Supporting Information for:

Preparation of cellulose nanocrystals coated with polymer crystals and their application to composite films

Tetsuya Uchida, Ryohei Nishioka, Risa Yanai

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan

*Correspondence: Tel: +81-86-251-8103; Email: tuchida@cc.okayama-u.ac.jp

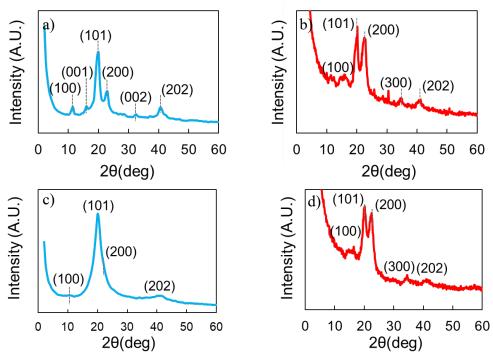


Fig. S1. X-ray diffraction pattern of a) poly(vinyl alcohol) (PVA) crystals, b) nanocomposite fibers NCF_(CNC/PVA), c) poly(vinyl alcohol-*co*-ethylene) (EVOH) crystals, and d) the nanocomposite fibers NCF_(CNC/EVOH).

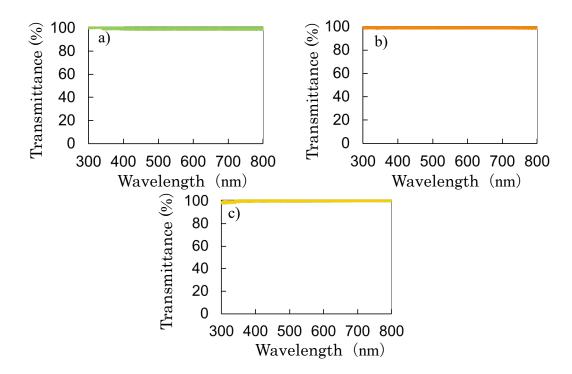


Fig. S2. Ultraviolet–visible spectra of a) CNC 0.1 wt%/PVA composite film, b) $NCF_{(CNC/PVA)}$ 0.1 wt%/PVA composite film, and c) $NCF_{(CNC/EVOH)}$ 0.1 wt%/PVA composite film.

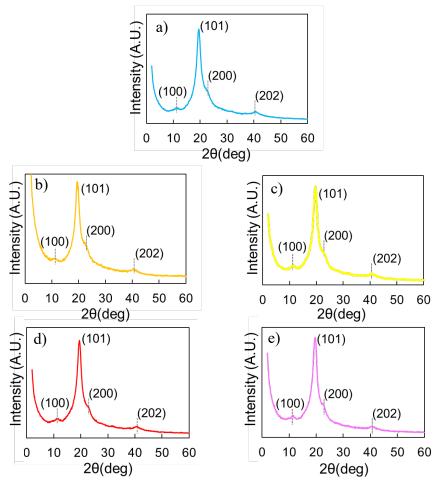


Fig. S3. X-ray diffraction pattern of a) poly(vinyl alcohol) (PVA) film, b) NCF_(CNF/PVA)0.1%/PVA film, c) NCF_(CNF/EVOH)0.1%/PVA film, d) NCF_(CNC/PVA)0.1%/PVA film, and e) NCF_(CNC/EVOH)0.1%/PVA film.

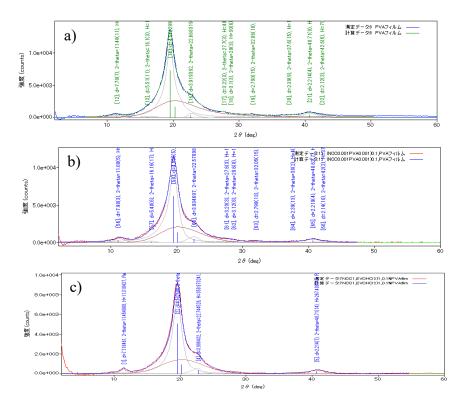


Fig. S4. Deconvoluted X-ray diffraction pattern of a) poly(vinyl alcohol) (PVA) film (Fig. S3(a)), b) $NCF_{(CNC/PVA)}0.1\%/PVA$ film (Fig. S3(d)), and c) $NCF_{(CNC/EVOH)}0.1\%/PVA$ film (Fig. S3(e)). The red line in the figure is the amorphous peak.

Film	NCF content	CNC content	Crystallite size (nm) / hkl indexing			
	(%)	(%)	100	101	200	202
PVA	-	-	3.1	5.3	5.7	3.4
NCF(CNC/PVA)/PVA	0.1	0.05ª	4.9	4.8	4.0	3.3
NCF(CNC/EVOH)/PVA	0.1	0.05 ^b	4.3	5.4	5.0	3.3

Table S1. Crystallite sizes obtained from resolved X-ray diffraction patterns of PVA and NCF/PVA composite films.

^a Added as $NCF_{(CNC/PVA = 1/1)}$ ^b Added as $NCF_{(CNC/EVOH = 1/1)}$

NCF_(CNF/PVA=1/1), NCF_(CNF/EVOH=1/1), NCF_(CNF/PVA=1/1)/PVA composite films, and NCF_(CNF/EVOH=1/1)/PVA composite films were prepared by previously reported method^{S1)} and the viscoelasticity of the films was measured using a DMA1 dynamic viscoelasticity measuring device (Mettler Toledo). The measurement conditions were 40 °C–160 °C at a displacement of 8 μ m, a frequency of 1 Hz, and a heating rate of 3 °C/min. X-ray diffraction measurements of the composite films were performed in a 20 range of 2°–60° using an X-ray diffraction apparatus (Rigaku VariMax with RAPID) with a tube voltage of 40 kV and a tube current of 30 mA by irradiating with Cu K α rays for 20 min. In addition, the crystallinity and crystallite size were calculated based on the measured profile data using the Rigaku X-ray analysis software PDXL.

(^{S1)} Uchida T, Iwaguro F, Yanai R, Dodo H. RSC Adv. 2017;7:19828-19832.)

Fig. S5. Dynamic viscoelasticity curve of the poly(vinyl alcohol) and composite films.

film	NCF content	CNF content	Tan δ peak temp.
	(%)	(wt%)	(°C)
PVA	0	0	99
NCF(CNF/PVA)/PVA	0.1	0.05 ^a	104
NCF _(CNF/EVOH) /PVA	0.1	0.05 ^b	97

Table S2. Tan δ peak temperature of poly(vinyl alcohol) (PVA) and composite films

^a Added as $NCF_{(CNF/PVA = 1/1)}$ ^b Added as $NCF_{(CNF/EVOH = 1/1)}$

Table S3. Crystallinity of poly(vinyl alcohol) (PVA) crystals in the PVA film and composite films

film	NCF content	CNF content	Crystallinity of PVA
film	(%)	(%)	(%)
PVA	-	-	59
NCF _(CNF/PVA) /PVA	0.1	0.05ª	64
NCF _(CNF/EVOH) /PVA	0.1	0.05 ^b	61

^a Added as $NCF_{(CNF/PVA = 1/1)}$ ^b Added as $NCF_{(CNF/EVOH = 1/1)}$