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ABSTRACT Software data sets derived from actual software products and their development processes are
widely used for project planning, management, quality assurance and process improvement, etc. Although
it is demonstrated that certain data sets are not fit for these purposes, the data quality of data sets is often not
assessed before using them. The principal reason for this is that there are not manymetrics quantifying fitness
of software development data. In that respect, this study makes an effort to fill in the void in literature by
devising a new and efficient assessment method of data quality. To that end, we start as a reference from Case
Inconsistency Level (CIL), which counts the number of inconsistent project pairs in a data set to evaluate
its consistency. Based on a follow-up evaluation with a large sample set, we depict that CIL is not effective
in evaluating the quality of certain data sets. By studying the problems associated with CIL and eliminating
them, we propose an improved metric called Similar Case Inconsistency Level (SCIL). Our empirical
evaluation with 54 data samples derived from six large project data sets shows that SCIL can distinguish
between consistent and inconsistent data sets, and that prediction models for software development effort
and productivity built from consistent data sets achieve indeed a relatively higher accuracy.

INDEX TERMS Data quality metric, data inconsistency, software project data analysis, software effort
estimation, software productivity estimation.

I. INTRODUCTION AND MOTIVATION
In early stages of a software development project, various tar-
get values, such as development effort, software productivity,
defect density, etc. need to be estimated, typically by referring
to the data from other past projects using machine learning
techniques [1], [7], [34]. However, if the quality of such data
is low, these estimation techniques may not work efficiently
or may behave in unexpected ways [18].

Although the benefits of assessment of data quality are
self-evident, according to a systematic review by Liebchen
and Shepperd, only 23 out of hundreds of articles explicitly
addressed this issue [22]. In that respect, Liebchen and
Shepperd emphasize that researchers should pay more
attention to the quality of data, before deploying it.

According to the taxonomy proposed by Bosu et al. [6],
[7], data quality challenges in empirical software engineer-
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ing (ESE) include specifically outliers [21], [27], noise [11],
[15], [19], data incompleteness [8], [19], [31], data inconsis-
tency [9], [18], [32], and redundancy [13].

To the best of our knowledge, Case Inconsistency Level
(CIL) is the only data inconsistency metric proposed to
date [28]. According to [28], inconsistency is characterized
by project cases with conflicting feature values. Table 1
illustrates such a conflict on an excerpt from the China
data set [24]. Specifically, each row of Table 1 represents a
software project and each column represents a project feature
[14], [24]. When we look closely at projects ID 2 and ID 5,
we see that they appear to have very similar characteristics,
but the development effort of project ID 5 is more than five
times greater than that of project ID 2. CIL evaluates the
quality of a data set based on the number of such inconsistent
pairs.

In this study, we first conduct a follow-up evaluation of CIL
using a large sample set, and show that CIL is not effective
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TABLE 1. Example of software project data set (excerpt from China data set [24].

in assessing the quality of certain data sets. Based on our
analysis of ineffective cases, we propose an improved metric
called Similar Case Inconsistency Level (SCIL).

Incorporating SCIL with various distance metrics and pre-
processing methods, we empirically determine an efficient
execution mode.1 Applying it on 18 sets derived from six
large project data sets from the SeaCraft repository of ESE
data [24],2 we distinguish between consistent and incon-
sistent data sets. Finally, we show that effort/productivity
estimation models built from data sets identified as consistent
by SCIL achieve indeed a relatively high accuracy.

The rest of the article is organized as follows: We elaborate
on the definition of CIL in Section III and discuss its issues
in Section IV through a follow-up evaluation. In Section V,
we propose a new improved metric SCIL and evaluate it
in detail and compare it to CIL in Section VI. Section VII
provides a discussion on experimental validation. Finally,
we conclude the article and discuss future prospects in
Section VIII.

II. BACKGROUND AND RELATED WORK
While there are many different definitions and views on
data quality, the most widely accepted definition is based
on ‘‘fitness for purpose’’ [6], [20], [22], [29]. Specifically,
Mocnik et al. define ‘‘fitness for purpose’’ as the affordance
of data to be interpreted and used in a context that renders a
certain usage, that is, the purpose, possible [26].

Adopting the point of view, this study handles data
quality in relation to a specific ‘‘purpose’’, namely ‘‘con-
struction of effort/productivity estimation models’’. The
reason for choosing this purpose is (i) the importance of
effort/productivity estimation in software project planning
and (ii) the large number of attempts in effort/productivity
estimation from empirical data (i.e. based on actual historical
data sets) [1], [2], [12], [30], [31], [36].

1Here, by ‘‘efficient execution mode’’ we refer to the incorporation
of SCIL with the best performing combination of distance metric and
pre-processing methods (among those that we experimented with).

2SeaCraft stands for ‘‘Software Engineering Artifacts Can Really Assist
Future Tasks’’, is an open access repository accumulating various software
development project data sets provided to software engineering researchers
and practitioners for analyzing/tackling real-life challenges.

Bosu et al. [6] point out that data quality issues in ESE
can be broken-down into three main classes as (i) accuracy,
(ii) relevance and (iii) provenance. Specifically, accuracy
refers to the correctness of the data,3 whereas relevance refers
to the appropriateness of data for developing a model and
provenance refers to the accessibility and trustworthiness of
data.4

The data quality assessment framework of this study
excludes the use of non-relevant and inaccessible data, which
can be associated also with the flaws in scientific procedure
rather than issues with the data set. In that respect, we focus
mainly on the accuracy aspect in determining data quality.
Note also that from the point of view of our purpose
(i.e. effort/productivity estimation), accuracy is particularly
important [6], since high estimation accuracy is essential in
efficient project planning and control.

According to [6], accuracy issue can further be
broken-down into five sub-issues as outliers, noise, inconsis-
tency, incompleteness and redundancy. We recognize that the
aspects like outliers, noise, incompleteness, and redundancy
are important factors that determine accuracy and, in turn,
data quality. Nevertheless, we let them remain beyond the
scope of this investigation and focus on data inconsistency in
determining quality of a data set.5

Liebchen and Shepperd [19] state that inconsistent data is
the one that cannot be easily explained. More specifically,
Bosu et al. [6] state that inconsistency means a lack of
harmony between different parts or elements in a data set
(i.e. instances conflicting within themselves or between each
other).

According to the survey by Phannachitta et al., at the
time of their study there was no existing software metric
that could directly quantify the level of consistency in ESE
data sets [28]. This lack of procedure motivated Phannachitta
et al. to develop a software metric for evaluating the
inconsistency level of a data set. In that respect, they
proposed a metric called Case Inconsistency Level (CIL)
[28]. However, as explained in Sections IV and IV-F, CIL has
some serious problems, which this study identifies and offers
a solution for.

3Namely, absence of noise.
4In other words, provenance is related to the possibility of experimental

replication.
5In that respect, when we mention ‘‘quality of a data set’’ in the rest of

text, we refer specifically ‘‘its data consistency’’.
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III. REVISITING CIL
In this section, we will first define the variables and concepts
essential for computing CIL. We will then explain the basic
idea underlying CIL and provide its formal definition.

Let D be a data set of N software projects,

D = {pi, 1 ≤ i ≤ N } , (1)

where pi stands for the ith project (or equivalently its feature
vector).

Let the feature fm∗ represent the estimation target and
consider that all other features, i.e. fm such that m 6= m∗,
are disposable for estimating its value. Henceforth, we refer
to fm∗ as ‘‘estimation target variable’’ (or simply as ‘‘target
variable’’) and fm as ‘‘estimator variables’’.

Suppose that PD stands for the set which contains all
possible pairs of different projects belonging to the data
set D,

PD =
{
pij | pi,pj ∈ D, i ≤ j

}
, (2)

where pij is simply an unordered pair (pi,pj).6

A. CONCEPTS ESSENTIAL IN COMPUTING CIL
In this section, we will explain two concepts which are
essential in computing CIL, namely the Interpolated Value
Difference Metric (IVDM) and normalized rank of relative
similarity.

1) INTERPOLATED VALUE DIFFERENCE METRIC
Let Q(v) denote a function, which discretizes continuous
input values v into C intervals with an equal width of
δ. In addition, suppose that Q̄(v) is the mid-point of the
discretization bin corresponding to input v.

Let P′(Q (p[fm∗ ]) = c|p[fm]) denote the conditional
probability that the estimation target variable fm∗ is mapped
to the discretization bin c given the value of the estimator
variable fm. This conditional probability can be expressed as
in Equation 3, shown at the bottom of the page.

Interpolated Value Difference Metric (IVDM) is defined in
terms of the difference in such conditional probabilities,

IVDM
(
pij, fm∗

)
=

∑
fm

C∑
c=1

(
P′
(
Q
(
pi[fm∗ ] = c | pi[fm]

))

−P′
(
Q
(
pj[fm∗ ] = c | pj[fm]

)))2

(4)

6Note that (pi,pj) and (pj,pi) are essentially the same. In such, we opt
for setting i ≤ j in Equation 2 so as to eliminate the redundancy in notation.

2) NORMALIZED RANK OF RELATIVE SIMILARITY
The normalized rank of relative similarity is denoted with
dNR and computed based on the probabilistic similarity
measure IVDM.

Let S be a set of real numbers and suppose that rank(s, S)
returns the index of one of its elements s, when S is sorted in
ascending order. Namely,

rank(s, S) = #
({
s′|s > s′, s′ ∈ S

})
, (5)

where #(·) returns the number of elements of a set.
In order to compute dNR relating to target variable fm∗ ,

firstly IVDM values concerning all pairs of projects in PD
(i.e. IVDM (PD)) are computed. These values are then ranked
using Equation 5 and normalized as in Equation 6,

dNR
(
pij, fm∗

)
=

rank
(
IVDM

(
pij, fm∗

)
, IVDM (PD, fm∗)

)
#(PD)− 1

. (6)

Note that here the rank value in the numerator is inherently
between 0 and #(PD)− 1, which means that dNR ∈ [0, 1].7

The normalized rank of relative similarity is often consid-
ered to be a better distance function than the conventional
Euclidean distance when used in predictive models [3], [4].

B. DEFINITION OF CIL
According to [28], a project pair pij is regarded to be
inconsistent, if at least one of the following conditions is
satisfied:
(R1) pi and pj are dissimilar in terms of the target variable

fm∗ , although they are very similar in terms of the
estimator variables fm.

(R2) pi and pj are similar in terms of the target variable fm∗ ,
although they are dissimilar in terms of the estimator
variables fm.

In addition, a ‘‘consistent data set’’ is considered to be a
data set free of inconsistent pairs, i.e. involving no cases of
(R1) or (R2). On the other hand, an ‘‘inconsistent data set’’
is a data set with non-zero cases of (R1) or (R2), where the
level of its inconsistency can simply be evaluated in terms of
the rate of inconsistent pairs to all pairs.

In that respect, for assessing the level of inconsistency of a
data set with CIL, it is necessary to find the number of cases
associated with (R1) and (R2). To that end, the similarity or
dissimilarity of each project pair pij concerning (1) the target
variable fm∗ and (2) estimator variables fm need to be judged.

7In other words, Equation 6 applies a MinMax normalization on the rank
given by Equation 5.

P′
(
Q
(
p[fm∗ ]

)
= c | p[fm]

)
= P

(
Q
(
p[fm∗ ]

)
= c | Q

(
p[fm]

))
+
p[fm]− Q̄

(
p[fm]

)
δ

·

(
P
(
Q
(
p[fm∗ ]

)
= c | Q

(
p[fm]

))
− P

(
Q
(
p[fm∗ ]

)
= c | Q

(
p[fm]

)
+ 1

))
(3)
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1) JUDGING SIMILARITY OF THE TARGET VARIABLE
The similarity of a project pair pij in terms of the target
variable fm∗ is assessed based on their relative distance.
Specifically, we denote the relative distance of a project pair
pij in terms of the target variable fm∗ with dR

(
pij, fm∗

)
,

dR
(
pij, fm∗

)
=

∣∣pi[fm∗ ]− pj[fm∗ ]
∣∣

pi[fm∗ ]+pj[fm∗ ]
2

. (7)

If dR
(
pij, fm∗

)
is smaller than 1, i.e.

dR
(
pij, fm∗

)
< 1, (8)

then the project pair pij is considered to have similar target
variables. Otherwise (i.e. dR

(
pij, fm∗

)
≥ 1), it is regarded to

have dissimilar target variables.

Let
≈

PD,m∗ denote the set of project pairs in D with similar
target variable fm∗ :

≈

PD,m∗ =
{
pij
∣∣ dR (pij, fm∗) < 1, pij ∈ PD

}
. (9)

Moreover, let
6≈

PD,m∗ denote the set of project pairs with
dissimilar target variables fm∗ :

6≈

PD,m∗ =
{
pij
∣∣ dR (pij,m∗) ≥ 1, pij ∈ PD

}
. (10)

2) JUDGING SIMILARITY OF ESTIMATOR VARIABLES
The similarity of a project pair pij in terms of the estimator
variables fm is assessed based on their normalized rank of
relative similarity dNR.

Let
≈

PD,m denote the set of project pairs with similar
estimator variables fm.

≈

PD,m =
{
pij
∣∣ dNR (pij, fm) < α, pij ∈ PD

}
, (11)

where α is a threshold in the interval between 0 and 1.

In addition, suppose that
6≈

PD,m is the set of project pairs with
dissimilar estimator variables fm.

6≈

PD,m =
{
pij
∣∣ dNR (pij, fm) ≥ 1− α, pij ∈ PD

}
. (12)

Note that when α ≤ dNR
(
pij, fm

)
< 1 − α we do not regard

the project pair pij to be neither similar nor dissimilar in terms
of the estimator variables.

3) EXPLICIT FORMULATION OF CIL
Let PD,R1 denote the set of inconsistent project pairs of D,
which satisfy (R1). Then, PD,R1 can be written as

PD,R1 =
{
pij| pij ∈

6≈

PD,m∗ , pij ∈
≈

PD,m

}
. (13)

Let PD,R2 denote the set of inconsistent project pairs of D,
which satisfy (R2). PD,R2 is simply

PD,R2 =
{
pij| pij ∈

≈

PD,m∗ , pij ∈
6≈

PD,m

}
. (14)

FIGURE 1. Distribution of relative distance dR of the target variable fm∗
and normed rank distance dNR of estimator variables fm concerning two
hypothetical data sets D1 and D2. The solid curve shows the linear fit for
both data sets. The vertical dashed lines illustrate dNR = α and
dNR = 1− α for α = 0.3 and the horizontal dashed line marks dR = 1.

Putting together the information on similarity/dissimilarity
of the target variable and estimator variables, CIL concerning
the data set D can be expressed as

CIL(D) =
#
(
PD,R1

⋃
PD,R2

)
#(PD)

. (15)

For two hypothetical data sets D1 and D2, Figure 1
illustrates the distribution of relative distance dR of target
variables fm∗ and normed rank distance dNR of estimator
variables fm. Here, the shaded region in the upper left corner
corresponds to (R1) and the region in the lower right corner
corresponds to (R2) mentioned in Section III-B.

One may see in Figure 1 that there are no project pairs
in D1, which meet the conditions stated in (R1) and (R2).
Thus, D1 is free of inconsistencies and has high data quality.
On the other hand, there are a non-zero number of cases
in D2 corresponding to (R1) and (R2). Such inconsistencies
indicate that D2 has a lower data quality than D1.

IV. FOLLOW-UP EVALUATION OF CIL
In the follow-up evaluation of CIL, we keep certain properties
of evaluation same as Phannachitta et al. [28] and change
certain others to get a better insight into the performance of
CIL. In particular, the estimation target variable, estimator
variables and performance evaluation metrics are kept the
same to have a fair comparison with the original study [28].8

On the other hand, the number and variety of data sets
are increased to provide a more comprehensive evaluation.
In addition, the experiment procedure is modified by
diversifying experimental runs with cross-validation and
testing with various values of the threshold α. In this section,
we first elaborate on each of these experimental factors and
then present experimental results.

8Note that in the experiments, we use C = 5 as recommended in the
original IVDM study [35].
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TABLE 2. Reference data sets employed in this study.

A. DATA SETS AND PRE-PROCESSING
In [28], four data sets are employed in assessing the efficiency
of CIL, where one particular data set, i.e. Kemerer [37], is a
very small one, containing only 15 projects.

Here, in this follow-up evaluation of CIL, we conduct more
extensive experiments using six reference data sets shown in
Table 2. Note that these data sets are published as part of the
SeaCraft repository [24] and are relatively large, containing at
least 48 projects. And China data set contains projects from
many Chinese companies, Coc81dem and Nasa93 data sets
contain NASA projects, Desharnais data set contains projects
from aCanadian company,Maxwell data set contains projects
from banks in Finland, Miyazaki data set contains
projects developed in COBOL language.

As for pre-processing, no particular operation is carried out
following the same strategy of [28]. Note that this helps us
make a direct and fair comparison with the results reported
in [28]. In addition, it helps us to confine our analysis to
the evaluation of CIL and especially to the cases where it
fails more frequently, rather than digressing the discussion
towards what pre-processing operations are necessary or how
they should be tuned etc.

Nevertheless, we of course recognize that there may
be certain data treatment techniques, which may reflect
as an improvement on the efficacy of CIL. In order to
address such aspects, we choose in Section VI certain pre-
processing operations and apply them on both CIL and the
proposed metric SCIL. In this way, we point out how much
improvement can be obtained in CIL due to pre-processing,
and how much the proposed metric can improve further over
that.

B. TARGET VARIABLE AND ESTIMATION MODEL
Similar to [28], in the follow-up evaluation, we consider
‘‘effort’’ to be target variable and use all other variables in
the data sets to estimate its value.

As for the estimation method, we used Classification and
Regression Trees (CART) [17] with tree pruning based on
the error rates in cross-validation, since it is discussed by
Phannachitta et al. to be the most efficient estimator [28].9

C. EXPERIMENT PROCEDURE
In the experiments, we conducted 3 repetitions of 3-fold
cross-validation for each data set, as illustrated in Figure 2.
Specifically, we randomly split a source data set into

9Note that in Section VI-B we reassess this claim.

FIGURE 2. Experiment procedure. The blue blocks are common in all
experiments, whereas the solid pink block (i.e. estimation model) varies
between experiments. The dashed pink blocks are not used in the
follow-up evaluation of CIL as in [28]. But they are used in used in
comparing CIL and SCIL in Section VI-F.

3 subsets. Then, we conduct three rounds of model con-
struction and model evaluation, each of which employs two
subsets in model construction. In each case, the remaining
subset is used for evaluation. Eventually, we used 54 data
samples derived from the six data sets shown in Table 2. The
CIL values are calculated based on the fit subset in each case
and their correlation with estimation error is examined.

We expect this series of experiments to mitigate the effect
introduced by the random splitting (of the source data into
test and fit data) on estimation results and provide a better
understanding of stability of performance.

D. ESTIMATION ERROR
For measuring estimation error, similar to Gupta et al. we
use Mean Magnitude of Relative Error (MMRE) [12], which
is commonly used in effort estimation studies. In particular,
we denote the Magnitude of Relative Error (MRE) of project
pi concerning an estimation target variable of fm∗ with
MRE(pi[fm∗ ]) and compute it as,

MRE(pi[fm∗ ]) =
|pi[fm∗ ]− p̂i[fm∗ ]|

pi[fm∗ ]
, (16)

where p̂i[fm∗ ] denotes the estimated value of fm∗ for project
pi. Then, MMRE concerning a data set D is computed as the
mean value of MREs concerning all projects in D,

MMRE(D) =
1

#(D)

∑
pi∈D

MRE (pi[fm∗ ])

 . (17)

E. ASSESSMENT OF EFFICACY OF CIL
The efficacy of CIL is assessed based on its correlation with
MMRE. Namely, if a data set is of high quality, then the
rate of data points satisfying (R1) and (R2) should be small,
yielding a low CIL. Similarly, for a data set of high quality,
the estimation error (i.e. MMRE) should be small. On the
contrary, a low quality data set is expected to have more data
points satisfying (R1) and (R2), thus to have a higher CIL, and
also to suffer from high estimation error (i.e. high MMRE).
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FIGURE 3. Relationship between CIL and MMRE in effort estimation with
thresholds of (a) α = 0.1, (b) α = 0.3 and (c) α = 0.5.

TABLE 3. Correlation coefficients R concerning MMRE and CIL values in
the follow-up evaluation (without pre-processing).

Therefore, CIL and MMRE are expected to be positively
correlated. Specifically, the correlation between CIL and
MMRE is represented with R and computed as

R =
Cov(CIL,MMRE)

σCILσMMRE
. (18)

F. RESULTS OF THE FOLLOW-UP EVALUATION
Figure 3 and Table 3 show the results of our follow-up
evaluation. By examining the distribution of CIL and MMRE
values in Figure 3, one may judge in a qualitative way that
there is no strong correlation between them for any of the α
values.

In addition, Table 3 proves in a quantitative way that there
is very little correlation between CIL and MMRE (R < 0.4)
in all cases. In that respect, the current form of CIL is shown
not to be effective in assessing data quality of software project
data sets.

V. DEFINITION OF SCIL
In order to improve the efficacy of CIL, we first contemplate
on the reasons for its poor performance in the follow-up

FIGURE 4. Distribution of relative distance dR of the target variable and
normed rank distance dNR of estimator variables for (a) Desharnais and
(b) Coc81dem data sets. These values are obtained with 3-fold
cross-validation and α = 0.3.

analysis. To that end, we focus on two particular data sets,
namely Desharnais [10] and Coc81dem [5], and take a closer
look at their properties.

The distribution of relative distance dR of the target
variable and normed rank distance dNR of estimator variables
for Desharnais data set is presented in Figure 4-(a). For the
threshold value α = 0.3, the relating CIL value is found to be
0.239, whereas MMRE is found to be 0.347.

The distribution of relative distance dR of the target
variable and normed rank distance dNR of estimator variables
for Coc81dem data set is presented in Figure 4-(b). Here,
the CIL and MMRE values are found to be 0.154 and 1.768,
respectively, for the same threshold value α = 0.3.

Based on CIL values, Coc81dem seems to have better
data quality than Deshairnais. However, based on the MMRE
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values, Deshairnais seems to have a superior data quality over
Coc81dem, a contradicting conclusion to CIL.

The reason for this contraction is considered to be the
assumption of CIL that the contributions of the data points
lying in the two regions of (R1) and (R2) to deterioration of
data quality are virtually the same. We claim that the data
in (R1) and (R2) contribute to data inconsistency in different
ways and elaborate on our reasoning based on Figure 4.
The (R1) region, which corresponds to the projects with

similar target variables and dissimilar estimator variables,
accommodates 7.1% of the data points in Figure 4-(a),
whereas it accommodates 13.3% of the data points in
Figure 4-(b). On the other hand, the (R2) region, which
corresponds to the projects with similar target values but
dissimilar estimator variables, accommodates 16.9% of the
data in Figure 4-(a), whereas it accommodates 2.1% of the
data in Figure 4-(b). In other words, the percentage of data
points in (R2) of Figure 4-(a) (16.9%) is much larger than
that of Figure 4-(b) (2.1%).
As a matter of fact, concerning effort, it is not uncommon

that dissimilar estimator variables have very similar effort
values. This indicates that it is not appropriate to focus on
(R2) region in evaluating data inconsistency and that it is
better to pay regard rather to (R1) region.

Based on such contemplation, we propose improving
CIL by focusing on inconsistencies due to data points
in the (R1) region. We call the improved metric Similar
Case Inconsistency Level (SCIL) and define it explicitly as
follows:

SCIL(D) =
#
(
PD,R1

)
#(PD)

. (19)

VI. PERFORMANCE COMPARISON OF CIL AND SCIL
In this section, we carry out a new performance of assessment
for CIL taking in consideration the impact of several data pre-
processing operations. In addition, we test SCIL with exactly
the same conditions concerning this secondary re-assessment
of CIL and ensure an objective (unbiased) comparison.

A. DATA SETS AND PRE-PROCESSING
In evaluating the efficacy of the proposed metric SCIL and
comparing it to that of CIL, we used the data sets reported
in Table 2 and the experiment procedure with 3-fold cross-
validation defined in Section IV-C (see also Figure 2).
However, unlike [28] and Section IV,we considered

three kinds of pre-processing operations and applied them
on the data set before computing CIL as well as SCIL.
Specifically, the pre-processing operations are normalization,
weighting and log-transformation, which are detailed in
Sections VI-A1, VI-A2 and VI-A3, respectively.

1) NORMALIZATION OF FEATURES
Although normalization is a crucial part of data
pre-processing in software analytics, Phannachitta et al. do
not consider any normalization in [28]. However, the data
sets under investigation contain variables from significantly

different value ranges. In that respect, normalization is
necessary to make sure that the project variables have a
balanced influence on the calculation of distance metrics.
In this study, we consider two alternatives for normalization,
i.e. MinMax normalization and Z-score normalization (also
known as standardization, see Appendix II) for determining
the more effective normalization scheme for the target
variable in focus.

2) WEIGHTING
Weighting is another common data pre-processing tool in the
analysis of software industry data and is omitted in [28]. Yet,
it is plausible that different estimator variables are likely to
have different influence on the target variable, which can be
dealt with by asserting different weights on them through the
correlation coefficient. In our study, we opt for weighting the
estimator variables as follows:

weighted(pi[fm]) = pi[fm]× Corr
D

(fm∗ , fm), (20)

where Corr
D

(fm∗ , fm) is Pearson’s correlation coefficient

between the estimation target fm∗ and estimator variable fm
in data set D.

Note that in analyzing the effect of weighting in
Section VI-F, we report the results of the experiments
with and without weighting and point out the benefits and
drawbacks.

3) LOG TRANSFORM
Kitchenham andMendes empirically showed that logarithmic
transformation helps in improving effort estimation accuracy
[16]. Thus, we decided to perform experiments involving
also a logarithmic transformation preceding estimation of
target variables. Note that when we employ logarithmic
transformation, it is applied on both the target variable
and the estimator variables prior to model construction.10

In Section VI-B we compare the performance of several
estimation schemes with and without log transformation, and
select the best one to be deployed in the experiments.

B. TARGET VARIABLES AND ESTIMATION MODELS
As mentioned in Section II, it is common in ESE to use
‘‘effort’’ and/or ‘‘productivity’’ as target variables in analyz-
ing software project data sets. In that respect, in investigating
the efficacy of SCIL and comparing it to that of CIL,
we diversify target variables by considering both ‘‘effort’’ and
‘‘productivity’’.

While effort refers to the amount of the professional activ-
ity in man-hours to complete a project (e.g. by developers,
testers etc.), productivity is generally defined as the size
of development per unit effort. Specifically, we employ the
following definition for productivity,

Productivity =
FP

Effort
, (21)

where FP stands for the ‘‘function point’’.

10For variables containing 0, the offset value 1.0 is added before the
transformation.
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TABLE 4. Ranking of effort estimation models with respect to ascending
values of MMRE.

Note that not all data sets in Table 2 involve FP as a project
feature. However, these sets involve ‘‘lines of code’’ (LOC ),
which can be used as a replacement in Equation 21 (for the
purpose of this study). In that respect, if the data set under
investigation involves FP as a project feature, we compute
productivity as in Equation 21, and otherwise we replace FP
with LOC .

In effort estimation studies, linear regression technique is
commonly used [14], [16]. Besides, CART with tree pruning
based on the error rates in cross-validation [17] (hereafter
denoted as CART + Tree pruning) is shown to be the best
method in the original CIL study [28]. Furthermore, Random
Forest technique is shown to be a promising method in recent
effort estimation studies [1], [2], [33]. Therefore, we employ
all these models and select the model with the smallest
estimation error to evaluate and compare CIL and SCIL.

Table 4 shows the result of effort estimation of the
above models with/without logarithmic transformation.11

According to Table 4, the minimum estimation error is
obtained by the Random Forest technique with logarithmic
transformation. Note that as mentioned in Section IV-B,
Phannachitta et al. claim the best performing estimator to be
CART+ Tree pruning in [28]. However, based on the results
presented in Table 4, we observe that Random Forest with
logarithmic transformation performs even better. Therefore,
in Section VI-F, we carry out performance evaluation and
comparison of CIL and SCIL based on Random Forest
technique with logarithmic transformation.

Finally, we note that the integration of pre-processing
operations and the improvement of the estimator model are
expected to enhance the performance of CIL reported in
Section VI-F. In order to provide an insight how much
these two modifications contribute to it, in Appendix III,
we first integrate a pre-processing module to the original
framework of CIL and then change the former estimator
(CART+Tree pruning) with a more competent one (Random
Forest). By this means, we assess the improvement that can
be expected on CIL by applying such extras/fine-tuning.

C. EXPERIMENT PROCEDURE
Similar to Section IV, we repeat 3-fold cross-validation
3 times yielding 54 different experimental runs (see also
Section IV-C). In addition, we employ different combina-
tions of distance functions, normalization techniques and

11Note that + and - denote an experiment with and without log-transform,
respectively.

weighting or not to find which combination works best, and
ensure a comprehensive assessment.

As explained in Section III-B, Phannachitta et al. employ
IVDM in computing dNR(pij, fm∗ ). However, it is not clear
whether IVDM is the best distance function to evaluate
relative difference of projects or whether alternative metrics
can perform better. Therefore, we compute the proposed
SCIL metric as well as the previously proposed CIL metric
using three different distance functions: Euclidean Distance
dE , cosine distance dC (see Appendix I), and IVDM.
We contrast the performance values for figuring out which
distance function is most appropriate.

In addition, at each run three different threshold values
α ∈ {0.1, 0.3, 0, 5} are used in computing dNR. Namely, the
similarity or dissimilarity of estimator variables are judged at
varying degrees. Namely, higher values of α imply a broad
range for inconsistency (for that matter also consistency),
whereas lower values of α leave more space for ambiguity
(i.e. regarding the estimator variables as neither similar nor
dissimilar).

D. ESTIMATION ERROR
In assessing the performance of CIL and SCIL, we use mean
MMRE12 as the estimation error similar to the follow-up
evaluation of CIL reported in Section IV.

E. ASSESSMENT OF EFFICACY OF SCIL
Based on the apprehension that a more consistent data
set is likely to contribute to a more accurate estimation
model, we evaluate CIL and SCIL metrics by observing the
correlation between them and estimation errors concerning
the models built from real project data sets. We expect that
the data sets with higher data quality (i.e. characterized by
lower values of CIL or SCIL) will on average have a lower
estimation error than that of the data sets with lower data
quality.13

F. RESULTS ON COMPARISON OF CIL AND SCIL
In this section, we assess the performance of CIL and
SCIL metrics from the point of view of the ‘‘fitness for
purpose’’ [22], where the ‘‘purpose’’ is determined as ‘‘effort
estimation’’ and ‘‘productivity estimation’’ within the scope
of this study. To that end, we analyze the correlation R
between the estimation error (of effort and productivity)
quantified in terms of MMRE and the values of two data
inconsistency metrics CIL and SCIL. Section VI-F1 presents
the results relating to effort estimation, and Section VI-F2
illustrates the results for productivity estimation.

12Note that here ‘‘mean’’ refers to the average over all data sets illustrated
in Table 2.

13In other words, CIL/SCIL values are expected to be positively correlated
with estimation error, where a higher correlation indicates a better assessment
of data quality.
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TABLE 5. Correlation between MMRE and CIL concerning target variable
of effort.

TABLE 6. Correlation between MMRE and SCIL concerning target variable
of effort.

1) EFFORT ESTIMATION
Concerning effort estimation, Tables 5 and 6 present the cor-
relation of MMRE with CIL and SCIL, respectively.14 Note
that in these tables as pre-processing scheme we consider
different combinations of distancemetrics, normalization and
weighting schemes.

From Tables 5 and 6, we can see that the correlation of
SCIL and MMRE is considerably better than that of CIL and
MMRE for any data pre-processing scheme. In other words,
between the corresponding values of CIL and SCIL in the two
tables, the one of SCIL is always larger.

In addition to serving for performance comparison,
Tables 5 and 6 help us also identify an efficient pre-processing
scheme for CIL and SCIL.15 In that respect, we start by taking
a closer look at Table 6, since the main focus of our study is
SCIL. The values in bold are highest in their corresponding
rows. In addition, the highlighted row corresponding to
IVDM attains the highest correlation overall (R = 0.629)
with α = 0.1. Actually, IVDM attains the highest value for
any threshold value of α (i.e. in every column of Table 6).
In addition, Euclidean distance dE coupled with Z-score
normalization and weighting is observed to attain comparable
results to those of IVDM concerning all α values.

14Note that correlation is computed in the same way as in Equation 18,
but by replacing CIL with SCIL. Note also that + and - denote an
experiment with and without weighting, respectively, whereas * denotes that
normalization or weighting does not apply to IVDM.

15Since virtually there are an infinite number of pre-processing possibil-
ities, we can not claim that we identified the optimal scheme. Nevertheless,
we can say that we have found one with a fairly good performance.

TABLE 7. Correlation between MMRE and CIL concerning target variable
of productivity.

TABLE 8. Correlation between MMRE and SCIL concerning target variable
of productivity.

Regarding the variation on MMRE due to variations
on α, we can say that 0.1 and 0.3 are superior to 0.5,
since both IVDM and Euclidean distance dE coupled with
Z-score normalization and weighting attain R > 0.6,
indicating a relatively high correlation between SCIL and
MMRE (see Table 6). Overall, to compute SCIL metric for
effort estimation purposes, IVDM or the Euclidean distance
dE coupled with Z-score normalization and weighting and
α = 0.1 or 0.3 can be recommended.
On the other hand, cosine distance dC coupled with

MinMax normalization and weighting shows the lowest
correlation for any threshold value α. Note also that cosine
distance dC shows in general lower correlation (i.e. regardless
of the pre-processing techniques) and therefore, it is not
recommended to be used for the purpose of effort estimation.

Next, we also take a closer look at the results concerning
CIL in Table 5. We can see that the values at the highlighted
row are quite high in their corresponding columns (actually,
the highest for α = 0.3 and α = 0.5 and very
close to the highest for α = 0.1). In that respect, the
best performing combination of distance, normalization and
weighting scheme is found to be Euclidean distance dE
coupled with MinMax normalization and weighting. Also,
replacing MinMax normalization with Z-score normalization
in this combination yields somewhat comparable results.

2) PRODUCTIVITY ESTIMATION
Concerning productivity estimation, Tables 7 and 8 present
the correlation of MMRE with CIL and SCIL, respectively.
We can see that the relation between Tables 7 and 8 is similar
to the relation between Tables 5 and 6. Namely, similar
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to effort, also for productivity estimation, the correlation
between SCIL and MMRE is considerably better than that
of CIL and MMRE for any data pre-processing scheme.
Specifically, CIL attains the highest value of R = 0.518,
whereas SCIL gets a maximum of R = 0.814. Moreover,
the highest performance concerning different combinations
of pre-processing schemes (i.e. bold values in Table 7)
varies considerably for CIL (i.e. between−0.337 and 0.518),
whereas for SCIL they are somewhat more stable (i.e.
0.564 and 0.819). In addition, between the corresponding
values of CIL and SCIL in Tables 7 and 8, the one of SCIL is
always larger.

Next, we take a closer look at Table 8 for identifying the
best performing combination of pre-processing operations
concerning SCIL. Unlike the results for effort estimation, the
Euclidean distance dE attains the highest correlation values
regarding all three thresholds α, regardless of the normal-
ization technique or weighting. The IVDM performs second
best, and cosine distance dC performs worst regardless of pre-
processing.

Regarding the variation on MMRE due to variations on α,
0.3 or 0.5 are recommended in computing SCIL, since in all
cases with Euclidean distance dE , R > 0.8 is attained, which
indicates to a high correlation between SCIL and MMRE.
Taking in consideration also the results of effort estimation
reported in Table 6, Euclidean distance function coupled with
Z-score normalization and weighting with α = 0.3 is highly
recommended to compute SCIL metric for both effort and
productivity estimation purposes.

Subsequently, we take a closer look at the results concern-
ing CIL. In Table 7, we can see that Euclidean distance dE
coupled with MinMax normalization and weighting attains
the highest value of correlation (R = 0.518). In that
respect, the best performing pre-processing combination
is exactly the same as the one for estimating effort (see
Table 5). Moreover, similar to effort estimation, replacing
MinMax normalization with Z-score normalization again
yields somewhat comparable results.

Finally, we would like to draw the attention of the reader
to the similarity of the distribution of the highest values in
each row of Tables 5 and 7 and also Tables 6 and 8. One may
see that the pattern is quite similar between Tables 5 and 7,
whereas very different between Tables 6 and 8. We believe
that this indicates the prominent effect of pre-processing on
the performance of CIL. In other words, CIL is quite sensitive
to the changes in experimental conditions and is likely to
miss the actual role of input and/or target in estimation
accuracy.

Based on the above discussion, we conclude that the
proposed metric SCIL effectively quantifies the level of
inconsistency of a data set, is considerably superior to CIL
and appraises data inconsistency in a more resilient manner.

VII. THREATS TO VALIDITY
We provide a discussion on the validity of the proposed
method in terms of three commonly adopted experimental

validation approaches, i.e. internal validity, external validity
and construct validity.

Internal validity refers to the extent by which the observed
effect is a consequence of the presumed cause. In our
case, internal validity questions whether or not different
conclusions can be drawn with regard to the different settings
in the experiment. To ensure internal validity, we conducted
3 repetitions in the validation process to produce stable
results. However, there is one possible issue of internal
validity in this study. The issue is the single sampling method
(3-fold cross-validation) we used. Our important future work
is to employ other methods such as leave-one-out cross-
validation to increase the validity of the result.

External validity refers to the generalization of the results.
In this study, we address external validity by using 6 reference
data sets with diverse characteristics. Namely, they vary in
size (i.e. number of projects), and project variables, as well
as origin (i.e. recording organization) and recording period.
Our future work is to employ more data sets to increase the
generalization of the results.

Construct validity refers to the relevance and capability of
the observations and measurements in evaluating the posed
hypothesis. In this study, we use single error measure MMRE
to evaluate the target variable value estimation performance.
It is our future work to employ other error measures to
increase the validity of our work.

VIII. CONCLUSION AND FUTURE PROSPECTS
This study proposes an improved data quality metric SCIL
that can quantify the level of inconsistency of a data set.
Comparing the conventional CIL metric and the SCILmetric,
we believe that the proposed SCIL metric is more suitable
for the purpose of effort and productivity estimation as we
have shown through experimental evaluation. Considering
the experimental results, it is recommended to combine the
Euclidean distance function be combined with the Z-score
normalization and weighting (threshold α = 0.3) to calculate
the SCIL metric.

As future work, we will employ other methods such as
leave-one-out cross-validation and other error measures to
increase validity, and more data sets to increase generality.

APPENDIX I. DISTANCE METRICS
Wedenote Euclidean distance between projects pi and pj with
dE (pij), where

dE (pij) =
√∑

fm

(
pi[fm]− pj[fm]

)2
. (22)

In addition, we denote the cosine distance between the
same pair with dC (pij), where

dC (pij) =

∑
fm

pi[fm] · pj[fm]√∑
fm

p2i [fm]+
√∑

fm
p2j [fm]

. (23)
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TABLE 9. Correlation coefficients R concerning MMRE and CIL values in
the follow-up evaluation (with pre-processing and CART + Tree pruning).

APPENDIX II. NORMALIZATIONS
Let pi be an arbitrary project from a data set D, fm be an
arbitrary feature and p̄i[fm] be the MinMax normalized value
of that feature relating project pi.

p̄i[fm] =
pi[fm]− fm,min
fm,max − fm,min

(24)

where fm,min and fm,max are the minimum and maximum
values of that feature over all projects in the data set.

fm,min = min
pi∈D

(pi[fm])

fm,max = max
pi∈D

(pi[fm])

Let ¯̄pi[fm] be the z-normalized value of the feature fm
relating project pi.

¯̄pi[fm] =
pi[fm]− µi

σi
(25)

where µi is the mean value and σi is the standard deviation of
that feature over projects in the data set.

APPENDIX III. THE EFFECT OF PRE-PROCESSING AND
ESTIMATION METHOD ON THE PERFORMANCE OF CIL
In this section, we assess the improvement on CIL that can
be expected by applying pre-processing operations and by
improving the estimator performance.

As the target variable, we focus on effort. As pre-
processing, we employ Euclidean distance dE coupled with
MinMax normalization and weighting, since this combina-
tion is determined to be the best for CIL in Section VI-
F1. As for estimator model, we use first CART + Tree
pruning [17], which is claimed to be the most efficient
estimator by Phannachitta et al. [28], and then Random
Forest, which is demonstrated empirically to perform better
than CART + Tree pruning in Section VI-B.

Similar to Table 3, Table 9 presents the correlation between
CIL and MMRE for the target variable of effort with the
estimator model of CART + Tree pruning. However, unlike
Table 3 the input data is pre-processed in Table 9. Since the
absence/presence of pre-processing is the only difference,
we can make a direct comparison between Tables 3 and 9 to
assess the effect induced on CIL by pre-processing.

By examining these tables, we observe that R values are
higher in Table 9 in most but not all cases. This indicates
that the lack of a strong correlation between CIL and MMRE

TABLE 10. Correlation coefficients R concerning MMRE and CIL values in
the follow-up evaluation (with pre-processing and Random Forest).

FIGURE 5. Scatter plot of SCIL vs MMRE for the estimation target of effort
concerning Euclidean distance dE , Cosine distance dC and IVDM. Note
that the threshold α is set to 0.1 for all plots.

FIGURE 6. Scatter plot of SCIL vs MMRE for the estimation target of effort
concerning Euclidean distance dE , Cosine distance dC and IVDM. Note
that the threshold α is set to 0.3 for all plots.

is partially due to the lack of pre-processing. Nevertheless,
it can not be attributed solely to that. In addition, the positive
values in Table 9 are quite small, and thus, CIL is very far
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FIGURE 7. Scatter plot of SCIL vs MMRE for the estimation target of effort
concerning Euclidean distance dE , Cosine distance dC and IVDM. Note
that the threshold α is set to 0.5 for all plots.

FIGURE 8. Scatter plot of SCIL vs MMRE for the estimation target of
productivity concerning Euclidean distance dE , Cosine distance dC and
IVDM. Note that the threshold α is set to 0.1 for all plots.

from satisfactory even with the most efficient pre-processing
combination (among those addressed in this study).

Similar to Table 9, Table 10 presents the correlation
between CIL and MMRE for the target variable of effort and
with pre-processing. However, in Table 3 the estimator model
is CART + tree pruning and in Table 9 it is Random Forest.
Since the estimator model is the only difference, we can
make a direct comparison between Tables 9 and 10 to assess
the effect induced on CIL by improvement of the estimator
model.

FIGURE 9. Scatter plot of SCIL vs MMRE for the estimation target of
productivity concerning Euclidean distance dE , Cosine distance dC and
IVDM. Note that the threshold α is set to 0.3 for all plots.

FIGURE 10. Scatter plot of SCIL vs MMRE for the estimation target of
productivity concerning Euclidean distance dE , Cosine distance dC and
IVDM. Note that the threshold α is set to 0.5 for all plots.

Note that in Table 10, we support CIL not only by applying
the pre-processing operations but also by integrating it with a
better estimator model (i.e. replacing CART + Tree pruning
with Random Forest). In that respect, Table 10, gives an
insight to the maximum improvement that we can expect on
CIL by applying the best execution mode identified in this
study.

However, comparing Tables 9 and 10, we see that improv-
ing the estimator does not necessarily lead to an increase
in the correlation between CIL and MMRE. By comparing
corresponding values in these tables, it is seen that there
are more cases where R degrades than where it improves.
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FIGURE 11. Scatter plot of CIL vs MMRE for the estimation target of effort
concerning Euclidean distance dE , Cosine distance dC and IVDM. Note
that the threshold α is set to 0.1 for all plots.

FIGURE 12. Scatter plot of CIL vs MMRE for the estimation target of effort
concerning Euclidean distance dE , Cosine distance dC and IVDM. Note
that the threshold α is set to 0.3 for all plots.

Thus, we conclude that the low correlation between MMRE
and CIL cannot be blamed on the poor performance of the
estimation model either.

APPENDIX IV. RESULTS CONCERNING ALTERNATIVE
THRESHOLD VALUES
Figures 5 ∼ 7 show scatter diagrams of SCIL and MMRE of
effort estimation for different threshold α values (0.1, 0.3 and
0.5). Figures 8 ∼ 10 show scatter diagrams of SCIL and
MMRE of productivity estimation for different threshold α
values (0.1, 0.3 and 0.5).

FIGURE 13. Scatter plot of CIL vs MMRE for the estimation target of effort
concerning Euclidean distance dE , Cosine distance dC and IVDM. Note
that the threshold α is set to 0.5 for all plots.

FIGURE 14. Scatter plot of CIL vs MMRE for the estimation target of
productivity concerning Euclidean distance dE , Cosine distance dC and
IVDM. Note that the threshold α is set to 0.1 for all plots.

Figures 11∼ 13 show scatter diagrams of CIL and MMRE
of effort estimation for different threshold α values (0.1,
0.3 and 0.5). Figures 14 ∼ 16 show scatter diagrams of CIL
and MMRE of productivity estimation for different threshold
α values (0.1, 0.3 and 0.5).

In each diagram, the title shows the distance function
used, normalization technique used, and weighting used or
not (e.g. Cosine-MinMax-noWT means the cosine distance
and MinMax normalization without weighting). Note that
for IVDM distance function, we did not apply normalization
and weighting because it already considers the relationship
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FIGURE 15. Scatter plot of CIL vs MMRE for the estimation target of
productivity concerning Euclidean distance dE , Cosine distance dC and
IVDM. Note that the threshold α is set to 0.3 for all plots.

FIGURE 16. Scatter plot of CIL vs MMRE for the estimation target of
productivity concerning Euclidean distance dE , Cosine distance dC and
IVDM. Note that the threshold α is set to 0.5 for all plots.

between the target variable and feature variables in distance
computation.
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