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Abstract: Facial nerve paralysis interferes with mimetic muscle function. To reconstruct natural
facial movement, free muscle flaps are transplanted as new muscles. However, it is difficult to
maintain resting tonus. A dual innervation technique in which other nerves such as the hypoglossal
nerve or contralateral facial nerve are added is often applied. Using 10-week-old rats (n = 10), the
masseteric and hypoglossal nerves were cut, and the distal stump of the masseteric nerve and the
proximal stump of the hypoglossal nerve were then sutured (suture group). In the other group, the
masseteric nerve was cut and cauterized (cut group). Immunohistochemistry and microarray were
performed on the extracted masseter muscle. The immunohistochemistry results suggested that the
muscles in the suture group obtained oxidative characteristics. The microarray showed the genes
involved in mitochondrial function, including Perm1. In summary, our data support the validity of
the dualinnervation technique for facial paralysis treatment.

Keywords: muscle fiber type; facial paralysis; dualinnervation; masseter muscle

1. Introduction

Facial nerve paralysis is a condition in which the facial nerve is completely or partially
paralyzed, thereby interfering with the function of the mimetic muscles. To reconstruct
natural facial movement in patients with facial nerve paralysis, free muscle flaps are
transplanted as new mimetic muscles [1–3]. The ideal neural motor source for transplanted
muscle is the healthy side of the facial nerve, which allows resting tonus and synchronous
contraction. However, the small number of regenerative axons often results in weak
contraction of the transplanted muscle. To overcome this disadvantage, the masseteric
nerve is often used as a neural motor. Although the use of this nerve alone can lead to a
rapid and strong recovery of mimetic function, it is difficult to maintain resting tonus. To
create more natural facial expressions, we often perform a dual innervation technique [4]
in which we add other nerves such as the hypoglossal nerve or contralateral facial nerve,
and good results have been obtained. Owing to this phenomenon, we hypothesize that
the transplanted muscles undergo a muscle fiber type transition to represent muscle more
characteristic of the nerve by which it is reinnervated. Inherently, skeletal muscle contains
various fiber types with different contraction velocities and fatigability characteristics.
These fiber types can be classified as slow-twitch (type 1) and fast-twitch fibers (type 2)
based on their levels of myoglobin, the number of mitochondria, and the expression

Int. J. Mol. Sci. 2022, 23, 7856. https://doi.org/10.3390/ijms23147856 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23147856
https://doi.org/10.3390/ijms23147856
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9503-0066
https://orcid.org/0000-0002-6073-6832
https://doi.org/10.3390/ijms23147856
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23147856?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 7856 2 of 14

of glycolytic enzymes. We hypothesize that the dual innervation technique confers the
transplanted muscles with both type 1 and type 2 fiber characteristics, allowing them to
maintain resting tonus as well as movement, contributing to more natural facial expression.
In addition, it is expected from clinical results that this can be accomplished by adding
both the hypoglossal/facial and masseteric nerves, which normally serve type 1 and type 2
fibers, respectively.

It has been reported that the muscle fiber type in the lower extremities changes when
the innervation is altered. Krysciak et al. reported that neuronal reinnervation in the medial
gastrocnemius muscle occurred as ALS progressed and the percentage of fast-twitch muscle
increased [5]. Robbins et al. revealed histologically and electrophysiologically that the
properties of the guinea pig soleus muscle were altered by cross-nerve innervation [6].
Romanul et al. demonstrated histologically and electrophysiologically that nerve crossing of
the flexor digitorum longus and soleus muscles in cats and rats altered their properties [7].

In rat skeletal muscles, type 2 fibers can be further subdivided into the following types:
type 2A, fast-twitch oxidative; type 2B, fast-twitch glycolytic; and type 2X, an intermediate
type between type 2A and 2B. The superficial layer of the rat masseter muscle is composed
mainly of type 2 muscle fibers. In this study, we investigated whether the muscle fiber
composition of the rat masseter muscle could be altered by changing the innervation
from the masseteric nerve to the hypoglossal nerve by evaluating immunohistochemical
findings. We also tried to reveal the nature of the cross-innervated muscle by performing a
microarray analysis.

2. Results
2.1. Histological Findings

Hematoxylin and eosin (H&E) staining revealed the nylon suture that had been used
for coaptation. There were no morphologically abnormal findings among the suture group
(Figure 1a). We observed neurofilament antibody positivity in the area of the coaptation of
the hypoglossal nerve and masseteric nerve (Figure 1b).
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Figure 1. Histological findings of nerves in the suture group. (a) The figure shows the distal stump 
of the masseteric nerve; it was sutured with the hypoglossal nerve. The yellow arrows indicate the 
nylon sutures used for coaptation. There were no morphologically abnormal findings. These were 
stained with H&E. (b) Immunofluorescence staining of the coaptation area of the hypoglossal nerve 
and masseteric nerve. All nerves, including the coaptation area, were positive for neurofilament 
antibodies. Representative immunostaining with neurofilament antibodies (green) was performed 
using 4′,6-diamidino-2-phenylindole (DAPI; blue). 

Figure 1. Histological findings of nerves in the suture group. (a) The figure shows the distal stump
of the masseteric nerve; it was sutured with the hypoglossal nerve. The yellow arrows indicate the
nylon sutures used for coaptation. There were no morphologically abnormal findings. These were
stained with H&E. (b) Immunofluorescence staining of the coaptation area of the hypoglossal nerve
and masseteric nerve. All nerves, including the coaptation area, were positive for neurofilament
antibodies. Representative immunostaining with neurofilament antibodies (green) was performed
using 4′,6-diamidino-2-phenylindole (DAPI; blue).
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The cross-sectional area of the muscle fibers was calculated. The average area of
muscle fibers was 4231.20 ± 432.70 µm2 (mean ± standard deviation; SD) in the control,
4767.32 ± 695.04 µm2 in the suture group, and 3112.00 ± 293.49 µm2 in the cut group. The
area of muscle fibers in the cut group was significantly smaller than that in the other groups
(Figure 2).
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Figure 2. Four 1000 × 1000 µm2 HE-stained images of cross-sectional areas of muscle fibers were
chosen from each specimen of the control, cut group, and suture groups. The average cross-sectional
area of muscle fibers was 4231.20 ± 432.70 µm2 (mean ± standard deviation; SD) in the control,
4767.32 ± 695.04 µm2 in the suture group and 3112.00 ± 293.49 µm2 in the cut group. The area of
muscle fibers in the cut group was significantly smaller than that in the other groups (n = 4 each,
* p < 0.01, ** p < 0.05; one-way analysis of variance (ANOVA)).

In the control group, immunofluorescence staining of the masseter muscle illustrated
that almost all specimens were BAF8-negative (Figure 3a), slightly SC71-positive (Figure 3b),
and strongly BFF3-positive (Figure 3c). The average percentage of type 1, type 2A, type
2B and the estimated type 2X muscle fibers among the muscle fiber areas was 2.92 ± 2%,
4.40 ± 3.62%, 41.52 ± 6.30%, and 51.16 ± 6.77%, respectively (Figure 3d). This indicated
that the muscles were composed mainly of type 2 fibers, especially type 2B fast-twitch
glycolytic muscle fibers.
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BAF8 (red) was used for the staining of type 1 muscle fibers, and almost all specimens 
were negative. (b) Anti-SC71 (orange) staining was performed to detect type 2A fibers, 
and a slightly positive area was observed. (c) Anti-BFF3 (green) staining suggested that 
most of the masseter muscle fibers were composed of type 2B fibers. Nuclear counterstain-
ing was performed using DAPI (blue). (d) Anti-BAF8-, anti-AC71-, and anti-BFF3-positive 
areas were analyzed with four specimens. The average percentage area of type 1, type 2A, 
type 2B and the estimated type 2X fibers were 2.92 ± 2%, 4.40 ± 3.62%, 41.52 ± 6.30% and 
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Figure 3. Immunohistochemistry of the masseter muscle in the control group. (a) Anti-BAF8
(red) was used for the staining of type 1 muscle fibers, and almost all specimens were negative.
(b) Anti-SC71 (orange) staining was performed to detect type 2A fibers, and a slightly positive
area was observed. (c) Anti-BFF3 (green) staining suggested that most of the masseter muscle
fibers were composed of type 2B fibers. Nuclear counterstaining was performed using DAPI (blue).
(d) Anti-BAF8-, anti-AC71-, and anti-BFF3-positive areas were analyzed with four specimens. The
average percentage area of type 1, type 2A, type 2B and the estimated type 2X fibers were 2.92 ± 2%,
4.40 ± 3.62%, 41.52 ± 6.30% and 51.16 ± 6.77%, respectively. This indicated that the original masseter
muscle was composed mainly of type 2 fibers, especially type 2B fast-twitch glycolytic muscle fibers
(n = 4 each, * p < 0.01, one-way ANOVA).

Meanwhile, the specimens of the suture group were slightly BAF8-positive (Figure 4a)
and slightly SC71-positive (Figure 4b). All specimens of the suture group were BAF8-positive,
and the average percentage of type 1, type 2A, type 2B and the estimated type 2X muscle
fibers was 13.50 ± 2.83%, 9.38 ± 2.01%, 52.17 ± 8.30%, and 25.00 ± 7.72%, respectively.
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Figure 4. Immunohistochemistry of the masseter muscle in the suture group. (a) Anti-BAF8 (red)
staining was slightly positive in some areas. (b) Anti-SC71 (orange) staining was performed to
detect type 2A fibers, and a slightly positive area was observed. (c) Anti-BFF3 (green) staining
suggested that most of the masseter muscle fibers in the suture group were composed of type 2B
fibers. Nuclear counterstaining was performed using DAPI (blue). Scale bar = 100 µm. (d) Anti-BAF8-,
anti-SC71-, and anti-BFF3-positive areas and the negative area for all antibodies were analyzed with
four specimens. The average percentage area of type 1, type 2A, type 2B and the estimated type 2X
fibers were 13.50 ± 2.83%, 9.38 ± 2.01%, 52.17 ± 8.30% and 25.00 ± 7.72%, respectively. (n = 4 for
each group, * p < 0.01, ** p < 0.05, one-way ANOVA).

In the cut group, most specimens featured an area that was negative for BAF8, SC71
and BFF3 (Figure 5a–c). The average percentages of type 1, type 2A, type 2B and the
estimated type 2X muscle fibers were 0.92 ± 0.87%, 6.67 ± 6.65%, 27.99% ± 10.80%, and
64.42 ± 7.68%, respectively (Figure 5d).
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Figure 5. Immunohistochemistry of the masseter muscle in the cut group. (a) Anti-BAF8 (red)
staining seemed to be almost negative. (b) Anti-SC71 (orange) staining showed a slightly positive
area. (c) Some areas were negative for BAF8, SC71, and BFF3. (d) Anti-BAF8-, anti-AC71-, and
anti-BFF3-positive areas and the negative area for all antibodies were analyzed with four specimens.
The average percentage area of type 1, type 2A, type 2B and the estimated type 2X fibers was
0.92 ± 0.87%, 6.67 ± 6.65%, 27.99 ± 10.80%, and 64.42 ± 7.68%, respectively (n = 4 for each group,
* p < 0.01, ** p < 0.05, one-way ANOVA).

By statistically comparing the percentage of each muscle fiber type in each group,
it was revealed that the suture group showed a significantly higher percentage of BAF8
positivity than the other two groups (Figure 6a). As for BFF3, the cut group revealed
significantly lower positivity than the suture group (Figure 6b). The negative area for BAF8,
SC71, and BFF3 was significantly smaller in the suture group than in the other two groups
(Figure 6c).



Int. J. Mol. Sci. 2022, 23, 7856 7 of 14Int. J. Mol. Sci. 2022, 23, 7856 7 of 14 
 

 

  
(a) (b) 

 

 

(c)  

Figure 6. Statistical comparison between the percentage of each muscle fiber type in each group. (a) 
The chart indicates the BAF8-positive areas among the three groups. The suture group showed sig-
nificantly higher percentages of BAF8 positivity than the other two groups. Its average percentage 
in the control, suture group, and cut group was 2.92% ± 2.00%, 13.50% ± 2.83%, and 0.92% ± 0.87%, 
respectively. (b) As for BFF3, the cut group revealed significantly lower positivity than the suture 
group. Its average percentage in the control, suture group, and cut group was 41.52 ± 6.30%, 52.17 ± 
8.30%, and 27.99 ± 10.80%, respectively. (c) The negative area for BAF8, SC71, and BFF3 was 51.16 ± 
6.77% for the control group, 25.00 ± 7.72% for the suture group, and 64.42 ± 7.68% for the cut group. 
(* p < 0.01, ** p < 0.05, n = 4 for each group, one-way ANOVA). 

2.2. Microarray 
2.2.1. Gene Expression in Relation to the Muscle Fiber Type Composition 

Compared to the findings in the control group, 310 genes were upregulated and 928 
genes were downregulated in the suture group. Compared to the findings in the cut 
group, 628 genes were upregulated and 1021 genes were downregulated in the suture 
group. 

Regarding the 404 proteins related to the muscle fiber type as detected by Murgia et 
al. [8], 30, 2, 41, 104, and 151 proteins were oxidative muscle-specific, intermediate type-
specific, glycolytic muscle-specific, oxidative muscle-dominant, and glycolytic muscle-
dominant, respectively, and the remaining 76 proteins were non-specific. We examined 
the list of proteins for which genes were up- or downregulated in the suture group. In 
total, 28 of 328 genes (8.5%) were upregulated oxidative muscle-related genes or down-
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downregulated glycolytic muscle-related genes (upregulated oxidative muscle-related 
genes, Lrrc39 (leucine-rich protein), myomasp (myosin-interacting, M-band-associated 
stress-responsive protein), Ckmt2 (creatine kinase, mitochondrial 2), Ndufs7 (NADH: 
ubiquinone oxidoreductase core subunit S7), and Perm1 (PPARGC1 and ESRR-induced 
regulator, muscle 1); downregulated glycolytic muscle-related genes, Ddah1 (dime-
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Figure 6. Statistical comparison between the percentage of each muscle fiber type in each group.
(a) The chart indicates the BAF8-positive areas among the three groups. The suture group showed
significantly higher percentages of BAF8 positivity than the other two groups. Its average percentage
in the control, suture group, and cut group was 2.92% ± 2.00%, 13.50% ± 2.83%, and 0.92% ± 0.87%,
respectively. (b) As for BFF3, the cut group revealed significantly lower positivity than the suture
group. Its average percentage in the control, suture group, and cut group was 41.52 ± 6.30%,
52.17 ± 8.30%, and 27.99 ± 10.80%, respectively. (c) The negative area for BAF8, SC71, and BFF3 was
51.16 ± 6.77% for the control group, 25.00 ± 7.72% for the suture group, and 64.42 ± 7.68% for the
cut group. (* p < 0.01, ** p < 0.05, n = 4 for each group, one-way ANOVA).

2.2. Microarray
2.2.1. Gene Expression in Relation to the Muscle Fiber Type Composition

Compared to the findings in the control group, 310 genes were upregulated and
928 genes were downregulated in the suture group. Compared to the findings in the cut
group, 628 genes were upregulated and 1021 genes were downregulated in the suture group.

Regarding the 404 proteins related to the muscle fiber type as detected by Murgia et al. [8],
30, 2, 41, 104, and 151 proteins were oxidative muscle-specific, intermediate type-specific,
glycolytic muscle-specific, oxidative muscle-dominant, and glycolytic muscle-dominant,
respectively, and the remaining 76 proteins were non-specific. We examined the list of
proteins for which genes were up- or downregulated in the suture group. In total, 28
of 328 genes (8.5%) were upregulated oxidative muscle-related genes or downregulated
glycolytic muscle-related genes, whereas 38 genes (11.6%) were downregulated oxidative
muscle-related genes or upregulated glycolytic muscle-related genes. We focused on the
genes that were differentially expressed in the suture group relative to both the cut and
control groups, and nine genes were upregulated oxidative muscle-related or downregu-
lated glycolytic muscle-related genes (upregulated oxidative muscle-related genes, Lrrc39
(leucine-rich protein), myomasp (myosin-interacting, M-band-associated stress-responsive
protein), Ckmt2 (creatine kinase, mitochondrial 2), Ndufs7 (NADH: ubiquinone oxidore-
ductase core subunit S7), and Perm1 (PPARGC1 and ESRR-induced regulator, muscle 1);
downregulated glycolytic muscle-related genes, Ddah1 (dimethylarginine dimethylamino-
hydrolase 1), Anxa5 (annexin A5), Hsp90aa1 (heat shock protein 90 alpha family class A
member 1), Ahnak2 (AHNAK nucleoprotein 2), and P4hb (prolyl 4-hydroxylase subunit
beta)). Meanwhile, another nine genes were downregulated oxidative muscle-related genes
or upregulated glycolytic muscle-related genes (upregulated glycolytic muscle-related
genes, Gpd2 (glycerol-3-phosphate dehydrogenase 2), Phkb (phosphorylase b kinase reg-
ulatory subunit), Phkg1 (phosphorylase kinase catalytic subunit gamma 1), and Jph2
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(junctophilin 2); downregulated oxidative muscle-related genes, Casq2 (calsequestrin-2),
Myoz2 (myozenin 2), Tnni1 (troponin I, slow skeletal muscle), Sptlc2 (serine palmitoyl-
transferase long chain base subunit 2), and Ankrd2 (ankyrin repeat domain 2); Table 1).

Table 1. Correspondence between the genes identified by Murgia et al. and the genes that were
differentially expressed in this study.

Gene vs. Con vs. Cut Gene vs. Con vs. Cut Gene vs. Con vs. Cut
Casq2 Asb2 Art3
Lrrc39 Ppr1r8 Atp1a1
Lmod2 Ptbp1 Cav1

Lss Tfrc Dysf
Myom3 Ddah1 Fkbp1a
Myoz2 Ak1 Gnb1

Pln Anxa5 Itgb1
Tnni1 Epm2a Jph2
Sptlc2 Gpd1 Mlec
Acot9 Gpd2 P4hb

Ankrd2 Hsp90aa1 Psmd2
Actn2 Phkb Rtn4

Chchd3 Phkg1 Slc37a4
Ckmt2 Ppkar1a Smtnl2
Cpt1b Psmc4 Tmem43
Crat Ryr3

Decr1 Fndc1
Ech1 Pgk1
Hadh Tnc

Mrps36 Tpi1
Mrps7 Agl
Ndufs7 Ahnak2

In the gene name tab, genes involved in oxidative muscle are colored blue, and those involved in glycolytic muscle
are colored orange. The vs. con column is colored pink if the gene in the suture group is upregulated relative
to the control group expression and blue if the gene is downregulated relative to the control group expression.
The vs. cut column is colored yellow if the gene in the suture group is highly expressed relative to the control
group expression and green if the gene is downregulated relative to the control group expression.

2.2.2. PPI Network Analysis

Suture group vs. control group: the PPI network constructed for the genes upregulated
in the suture group versus the control group (262 nodes and 263 edges) revealed that the
most functional module consisted of Ndufs7, Ndufb4 (NADH: ubiquinone oxidoreductase
subunit B4), Mpc1 (mitochondrial pyruvate carrier 1), Mpc2 (mitochondrial pyruvate
carrier 2), Chchd3 (coiled-coli-helix-coiled-coli-helix domain containing protein 3), and
Chchd10 (coiled-coli-helix-coiled-coli-helix domain containing protein 10). The top five
hub genes were Suclg1 (succinate–CoA ligase (ADP/GDP-forming) subunit alpha), Gpd2
(glycerol-3-phosphate dehydrogenase 2, mitochondrial), Sucla2 (succinate–CoA ligase
(ADP-forming) subunit beta), Aco2 (aconitate hydratase, mitochondrial), and Echs1 (enoyl-
CoA hydratase, mitochondrial).

Suture group vs. cut group: the PPI network constructed for the genes upregulated
in the suture group compared to the cut group (529 nodes and 1170 edges) illustrated
that the most functional module consisted of Perm1, Fbxo40 (F-box protein 40), Mettl21cl1
(methyltransferase-like 21C-like 1), Mylk4 (myosin light chain kinase family, member 4),
Smpx (small muscle protein, x-linked), Klhl31 (Kelch-like family member 31), and Lsmem1
(leucine-rich single-pass membrane protein 1). The top five hub genes were Actb (actin,
cytoplasmic 1), Stat1 (signal transducer and activator of transcription 1), Esr1 (estrogen
receptor 1), Ccnd1 (G1/S-specific cyclin-D1), and Ccl2 (C-C motif chemokine 2).
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3. Discussion

In this study, we examined whether the characteristics of the newly innervated mas-
seter muscle were changed by suturing the hypoglossal nerve to the masseter nerve.
Immunostaining confirmed that the nerve sutures resulted in living continuous nerve
fibers. First, the cross-sectional area of the muscle fibers in each group was analyzed, and
it was found that the cross-sectional area of muscle fibers was significantly smaller in
the cut group than that in the other two groups; this was considered a result of muscle
atrophy. On the other hand, the size of the muscle fibers in the control and suture groups
was not significantly different; this could be because the muscles in the suture group were
successfully innervated by the hypoglossal nerve. Regarding muscle properties, the control
group seemed to be composed mainly of type 2B and type 2X with almost no type 1 muscle
fibers, supporting the originally known characteristics of the masseter muscles, which are
fast-twitch muscles [9,10]. Conversely, statistical analysis revealed that the BAF8-positive
area in the masseter muscle in the suture group was significantly larger than that in the
other two groups; this could be a strong indication that some muscle fibers switched to a
slow-twitch type due to the innervation of the hypoglossal nerve. As the estimated area for
type 2X was significantly smaller in the suture group, there is a possibility that the type 2X
fibers were converted to type 1. There was no significant difference in the percentage of
type 1, type 2A, type 2B, and the estimated type 2X fibers between the control and the cut
group. However, this did not necessarily indicate that the muscle fiber composition of the
cut group was similar to that of the control group. It is known that a denervated muscle
often consists of hybrid muscle fibers [11], suggesting there was an increase in them due to
the operation.

Microarray analysis demonstrated that the same number of genes characteristic for
oxidative/glycolytic muscle were changed following cross-innervation. However, when
analyzing the results in detail, mitochondrial markers such as Ckmt2 and Ndufs7 were up-
regulated whereas PPI network analysis illustrated that energy production was apparently
activated in mitochondria, suggesting that cross-innervation may have caused the muscle
fibers to transition to a more oxidative-like state. Skeletal muscle fiber types are classified
by the number of mitochondria as well as differences in mitochondrial metabolism and
structural characteristics [12–14].

Type 1 and type 2A fibers are mitochondria-rich fibers that derive their energy mainly
from the oxidative phosphorylation system (OXPHOS), which is present at the mitochon-
drial inner membrane and is composed of five enzymes [15], namely, NADH: ubiquinone
reductase, succinate dehydrogenase, quinol-cytochrome c reductase, cytochrome c oxidase,
and ATP synthase. Contrarily, mitochondria-poor type 2B and type 2X fibers produce
ATP mainly through anaerobic glycolysis. The top upregulated hub genes in the suture
group compared to the control group, specifically Suclg1, Sucla2, Aco2, and Echs1, are
also OXPHOS genes, and thus, the results support the possibility that the masseter muscle
transitioned from type 2B to type 1 or type 2A, which would support the hypothesis.

In addition, Perm1, which was upregulated in the suture group compared to its
expression in both the control and cut groups, is known to induce changes in muscle
fiber type without causing histological changes [15]. Cho et al. suggested that Perm1-
upregulated muscles displayed a comparable increase in OXPHOS complex I–IV enzyme
activity. Moreover, Perm1 had significantly elevated the levels of other mitochondrial
enzymes important for oxidative metabolism. This suggested that the mechanism by
which Perm1 drives mitochondrial biogenesis involves the regulation of Ca2+/calmodulin-
dependent protein kinase II (CaMKII), resulting in enhanced myocyte enhancer factor-2
(MEF2) transcription. Indeed, in this study, CaMKII was upregulated in the suture group
compared with the control and cut groups. CaMKII-activated MEF2 can induce multiple
metabolic targets, including PGC-1a (peroxisome proliferator-activated receptor gamma
coactivator 1-alpha), which drives mitochondrial biogenesis.

Nehrer-Taylor et al. revealed that cross-nerve innervation can be used to transform
muscle morphology and that slow-twitch fibers contribute to tonus maintenance at rest [16].
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Therefore, in combination with the results of the present study, it may be possible to
reproduce tonus by switching masseter muscle nerve innervation, thereby converting it
to a muscle type similar to that of the facial muscles. As previously mentioned, various
muscles are used as materials for muscle transplantation, but in selecting the neural motor
source for muscle transplantation, the nerve type selected for innervation appears more
important than the muscle itself.

This study had a few limitations. First, the number of examined samples was small,
and larger sample size should be considered in the future. Second, an artificial nerve was
used for nerve sutures, and the difference between nerve-to-nerve sutures has not been
studied. Third, the area of type 2X muscle fibers was estimated by the negative area for
BAF8, SC71, and BFF3 antibodies, which may include the area of the hybrid types of muscle
fibers; therefore, an additional study is necessary for the future. Fourth, D’Amico et al.
suggested that muscle fiber composition differed between sexes. They reported that the
soleus and extensor digitorum longus muscles of female mice showed more slow-twitch
type dominant patterns than those of male mice. [17] Therefore, the results of facial nerve
paralysis surgery may differ between the sexes, and future studies with female rats should
be considered. Finally, samples were harvested 2 months after surgery, and a longer
follow-up period should be considered.

4. Materials and Methods

Fourteen 10-week-old Sprague–Dawley rats (CLEA Japan Inc., Tokyo, Japan) were
used in the study. Three rats died during the operation, and one rat was euthanatized
because of insufficient feeding attributable to malocclusion during the surgery. Finally,
10 rats were included in the analysis.

4.1. Surgery

Before surgery, rats were anesthetized with ketamine hydrochloride (10 mg per 100 g
body weight, intraperitoneally). The skin incision was made from the preauricular area
to the middle of the neck. The masseter muscle was dissected along the mandible to
expose the masseteric nerve. After that, the digastric muscle was resected between the
anterior and posterior belly and then flipped, and the sublingual nerve was dissected
laterally to the geniohyoid muscle. We categorized animals into the control, suture, or cut
groups according to their neural processing. In the suture group, we cut the masseteric
and hypoglossal nerves and then sutured the distal stump of the masseteric nerve and the
proximal stump of the hypoglossal nerve (n = 6; Figures 7 and 8). We used an artificial
nerve as a bridge (Renerve, Nipro, Osaka, Japan). In the cut group, we cut and cauterized
the masseteric nerve (n = 4; Figure 8). We performed the operation unilaterally so that the
rats could eat. We confirmed all rats had gained weight at 2 months postoperatively to
make sure of their food intake. In the control group (n = 6), no surgery was performed.
(Figure 8) Rats were euthanized via an overdose of ketamine hydrochloride 2 months after
the operation. We resected a 10 × 10 × 10 mm3 sample of the bilateral superficial masseter
muscle from each rat. We used a 1× 1 mm2 section as the specimen for microarray analysis,
and the remaining tissue was used for immunohistochemistry. The superficial masseter
muscles of the intact side were used as a control.
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(MN: yellow arrow) and the hypoglossal nerve (HN: green arrow) were exposed. (b) The MN and 
the HN were anastomosed. (c) The artificial nerve was used as a bridge. (d) The tongue was shifted 
to the direction of the non-operative side (blue arrow) after the surgery. 

 

 

 
Figure 8. Schema of the experiment. No surgery was performed in the control group. In the suture 
group, MN was cut, and its distal stump and the proximal stump of HN were sutured. In the cut 
group, MN was just cut and cauterized. MN: masseteric nerve, HN: hypoglossal nerve. 

4.2. Histological Analysis 
All immunohistochemical experiments were performed using fresh frozen muscles. 

The collected muscles were frozen using isopentane chilled over dry ice and stored at −80 
°C. Transverse 7 µm serial sections were cut at −20 °C in a cryostat (Leica, Wetzlar, Ger-
many) and placed onto glass slides. For morphological evaluation, H&E staining was 
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to the direction of the non-operative side (blue arrow) after the surgery.
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Figure 8. Schema of the experiment. No surgery was performed in the control group. In the suture
group, MN was cut, and its distal stump and the proximal stump of HN were sutured. In the cut
group, MN was just cut and cauterized. MN: masseteric nerve, HN: hypoglossal nerve.

4.2. Histological Analysis

All immunohistochemical experiments were performed using fresh frozen muscles.
The collected muscles were frozen using isopentane chilled over dry ice and stored at
−80 ◦C. Transverse 7 µm serial sections were cut at −20 ◦C in a cryostat (Leica, Wetzlar,
Germany) and placed onto glass slides. For morphological evaluation, H&E staining was
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performed for each specimen. For immunofluorescence staining, the sections were blocked
with phosphate-buffered saline +0.2% Triton X-100 (PBST) and 5% bovine serum albumin
(BSA) for 45 min. After that, primary antibodies were diluted in 0.2% PBST and 5% BSA
and applied to the slides. BAF8 antibody (Development Studies Hybridoma Bank, Iowa
City, IA, USA) recognizes myosin heavy chain type 1, SC71 antibody (Development Studies
Hybridoma Bank) recognizes myosin heavy chain type 2A, and BFF3 antibody (Devel-
opment Studies Hybridoma Bank) recognizes myosin heavy chain type 2B. A secondary
antibody (Alexa Fluor-594, Thermo Fisher Scientific, Waltham, MA, USA) was added to
each section for 60 min. In addition, a rapid 4′,6-diamidino-2-phenylindole nuclear staining
kit (NucBlue, Life Technologies, Thermo Fisher Scientific) was used to improve automatic
focusing. All samples were stained in batches according to good laboratory practice, each
contained three sections of the same specimen.

We also histologically observed the masseteric and hypoglossal nerves, which were
sutured in the suture group, using H&E staining for morphological evaluation. Im-
munofluorescence analysis was performed using anti-neurofilament M (145kDa) antibody,
C-terminus (Merck Millipore, Burlington, MA, USA) as the primary antibody.

An FV3000 Scanning Confocal Microscope (Olympus, Tokyo, Japan) was used for
observation. Images were obtained through Fluoview Fv31s Sw software (Olympus, Tokyo,
Japan). For the analysis of the cross-sectional area of muscle fibers, Image J software
(version 1.53, National Institutes of Health, Bethesda, MD, USA) was used [18,19]. Four
1000 × 1000 µm2 images were obtained from each muscle slide, and the average area was
calculated based on a previous study [20]. Images were opened by the software and
converted into 8-bit, and a threshold was used based on the presets for each channel.
Next, Gaussian blur was applied to smooth the edges and facilitate fiber identification.
Then, the images were converted into binary using the “make binary” command, and
“watershed” was applied to separate touching fibers. Individual fibers were counted using
the command “analyze particles,” and the results listing the properties of each specimen
in consecutive order were shown. To analyze the percentage of muscle fibers positive
for each antibody, four 1000 × 1000 µm images were acquired from each group, and the
same image processing of cross-sectional areas was performed. As an approximation of
type 2X expression, the sum of the negative area percentages for BAF8, SC71, and BFF3
antibodies was calculated in each specimen. The calculated areas and percentages were
analyzed with a one-way analysis of variance with a post hoc test (Tukey Kramer test),
and the results were considered significant when p values < 0.05. Statistical analysis was
performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan),
which is a graphical user interface for R (The R Foundation for Statistical Computing,
Vienna, Austria). More precisely, it is a modified version of R commander designed to add
statistical functions frequently used in biostatistics [21].

4.3. Microarray

Total RNA was isolated from the masseter muscle using TRizol™ Reagent (Thermo
Fisher Scientific) and quantified using a NanoDrop-2000c spectrophotometer (Thermo
Fisher Scientific), and quality was monitored using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Biotinylated ss-cDNA was prepared according to
the standard Affymetrix protocol from 100 ng of total RNA (GeneChip WT PLUS Reagent
Kit, No. 902281, Thermo Fisher Scientific). Biotinylated ss-cDNA yields were checked
using a NanoDrop ND-2000c spectrophotometer. Fragmented and labeled ss-cDNA was
hybridized for 16 h at 45 ◦C on GeneChip Clariom S Array Rat (Thermo Fisher Scientific,
No. 902921). GeneChips were washed and stained in the GeneChip Fluidics Station 450.
GeneChips were scanned using the GeneChip Scanner 3000 7G. The gene expression profile
of the masseter muscle between the suture and control groups (two samples each) and
between the suture and cut groups (two samples each) were evaluated using Transcriptome
Analysis Console (TAC) Software (|log FC| > 2 and p < 0.05, Thermo Fisher Scientific). The
PPI network was visualized using the STRING (Search Tool for the Retrieval of Interacting
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Genes/Proteins) database (version 11.5 https://string-db.org, accessed on 14 July 2022) [22].
A confidence score of >0.4 was set as the cutoff. Cytoscape software (version 3.9.1, The
Cytoscape Consortium, San Diego, CA, USA) was used, and the functional modules of
the PPI networks were detected using the Molecular Complex Detection plug-in (MCODE;
version 2.0.0, The Cytoscape Consortium) of Cytoscape. In addition, the Cytohubba plug-in
(version 0.1, The Cytoscape Consortium) of Cytoscape software identified the hub genes.

5. Conclusions

In this study, the muscle fiber composition of the masseter muscle appeared to change
from a fast-twitch glycolytic type (type 2B) and the intermediate type (type 2X) to a
slow-twitch type (type 1) by changing the innervating nerves from masseteric nerves to
hypoglossal nerves. Although limitations such as the small sample size remain, these results
might support the validity of the dual innervation technique for the surgical treatment
of facial paralysis to maintain resting tonus as well as movement, contributing to more
natural facial expression.
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