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Abstract: A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary
structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized
secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-
linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-
protein interactions because they enable multipoint molecular recognition, which is difficult to
achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-
based foldamers and stapled peptides with a view to their applications in drug discovery, including
our recent progress.
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modality

1. Introduction

A foldamer, meaning “any polymer with a strong tendency to adopt a specific compact
formation,” is an artificial oligomer constructed from small building blocks such as amino
acids, nucleic acids, and sugars [1,2]. Moreover, Hills also defined a foldamer as “any
oligomer that folds into a conformationally ordered state in solution” [3]. Foldamers have
been broadly used in organocatalysis [4,5], materials chemistry [6], polymer chemistry [7],
chemical biology [8,9], and medicinal chemistry [10,11] because of their unique structural
properties and adaptabilities [12,13]. In particular, it has been clearly demonstrated that
foldamers mimic biomacromolecules and are resistant to degradation by digestive en-
zymes [13]. Therefore, foldamers can be potentially used in drug discovery, and many
studies using foldamers have been reported [14]; among them, peptide-based foldamers
have been studied extensively as possible therapeutics [15].

In general, short peptides consisting of only natural amino acids have particular
problems in biological applications: (1) unstable secondary structures [16]; (2) low resistance
against hydrolytic enzymes [17]; and (3) lack of cell-membrane permeability [18]. Gellman
and co-workers circumvented these issues by realizing that α/β-oligopeptides with a
combination of α- and β-amino acids were capable of forming stable helical structures
similar to the α-helix [1]. In addition, those α/β-oligopeptides showed increased affinity
against target proteins and resistance to hydrolytic enzymes [13]. Since Gellman’s findings,
several peptide-based foldamers have been developed that contain β-amino acids, γ-amino
acids [1,3], quinoline monomers [12], and α,α-disubstituted amino acids [19,20] as building
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blocks. Currently, peptide-based foldamers have been used to develop bioactive peptides
such as cell-penetrating peptides (CPPs) [9], antimicrobial peptides (AMPs) [20], drug
delivery systems (DDS) [21], and protein-protein interaction (PPI) inhibitors. PPIs play an
essential role in maintaining the homeostasis of life, and there are hundreds of thousands of
proteins involved in PPIs. For example, transcription factors are regulated by interactions
with transcriptional regulators and other factors to switch transcriptional activity on and
off. The dysfunction of transcription factors is related to several diseases, such as various
cancers, diabetes, and neurological disorders [22]. Therefore, drug discovery approaches
inhibiting aberrant PPIs are important for developing therapeutics to treat these diseases.
However, the interaction surface of PPIs is generally broad and flat [23], and the lack of
druggable binding pockets has become a bottleneck in drug discovery research using small
molecule compounds. Accordingly, peptide-based foldamers are expected to be a new
modality for developing PPI inhibitors because they can target a wide interface between
protein-protein interactions. Furthermore, it has been reported that many PPIs are mediated
by the α-helical and β-sheet secondary structures [24,25]. In particular, the α-helix plays
an important role in expressing diverse functions, such as recognizing DNA and other
proteins. Therefore, foldamers mimicking α-helices represent promising candidates as PPI
inhibitors. In this review, we introduce past and recent research on PPI inhibitors based
on helical foldamers by introducing several building blocks such as α,α-disubstituted
amino acids, β- and γ-amino acids, and quinoline monomers. (Figure 1). In the same class,
δ- and ε-peptides, aza-β3-peptides, pyrrolinones, α-aminooxy-peptides and sugar-based
peptides have been reported as foldamers and have been investigated for the development
of bioactive peptides [2,26–30]. Moreover, the side-chain stapling of the peptides has been
widely used to stabilize their helical structure, and many PPI inhibitors based on stapled
peptides have been reported [31]. On the other hand, the PROTACs are a novel strategy
for target protein degradation and are expected to be the next-generation drugs. Recently,
the PROTAC based on peptide-based PPI inhibitors has been reported. In this review, the
recent progress of the development of PPI inhibitors based on stapled peptides and the
PROTACs using peptide-based PPI inhibitors were also introduced.

Processes 2022, 10, 924 2 of 23 
 

 

[19,20] as building blocks. Currently, peptide-based foldamers have been used to develop 

bioactive peptides such as cell-penetrating peptides (CPPs) [9], antimicrobial peptides 

(AMPs) [20], drug delivery systems (DDS) [21], and protein-protein interaction (PPI) in-

hibitors. PPIs play an essential role in maintaining the homeostasis of life, and there are 

hundreds of thousands of proteins involved in PPIs. For example, transcription factors are 

regulated by interactions with transcriptional regulators and other factors to switch tran-

scriptional activity on and off. The dysfunction of transcription factors is related to several 

diseases, such as various cancers, diabetes, and neurological disorders [22]. Therefore, 

drug discovery approaches inhibiting aberrant PPIs are important for developing thera-

peutics to treat these diseases. However, the interaction surface of PPIs is generally broad 

and flat [23], and the lack of druggable binding pockets has become a bottleneck in drug 

discovery research using small molecule compounds. Accordingly, peptide-based folda-

mers are expected to be a new modality for developing PPI inhibitors because they can 

target a wide interface between protein-protein interactions. Furthermore, it has been re-

ported that many PPIs are mediated by the α-helical and β-sheet secondary structures 

[24,25]. In particular, the α-helix plays an important role in expressing diverse functions, 

such as recognizing DNA and other proteins. Therefore, foldamers mimicking α-helices 

represent promising candidates as PPI inhibitors. In this review, we introduce past and 

recent research on PPI inhibitors based on helical foldamers by introducing several build-

ing blocks such as α,α-disubstituted amino acids, β- and γ-amino acids, and quinoline 

monomers. (Figure 1). In the same class, δ- and ε-peptides, aza-β3-peptides, pyrrolinones, 

α-aminooxy-peptides and sugar-based peptides have been reported as foldamers and 

have been investigated for the development of bioactive peptides [2,26–30]. Moreover, the 

side-chain stapling of the peptides has been widely used to stabilize their helical structure, 

and many PPI inhibitors based on stapled peptides have been reported [31]. On the other 

hand, the PROTACs are a novel strategy for target protein degradation and are expected 

to be the next-generation drugs. Recently, the PROTAC based on peptide-based PPI in-

hibitors has been reported. In this review, the recent progress of the development of PPI 

inhibitors based on stapled peptides and the PROTACs using peptide-based PPI inhibi-

tors were also introduced. 

 

Figure 1. Inhibition of protein-protein interactions by peptide-based foldamers containing non-pro-

teinogenic amino acids. 

2. α-Peptides 

The α-helix is a right-handed helical structure formed by hydrogen bonds between 

atoms that form the peptide backbone. Specifically, the α-helix forms a hydrogen bond 

Enhancing…

ü recognition target protein

ü helicity

ü proteolytic stability

ü cellular uptakeSecondary structures play an important role in PPIs.

N

NH O
N
H

H
N

O

N

R O

H
N

O

R'R

N
H

O O
H
N

Building Blocks

Figure 1. Inhibition of protein-protein interactions by peptide-based foldamers containing non-
proteinogenic amino acids.

2. α-Peptides

The α-helix is a right-handed helical structure formed by hydrogen bonds between
atoms that form the peptide backbone. Specifically, the α-helix forms a hydrogen bond
between the C=O of the (i)-position amino acid and the N–H of the (i + 4)-position amino
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acid, resulting in a right-handed helical structure that has 3.6 residues per turn and a rise
of 0.54 nm. The α-helix is involved in most PPIs and can be used as a general template
for inhibitor design. Sufficient PPI inhibition requires the design of peptides that form
stable helical structures. α,α-Disubstituted amino acids (dAAs), non-proteinogenic amino
acids that stabilize peptide helical structures, have chemical structures in which the α-
position hydrogen of natural α-amino acids is replaced by an alkyl group [32–35]. Various
dAAs have been developed. dAAs can stabilize the secondary structures of oligopeptides,
and α-methylated and cyclic dAAs are often used [32–38]. dAAs are incorporated into
functionalized helix-stabilized peptides such as organocatalysts [38–40], drug delivery
system (DDS) carriers [41–46], and antimicrobials [47–50]; however, there are only a few
examples of their use as PPI inhibitors. Reported PPI inhibitors containing dAAs are listed
in Table 1. 2-Aminoisobutyric acid (Aib) [51–53], the simplest dAA, is used as a helix
promoter. Aib-based helical peptides have been used as PPI inhibitors targeting proteins
such as mouse double minute 2 (MDM2) [54,55] and S100B [56]. We have reported that
short Leu-rich peptides that incorporate a combination of Aib and a stapling side-chain
with dihydroxy groups form stable helical structures. Those peptides inhibit the binding
of a coactivator to the vitamin D receptor (VDR) [57]. In addition, a peptide with Aib
replaced by hydroxymethylserine also formed a stable helical structure and possessed
VDR-coactivator inhibitory activity [58].

Table 1. α-Peptide PPI inhibitors that contain dAAs.

Peptide Sequence Target Protein Ref.

ETFUDUWKULUE
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3. β-Peptides

β-peptides are composed of β-amino acids (β-AA), which have an amino group at the
β3-position and the side-chain on the β2- or/and β3-position from the carboxylic acid. β-
peptides form specific secondary structures such as 12- or 14-membered helices, depending
on their sequences [59–62]. Applications in structural chemistry [63,64], materials [6,65],
and organocatalysis [66,67] have been carried out using β-peptides because these peptides
have unique structural properties. β-peptides show tolerance against digestive enzymes in
the body, and thus, β-peptides represent a platform for developing bioactive peptides [68].
However, the 12- and 14-membered helices of β-peptides are not readily recognized by
biomacromolecules such as nucleic acids and proteins because these helices differ in struc-
ture to that of the α-helix, and applications of β-peptides in drug discovery have been
limited. Based on this background, Gellman and co-workers have reported that the in-
troduction of β-AA into α-peptides with a specific pattern can mimic the native α-helical
structure. That is, α/β-peptides that exhibit the –ααβαααβ pattern, in which the β-AA
residues align in a “stripe” along one side of the helix, can support functional α-helix
mimicry [69]. In contrast, for α/β-peptides that display the ααβ or αααβ pattern, the
β-AA residues spiral around the periphery of the helix [69]. Furthermore, Gellman and
co-workers developed cyclic β-amino acid residues, such as trans-2-aminocyclohexane
carboxylic acid, (R,R)-trans-2-aminocyclopentanecarboxylic acid (ACPC), and (3S,4R)-trans-
3-aminopyrrolidine-4-carboxylic acid (APC), and the introduction of these cyclic β-amino
acids into peptides stabilized helical structures and enhanced their biological activity [70].
Their efforts showed that combining α- and β- amino acids is a promising strategy for
developing bioactive peptides. Based on this knowledge, several cyclic and bicyclic β-AAs
have been reported and applied for the development of bioactive α/β-peptides [71,72]. Cur-
rently, β-peptides are studied widely for several bioactive peptides, such as CPPs [19,73],
AMPs [74,75], and PPI inhibitors [76–81]. Here, recent advances in β-peptide-based PPI
inhibitors are described (Table 2).

Schepartz and co-workers designed and synthesized β-peptides containing β3-amino
acid residues and analyzed their secondary structures [76,77]. In addition, the PPI inhibitory
activities targeting the p53/hDM2 interaction, which is a transcriptional activator critical
for stress-induced cell cycle arrest and apoptosis, were evaluated. Cancer cells often
overexpress hDM2 and downregulate p53, resulting in the promotion of cell proliferation.
Therefore, peptides that inhibit the interaction between p53 and hDM2 are promising
candidates for cancer therapy. The β-peptides designed using the binding motif of p53
against hDM2 and β3-AA formed stable 14-membered helical structures via a salt bridge
between β3-homoglutamate and β3-homoornithine residues. Binding affinity determined
using the fluorescein polarization assay revealed that the β-peptides showed higher affinity
toward hDM2 when compared with the affinity of the parent α-peptides toward hDM2.
They also reported the β-peptides as scaffolds for developing PPI inhibitors that block
human immunodeficiency virus-1 (HIV-1) fusion using the same strategy [78]. As described
above, the introduction of β-AA residues in specific patterns should mimic the α-helix [69].
Based on this knowledge, α/β-peptides containing cyclic β-AA residues based on the
C-terminal heptad-repeat (CHR) domain of HIV protein gp41 were designed [79]. gp41 is
expressed on the surface of the envelope of HIV and forms a critical bundle intermediate
that drives the fusion of the viral envelope with the target cell membrane. The formation
of bundle intermediates requires the interaction of the CHR with the N-terminal heptad
repeat (NHR) domain. Therefore, CHR mimics may inhibit the formation of bundles and
inhibit the fusion process of HIV. α/β-Peptides with the ααβαααβ pattern were designed
to stabilize the helix structure through the formation of a salt bridge. The α/β-peptides
showed higher affinity against the NHR domain than the parent α-peptide. Moreover, the
introduction of β-AAs into the sequence prolonged the half-life of the peptides against
digestive enzymes by 1000-fold. Thus, α/β-peptides increased the affinity toward target
proteins and improved peptide stability, demonstrating the potential development of
therapeutic reagents.
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Table 2. β-Peptides as PPI inhibitors.

Peptide Sequence and Structure Target PPI Ref.

H-β3O-β3V-β3W-β3E-β3V-β3W-β3O-β3V-β3I-β3E-OH
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HIV gp41 [77]

H-β3K-β3V-β3L-β3E-β3V-β3W-β3K-β3V-β3F-β3E-OH p53-hDM2 [78]

Ac-(β3R)-TWE-(β3E)-WD-(β3R)-AIA-(β3E)-YA-(β3R)-RIE-(β3E)-LIZAAQ-(β3E)-
QQZKNE-(β3E)-ALZEL-NH2
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VEGF [80]

Gellman and co-workers developed α/β-peptides that target the diverse protein-
protein interaction interface, which may be an alternative to antibodies, with high se-
lectivity and affinity against target proteins such as vascular endothelial growth factor
(VEGF) [80,81]. VEGF is a homodimeric protein that binds to the VEGF receptor to trigger in-
tracellular signaling for angiogenesis. In cancer cells, VEGF is overexpressed and promotes
angiogenesis, causing an exacerbation of cancer. Therefore, inhibitors of VEGF/VEGF
receptor signaling are promising reagents for cancer therapy. Gellman and co-workers
designed α/β-peptides based on the three-helix bundle Z-domain scaffold, which was
developed via phage display targeting the VEGF monomer. The Z-domain targeting VEGF
(Z-VEGF) is composed of three helices, with helices 1 and 2 associated with binding to
the surface of VEGF and helix 3 stabilizing the entire structure of Z-VEGF. Helix 3 was
removed because it positions on the opposing side of the binding interface, and the open
side of helices 1 and 2 was replaced with β-AAs to stabilize the structures. The designed
α/β-peptides exhibited high affinity toward VEGF with affinities similar to that of the par-
ent α-peptide. The α/β-peptides showed anti-proliferation activity against HUVEC cells,
indicating that the α/β-peptides antagonize VEGF/VEGF receptor signaling. Thus, the
introduction of β-AAs can enhance bioactivity and improve pharmacokinetics, and α/β-
peptide foldamers represent potential novel drug modalities that target broad interfaces
of PPIs.

4. γ-Peptides

γ-amino acids (γ-AAs) have an amino group at the γ-position relative to the carboxyl
group, and γ-peptides adopt ordered secondary structures, as observed for β-peptides [82].
Currently, cis-γ-amino-proline [83,84], vinyl type γ-AAs [85,86], and cyclic γ-AAs [87] have
been used widely as building blocks of γ-peptides. Some types of γ-peptides containing γ-
substituted, α,γ-substituted, or α,β,γ-substituted γ-AAs adopt 12- or 14-membered helical
structures [88,89]. Gellman and co-workers reported that α,β,γ-peptides containing β- and
γ-AAs in the αγααβα repeat formed α-helical structures in an aqueous solution [90]. Their
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findings revealed that α/β/γ-peptides mimic the α-helix and are suitable for designing
bioactive peptides. In this section, PPI inhibitors containing γ-AA are described (Table 3).
Aitken and co-workers reported that α/β/γ-peptides composed of α- and γ-AAs and
trans-2-aminocyclobutanoic acid (tACBC) form 12 or 13-membered helices [91,92]. A series
of α/β/γ-peptide derivatives were designed as potential bioactive peptides based on their
peptide design. The designated α/β/γ-peptides bound hDM2 to inhibit the interaction
between hDM2 and p53 and showed high tolerance against digestive enzymes. Cai and
co-workers reported that a sulfono-γ-peptide, which is an oligomer of the N-acylated-N-
aminoethyl amino acid, can adopt a helical structure bearing a pitch of 5.1 Å, which is
similar to that of the α-helix (5.4 Å) [93,94]. The sulfono-γ-peptides present side-chains
similarly to the side-chain presentation found in α-helices by introducing proper side-
chains on the sulfone groups and the γ-positions. Based on these structural properties, PPI
inhibitors targeting the β-catenin/BCL-9 interaction were developed [95]. The competi-
tion assay revealed that the designed sulfono-γ-peptides disrupted the β-catenin/BCL-9
interaction with an IC50 value of 0.74 µM. Furthermore, the sulfono-γ-peptides were inter-
nalized effectively into SW480 cells and inhibited Wnt/β-catenin signaling by disrupting
the β-catenin/BCL-9 interaction. This research group also developed PPI inhibitors against
the p53-MDM2/MDMX interaction [96]. The sulfono-γ-peptides mimic an α-helix and
effectively penetrate the cell membrane [95]. Thus, the sulfono-γ-peptides are promising
tools for developing intracellular PPI inhibitors. Moreover, Maillard et al. reported that the
γ-peptides, composed of thiazole-based γ-AAs, adopted the 9-helix and interaction with
amyloid-β peptides [97,98]. Their efforts revealed that the thiazole-based γ-AAs could be
applicable for the development of PPI inhibitors by mimicking the helical structures.

Table 3. γ-peptides as PPI inhibitors.

Peptide Sequence and Structure Target PPI Ref.

Boc-F-(γ4A)-(tACBC)-(γ4W)-(tACBC)-(β3L)-OMe
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5. Peptoids

N-substituted polyglycines as peptide mimetics are referred to as peptoids [99]. Pep-
toids are also classified as foldamers that aim to enhance proteolytic stability while mimick-
ing α-helical and β-sheet secondary structures. The proton on the amide nitrogen of the
backbone is replaced by an alkyl substituent in peptoids. Conventional peptoids do not
have asymmetric carbons on the main chain and cannot form intramolecular hydrogen
bonds because they have no amide protons. Therefore, those peptoids are typically flexible
and have reduced polarity. Peptoids are attracting attention for their use as intracellularly
targeted PPI inhibitors because they are easy to synthesize and display high membrane
permeability as they do not form hydrogen bonds with water. In particular, applying pep-
toids as PPI inhibitors has been attempted by using chemical modifications that allow these
peptoids to form stable secondary structures (Table 4). Peptoids with chiral substituted
groups can form well-defined one-handed helical structures [100–103]. Furthermore, sev-
eral studies have reported recently that the conformations of peptoids can be constrained
by adding a methyl group to an α-carbon atom [104,105]. Peptoids have been applied for
drug discovery, such as vaccine therapeutics [102] and PPI inhibitors. From combinatorial
libraries, vascular endothelial growth factor receptor2 (VEGFR2)-binding peptoids have
been screened, and peptoid antagonists that exhibit VEGFR2 activity in vitro and in vivo
have been developed [106–109]. Kirshenbaum and co-workers have successfully created in
silico screening of PPI inhibitors using a rigid cyclic peptoid skeleton [110]. Kodadek [111]
and Lim [112] groups have individually succeeded in obtaining inhibitors of intracellular
proteins from combinatorial libraries of peptoids. In addition, Morimoto and Sando’s
group recently succeeded in preparing peptoid foldamers with oligo-N-substituted alanine
(oligoNSA) that stably form specific conformations by introducing asymmetric substituents
on the peptoid backbone [104]. Furthermore, this oligoNSA is a useful framework for intra-
cellular PPI inhibitors [113]. Foldamers with combinations of α-amino acids and peptoid
monomers are also potent PPI inhibitors. Peptide-peptoid hybrids have been reported to
be potent and highly selective ligands for the Grb2 SH3 domain [114]. As another example,
peptide-peptoid hybrids that form stable β-hairpin structures were reported to inhibit
CXCR4-mediated HIV entry [115]. Peptoid-based (i.e., foldamers) drug discovery targeting
intracellular PPIs will likely be realized using various approaches in the future.

Table 4. Peptoid-based PPI inhibitors.

Sequence or Structure Target Protein Ref.
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6. Urea-Type Foldamers

Urea-type helical foldamers are classified as a type of γ-peptide in which a methylamino
motif is inserted into α-amino acids and have been used in drug discovery research [116,117].
In 1995, a solid-phase synthetic method was reported by Burgess et al. [118,119]. In their
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method, the urea bond was constructed from isocyanate prepared from the carboxyl group
of natural amino acids. In 2000, Guichard and co-workers developed a building block
with an hydroxysuccinimide group as the reactive functional group for polyurea synthesis
(Figure 2) [120]. This building block is currently used as the primary synthetic method for
polyurea construction. The urea building blocks are derived from natural amino acids.
Therefore, their side-chain environments closely resemble those of natural helical peptides.
The characteristic features of polyurea peptides, studied extensively by Guichard and
co-workers, include forming helical structures with 2.5 residues per turn via intramolecular
hydrogen bonds [121,122]. This structural feature is found in native peptides, which form
helical structures by hydrogen bonding between amide and carbonyl groups in the peptide
backbone, indicating that polyurea foldamers can be designed to mimic natural peptides.
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Several applications using urea-type helical foldamers have been reported. As listed in
Table 5, in 2019, Goudreau, Guichard, and co-workers reported that urea-based foldamers
could be used for designing a glucagon-like peptide 1 (GLP-1) analog [123]. GLP-1 is
a physiological peptide secreted from L-cells in the small intestine, which binds to the
GLP-1 receptor on pancreatic beta-cells and stimulates insulin secretion. In their report, the
urea-peptide, which replaces residues 14–21 of GLP1 with YuEuAuAuAuAu, exhibited high
degradation stability in mouse plasma while maintaining its blood glucose inhibitory effect
in mice. Enhanced metabolic stability is an important factor in drug discovery, as well as
the stability of the helical structure. Urea-containing PPI inhibitors targeting the transcrip-
tional regulators MDM2 and VDR have also been reported by Guichard and co-workers
in 2021 [124]. The ubiquitin ligase MDM2 negatively regulates the tumor suppressor p53.
Thus, the inhibition of MDM2 restores p53 and inhibits cancer cell growth, and the PPI
inhibitors of MDM2 represent potential anticancer agents [125]. The PMI peptide consisting
of 12 residues (TSFAEYWNLLSP) that binds to MDM2 was found by phage display analysis.
Guichard and co-workers focused on the ten residues sequence TSFAEYWNLL of PMI
and designed the corresponding urea peptide TSFAEYWuAuLuAu. As for peptide design,
Wu was introduced at the seventh position to improve protease resistance, and AuLuAu



Processes 2022, 10, 924 10 of 24

was introduced to induce helix formation. This urea-type peptide binds to MDM2 with
high affinity. In addition, a urea-type peptide based on the structure of SRC1-2 and SRC2-3
tridecapeptides consisting of a central consensus LXXLL motif was designed to inhibit VDR,
and coactivator interactions were also developed. VDR, a nuclear hormone receptor (NHR),
is associated with regulating many biological functions such as bone homeostasis, cell
growth, and immunity. For VDR to transcribe 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] as
a ligand, molecular binding of the ligand-binding domain (LBD) to coactivators such as
steroid receptor coactivators (SRC1, SRC2, SRC3) is required. Therefore, inhibiting the inter-
action between VDR and coactivators is a potential therapeutic strategy for Paget’s disease
of bone [126]. Guichard and co-workers designed a hexa-urea (AuAuαLuRuLuNleuKDD)
peptide in which residues 1–10 of SRC2–3 (ENALLRYLLDKDD) were replaced, and the
urea-peptide showed a 10-times stronger binding affinity to VDR (Kd = 0.14 µM) compared
with SRC2–3 (Kd = 1.5 µM). A urea-foldamer PPI inhibitor targeting anti-silencing function
1 (ASF1) has also been reported [127]. ASF1 is a histone H3/H4 chaperone that assembles
and disassembles chromatin during transcription, replication, and repair. ASF1 dysfunction
is associated with various pathologies, including age-related diseases, pathogen infections,
and cancer. Depleting ASF1 inhibits the growth of various cancer cell lines and enhances
the sensitization of cells to chemotherapeutic agents [128]. An ASF1 inhibiting urea-peptide
(Ac-EKNaluRuLuQuRIA-NH2) with four urea residues inserted in the helix center based
on the C-terminal sequence of H3 (ASTEEKWARLARRIAGAGGVTLDGFG), which forms
the interaction interface between ASF1 and H3, was designed. The urea-peptide showed
high stability against proteolysis under stringent conditions and demonstrated binding to
ASF1 at low micromolar values (Kd = 2.7 µM). In addition, the X-ray co-crystal structure
of the urea-peptide and ASF1 was also analyzed. Those results are expected to contribute
strongly to the future development of ASF-targeted drug discovery.

Table 5. Urea-based foldamers and their applications.

Structures and Sequences Target Ref.

H-HGEGTFTSDVSSY YuEuAuAuAuAu FIAWLVKGRG-NH2 GLP-1 mimic [123]

TSFAEYWuAuLuAu MDM2

[124]

AuAuαLuRuLuNleuKDD

* Auα =
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Ac-EKNaluRuLuQuRIA-NH2
* Nal: Naphthylalanine ASF1 [127]

As summarized above, replacement with three to four urea residues can improve the
metabolic stability of PPIs without significantly affecting their inhibitory activity. These studies
will contribute to the future development of PPI drug discovery based on urea-foldamers.

7. Aromatic Foldamers and the Terphenyl Scaffold

Helical peptide foldamers containing aromatic building blocks have been developed
(Figure 3). Aromatic peptide foldamers generally adopt helical structures similar to he-
licene [117,129]. The driving force stabilizing the helical structures is the π-π stacking
interaction between aromatic rings and hydrogen bonding between the ring nitrogen lone
pairs and amide bonds. In 1994, Hamilton and co-workers initially reported aromatic
foldamers composed of anthranilic acid amide [130,131] and pyridine-2,6-dicarboxylic
acid [129,131]. Subsequently, in 2003, quinoline-type [132,133] foldamers were reported
by Huc and co-workers. Ortho-terphenyl is another motif used commonly to construct
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helical structures, and its peptide-type helical foldamers have been reported by Gellman
and co-workers recently [134].
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As listed in Table 6, in 2019, Huc and co-workers demonstrated the binding and
immobilization of quinoline-type helical foldamers against two cysteine mutant proteins,
interleukin 4 (IL4) and cyclophilin A (CypA), based on a tethering approach [135]. A
cysteine-reactive probe, 2-(1H)-thiopyridone, was introduced into the N-terminus of the
quinoline-based helical aromatic peptide (QLeuQLeuQOrnQAsp). This Cys-reactive helical
peptide was designed to react with the SH group near the PPI site by an S-S exchange
reaction. Such covalent interactions have been demonstrated in experiments using site-
directed Cys mutants of CypA and IL4. This technology is expected to be applied to
design PPI foldamers targeting Cys residues and contribute to the structural elucidation
of PPIs. In 2018, Huc and co-workers synthesized a unique oligoamide-based foldamer
that mimics the negatively charged phosphate site of B-DNA and takes on a single-helix
structure [136]. These mimics disrupted the activity of DNA-interacting proteins targeted
for cancer therapy and exerted their cytotoxicity only in the presence of transfection agents.
Furthermore, in 2021, this phosphorylated quinoline foldamer was conjugated as a payload
to trastuzumab for selective transport to breast cancer cells [137]. These phosphorylated
foldamers are also expected to be used to develop PPI inhibitors.
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Table 6. Aromatic foldamers and their applications.

Structures and Sequences Target Ref.

X-QLeuQLeuQOrnQAsp
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8. Stapled Peptides

In recent years, side-chain intra-cross-linking of peptides has received attention as a
novel strategy for regulating the secondary structures of peptides. This section introduces
cross-linked peptides that contribute to the potential development of PPI inhibitors based
on the stabilization of α-helical structures (Table 7). Methods for stabilizing α-helix peptide
folds have been developed based on interactions between side-chains of natural amino
acids within peptide sequences. In 1987, Marqusee and Baldwin revealed that α-helical
structures are stabilized by intramolecular salt bridges formed between the side-chains
of lysine and glutamic acid residues at the i and i + 4 positions [138]. Chelation of metal
ions using iminodiacetic acid-bearing side-chains or histidine residues on peptides has
been reported to stabilize the peptide α-helix [139,140]. Moreover, in 2013, Tezcan and
co-workers revealed that α-helix stabilization is achieved by coordinating a divalent metal
ion between a histidine residue and an 8-hydroxyquinoline moiety [141].

Subsequently, methods have been developed to stabilize α-helical structures by form-
ing intramolecular covalent side-chain cross-linking, such as the disulfide bond or lactam
bridge. Burris and co-workers reported PPI inhibitors that formed stable α-helices through
the formation of disulfide bonds. [142,143]. This disulfide-bond-containing peptide, the
peptidomimetic estrogen receptor modulator 3 (PERM3), inhibited interactions between
estrogen receptor α (ERα) and its coactivator [142,143]. Our group reported that the con-
jugation of CPPs, which penetrate the cell membrane and deliver cargo molecules into
cells, with PERM3 enhanced the intracellular delivery of PERM3 peptides and inhibited
ERα gene expression in mammalian cells [144]. Pei and co-workers reported that α-helical
peptides containing a lactam bridge between Asp and Lys inhibited the p53/ MDM2 inter-
action [145]. The interaction between p53 and MDM2 plays a vital role in the homeostasis
of mammalian cells, and overexpression of MDM2 reduces the expression level of p53,
resulting in the exacerbation of cancers. The efforts by Pei and co-workers revealed that
the formation of a lactam bridge between Asp and Lys residues stabilized the α-helical
structure and inhibited the PPI between p53 and MDM2, thus hampering cell growth of
tumor cells.

Side-chain cross-linking of peptides using not only natural amino acids but also non-
proteinogenic amino acids has also been developed, which is called “stapling” [146]. In
particular, hydrocarbon stapling has been used to develop PPI inhibitors that target various
proteins. Grubbs and co-workers developed stapling between L-serine or L-homoserine
O-allyl ethers using the olefine metathesis reaction for α-helical stabilization of oligopep-
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tides [147]. Our group reported that the stapled peptide, DPI-07, which introduced a
side-chain cross-link between serine and homoserine O-allyl ether, inhibited the interaction
between VDR and its coactivator [57].

In 2000, Verdine and co-workers designed and synthesized α-methylated amino acid
with an olefin moiety of different lengths and investigated the effects of the position and
the length of the olefinic side-chain on cross-linking formation and peptide secondary
structures [148]. In this report, introducing hydrocarbon cross-linking at the i and i + 4
positions using two (S)-4-pentenylalanines or at the i and i + 7 positions using (R)-7-
octenylalanine and (S)-4-pentenylalanine enhanced the biological compatibility of peptides,
such as helicity and resistance to hydrolysis [146,148]. In addition, introducing hydrocarbon
cross-linking into peptides enhanced their molecular recognition and cellular uptake [149].
Verdine and co-workers reported a stapled peptide at the i and i + 4 positions and showed
that this peptide, 35R, inhibited the interaction between β-catenin and T cell factor (TCF).
The peptide 35R showed a strong binding affinity at nanomolar levels against β-catenin and
downregulated target gene expression in mammalian cells [150]. Sawyer and co-workers
revealed that ATSP-7041 (ALRN-6924), a peptide with hydrocarbon cross-linking at the i
and i + 7 positions, inhibited the function of MDM2 and murine double minute X (MDMX).
Moreover, ATSP-7041 has been shown to have anti-tumor activity in vivo [151] and is
currently under clinical trials [152]. In 2021, Ueda and co-workers revealed that jasmonate-
ZIM-domain (JAZ)-derived peptides bearing double staple moieties, JAZ9, inhibited one of
the transcriptional factors of MYC in the jasmonate signaling pathway of plant cells [153].
In 2014, Verdine and co-workers reported a stitched peptide that formed a bis-hydrocarbon
cross-linking using (S)-7-octenylalanine at the i and i + 7 positions and (S)-4-pentenylalanine
at the i and i + 4 positions via α,α-bis-4-pentenylglycine. The stitched peptide displayed
enhanced bio-acceptability, such as thermal and α-helical stability, proteolytic resistance,
and cellular uptake [154]. In 2020, Partridge and co-workers reported that a stitched peptide
containing D-amino acids inhibited the interaction between p53 and MDM2/MDM4 at the
cellular level [155].

Other side-chain cross-links, such as azobenzene, the aryl staple, Ugi stapling, and the
hydrogen bond surrogate, have been reported to stabilize α-helical structures of peptides.
In 2002, Woolley and co-workers reported controlling the secondary structure of short
oligopeptides with an azobenzene moiety, which undergoes cis-trans transitions upon
irradiation at specific wavelengths [156]. In 2019, Hamm and co-workers revealed that the
azobenzene-type staple controls the binding activity of the S-peptide, which is composed of
RNase S, by conformational changes upon UV irradiation [157]. Pentelute and co-workers
reported α-helix-stabilized peptides with perfluoroaromatic cross-linking of two cysteine
residues at the i and i + 4 positions by the nucleophilic aromatic substitution (SNAr)
reaction. This method can be applied to unprotected peptides, and peptides modified
by this cross-linker displayed higher binding affinity toward target proteins, enhanced
proteolytic stability, and greater cellular uptake [158]. In 2019, Rivera and co-workers
reported lactam-type stapled peptides using the on-resin Ugi reaction with formaldehyde
and a cyanide component. The introduction of cross-links into peptides using the Ugi
reaction increases the stability of the α-helix fold and facilitates the modification of relevant
fragments such as sugar, lipids, and fluorescent labels on the stapling moiety [159]. This
method can be used to develop functionalized peptides for DDS and chemical biology.
For example, stapled peptides with high binding affinities toward MDM2 and MDMX
were developed using this method [160]. A method to form cross-linking in the peptide
backbone has also been developed. The hydrogen bond surrogate (HBS) is a peptide with
the intramolecular hydrogen bond in the backbone at the N-terminal’s i and i + 4 positions
replaced with a covalent carbon-carbon bond through an olefin metathesis reaction [161].
HBS-type peptides stabilize α-helices in short sequences [161]. In addition, these peptides
are expected to have improved biological features over native peptides, such as proteolytic
stability, molecular recognition, and cellular uptake [161]. An HBS-type peptide has been
shown to exhibit binding activity in regions completely buried with a protein [162].
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Recently, protein degraders called proteolysis-targeting chimeras (PROTACs) have
attracted significant attention in developing therapeutic reagents. Among them, PPI ligands
have been used to develop PROTACs. PROTACs induce targeted protein degradation
via the ubiquitin-proteasome system (UPS), which involves poly-ubiquitination of the
target protein (POI) by forming a complex with ubiquitin ligase (E3) [163]. In this method,
a chimeric molecule consisting of an E3 ligand, a POI ligand, and a conjugating linker
binds each protein to form a ternary complex [163]. Subsequently, the E3 ligase forcibly
ubiquitinates the POI to induce degradation [163]. Von Hippel–Lindau (VHL), Cereblon,
and inhibitor of apoptosis protein (IAP) as E3 ligases are often referred to as PROTACs.
Please refer to reviews on PROTACs [163,164] for a detailed explanation. In recent years,
peptide-based PROTACs have been developed. As representatives, Chen and co-workers
reported xStAx peptides developed by the Verdine group [150] against β-catenin, and the
xStAx-based PROTAC showed degradation activity against β-catenin [165]. Our group de-
veloped the stapled peptide (SAHM1 [166])-based protein degraders that target Notch [167].
Furthermore, the stapled peptide-based LCL-stPERML-R7 targeting ERα has been reported
recently by our group [168]. Thus, structurally controlled peptides can be used as PPI
inhibitors and PROTAC ligands, which are expected to be a new modality.

Table 7. Stapled PPI inhibitor peptides.

Peptide Sequence and Structure Target Protein Ref.

Processes 2022, 10, 924 14 of 23 
 

 

workers reported lactam-type stapled peptides using the on-resin Ugi reaction with for-

maldehyde and a cyanide component. The introduction of cross-links into peptides using 

the Ugi reaction increases the stability of the α-helix fold and facilitates the modification 

of relevant fragments such as sugar, lipids, and fluorescent labels on the stapling moiety 

[159]. This method can be used to develop functionalized peptides for DDS and chemical 

biology. For example, stapled peptides with high binding affinities toward MDM2 and 

MDMX were developed using this method [160]. A method to form cross-linking in the 

peptide backbone has also been developed. The hydrogen bond surrogate (HBS) is a pep-

tide with the intramolecular hydrogen bond in the backbone at the N-terminal’s i and i + 

4 positions replaced with a covalent carbon-carbon bond through an olefin metathesis re-

action [161]. HBS-type peptides stabilize α-helices in short sequences [161]. In addition, 

these peptides are expected to have improved biological features over native peptides, 

such as proteolytic stability, molecular recognition, and cellular uptake [161]. An HBS-

type peptide has been shown to exhibit binding activity in regions completely buried with 

a protein [162]. 

Recently, protein degraders called proteolysis-targeting chimeras (PROTACs) have 

attracted significant attention in developing therapeutic reagents. Among them, PPI lig-

ands have been used to develop PROTACs. PROTACs induce targeted protein degrada-

tion via the ubiquitin-proteasome system (UPS), which involves poly-ubiquitination of 

the target protein (POI) by forming a complex with ubiquitin ligase (E3) [163]. In this 

method, a chimeric molecule consisting of an E3 ligand, a POI ligand, and a conjugating 

linker binds each protein to form a ternary complex [163]. Subsequently, the E3 ligase 

forcibly ubiquitinates the POI to induce degradation [163]. Von Hippel–Lindau (VHL), 

Cereblon, and inhibitor of apoptosis protein (IAP) as E3 ligases are often referred to as 

PROTACs. Please refer to reviews on PROTACs [163,164] for a detailed explanation. In 

recent years, peptide-based PROTACs have been developed. As representatives, Chen 

and co-workers reported xStAx peptides developed by the Verdine group [150] against β-

catenin, and the xStAx-based PROTAC showed degradation activity against β-catenin 

[165]. Our group developed the stapled peptide (SAHM1 [166])-based protein degraders 

that target Notch [167]. Furthermore, the stapled peptide-based LCL-stPERML-R7 target-

ing ERα has been reported recently by our group [168]. Thus, structurally controlled pep-

tides can be used as PPI inhibitors and PROTAC ligands, which are expected to be a new 

modality. 

Table 7. Stapled PPI inhibitor peptides. 

Peptide Sequence and Structure 
Target  

Protein 
Ref. 

 

 
Lowercase letters: D-amino acid 

ER α 143 

  

MDM2/p53 145 

Processes 2022, 10, 924 14 of 23 
 

 

workers reported lactam-type stapled peptides using the on-resin Ugi reaction with for-

maldehyde and a cyanide component. The introduction of cross-links into peptides using 

the Ugi reaction increases the stability of the α-helix fold and facilitates the modification 

of relevant fragments such as sugar, lipids, and fluorescent labels on the stapling moiety 

[159]. This method can be used to develop functionalized peptides for DDS and chemical 

biology. For example, stapled peptides with high binding affinities toward MDM2 and 

MDMX were developed using this method [160]. A method to form cross-linking in the 

peptide backbone has also been developed. The hydrogen bond surrogate (HBS) is a pep-

tide with the intramolecular hydrogen bond in the backbone at the N-terminal’s i and i + 

4 positions replaced with a covalent carbon-carbon bond through an olefin metathesis re-

action [161]. HBS-type peptides stabilize α-helices in short sequences [161]. In addition, 

these peptides are expected to have improved biological features over native peptides, 

such as proteolytic stability, molecular recognition, and cellular uptake [161]. An HBS-

type peptide has been shown to exhibit binding activity in regions completely buried with 

a protein [162]. 

Recently, protein degraders called proteolysis-targeting chimeras (PROTACs) have 

attracted significant attention in developing therapeutic reagents. Among them, PPI lig-

ands have been used to develop PROTACs. PROTACs induce targeted protein degrada-

tion via the ubiquitin-proteasome system (UPS), which involves poly-ubiquitination of 

the target protein (POI) by forming a complex with ubiquitin ligase (E3) [163]. In this 

method, a chimeric molecule consisting of an E3 ligand, a POI ligand, and a conjugating 

linker binds each protein to form a ternary complex [163]. Subsequently, the E3 ligase 

forcibly ubiquitinates the POI to induce degradation [163]. Von Hippel–Lindau (VHL), 

Cereblon, and inhibitor of apoptosis protein (IAP) as E3 ligases are often referred to as 

PROTACs. Please refer to reviews on PROTACs [163,164] for a detailed explanation. In 

recent years, peptide-based PROTACs have been developed. As representatives, Chen 

and co-workers reported xStAx peptides developed by the Verdine group [150] against β-

catenin, and the xStAx-based PROTAC showed degradation activity against β-catenin 

[165]. Our group developed the stapled peptide (SAHM1 [166])-based protein degraders 

that target Notch [167]. Furthermore, the stapled peptide-based LCL-stPERML-R7 target-

ing ERα has been reported recently by our group [168]. Thus, structurally controlled pep-

tides can be used as PPI inhibitors and PROTAC ligands, which are expected to be a new 

modality. 

Table 7. Stapled PPI inhibitor peptides. 

Peptide Sequence and Structure 
Target  

Protein 
Ref. 

 

 
Lowercase letters: D-amino acid 

ER α 143 

  

MDM2/p53 145 

Lowercase letters: D-amino acid

ERα [143]

Processes 2022, 10, 924 14 of 23 
 

 

workers reported lactam-type stapled peptides using the on-resin Ugi reaction with for-

maldehyde and a cyanide component. The introduction of cross-links into peptides using 

the Ugi reaction increases the stability of the α-helix fold and facilitates the modification 

of relevant fragments such as sugar, lipids, and fluorescent labels on the stapling moiety 

[159]. This method can be used to develop functionalized peptides for DDS and chemical 

biology. For example, stapled peptides with high binding affinities toward MDM2 and 

MDMX were developed using this method [160]. A method to form cross-linking in the 

peptide backbone has also been developed. The hydrogen bond surrogate (HBS) is a pep-

tide with the intramolecular hydrogen bond in the backbone at the N-terminal’s i and i + 

4 positions replaced with a covalent carbon-carbon bond through an olefin metathesis re-

action [161]. HBS-type peptides stabilize α-helices in short sequences [161]. In addition, 

these peptides are expected to have improved biological features over native peptides, 

such as proteolytic stability, molecular recognition, and cellular uptake [161]. An HBS-

type peptide has been shown to exhibit binding activity in regions completely buried with 

a protein [162]. 

Recently, protein degraders called proteolysis-targeting chimeras (PROTACs) have 

attracted significant attention in developing therapeutic reagents. Among them, PPI lig-

ands have been used to develop PROTACs. PROTACs induce targeted protein degrada-

tion via the ubiquitin-proteasome system (UPS), which involves poly-ubiquitination of 

the target protein (POI) by forming a complex with ubiquitin ligase (E3) [163]. In this 

method, a chimeric molecule consisting of an E3 ligand, a POI ligand, and a conjugating 

linker binds each protein to form a ternary complex [163]. Subsequently, the E3 ligase 

forcibly ubiquitinates the POI to induce degradation [163]. Von Hippel–Lindau (VHL), 

Cereblon, and inhibitor of apoptosis protein (IAP) as E3 ligases are often referred to as 

PROTACs. Please refer to reviews on PROTACs [163,164] for a detailed explanation. In 

recent years, peptide-based PROTACs have been developed. As representatives, Chen 

and co-workers reported xStAx peptides developed by the Verdine group [150] against β-

catenin, and the xStAx-based PROTAC showed degradation activity against β-catenin 

[165]. Our group developed the stapled peptide (SAHM1 [166])-based protein degraders 

that target Notch [167]. Furthermore, the stapled peptide-based LCL-stPERML-R7 target-

ing ERα has been reported recently by our group [168]. Thus, structurally controlled pep-

tides can be used as PPI inhibitors and PROTAC ligands, which are expected to be a new 

modality. 

Table 7. Stapled PPI inhibitor peptides. 

Peptide Sequence and Structure 
Target  

Protein 
Ref. 

 

 
Lowercase letters: D-amino acid 

ER α 143 

  

MDM2/p53 145 
Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

MDM2/p53 [145]



Processes 2022, 10, 924 15 of 24

Table 7. Cont.

Peptide Sequence and Structure Target Protein Ref.

Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

VDR [57]

Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

β-catenin/TCF [150]

Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

MDM2/p53
MDMX/p53 [151]

Processes 2022, 10, 924 15 of 23 
 

 

 

 

 

VDR 57 

 

β-catenin/TCF 150 

 

 

MDM2/p53 

MDMX/p53 
151 

 

MYC 153 

H2N

H
N

N
H

H
N

N
H

H
N

N
H

CO2H

O

O

O

O

O

O

OO

HO OH

Ac-RRWPR-S5-ILD-S5-HVRRVWR-NH2

Ac-LTF-R8-EYWAQ-Cba-S5-SAA -NH2

TMR-SVP-S5-ARK-S5-SL-S5-RFL-S5-KRKERL-OH

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

MYC [153]



Processes 2022, 10, 924 16 of 24

Table 7. Cont.

Peptide Sequence and Structure Target Protein Ref.

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

MDM2/p53
MDM4/p53 [155]

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

S-protein [157]

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

C-terminal domain of
an HIV-1 capsid

assembly polyprotein
(C-CA)

[158]

Processes 2022, 10, 924 16 of 23 
 

 

 

 

   

MDM2/p53 

MDM4/p53 
155 

 

 

S-protein 157 

 

 

C-terminal domain 

of an HIV-1 capsid 

assembly 

polyprotein  

(C-CA) 

158 

 

MDM2/p53 

MDMX/p53 
160 

H-R5-a-6-F-w-y-B5-n-p-CF3-f-ekll-R8-NH2

MDM2/p53
MDMX/p53 [160]



Processes 2022, 10, 924 17 of 24

Table 7. Cont.

Peptide Sequence and Structure Target Protein Ref.

X-NI-†-SLLRVQAHIRKKMV-NH2

Processes 2022, 10, 924 17 of 23 
 

 

X-NI-†-SLLRVQAHIRKKMV-NH2 

 

myoA tail 

interacting protein 

(MTIP) 

162 

 

ERα 168 

9. Outlook 

In this mini-review, we have introduced research on peptide-based foldamers com-

posed of several building blocks and their applications as PPI inhibitors. Peptide-based 

foldamers consisting of various building blocks, such as α-AAs, β-AAs, γ-AAs, side-chain 

cross-linking, peptoids, and other non-proteinogenic amino acids, form stable helical 

structures with high affinities toward target proteins. Although foldamers represent po-

tential drugs, challenges such as cell-membrane permeability and specific tissue targeting 

must be resolved to realize their full therapeutic potential. Recent research on CPPs re-

vealed that increasing the stability of the secondary structure enhances intracellular up-

take, indicating that stable helical foldamers may overcome issues associated with mem-

brane permeability. Future development of new building blocks and further optimization 

of foldamer stability should yield therapeutics that target intracellular PPIs associated 

with various diseases. Thus, peptide foldamers functioning as PPI inhibitors are expected 

to be developed in future drug discovery platforms.  

Author Contributions: Writing—original draft preparation, K.T., T.K., T.M. and Y.D.; writing—re-

view and editing, K.F., T.M. and Y.D.; supervision, T.M. and Y.D.; funding acquisition, Y.D. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This study was supported in part by grants from the Japan Agency for Medical Research 

and Development (22mk0101197j0002, 22fk0210110j0401, 22ak0101185j0301, and 22fk0310506j0701 

to Y.D.), Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, 

Science and Technology (JSPS/MEXT KAKENHI Grants Number JP18H05502 and 21K05320 to Y.D.; 

20K06958 to T.M.), Takeda Science Foundation (to Y.D.), Naito Foundation (to Y.D.), Sumitomo 

Foundation (to Y.D.), Novartis Foundation (Japan) for the Promotion of Science (to Y.D.), Founda-

tion for Promotion of Cancer Research in Japan (to Y.D.), and by scholarship support from The To-

kushukai Scholarship Foundation (to K.T.).  

Data Availability Statement: Data presented in this study are available on request from the corre-

sponding author. 

Acknowledgments: We thank Edanz (Edanz: https://jp.edanz.com; accessed on 7 April 2022) for 

editing a draft of this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

(LCL-Linker)-KILR-S5-LLQ-S5-GGGRRRRRRR-NH2

myoA tail interacting
protein (MTIP) [162]

Processes 2022, 10, 924 17 of 23 
 

 

X-NI-†-SLLRVQAHIRKKMV-NH2 

 

myoA tail 

interacting protein 

(MTIP) 

162 

 

ERα 168 

9. Outlook 

In this mini-review, we have introduced research on peptide-based foldamers com-

posed of several building blocks and their applications as PPI inhibitors. Peptide-based 

foldamers consisting of various building blocks, such as α-AAs, β-AAs, γ-AAs, side-chain 

cross-linking, peptoids, and other non-proteinogenic amino acids, form stable helical 

structures with high affinities toward target proteins. Although foldamers represent po-

tential drugs, challenges such as cell-membrane permeability and specific tissue targeting 

must be resolved to realize their full therapeutic potential. Recent research on CPPs re-

vealed that increasing the stability of the secondary structure enhances intracellular up-

take, indicating that stable helical foldamers may overcome issues associated with mem-

brane permeability. Future development of new building blocks and further optimization 

of foldamer stability should yield therapeutics that target intracellular PPIs associated 

with various diseases. Thus, peptide foldamers functioning as PPI inhibitors are expected 

to be developed in future drug discovery platforms.  

Author Contributions: Writing—original draft preparation, K.T., T.K., T.M. and Y.D.; writing—re-

view and editing, K.F., T.M. and Y.D.; supervision, T.M. and Y.D.; funding acquisition, Y.D. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This study was supported in part by grants from the Japan Agency for Medical Research 

and Development (22mk0101197j0002, 22fk0210110j0401, 22ak0101185j0301, and 22fk0310506j0701 

to Y.D.), Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, 

Science and Technology (JSPS/MEXT KAKENHI Grants Number JP18H05502 and 21K05320 to Y.D.; 

20K06958 to T.M.), Takeda Science Foundation (to Y.D.), Naito Foundation (to Y.D.), Sumitomo 

Foundation (to Y.D.), Novartis Foundation (Japan) for the Promotion of Science (to Y.D.), Founda-

tion for Promotion of Cancer Research in Japan (to Y.D.), and by scholarship support from The To-

kushukai Scholarship Foundation (to K.T.).  

Data Availability Statement: Data presented in this study are available on request from the corre-

sponding author. 

Acknowledgments: We thank Edanz (Edanz: https://jp.edanz.com; accessed on 7 April 2022) for 

editing a draft of this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

(LCL-Linker)-KILR-S5-LLQ-S5-GGGRRRRRRR-NH2

Processes 2022, 10, 924 17 of 23 
 

 

X-NI-†-SLLRVQAHIRKKMV-NH2 

 

myoA tail 

interacting protein 

(MTIP) 

162 

 

ERα 168 

9. Outlook 

In this mini-review, we have introduced research on peptide-based foldamers com-

posed of several building blocks and their applications as PPI inhibitors. Peptide-based 

foldamers consisting of various building blocks, such as α-AAs, β-AAs, γ-AAs, side-chain 

cross-linking, peptoids, and other non-proteinogenic amino acids, form stable helical 

structures with high affinities toward target proteins. Although foldamers represent po-

tential drugs, challenges such as cell-membrane permeability and specific tissue targeting 

must be resolved to realize their full therapeutic potential. Recent research on CPPs re-

vealed that increasing the stability of the secondary structure enhances intracellular up-

take, indicating that stable helical foldamers may overcome issues associated with mem-

brane permeability. Future development of new building blocks and further optimization 

of foldamer stability should yield therapeutics that target intracellular PPIs associated 

with various diseases. Thus, peptide foldamers functioning as PPI inhibitors are expected 

to be developed in future drug discovery platforms.  

Author Contributions: Writing—original draft preparation, K.T., T.K., T.M. and Y.D.; writing—re-

view and editing, K.F., T.M. and Y.D.; supervision, T.M. and Y.D.; funding acquisition, Y.D. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This study was supported in part by grants from the Japan Agency for Medical Research 

and Development (22mk0101197j0002, 22fk0210110j0401, 22ak0101185j0301, and 22fk0310506j0701 

to Y.D.), Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, 

Science and Technology (JSPS/MEXT KAKENHI Grants Number JP18H05502 and 21K05320 to Y.D.; 

20K06958 to T.M.), Takeda Science Foundation (to Y.D.), Naito Foundation (to Y.D.), Sumitomo 

Foundation (to Y.D.), Novartis Foundation (Japan) for the Promotion of Science (to Y.D.), Founda-

tion for Promotion of Cancer Research in Japan (to Y.D.), and by scholarship support from The To-

kushukai Scholarship Foundation (to K.T.).  

Data Availability Statement: Data presented in this study are available on request from the corre-

sponding author. 

Acknowledgments: We thank Edanz (Edanz: https://jp.edanz.com; accessed on 7 April 2022) for 

editing a draft of this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

(LCL-Linker)-KILR-S5-LLQ-S5-GGGRRRRRRR-NH2 ERα [168]

9. Outlook

In this mini-review, we have introduced research on peptide-based foldamers com-
posed of several building blocks and their applications as PPI inhibitors. Peptide-based
foldamers consisting of various building blocks, such as α-AAs, β-AAs, γ-AAs, side-chain
cross-linking, peptoids, and other non-proteinogenic amino acids, form stable helical struc-
tures with high affinities toward target proteins. Although foldamers represent potential
drugs, challenges such as cell-membrane permeability and specific tissue targeting must be
resolved to realize their full therapeutic potential. Recent research on CPPs revealed that
increasing the stability of the secondary structure enhances intracellular uptake, indicating
that stable helical foldamers may overcome issues associated with membrane permeability.
Future development of new building blocks and further optimization of foldamer stability
should yield therapeutics that target intracellular PPIs associated with various diseases.
Thus, peptide foldamers functioning as PPI inhibitors are expected to be developed in
future drug discovery platforms.

Author Contributions: Writing—original draft preparation, K.T., T.K., T.M. and Y.D.; writing—
review and editing, K.F., T.M. and Y.D.; supervision, T.M. and Y.D.; funding acquisition, Y.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported in part by grants from the Japan Agency for Medical Research
and Development (22mk0101197j0002, 22fk0210110j0401, 22ak0101185j0301, and 22fk0310506j0701
to Y.D.), Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports,
Science and Technology (JSPS/MEXT KAKENHI Grants Number JP18H05502 and 21K05320 to Y.D.;
20K06958 to T.M.), Takeda Science Foundation (to Y.D.), Naito Foundation (to Y.D.), Sumitomo
Foundation (to Y.D.), Novartis Foundation (Japan) for the Promotion of Science (to Y.D.), Foundation
for Promotion of Cancer Research in Japan (to Y.D.), and by scholarship support from The Tokushukai
Scholarship Foundation (to K.T.).

Data Availability Statement: Data presented in this study are available on request from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2022, 10, 924 18 of 24

References
1. Gellman, S.H. Foldamers: A Manifesto. Acc. Chem. Res. 1998, 31, 173–180. [CrossRef]
2. Tyrikos-Ergas, T.; Fittolani, G.; Seerberger, P.H.; Delianco, M. Structural studies using unnatural oligosaccharides; toward sugar

foldamers. Biomacromolecules 2020, 21, 18–29. [CrossRef] [PubMed]
3. Hill, D.J.; Mio, M.J.; Prince, R.B.; Hughes, T.S.; Moore, J.S. A field guide to foldamers. Chem. Rev. 2001, 101, 3893–4012. [CrossRef]
4. Girvine, Z.C.; Gellman, S.H. Foldamer catalysis. J. Am. Chem. Soc. 2020, 142, 17211–17223. [CrossRef]
5. Legrand, B.; Aguesseau-kondrotas, J.; Simon, M.; Maillard, L. Catalytic foldamers: When the structure guides the functions.

Catalysts 2020, 10, 700. [CrossRef]
6. Kulkarni, K.; Habila, N.; Del Borgo, M.P.; Aguilar, M.I. Novel materials from the supramolecular self-assembly of short helical

β3-peptide foldamers. Front. Chem. 2019, 7, 70. [CrossRef] [PubMed]
7. Dey, S.; Misra, R.; Saseendran, A.; Pahan, S.; Gopi, H.N. Metal-coordinated supramolecular polymers from the minimalistic

hybrid peptide foldamers. Angew. Chem. Int. Ed. Engl. 2021, 60, 9863–9868. [CrossRef] [PubMed]
8. Vezenkov, L.L.; Martin, V.; Bettache, N.; Simon, M.; Messerschmitt, A.; Legrand, B.; Bantignies, J.L.; Subra, G.; Maynadier, M.;

Bellet, V.; et al. Ribbon-like foldamers for cellular uptake and drug delivery. ChemBioChem 2017, 18, 2110–2114. [CrossRef]
9. Bornerie, M.; Brion, A.; Guichard, G.; Kichler, A.; Douat, C. Delivery of siRNA by tailored cell-penetrating urea-based foldamers.

Chem. Commun. 2021, 57, 1458–1461. [CrossRef]
10. Bhaumik, K.N.; Hetényi, A.; Olajos, G.; Martins, A.; Spohn, R.; Németh, L.; Jojart, B.; Szili, P.; Dunai, A.; Jangir, P.K.; et al.

Rationally designed foldameric adjucants enhance antibiotics efficacy via promoting membrane hyperpolarization. Mol. Syst.
Des. Eng. 2021, 7, 21–33. [CrossRef]

11. Bonnel, C.; Legrand, B.; Simon, M.; Clavié, M.; Masnou, A.; Jumas-Bilak, E.; Kang, Y.K.; Licznar-Fajardo, P.; Maillard, L.T.;
Masurier, N. Tailoring the physicochemical properties of antimicrobial peptides onto a thiazole-based γ-peptide foldamers.
J. Med. Chem. 2020, 63, 9168–9180. [CrossRef] [PubMed]

12. Ferrand, Y.; Huc, I. Designing Helical Molecular Capsules Based on Folded Aromatic Amide Oligomers. Acc. Chem. Res. 2018, 51,
1970–1977. [CrossRef] [PubMed]

13. Checco, J.W.; Gellman, S.H. Targeting recognition surfaces on natural proteins with peptidic foldamers. Curr. Opin. Struct. Biol.
2016, 39, 96–105. [CrossRef] [PubMed]

14. Rinaldi, S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020, 25, 3276. [CrossRef]
15. Gopalakrishnan, R.; Frolov, A.I.; Knerr, L.; Drury, W.J., III; Valeur, E. Therapeutic Potential of Foldamers: From Chemical Biology

Tools to Drug Candidates? J. Med. Chem. 2016, 59, 9599–9621. [CrossRef]
16. Haggag, Y.A.; Donia, A.A.; Osman, M.A.; El-Gizawy, S.A. Peptides as Drug Candidates: Limitations and Recent Development

Perspectives. Biomed. J. Sci. Technol. Res. 2018, 8, 6659–6662. [CrossRef]
17. Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of

non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des. 2010, 16, 3185–3203. [CrossRef]
18. Antosova, Z.; Mackova, M.; Kral, V.; Macek, T. Therapeutic application of peptides and proteins: Parenteral forever? Trends

Biotechnol. 2009, 27, 628–635. [CrossRef]
19. Yokoo, H.; Misawa, T.; Demizu, Y. De Novo Design of Cell-Penetrating Foldamers. Chem. Rec. 2020, 20, 912–921. [CrossRef]
20. Yokoo, H.; Hirano, M.; Misawa, T.; Demizu, Y. Helical Antimicrobial Peptide Foldamers Containing Non-proteinogenic Amino

Acids. ChemMedChem 2021, 16, 1226–1233. [CrossRef]
21. Oba, M. Cell-Penetrating Peptide Foldamers: Drug-Delivery Tools. ChemBioChem 2019, 20, 2041–2045. [CrossRef] [PubMed]
22. Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent advances in the development of protein-protein interactions

modulators: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2020, 5, 213. [CrossRef] [PubMed]
23. Qiu, Y.; Li, X.; He, X.; Pu, J.; Zhang, J.; Lu, S. Computational methods-guided design of modulators targeting protein-protein

interactions (PPIs). Eur. J. Med. Chem. 2020, 207, 112764. [CrossRef]
24. Edwards, T.A.; Wilson, A.J. Helix-mediated protein-protein interactions as targets for intervention using foldamers. Amino Acids

2011, 41, 743–754. [CrossRef] [PubMed]
25. Watkins, A.M.; Arora, P.S. Anatomy of the β-strands at protein-protein interfaces. ACS Chem. Biol. 2014, 9, 1747–1754. [CrossRef]

[PubMed]
26. Sharma, G.V.; Babu, B.S.; Ramakrishna, K.V.; Nagendar, P.; Kunwar, A.C.; Schramm, P.; Baldauf, C.; Hofmann, H.J. Synthesis and

structure of alpha/delta-hybrid peptides—Access to novel helix patterns in foldamers. Chemistry 2009, 15, 5552–5566. [CrossRef]
27. Sharma, G.V.; Babu, B.S.; Chatterjee, D.; Ramakrishna, K.V.; Kunwar, A.C.; Schramm, P.; Hofmann, H.J. Theoretical and

experimental studies on alpha/epsilon-hybrid peptides: Design of a 14/12-helix from peptides with alternating (S)-C-linked
carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] and L-ala. J. Org. Chem. 2009, 74, 6703–6713. [CrossRef]

28. Laurencin, M.; Simon, M.; Fleury, Y.; Baudy-Floc’h, M.; Bondon, A.; Legrand, B. Selectivity Modulation and Structure of α/aza-β3

Cyclic Antimicrobial Peptides. Chemistry 2018, 24, 6191–6201. [CrossRef]
29. Raghuraman, A.; Ko, E.; Perez, L.M.; Ioerger, T.R.; Burgess, K. Pyrrolonone-pyrrolidine oligomers as universal peptidemimetics.

J. Am. Chem. Soc. 2011, 133, 12350–12353. [CrossRef]
30. Sinatra, L.; Kolano, L.; Icker, M.; Fritzsche, S.R.; Volke, D.; Gockel, I.; Thieme, R.; Hoffmann, R.; Hansen, F.K. Hybrid Peptides

Based on α-Aminoxy Acids as Antimicrobial and Anticancer Foldamers. ChemPlusChem 2021, 86, 827–835. [CrossRef]

http://doi.org/10.1021/ar960298r
http://doi.org/10.1021/acs.biomac.9b01090
http://www.ncbi.nlm.nih.gov/pubmed/31517479
http://doi.org/10.1021/cr990120t
http://doi.org/10.1021/jacs.0c07347
http://doi.org/10.3390/catal10060700
http://doi.org/10.3389/fchem.2019.00070
http://www.ncbi.nlm.nih.gov/pubmed/30828574
http://doi.org/10.1002/anie.202015838
http://www.ncbi.nlm.nih.gov/pubmed/33543831
http://doi.org/10.1002/cbic.201700455
http://doi.org/10.1039/D0CC06285E
http://doi.org/10.1039/D1ME00118C
http://doi.org/10.1021/acs.jmedchem.0c00077
http://www.ncbi.nlm.nih.gov/pubmed/32790310
http://doi.org/10.1021/acs.accounts.8b00075
http://www.ncbi.nlm.nih.gov/pubmed/29589916
http://doi.org/10.1016/j.sbi.2016.06.014
http://www.ncbi.nlm.nih.gov/pubmed/27390896
http://doi.org/10.3390/molecules25143276
http://doi.org/10.1021/acs.jmedchem.6b00376
http://doi.org/10.26717/BJSTR.2018.08.001694
http://doi.org/10.2174/138161210793292555
http://doi.org/10.1016/j.tibtech.2009.07.009
http://doi.org/10.1002/tcr.202000047
http://doi.org/10.1002/cmdc.202000940
http://doi.org/10.1002/cbic.201900204
http://www.ncbi.nlm.nih.gov/pubmed/30997711
http://doi.org/10.1038/s41392-020-00315-3
http://www.ncbi.nlm.nih.gov/pubmed/32968059
http://doi.org/10.1016/j.ejmech.2020.112764
http://doi.org/10.1007/s00726-011-0880-8
http://www.ncbi.nlm.nih.gov/pubmed/21409387
http://doi.org/10.1021/cb500241y
http://www.ncbi.nlm.nih.gov/pubmed/24870802
http://doi.org/10.1002/chem.200802078
http://doi.org/10.1021/jo901277a
http://doi.org/10.1002/chem.201800152
http://doi.org/10.1021/ja2033734
http://doi.org/10.1002/cplu.202000812


Processes 2022, 10, 924 19 of 24

31. Guarracino, D.A.; Riordan, J.A.; Barreto, G.M.; Oldfield, A.L.; Kouba, C.M.; Agrinsoni, D. Macrocyclic control in helix mimetics.
Chem. Rev. 2019, 119, 9915–9949. [CrossRef] [PubMed]

32. Tanaka, M. Design and synthesis of chiral α,α-disubstituted amino acids and conformational study of their oligopeptides. Chem.
Pharm. Bull. 2007, 55, 349–358. [CrossRef] [PubMed]

33. Crisma, M.; Toniolo, C. Helical screw-sense preferences of peptides based on chiral, Cα-tetrasubstitutedα-amino acids. Biopolymers
2015, 104, 46–64. [CrossRef] [PubMed]

34. Crisma, M.; De Zotti, M.; Formaggio, F.; Peggion, C.; Moretto, A.; Toniolo, C. Handedness preference and switching of peptide
helices. Part II: Helices based on noncoded α-amino acids. J. Pept. Sci. 2015, 21, 148–177. [CrossRef]

35. Demizu, Y.; Doi, M.; Kurihara, M.; Okuda, H.; Nagano, M.; Suemune, H.; Tanaka, M. Conformational studies on peptides
containing α,α-disubstituted α-amino acids: Chiral cyclic α,α-disubstituted α-amino acid as an α-helical inducer. Org. Biomol.
Chem. 2011, 9, 3303–3312. [CrossRef]

36. Demizu, Y.; Okitsu, K.; Yamashita, H.; Doi, M.; Misawa, T.; Oba, M.; Tanaka, M.; Kurihara, M. α-Helical structures of oligopeptides
with an alternating L-Leu-Aib segment. Eur. J. Org. Chem. 2016, 2815–2820. [CrossRef]

37. Kobayashi, H.; Misawa, T.; Matsuno, K.; Demizu, Y. Preorganized cyclic α,α-disubstituted α-amino acids bearing functionalized
side chains that act as peptide-helix inducers. J. Org. Chem. 2017, 82, 10722–10726. [CrossRef]

38. Akagawa, K.; Higuchi, J.; Yoshikawa, I.; Kudo, K. Kinetic resolution of ansa cyclophanes by peptide-catalyzed aldol/retro-aldol
reactions. Eur. J. Org. Chem. 2018, 38, 5278–5281. [CrossRef]

39. Sato, K.; Umeno, T.; Ueda, A.; Kato, T.; Doi, M.; Tanaka, M. Asymmetric 1,4-addition reactions catalyzed by N-terminal
thiourea-modified helical L-Leu peptide with cyclic amino acids. Chem. Eur. J. 2021, 27, 11216–11220. [CrossRef]

40. Umeno, T.; Ueda, A.; Doi, M.; Kato, T.; Oba, M.; Tanaka, M. Helical foldamer-catalyzed enantioselective 1,4-addition reaction of
dialkyl malonates to cyclic enones. Tetrahedron Lett. 2019, 60, 151301. [CrossRef]

41. Yamashita, H.; Demizu, Y.; Shoda, T.; Sato, Y.; Oba, M.; Tanaka, M.; Kurihara, M. Amphipathic short helix-stabilized peptides
with cell-membrane penetrating ability. Bioorg. Med. Chem. 2014, 22, 2403–2408. [CrossRef] [PubMed]

42. Yamashita, H.; Oba, M.; Misawa, T.; Tanaka, M.; Hattori, T.; Naito, M.; Kurihara, M.; Demizu, Y. A helix-stabilized cell-penetrating
peptide as an intracellular delivery tool. ChemBioChem 2016, 17, 137–140. [CrossRef] [PubMed]

43. Yamashita, H.; Misawa, T.; Oba, M.; Tanaka, M.; Naito, M.; Kurihara, M.; Demizu, Y. Development of helix-stabilized cell-
penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters. Bioorg. Med. Chem. 2017, 25,
1846–1851. [CrossRef]

44. Misawa, T.; Ohoka, N.; Oba, M.; Yamashita, H.; Tanaka, M.; Naito, M.; Demizu, Y. Development of 2-aminoisobutyric acid
(Aib)-rich cell-penetrating foldamers for efficient siRNA delivery. Chem. Commun. 2019, 55, 7792–7795. [CrossRef] [PubMed]

45. Oba, M.; Ito, Y.; Umeno, T.; Kato, T.; Tanaka, M. Plasmid DNA delivery using cell-Penetrating peptide foldamers composed of
Arg-Arg-Aib repeating sequences. ACS Biomater. Sci. Eng. 2019, 5, 5660–5668. [CrossRef] [PubMed]

46. Uchida, S.; Yamaberi, Y.; Tanaka, M.; Oba, M. A helix foldamer oligopeptide improves intracellular stability and prolongs protein
expression of the delivered mRNA. Nanoscale 2021, 13, 18941–18946. [CrossRef] [PubMed]

47. Yokum, T.S.; Elzer, P.H.; McLaughlin, M.L. Antimicrobial α,α-dialkylated amino acid rich peptides with in-vivo activity against
an intracellular pathogen. J. Med. Chem. 1996, 39, 3603–3605. [CrossRef]

48. Misawa, T.; Imamura, M.; Ozawa, Y.; Haishima, K.; Kurihara, M.; Kikuchi, Y.; Demizu, Y. Development of helix-stabilized
antimicrobial peptides composed of lysine and hydrophobic α,α-disubstituted α-amino acid residues. Bioorg. Med. Chem. Lett.
2017, 27, 3950–3953. [CrossRef] [PubMed]

49. Goto, C.; Hirano, M.; Hayashi, K.; Kikuchi, Y.; Kudo-Hara, Y.; Misawa, T.; Demizu, Y. Development of Amphipathic Antimicrobial
Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem 2019, 14, 1911–1916. [CrossRef]

50. Hirano, M.; Saito, C.; Goto, C.; Yokoo, H.; Kawano, R.; Misawa, T.; Demizu, Y. Rational design of helix-stabilized antimicrobial
peptide foldamers containing α,α-disubstituted amino acids or side-chain stapling. ChemPlusChem 2020, 85, 2731–2736. [CrossRef]
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