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Abstract: A ring oscillator is a well-known circuit used for generating random numbers, and in-
terested readers can find many research results concerning the evaluation of the randomness with
a packaged test suit. However, the authors think there is room for evaluating the unpredictability of
a sequence from another viewpoint. In this paper, the authors focus on Wold’s RO-based generator
and propose a statistical test to numerically evaluate the randomness of the RO-based generator.
The test adopts the state transition probabilities in a Markov process and is designed to check the
uniformity of the probabilities based on hypothesis testing. As a result, it is found that the RO-based
generator yields a biased output from the viewpoint of the transition probability if the number of ROs
is small. More precisely, the transitions 01→ 01 and 11→ 11 happen frequently when the number l
of ROs is less than or equal to 10. In this sense, l > 10 is recommended for use in any application,
though a packaged test suit is passed. Thus, the authors believe that the proposed test contributes to
evaluating the unpredictability of a sequence when used together with available statistical test suits,
such as NIST SP800-22.

Keywords: true random number generator; ring oscillator; Markov process; hypothesis testing

1. Introduction

The study of finding entropy sources is a traditional and essential topic, with attractive
randomness in some applications such as key generation and issuing identifiers in the
cryptographic field, for example. In practice, the physical inputs or characteristics of an
I/O device on a computer, such as a keyboard or a computer mouse, are well-established
sources. However, such inputs are not always ideal; for example, a human-related source
such as the input from a keyboard would be affected by the user’s intention. Since the
entropy source should be truly random, researchers have investigated and developed other
methods using physical phenomena to overcome these drawbacks.

Researchers and developers have paid much attention to making random number
generators (RNG) using digital circuits compact, so that they can be implemented together
with other modules. There are two main types of circuits that can easily cause unstable
signals. One of them is called metastability [1], which is an intermediate state between
high and low and is dealt with as a malfunction of a circuit in product development.
However, it is known to have the ideal characteristics to act as an entropy source, and can
be implemented with just a pair of NAND gates on a field programmable gate array (FPGA),
for example. However, since some time is consumed to converge the vibration during
metastability, a generator using metastability sometimes faces problems with efficiency.

The other circuit is an oscillation circuit, called a ring oscillator (RO), consisting of
NOT gates that are aligned in a ring shape. Sunar et al. introduced an RNG using the ROs
in [2]. It was designed to mix the output of multiple RO circuits by using the XOR operation,
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the output of which is synchronized by an internal clock. Though the construction allows
bits to be sampled faster than by using metastability, its randomness was required to be
discussed further, since the randomness is easily affected by the number of NOT gates and
RO circuits.

Wold et al. [3] extended Sunar’s proposed RNG circuit in which the respective output
of ROs is synchronized by delay flip flops (D-FFs). Since the D-FFs contribute to improving
the randomness of RO-based generators, Wold’s construction is now widely adopted
as an entropy source in various situations. Research on these RO-based generators has
been approached from several viewpoints, such as randomness, security, and energy
efficiency. The readers can refer to [4–12] for further results about extensions of the RO-
based generators and randomness evaluations, for example.

In this paper, the authors focus on Wold’s construction and discuss the distribution
property of the generator. Furthermore, the relevance between the number of ROs and
the quality of randomness is also considered. More precisely, the target concerning the
distribution property is the transition probability of bits introduced in the Markov process.
This differs from the elements of several famous statistical tests in the sense that the authors’
proposed method discusses the uniformity of a sequence from the relevance of bits at time
t and t + 1, for instance. The authors think this approach contributes to a different aspect of
a sequence, together with the currently proposed statistical test suites. In addition, in this
paper the authors conduct the same test for generators set up with different numbers of
ROs. As a result, it is found that there is a significant relationship between the number of
ROs and the randomness property.

This paper is organized as follows: Section 2 introduces the fundamentals related to this
work, for example, details of the RO-based generator and statistical tests. Sections 3 and 4
propose a test for an RNG designed using ROs, and give experimental observations for
some generators with different numbers of ROs, respectively. Finally, Section 5 concludes
this paper.

2. Preliminaries

This paper focused on the probability test for an RO-based generator, as well as the
relationship between the randomness property and the number of ROs. This section briefly
reviews the idea of a true random number generator based on a ring oscillator, Markov
process, and hypothesis testing.

2.1. True Random Number Generator Based on Ring Oscillator

This section briefly reviews the fundamentals of an RNG based on ring oscillators,
and related works. An RNG is simply referred to as a generator in this paper.

2.1.1. Random Number Generator and Ring Oscillators

RNGs are typically classified into two main classes [13]. One of them is the determin-
istic RNGs, called pseudorandom number generators (PRNGs). They work algorithmically
with a given seed value. Another class is the non-deterministic RNGs, which often adopt
some non-reproducible phenomena to generate an ideal random number sequence. Such
an ideal sequence is called the true random number generator (TRNG), and many ap-
proaches using physical phenomena, called physical RNGs in what follows, have been
proposed as a class of TRNG. However, not every RNG can be dealt with as a TRNG, even
if it employs a physical phenomena. In this paper, the authors mainly work on evaluat-
ing a well-known physical RNG construction from the viewpoint of the unpredictability
of sequences.

A representative construction is to use digital circuits to obtain a sequence of digits
including bits. There are several approaches such as using noises or the unstable behavior
of logic gates. Among them, an oscillation circuit consisting of odd numbers of NOT gates,
called a ring oscillator (RO), is widely adopted and studied. As shown in Figure 1, an RO is
a circuit that is composed of odd numbers of NOT gates connected in a ring shape.
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Figure 1. Illustration of a ring oscillator.

Since it can be implemented as a logic circuit in an FPGA, a generator based on ROs is
cheaper than one that uses external equipment to observe phenomena to obtain a sequence.

Though external equipment may possibly be interfered with or intermediated by an
attacker and leak a sequence as a result, a circuit closed inside an FPGA has an advantage
in this regard. In detail, without an adequate environment, data through a circuit are hard
to eavesdrop directly. In addition, a generator consisting of a logic circuit is preferred in
practical use since it can be embedded with other circuits into a chip.

The output of an RO oscillates due to the recursive input from the right edge NOT
gate, as the name stands for. The frequency ftNOT is known to be given by Equation (1),
where tpd and tNOT denote the propagation delay time of a NOT gate and the number of
NOT gates, respectively.

ftNOT =
1

2tpdtNOT
(1)

It is noted that since the propagation delay time changes from high, say tpLH , and high
to low, say tpHL, are the same if CMOS devices are used, we can assume tpLH = tpHL and
denote the propagation delay time by tpd for simplicity.

Since an RO is not stable because of effects from the external environment, such as
thermal noises, for example, the actual oscillation period has time difference Td from the
theoretical oscillation period T, as shown in Figure 2, where Td � T.

Figure 2. Illustration of an oscillation period in a ring oscillator.

Thus, the oscillation period TRO of the RO is given by TRO = T ± Td.
This instability is useful for sampling binary symbols, e.g., 0 and 1, and the circuit size

can be scalable depending on the number of NOT gates. Therefore, many researchers have
focused on ROs to develop a compact and ideal RNG, based on ROs.

2.1.2. Related Works

Sunar et al. introduced ROs to construct a TRNG in [2]. It was designed to mix the
output of the respective RO circuit by using the XOR operation, the output of which is
synchronized by an internal clock, as shown in Figure 3.
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Figure 3. Illustration of the generator proposed by Sunar et al.

In [2], Sunar et al. also discussed several properties, such as the ideal length of a ring,
from the theoretical viewpoint.

Based on their construction, Wold et al. [3] extended the circuit to be as shown in
Figure 4. Wold et al. successfully enhanced the randomness by inserting D-FFs between
ROs and an XOR gate to sample the wave endowed by the ROs. They found that short
ROs are better for improving randomness, since the difference in the wave frequency
can be easily induced by the restriction of the length. In this paper, the authors mainly
deal with Wold’s construction to investigate the randomness of continuous digits. In
addition, the readers can refer to the results in [4–12] concerning RO-based generators and
evaluations for more information.

Figure 4. Illustration of the generator proposed by Wold et al.

In a previous work [14], the authors discussed the importance of an XOR gate in
a generator based on ROs by approximating the periodicity and investigating the transition
probabilities of 2-bit patterns. It was revealed that an XOR gate in an RO-based generator
contributes to extending the period length, and the number of ROs is of relevance to the
distribution property. In this paper, the authors extend this discussion to the statistical
randomness evaluation by using the Markov process and hypothesis testing.

2.2. Markov Process

A Markov process is a stochastic extension of a finite automaton for which state
transitions happen probabilistically. It has a memoryless property, which is to say that any
additional information about the future behavior of the process cannot be obtained from
the past processes in a random process. More precisely, X1, X2, X3, . . . are random variables
and P{X | Y} denotes the conditional probability of X given Y. Let S = {s1, s2, s3, . . .} be
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the state space and let pi,j = P
{

Xn = sj | Xn−1 = si
}

be the transit probability from si to sj
for a positive integer n > 1. The memoryless property, referred to as the Markov property,
holds the equality as follows:

P(Xn = xn | Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1) = P(Xn = xn | Xn−1 = xn−1), (2)

where xi ∈ S. Such a random process utilizing the Markov property is called a Markov process.
Based on the definition of the Markov process, a Markov chain is defined as a Markov

process with discrete time and discrete state space. Thus, a Markov chain is a discrete
sequence of states, denoted by S, with random variables X1, X2, X3, . . . such that the proba-
bility of any given state Xn only depends on the current state Xn−1, as shown in Equation (2).
The process diagram of the Markov chain is a directed graph describing the Markov process.
For example, a simple two-state Markov chain can be illustrated as shown in Figure 5.

Figure 5. Example of a process diagram.

2.3. Hypothesis Testing and Z-Test

Hypothesis testing is a method of testing whether claims or hypotheses concerning
a population are likely to be true. There are two hypotheses: the null hypothesis and
an alternative hypothesis. The null hypothesis is a statement about a population parameter,
which is assumed to be true. In contradiction to the null hypothesis, the alternative
hypothesis is a statement that says the value of the population parameter does not match
the value in the null hypothesis.

Hypothesis testing is conducted by following the steps summarized below.

1. State a null hypothesis and alternative hypothesis;
2. Select a random sample from the population;
3. Set a significance level and perform an appropriate statistical test;
4. Decide whether the null hypothesis is valid or not.

The significance level is a criterion to decide the value stated in the null hypothesis.
The decision often comes from the outcome of the statistical test, using the p-value, which
is the probability of obtaining a sample result under the null hypothesis, which is then
compared to the significance level.

A Z-test is a hypothesis test in which the Z-score, also called the Z-statistic, follows
a normal distribution. It determines whether the mean of random variables X1, X2, . . . , Xn
is equal to a mean m0 when the variances of Xi(1 ≤ i ≤ n) are known. It is noted that the
test is considered to be accurate if Xk follows the normal distribution, or to be approximately
accurate if n is sufficiently large (for example, n ≥ 30). The test is conducted by assuming
that the Z-score follows the standard normal distribution. It is calculated by

Z =
X−m0

σ√
n

,

where X = ∑n
i=1 Xi/n and σ denote the standard deviation.
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3. A Test Method and Evaluation Process

This section introduces the details of the test and its evaluation process.

3.1. Background of the Proposed Test

Typically, a sequence generated by PRNGs or TRNGs is evaluated by statistical tests
such as TestU01 [15] and NIST SP 800-22 [16]. These are packages of several statistical tests,
and users can smoothly check the statistical randomness by running them. For example,
the distribution property of a sequence is evaluated by counting the number of bits or
comparing a bit pattern with a template. These evaluations are an inseparable part of the
distribution property. However, the authors feel that these evaluations cannot fully cover
the features of the property.

In this context, the authors introduce the transition probability by considering the
Markov process for an RO-based generator from previous research [14]. It is noted that the
readers can refer to [4], as a work related to this paper. In brief, this paper focuses on the 2-bit
patterns and deals with them in the state S = {00, 01, 10, 11}, with transition probabilities
between each other, where each pattern is derived by splitting a sequence of bits from
the beginning without any duplication of the index. Furthermore, the authors extend the
discussion of this approach to investigate the properties of an RO-based generator in the
following sections.

3.2. Design of a Test

This section briefly introduces the assumptions and process of the test, including evaluation.

3.2.1. Assumptions

In this paper, a 100 MHz clock is used to sample a bit to generate a sequence with
an RO-based generator. The state considered in the Markov process is a 2-bit pattern.
Therefore, the time space is a discrete set T =

{
2× 10−8, 4× 10−8, 6× 10−8, . . .

}
.

An RO-based generator is implemented on an FPGA as a combination of lookup tables
(LUT) and D-FFs. Hence, both NOT and XOR gates can be expressed by LUTs. Since
the wire length causes a difference in RO circuits, this paper intentionally arranges each
element so that they can be in the same condition.

3.2.2. Process of the Test and Evaluation

The test conducted in the next section is composed of three steps, as follows:

1. Set the null hypothesis such that the transition probabilities are equal to 1/4;
2. Repeat the following sampling and preparation step 1000 times:

(a) Generate a sequence of length 1Kbits on an FPGA, and repeat it 1000 times to
obtain a sample sequence of length 1Mbits in total;

(b) Split the sequence into 2 bits and calculate the transition probabilities;
(c) Observe the distribution of probabilities (it should follow the normal distribu-

tion) and decide the significance level;
(d) Conduct the Z-test and calculate p-values.

3. Discussion

First, the assumption of the null hypothesis is clear from the fact that the ideal distribu-
tion of 2 bits is the uniform distribution, having an apparent probability of 1/22. Since one
of the motivations in this work is to investigate the uniformity of transition probabilities
from every pattern, the authors propose sampling a sequence of length 1K bits 1000 times
to obtain a p-value. By repeating the collection of p-values 1000 times, the authors decide
whether the null hypothesis is approved or not.

In addition, the authors’ other motivation is to reveal the relationship between the
randomness of sequences and the number of ROs in a generator. Several experimental
results for different numbers of ROs are introduced in the next section. It is noted that the
authors use the Z-test in the following experiments since the number of samples is large
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(1000 samples). However, a t-test should be utilized when the readers need more strict and
practical evaluation.

4. Experimental Results and Considerations

In this section, the authors show the experimental results of the proposed method. For
simplicity, the null hypothesis H0 and alternative hypothesis H1 throughout the experiment
are H0 : µ = 0.25 and H1 : µ 6= 0.25, respectively, where µ denotes the mean of transition
probabilities. The FPGA board used to implement the RO-based generator was a Nexys
A7-100T Artix-7 series [17], with every RO circuit being composed of only three NOT gates.

4.1. Observation

First, let us begin by briefly confirming whether the probability distribution follows
the normal distribution. Figures 6–8 shows the histograms of transition probabilities when
the numbers of ROs are 2, 10, and 20.

By observing the figures, it is apparent that the probability distribution follows the
normal distribution as the expectation gradually closes to 0.25, depending on the increment
in the number of ROs. Thus, the proposed method can be considered applicable to an RO-
based generator.

Figure 6. Histogram of transition probabilities when the number of ROs is 2.

Figure 7. Histogram of transition probabilities when the number of ROs is 10.
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Figure 8. Histogram of transition probabilities when the number of ROs is 20.

4.2. Comparison of p-Values and Considerations

Based on the previous observation, the authors conducted a Z-test and compared the
p-values obtained throughout the experiment. It is noted that the significance level is set to
1% to validate the hypothesis more strictly.

Table 1 shows the comparisons of p-values obtained by testing sequences generated
with l number of ROs, where 1 ≤ l ≤ 25. The element highlighted in red denotes the
cases in which the p-value is less than 0.005, and the blue ones the elements greater than
or equal to 0.005, respectively. As seen from the table, the null hypothesis tended to be
accepted when l > 10. Additionally, compared to the other transitions, the null hypotheses
for the specific transitions, such as 01 to 01 and 11 to 11 for l > 10, are found to be
rejected frequently. To check these assumptions further, the authors conducted additional
experiments, as given in the next section.

Table 1. Comparisons of p-values.



Entropy 2022, 24, 780 9 of 13

4.3. Post Evaluations for Consideration

The following two characteristics are found throughout the above comparison; thus,
the authors carried out further experiments to confirm the likelihood.

- The null hypothesis H0 : µ = 0.25 is accepted when l > 10;
- The null hypothesis concerning the transition probabilities from 01 to 01 and from

11 to 11 are often rejected.

The first assumption shows that the mean of transition probabilities is 0.25 when l > 10,
which is assumed to be an ideal result for the authors. On the other hand, the second points
out that the specific transitions do not happen uniformly.

The authors conduct additional experiments from different viewpoints, as described
below, to confirm these assumptions.

1. Comparing the number of sequences that could pass the test (1000 trials);
2. Comparing the difference in the results when the number of NOT gates in an OR

circuit is changed (1000 trials).

The experimental results in terms of transition probabilities for each state are intro-
duced in Figures 9–12. The horizontal and vertical axes reflect the number of ROs and
the number of sequences of length 1 Mbits for which transition probabilities were able to
pass the hypothesis test. As seen from the graphs, the number of sequences will gradually
become flat for l > 10. However, Figures 10 and 12 also show that the transitions from 01 to
01 and from 11 to 11 are relatively low compared with the other transitions.

Figure 9. The transition probabilities from 00 (three NOT gates).

Figure 10. The transition probabilities from 01 (three NOT gates).



Entropy 2022, 24, 780 10 of 13

Figure 11. The transition probabilities from 10 (three NOT gates).

Figure 12. The transition probabilities from 11 (three NOT gates).

In the same way, experiments were conducted with the RO-based generator consisting
of seven NOT gates. The results are shown in Figures 13–16. Comparing the figures in
Figures 9–16, the readers can find similar characteristics in both graphs, and the assump-
tions mentioned above are considered to be true.

Figure 13. The transition probabilities from 00 (seven NOT gates).
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Figure 14. The transition probabilities from 01 (seven NOT gates).

Figure 15. The transition probabilities from 10 (seven NOT gates).

Figure 16. The transition probabilities from 11 (seven NOT gates).
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5. Conclusions

This paper focused on an RO-based generator originally proposed by Wold et al.; in
addition, the authors proposed a statistical test regarding the state transition probabilities
of 2 bits for the generator. The purpose of such a test is to check the uniformity of the
respective transition patterns, such as 00, 01, 10, and 11. This statistical test was applied for
RO-based generators consisting of different numbers of ROs. As a result, it was found that
the randomness of an RO-based generator depends on the number l of ROs, and the result
shows that l should be larger than 10.

Therefore, the authors successfully evaluated the randomness of RO-based generators
numerically, and we can conclude from this study that the circuit of RO-based generators
becomes complex depending on the increment in ROs. In addition, it tells us that the users
have to recognize the bias hidden in the transition probabilities, especially for practical use.

However, since this paper only focused on the 2-bit case and did not formulate the
experimental results, the authors would like to utilize larger bit patterns and different
boards to explore the characteristic equation in future works.
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