of dysfunction in the inferior lon-
gitudinal fasciculus in this aspect of the disease.

A large contradiction between two previously evoked perceptions due to insufficient input information (bot-
tom-up information) results in a lack of self-consistency between two top-down pieces of information generated 
in the memory module and perceiving module. This inconsistency causes the collective fields that are mutually 
exchanged in the three modules to be unstable. Then, this instability destabilizes a relevant perceiving attractor; 
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this result may be called critical fluctuation (or precursor phenomena) as it is associated with “phase transi-
tion from normal to dementia”. Here, we do not get involved so deeply in analogy between phase transitions in 
physics and disease appearance (progression), nor in actual applications to detection of predisease  symptoms42. 
Thus, let us only consider the conceptual similarity to phase transitions in the present paper. Hence, the unstable 
fluctuation of the collective field may give rise to transient emergence of mismatched perceiving attractors; in 
other words, hallucinations occur. The above consideration reveals that RCVH occurs when the dysfunction of 
the visual processing system, which encompasses various regions in the brain, reaches a critical stage of desta-
bilization due to characteristic necrosis of neurons and their synaptic connections. Furthermore, the damage 
inflicted by LBs may be delicately balanced in several areas in the neocortex, thus causing critical fluctuations in 
collective fields between veridical perception and hallucinatory perception. This means that a certain systematic 
combination of partially lesioned fields is critical in the occurrence of RCVH. This type of destabilization may be 
rare in individuals with brain diseases but its presence has been associated with a notable number of pathological 
symptoms, particularly in patients with DLB at the initial and/or intermediate stages of disease.

Generally, the destabilization of stationary (attractor) dynamics and critical fluctuations associated with desta-
bilization have been investigated and characterized by finding bifurcation phenomena in the concerned system. 
One of the very difficult problems in the present case is the extremely high-dimensional state space that must be 
addressed even if we drastically simplify the visual perception system and employ the three-module model stated 
above. Hence, there are many characteristic parameters that cause instability; in the present case, the number 
of dead neurons due to necrosis brought about by disease and the configurational positions of these neurons 
in the state space are also parameters that change dynamical instability. Three modules in the present system 
give large varieties in selections of key parameters. Furthermore, there is a large variety of synaptic connections 
between each pair of modules with respect to the number of surviving connections and their configurations 
that were not affected by necrosis caused by disease. However, in the highly diverse bifurcation phenomena in 
our computer experiments, we managed to find a consequential number of critical fluctuations in perception 
corresponding to hallucination-like instabilities in trials of primary parameter selection considering the data 
acquired in recent measurements.

In the next section, the results of computer experiments are reported, although they do not yet cover all pos-
sible selections of primary parameters.

Methods
Computer experiments to implement perceiving attractors in a mathematical model of veridi‑
cal perceptions. Following the idea and the scenario presented in the previous sections, we constructed a 
computational model and implemented computer experiments. The important points in the practical methods 
are described as follows. 

(1) Employment of a binary-state neuron model and discrete time scheme regarding state dynamics of neuron 
network. The neuronal activity of this system is represented by a high-dimensional state vector s.

(2) The number of neuron elements is NV for the visual module, NM for the memory module, and NP for the 
perceiving module; hence, the total number of elements is N = NV + NM + NP . In the present experi-
ments, considering computational performance, NV = 900 , NM = 1200 , and NP = 900 ; therefore, the total 
number of elements is N = 3000.

(3) As an example of perceiving attractors, K limit cycle attractors were employed, where each cycle attractor 
contained periodic L step sequences of state vectors per cycle in visual module and memory module. In 
contrast, L-sequences of one fixed state vector were embedded in the perceiving module, which is meta-
phor of a specific perception, during L-steps of cyclic change in visual and memory modules, as shown in 
the subsequent figures. K = 11, L = 10 were employed in the present experiments based on the authors’ 
experiences when utilizing weak chaos, shown in previous papers, to solve ill-posed problems, such as 
memory search, certain robotic movements, etc., in which rather longer periods of limit cycle attractors 
lead to better functional performances. Here, we introduce only one  reference43 instead of omitting the 
detailed explanations about other studies.

Now, for a simplicity of description, let us begin with updating rule of the state vector in a single module, which 
is defined as

where each si(t) takes discrete values si = ±1 , and N is the total number of neural elements. si = +1 , and 
si = −1 represent “active”, and “non-active” of the i-th neuron, respectively. The state of the system at the time t 
is represented by a N-dimensional state vector s(t) . sgn(u) is the sign function and {wij} is a synaptic connection 
matrix. {ǫij} is a matrix of binary values ǫij = 1 or 0, with 

∑

j εij = rIi  and 
∑

i εij = rOj  , where the connectivity 
parameter rI(O)i (0 ≤ rIi , r

O
i ≤ N) is the number of fan-in and fan-out connection number. Hence, rIi  and rOi  rep-

resent surviving pre- and post-synaptic connections that were not damaged by necrosis due to disease. If we set 
rIi = rOi = 0 for a specified neuron i, then it means that the i-th neuron is interpreted as dead because no input 
can be received and no outcome is given.

Employing the pseudo-inverse method (orthogonalized learning method)44,45, the synaptic connection matrix 
of cycle attractors is given by

(1)si(t + 1) = sgn





N
�

j=1

εijwijsj(t)



, sgn(u) =

�

1 (if u ≥ 0)
−1 (if u < 0)
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where {ξµ,� = (ξ
µ,�
1 , · · · , ξ

µ,�
i , · · · , ξ

µ,�
N ) | ξ

µ,�
i = ±1, µ = 1, · · ·K , � = 1, · · · , L} is a set of attractor states (N 

dimensional state vectors) and we employ the condition ξµ,L+1 = ξµ,1 . K and L are the number of cycles and 
the period of each cycle, respectively. †ξµ,� is the adjoint (conjugate) vector of ξµ,� , which satisfies the ortho-
normal relation †ξα,ρ · ξβ ,σ = δαβδρσ where δ is Kronecker’s δ . We assume that the total number of attractor 
patterns is much less than the number of neurons, KL ≪ N  . When this condition was satisfied, and the con-
nectivity parameter rI(O)i  approached full connectivity rI(O)i = N for all i, then the cyclic sequences of patterns 
used to construct the synaptic connection matrix was stable cycle attractors. Therefore, the network functioned 
as an associative memory in the following way. If s(t) is one of the memory (attractor) patterns ξµ,� , then 
s(t + 1) will be the next memory pattern ξµ,�+1 in the cycle. If s(t) is near the memory pattern ξµ,� then the 
sequence s(t + lL) (l = 1, 2, 3, · · · ) generated by the L-step map converges quickly into the memory pattern 
ξµ,� . Each memory pattern ξµ,� has a set of states Bµ,� , called an attractor basin, such that if s(t) is in Bµ,� , then 
s(t + lL) (l = 1, 2, 3, · · · ) converges into ξµ,�.

On the other hand, if input connectivity rIi  for all i are reduced sufficiently by depletion of the synaptic link 
matrix, the attractors become unstable. Various aspects of the dynamics at reduced connectivity have been dis-
cussed in our previous studies about the network state s(t) . In particular, it has been found that in a regime of cer-
tain small rIi  for all i, chaotic wandering occurs repeatedly but aperiodically in all the areas of state space that were 
attractor basins at full connectivity. These extraordinary situations have been called “chaotic itinerancy”, based 
on the general viewpoint about the roles of chaos in biological information processing, including the  brain46–49.

In the present study, we extended the basic formulation of our recurrent neural network, described above, to 
our three-module model. Let us introduce index κ (or η ) that indicates the visual module (V), memory module 
(M), and perceiving module (P). Therefore, state updating can be achieved with the use of Eq. (1) and Fig. 2

where δ is Kronecker’s δ , so {qi} exists only when κ = V (Visual module), and represents external input signals that 
are set to be arbitrary strength applied to each neuron in visual module sVi  . Additionally, {w(κ ,η)

ij } (κ(η) = V ,M, P) 
represents intramodule and/or intermodule interactions, respectively. {θκi } is the threshold of neurons belong-
ing to each module; in our computer experiments, they play very important roles, as discussed in the previous 
section, which represents the regulatory effects of neuromodulators on the activity levels of entire networks.

In the present experiments, the number of neurons in each module is taken to be 
NV = 900, NM = 1200, NP = 900 . {ε(κ ,η)ij } is a matrix used to categorize a neuron as dead and/or prune the 
intrasynaptic connections in all modules and all intermodule synaptic connections. At present, all elements of 
{ε

(κ ,η)
ij } are taken to be unity, which corresponds to the absence of atrophy in the brain. Updating of all neurons 

and signal transfers in this three-module system is schematically shown in Fig. 3. Red crosses in (a) and thin red 
colors in (b) in Fig. 3 represent that if neurons in a certain module are affected by disease, then defects in neural 
elements and pruned connections corresponding to necrosis of neural cells and/or synaptic connections due 
to disease are schematically shown as in the figure. These aspects are introduced by setting selected elements of 
{ε

(κ ,η)
ij } to null and will be discussed in detail later.

Now, we describe the derivation of the perceiving attractors that were employed in this experiment. As noted 
in the previous section, a total of 11 limit cycle attractors were embedded in this three-module system, where 
each limit cycle consisted of a periodic sequence of 10 patterns, as shown in Fig. 4. As a matter of convenience 
regarding visualization of neuron activity, the state vector in the visual module was represented as 30× 30 bit 
pattern, 30× 40 random bit pattern in the memory module and 30× 30 bit pattern in the perceiving module. 
In state vector representation, we employed {ξµ�} → {(ξ

µ�
V , ξ

µ�
M , ξ

µ�
P )} as a set of perceiving attractors. Hence, 

the total number of components (total dimension) was 3, 000. Note that in the visual and memory modules, 10 
patterns per cycle were embedded; however, in the perceiving module, one fixed pattern was embedded during 
updating to represent recognition perception with ten-to-one correspondence mapping (see Fig. 4), which is 
metaphor of a specific conceptual perception incorporated with many patterns in visual and memory modules.

In Fig. 5, snapshots of the eleven attractors are shown, where each attractor consists of a periodic sequence of 
ten patterns, as shown in Fig. 4 (see Supplementary materials in which cyclic pattern animations with a 10-step 
period are shown). The right side in Fig. 5 shows the first several updating steps after noisy input is applied to the 
visual module. During state update following Eq. (3), state vectors in the three modules converge into the specific 
periodic sequence of embedded attractors that corresponds to veridical perception with respect to noisy input.

Results
Hallucinating‑like destabilization of perceiving attractors due to reduction in characteristic 
neurons and synaptic connectivities. Our next task was to investigate the destabilization of perceiving 
attractors caused by various defects of neural elements and/or those in the synaptic connection matrix where 
they are regarded as areas of the neural network with irreversible but partial damage. In later descriptions, we 
present the results of computer experiments in detail. Here, we discuss the global damage depicted in Fig. 3 
by red color, where the degree of degeneration or defect is not yet specifically shown but it should be roughly 
estimated based on the data, i.e., DTI-MR, MRI, etc., from patients with DLB. A computational representation 
of damage was created; for example, when the Q-th neural element is dead, then all corresponding row and 
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column elements of ε(κ ,η)ij  are set to be null; that is, {ε(κ ,η)Qj = 0, ε
(κ ,η)
iQ = 0 | i, j = 1 ∼ N ; κ(η) = V ,M, P } . 

Impairment or dysfunction of synaptic connections are introduced by specific setting of {ε(κ ,η)ij } . In prin-
ciple, it is possible to introduce dysfunction of presynaptic connectivity and postsynaptic connectivity inde-
pendently; however, without loss of generality, we confined ourselves to only incoming (fan-in) connectiv-
ity in the present experiments for computational simplicity; that is, we employed connectivity parameters as 
∑

j ε
(κ ,η)
ij = r(κ ,η) for all i (i = 1 ∼ Nκ(η)), 0 ≤ r(κ ,η) ≤ Nκ(η) for living neuron elements. Note that the suf-

fix of intra- and intermodule-projection in (κ , η) means η → κ and it is same with suffixes in the matrix W in 
Fig. 3. Note that r(κ ,η) is occasionally written as r(κ←η) to show axonal projections explicitly.

As two characteristic examples of partial damage in the present system, we describe two exemplary cases 
below. 

Figure 3.  (a) Block diagram of our three-module model. (b) Symbolic representation of neuron updating, 
where the red crosses in (a) is schematical images of dysfunctional synaptic connections and the light red color 
in (b) indicate atrophy suggested based on the data obtained by inspection technologies, though this speculation 
is only qualitative. In our computer experiments shown in the text, the quantitative rate of necrosis in each red 
part is determined, as discussed in detail.

Figure 4.  (a) Block diagram of a perceiving attractor in our three module model, where neuron activity 
is represented by bit patterns for convenience sake to visualize them. (b) One of the employed perceiving 
attractors, each of which consists of 10 periodic sequence of bit patterns (state vectors) in each module.
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(1) Destabilization due to “impairment of bottom-up information from the visual module” and simultaneously 
that from the memory module, where r(P←V) + r(P←M) = 1050 with randomly selected configurations 
from 2100 synaptic connections.

(2) Mildly modulated dysfunction of veridical perception due to “fluctuation of thresholds in the per-
ceiving module corresponding to impairment in neuromodulator release”, where we employ 
θP = 0.02sin(2π tn/100).

The former is shown in Fig. 6 (the left side) by a light red color in the synaptic connection matrix and the latter 
depicted is on the right side in the same way. In the former case, neural activity indicates erroneous percep-
tion initially but ultimately produces veridical perception. In the latter case, even rather strong input results in 
a mix with other perceptions depending on fluctuations of thresholds in the perceiving module, where in the 
Supplementary materials of this paper, readers are able to see the corresponding animations describing the time 
course of neural activity. Thus, this information suggests that very slowly varying impairments of neuromodula-
tor release from the basal ganglia may account for the appearance frequency of hallucinations in patients with 
RCVH-DLB, for instance, one time per day or a few times per week.

Now, we introduce all the factors of cell death and dysfunction of synaptic connections in brain diseases that 
were considered; however, it should be noted that this model includes a large number of parameters, that is, 

(1) The number and configurations of dead neural elements in the three modules
(2) The number and configurations of dysfunctional intra- and/or inter-module synaptic connections in the 

three modules, where it is possible to choose both or either presynaptic and/or postsynaptic connections

It is almost impossible to investigate all potential bifurcation phenomena in the destabilization of perceiving 
attractors due to a combinatorial explosion that would occur when selecting a large number of parameters even if 
we estimated them based on observed or measured data acquired by MRI, PET, DTI-MR, SPECT, etc. Moreover, 
one should be aware that all data have considerable uncertainty not only due to the individuality of patients but 
also due to the inaccuracy inherent in measurements, particularly the number of dead cells and configurations, 
the number of surviving synaptic connections and the configurations, acquired by noninvasive techniques.

Thus, it is unavoidable to rely on a “trial and error” approach even after selecting a certain set of parameter 
values, which means that we should try changing connectivity and configuration parameters around the chosen 
value set. In our experiments, for example, once specific amounts of dead cells belonging to one module were 
selected, then several options were executed, each of which has a different random configuration under the same 
necrosis number. When the results show similar phenomena with high probability in given number of trials, 

Figure 5.  (a) Eleven perceiving attractors were used; where each attractor (limit cycle) contains 10 periodic bit-
pattern sequences in each module. (b) An example of a converging update of neural activity from noisy inputs, 
which corresponds to veridical perception. Note that regardless of how noisy or deformed input deviating from 
the embedded 10 patterns is incorporated into the visual module, updating the activity gives the same fixed 
pattern in the perceiving module. This means that “ten to one correspondence mapping” was embedded in 
all perceiving attractors and is regarded as a metaphor of concept formation via veridical perceptions. In the 
Supplementary materials of this paper, readers are able to see animations of the time course in neural activity 
updating.
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then they were regarded as “typical cases” occurring in the selected parameter set. It is possible to find many 
typical cases of hallucination-like instabilities by means of manageable trials in which parameters of cell death 
and the number of degenerated synaptic connections are assessed by executing them in different configurations. 
Two such typical cases are shown in Fig. 7. Both cases show hallucination-like erroneous perception but do not 
appear in the other parameter values as long as the values are considerably different. Thus, it should be noted 
that their occurrences are not deterministic but quasi-deterministic, as observed in complex systems, including 
the brain. Readers are able to see the corresponding animations describing the time course of neural activity in 
the Supplementary materials of this paper.

Discussion and concluding remarks
In the brain, veridical perception is supported and/or sustained by collective fields that exchange advanced 
information via interaction among many regions (lobes) while maintaining self-consistency. A small number of 
defective cells and/or synaptic connections do not severely affect collective fields; however, gradual accumulation 
of irreversible damage due to disease or aging, etc., will cause systems to approach edge of instability, which we 
call destabilization of perceiving attractors in the present case. Thus, by means of computer experiments in our 
drastically simplified model, we can see “metaphoric phenomena of RCVH” in complex bifurcation phenomena 
associated with destabilization of perceiving attractors in large dimensional state space of artificial neurons activ-
ity, as typical corresponding phenomena of RCVH-DLB summarized in Fig. 8. Here, we note that there are a 
considerable number of cases of hallucinations in which multiple patients in the same location report the same 
hallucination (D. Collerton et al. 2016). One perspective suggests that hallucinations could be induced by certain 
stationary bias resulting from specific deficits of neural functioning. However, it should be noted that there are 
also many cases in which the appearance of hallucinations is not as stationary as shown in the same reference 
and others. In particular, hallucinations of insects and/or animals tend to appear nonstationary. Therefore, from 
the perspective of pathological observations in neural systems, certain systematic defects do not always evoke 
specific hallucinations. Additionally, we have shown that such phenomena in our computer experiments should 
be described as neither “accidental occurrence” nor “deterministic occurrence”, because completely random cell 
death and random pruning of synaptic connections certainly does not destabilize perceiving attractors in a way 
that would cause hallucination-like bifurcations; moreover, we are unable to state that a specific set of parameters 
definitely creates a specific hallucination-like bifurcation structure in destabilizing situations.

Figure 6.  (a) An example of deficits in bottom-up information giving rise to erroneous perception initially 
but finally resulting in veridical perception. (b) When thresholds of the perceiving module fluctuate, even 
rather strong input leads to erroneous perception. Thus, if there are very slow variations in the fluctuations 
of neuromodulator release due to basal ganglia impairments, it may account for the appearance frequency 
of hallucinations in patients with RCVH-DLB, for instance, one time per day or a few times per week. In the 
Supplementary materials of this paper, readers are able to see animations of the time course in neural activity 
updating.
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These situations have been observed in many complex systems in nature, including biological systems, as criti-
cal phenomena (precursor phenomena) associated with phase transitions occurring in many-body (nonlinear) 
systems. It is generally accepted that, as one of the typical dynamic processes of destabilization, various kinds of 
fluctuations occur transiently but do not decay in short periods of time. These transient dynamics are unpredict-
able on a long time scale and are called “weak chaos or critical fluctuations”in the physics of phase transitions, 
particularly in systems that have finite but large degrees of freedom, such as biological systems.

If the occurrence of such weak chaos results from certain harnessing mechanisms, for instance, functional 
actions of inhibitory neurons in neural networks, then they are functionally useful and effective dynamics. Thus, 
these mechanisms can be used to create adaptive functions that are sensitive in their responses to changes in 
environments, i.e., a point that the authors have insisted  upon46–49. However, when these results (instabilities) 
are due to irreversible necrosis of active elements caused by diseases or injuries, such weak chaos is regarded 
as a pathological symptom that indicates precursor phenomena of functional breakdown and make systems 
susceptible to network diseases.

Our computational model and computer experiments show that instabilities in this model network cause 
hallucination-like destabilization to occur in rather rare combinations of necrosis of characteristic neurons 
and synaptic connections in visual perception systems. However, correspondences between the data obtained 
by advanced measurement technologies and our computational model are far from an expected unified view-
point of measurements and theoretical considerations. We must recognize that a detailed understanding of the 

Figure 7.  (a) Red colors in the block diagram of each module and association fibers (synaptic connection) 
shown by arrows indicate atrophy obtained by noninvasive measurement technologies, MRI, DTI-MR, etc., 
where the numbers (the rate of necrosis) were determined [after trial and error] of executing experiments 
around the speculated values suggested by measurements. The sizes of the red circles are proportional to the rate 
of necrosis in each module and connectivity, but only the red circle of the basal ganglia represents the threshold 
change due to necrosis. It should be noted that by noninvasive measurement, no atrophy was detected in the 
association fibers (uncinate fasciculus) between the temporal module and perceiving module; however, in the 
present model, synaptic connections were lacking due to cell death in the memory (temporal) module and 
perceiving (prefrontal) module, which were not indicated explicitly. Activity patterns show hallucination-like 
perception in response to noisy input into the visual module, where cell death numbers and degenerate numbers 
of synaptic connections are depicted in the figure. (b) Another example of hallucination-like perception for 
different noisy inputs. In the Supplementary materials of this paper, readers are able to see animations of the 
time course in neural activity updating.
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mechanisms of RCVH-DLB remains obscured by the difficulty of complex hierarchical systems consisting of 
finite but large degrees of freedom that nonlinearly interact with each other.
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