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Abstract

Cryptography is an essential technology for protecting confidential information in various

services via the internet. There are mainly two technologies, i.e., symmetric-key cryptog-

raphy and public-key cryptography, in which the sender and receiver use the same and

different keys, respectively. Currently, public-key cryptographies, such as RSA cryptog-

raphy and elliptic curve cryptography (ECC), are widely used in familiar situations such

as SSL/TLS communication. Since the key size of ECC is much smaller than that of

RSA for similar security levels, it is considered that ECC will be the principal technology

of public-key cryptography in near the future. Besides, there is innovative cryptogra-

phy with various functions which is based on a pairing defined over an elliptic curve

and is so-called pairing-based cryptography (PBC). It is expected for applying PBC for

technologies of secure database systems in cloud services. Furthermore, there is post-

quantum cryptography (PQC) based on isogenies between elliptic curves, which is called

isogeny-based cryptography (IBC). As an example of IBC, there is a supersingular isogeny

Diffie-Hellman (SIDH) key exchange protocol. Currently, an international standardiza-

tion process for PQC is underway, where the candidates involve a cryptosystem based on

the SIDH.

To put the new technologies of the PBC and IBC into practical use, the author works

on three studies on speeding up the calculation procedure for these cryptosystems. The

following is a summary of the background, motivation, and main contribution of each

study.

(i) In PBC, since the calculation amount for computing the pairing is a bottleneck, it

is an important issue to improve the efficiency of pairing. Since the pairings are typically

computed by two steps, which are called the Miller loop and final exponentiation, the

efficiency of the pairing depends on these steps. The optimization of each step is exam-

ined corresponding to the elliptic curve in which pairing is defined. However, for some

elliptic curves suggested for PBC, efficient algorithms for computing the final exponen-

tiations have not been provided. Therefore, the author newly proposes the algorithms

for each curve with explicit calculation costs. The proposal results in the improvement

of the efficiency of the final exponentiations, which also means that it contributes to the

improvement of the efficiency of pairings. The attractive curves which are suggested for

ii



high-performance PBC are also determined.

(ii) The efficiency of the pairing also depends on the constructions of both elliptic

curve and finite field in which pairing is defined. To use the optimum constructions, it

is necessary to search for appropriate parameters, however, it typically relies on a brute

force method. Indeed, there are several previous works that had clarified conditions

for finding such parameters for the pairings on specific curves, however, they have not

been clarified for various cases. Therefore, the author explicitly provides such conditions

for pairings on various elliptic curves that are expected to be used for a long time by

applying the mathematical theory. As a result, the proposal contributes to easily find

the appropriate parameters that result in efficient pairings without using the brute force

method. Moreover, the results also allow us to update the parameters for PBC more

flexibly.

(iii) It is a bottleneck in the SIDH to perform the processes of key generations with

large computational complexities. In particular, it is desired to improve the efficiency

of the processes for computing the construction of the isogenies and their destination.

The efficiency of these processes depends on not only the algorithms based on the Vélu’s

formula but also the construction of the finite field. Although the algorithms have been

improved by the previous work, it has been focused on the finite field of a specific con-

struction. Therefore, the author considers the construction of SIDH using the finite fields

with various constructions and confirms its performance by an implementation. As a

result, it is clarified the candidates of the constructions of finite fields that can realize

efficient SIDH. Furthermore, the new candidates end up expanding a range of choices of

elliptic curves which can be used for SIDH.
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Abstract (Japanese)

インターネット上で展開される多種多様なサービスにおいて，公開・送信される情報から

秘密情報を守るためには，暗号技術が不可欠である．暗号技術は大きく分けて，送信者と

受信者が同じ鍵を使用する共通鍵暗号と，異なる鍵を利用する公開鍵暗号に分けられる．

公開鍵暗号として，現在ではRSA暗号や楕円曲線暗号が普及しており，インターネット

上における SSL/TLS通信など，身近な場面において活用されている．楕円曲線暗号は，

RSA暗号と同等の安全性をより短い鍵長で実現できるため，今後の公開鍵暗号の中核を

担う暗号であると考えられている．また，楕円曲線上で定義されるペアリングと呼ばれる

写像を応用することにより，暗号化の機能のみならず，様々な付加機能を持つ高機能な暗

号が提案されている．この暗号はペアリング暗号と呼ばれ，主にクラウド上でのデータを

安全に管理するための新たな技術として注目されている．さらに，楕円曲線上で定義され

る同種写像に基づいた，耐量子計算機暗号が提案されている．この暗号は同種写像暗号

と呼ばれており，SIDHと呼ばれる鍵共有アルゴリズムがその代表例である．現在では，

SIDHを基に構成された暗号を候補に含む，耐量子計算機暗号の国際標準化プロセスが進

められている．

本論文では，新たな技術の根幹を担うペアリング暗号と同種写像暗号の実用化のため

に，これらの暗号に用いられる計算手順の高速化に関する三つの研究に取り組んだ．下記

ではそれぞれの研究における研究背景，動機，および主な成果を示す．

(i) ペアリング暗号において，楕円曲線上のペアリングの計算量はボトルネックである

ため，ペアリングを効率化することが重要な課題である．ペアリングの計算効率は，Miller

ループと最終べきと呼ばれる二つの計算ステップの効率に依存する．これらの計算ステッ

プについては，ペアリングが定義される楕円曲線に応じて，それぞれ最適化の検討がなさ

れる．しかし，ペアリング暗号に推奨されている一部の楕円曲線に対しては，効率的な最

終べきのアルゴリズムが明らかにされていない．このため，本研究では，それぞれの曲線

に対して効率的な最終べきの計算アルゴリズムを新たに提案し，必要な計算コストを明ら

かにした．その結果，最終べきの計算アルゴリズムの効率化を実現できたことにより，ペ

アリングの効率化に貢献した．また，計算コストが明らかになったことで，とくに高効率

なペアリング暗号に推奨される楕円曲線を明確にできた．

(ii) ペアリングの計算効率は，ペアリングが定義される楕円曲線と，その楕円曲線が

定義される有限体の構成にも依存する．最適な楕円曲線と有限体を利用するためには，そ

れに関連する適切なパラメータを探索する必要があるが，その探索には総当たり的手法を
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用いることが主流である．一部の特定の楕円曲線上のペアリングについては，先行研究に

よりパラメータの探索条件が明らかにされている. しかし，様々な楕円曲線上のペアリン

グについては，そのような探索条件は明らかにされていない．このため本研究では，将来

的に長く利用されると考えられる様々な楕円曲線上のペアリングに対して，数学的な理論

に基づいて探索条件を明らかにした．その結果，総当たり的手法を使わずに，高効率なペ

アリングを実現できるパラメータを容易に探索できるようになった．また，これによりペ

アリング暗号のパラメータがより柔軟に更新できるようになった．

(iii) 同種写像暗号の一つである SIDHでは，鍵生成のフェーズで必要となる処理の計

算量がボトルネックとなっている．とくに，同種写像と写像先の楕円曲線を構成するため

の計算量の大きさが問題であるため，これらの処理を効率化することが課題である．こ

れらの処理の効率は，Véluの公式に基づいた計算アルゴリズムの効率や有限体の構成に

依存する．これまでの研究により，計算アルゴリズムの改善が行われているが，特定の構

成の有限体のみが着目されてきた．このため本研究では，様々な構成による有限体を用い

て SIDHを構成することを検討し，その性能を実装により確認した．その結果，高効率な

SIDHを実現できる有限体の構成の候補を明らかにした．さらに，新たな候補の有限体を

用いることにより，実用的な SIDHを構成できる楕円曲線の選択肢を広げることができた．
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Chapter 1

Introduction

This chapter introduces the related literature review, problems, and contributions of this

work. This thesis starts to describe cryptology and its roles in information security by

referring to the recent textbooks [Shi15; Koj20] written in Japanese.

1.1 Cryptography

In recent years, purchases of goods and services on the internet have been used in everyday

life. When using such systems, personal information is sent via web communication for

reliable destinations. However, there are risks that the information is eavesdropped on

or impersonated by a third party. In order to avoid such risks, it is necessary to discuss

information security. It lies on three principles of confidentiality, integrity, and availability,

i.e.,

• Confidentiality measures protect information from unauthorized access and misuse;

• Integrity measures protect information from unauthorized alteration;

• Availability measures protect timely and uninterrupted access to the system.

Cryptography is a general term for technologies that guarantee information security. The

subject which threatens information security is called an attacker. In cryptography, en-

cryption is the process of encoding information. This process converts the original rep-

resentation of the information, known as plaintext, into an alternative form known as

ciphertext. The operation of restoring the ciphertext is decryption. The information

that is used for encryption and decryption is called a key. Historically, various forms of

encryption have been used to aid in cryptography. Modern encryption schemes use the

concepts of symmetric-key and public-key.

1
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1.1.1 Symmetric-key cryptography

Symmetric-key cryptography, a.k.a, private-key cryptography, uses the same cryptographic

private keys for both encryption and decryption. It has a long history, which has been

existed at the time of the Greek and Roman empire. Julius Caesar used a simple shift and

substitute system, which is known as the Caesar cipher. In modern times, symmetric-key

encryption can use either stream ciphers or block ciphers. The stream ciphers encrypt

the digits or bytes of a message one at a time, e.g., ChaCha20 [Ber+08] by Bernstein in

2008, which is a modification of Salsa20 [Ber08]. The block ciphers take a certain number

of bits of a message and encrypt them as a single unit, by padding the message to be a

multiple of the size of the block, e.g., the advanced encryption standard (AES) approved

by NIST in 2001, Camellia [Aok+00] developed by Mitsubishi Electric and NTT in 2000,

and CLEFIA [Shi+07] developed by Sony in 2007. The block cipher is broken by brute

force search for all candidates of keys. In other words, the block cipher with the n-bit key

size can be broken in 2n−1 trials on average. The security of block ciphers is based on the

assumption that the amount of calculation required for an attack cannot be solved with

less calculation amount.

1.1.2 Public-key cryptography

Public-key cryptography, or asymmetric cryptography, uses pairs of keys, which was born

out of the problem of how to securely send the key of symmetric-key cryptography in

around 1970. One key is a public key, which anyone can use to encrypt the plaintext. An-

other key is a private key, which a receiver needs to decrypt the ciphertext. The security

of public-key cryptography is typically based on the assumption that it is computationally

difficult to obtain the private key from a given public key and ciphertext. To guarantee

such difficulty, mathematical structures are often used for constructing public-key cryp-

tography. In the following, elementary public-key cryptosystems are introduced with a

description of security categories.

Key exchange

In 1976, Diffie and Hellman published a method of securely exchanging cryptographic keys

over a public channel in [DH76], which is known as the Diffie-Hellman (DH) key exchange.

In the DH key exchange, it is needed to use a set of finite numbers of elements, which

is called a finite field, in which basic arithmetic operations such as addition, subtraction,

multiplication, and division are defined. More strictly, we only use a subset of the finite

field, which is called a group, in which the multiplication and divisions are defined. The

private key is securely shared between the two parties, Alice and Bob, by the following

steps:
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1. Alice and Bob publicly agree to use a finite field F and an element g ∈ F .

2. Alice chooses a private key a, then sends Bob A = ga ∈ F , and Bob chooses a

private key b, then sends Alice B = gb ∈ F .

3. Alice computes sA = Ba ∈ F , and Bob computes sB = Ab ∈ F . Then, Alice and

Bob share the same secret sA = sB, since sA = Ba = gba = gab = Ab = sB ∈ F .

The security of the DH key exchange is based on an assumption that the problem for

computing s from g, A,B ∈ F , which is called the DH problem (DHP), is difficult to

solve. The assumption is called the computational DH assumption. The most efficient

known way to solve the DHP is to solve a problem for computing x such that h = gx from

g, h ∈ F , which is called a discrete logarithm problem (DLP). At this time, there are no

known efficient algorithms for solving DLP with a realistic time in a classical computer.

Encryption

In 1977, Rivest, Shamir, and Adleman firstly introduced public-key encryption, which

was published in [RSA78] and is widely known as RSA encryption. The security of RSA

encryption relies on a factorization problem. In [Elg85], Elgamal modified the DH key

exchange and constructed another public-key encryption. This encryption is known as

the ElGamal encryption, in which a message is securely sent from Bob to Alice by the

following steps.

• Key generation: Alice uses a finite field F and an element g ∈ F , chooses an integer

a, and computes A = ga ∈ F . Alice sends a public key (F, g, A) and secretly takes

a private key a.

• Encryption: Bob maps a plaintextM to an element m in F , chooses a private key b,

computes B = gb, sB = Ab, n = m · sB ∈ F , and sends a ciphertext (B, n) to Alice.

• Decryption: Alice computes sA = Ba, obtains m by computing m = n · s−1
A ∈ F ,

and maps m back to the plaintext M . Then, Alice obtain the correct m since

n · s−1
A = m · sB · s−1

A = m · Ab · (Ba)−1 = m · gab · (gba)−1 = m.

It is considered that anyone cannot decrypt the ElGamal encryption without the private

key under the computational DH assumption. The encryption scheme also needs indistin-

guishability of ciphertexts. Given two messages M and M ′ and encryption of either one

of the messages, the scheme has to hold property such that anyone cannot guess whether

the given ciphertext is encryption of M or M ′ with better probability than 1/2, which is

also known as semantic security. The semantic security of the encryption is based on an

assumption that the problem for determining xy = z or not for given g,X, Y, Z ∈ F such

that Z = gx, Y = gy, and Z = gz, which is called the decisional Diffie-Hellman problem

(DDHP), is difficult to solve. If DHP is broken, DDHP is also broken.
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Signature

If the public key has been tampered with during communication, the security of the

public-key cryptosystems is not guaranteed. Such kind of attack is known as a man-in-the-

middle attack. Thus, it is necessary to use a digital signature or message authentication

code to confirm whether the public key is the correct one or not. The digital signature

can be easily constructed by modifying the RSA and ElGamal encryption, which are

called the RSA signature and the ElGamal signature, respectively. Currently, a variant

of the ElGamal signature, which is developed at the NSA in [KD13] and is known as the

digital signature algorithm (DSA), is much more widely used than the original ElGamal

signature. However, since the digital signatures also require a public key, we go back to

the problem of how to send the public key. This problem is solved by issuing a certificate

authority that can trust the certificate for the correctness of the public key.

Security levels

The security of the cryptosystems is typically analyzed by computational complexity or

time complexity for executing algorithms for solving mathematical problems where the

cryptosystems rely on. Then, the complexities are often expressed by using the Landau

symbol O. There are several security levels defined in terms of resources needed for

AES such that an attacker requires computational resources comparable to or greater

than those required for AES with n-bit keys that offer n-bit security levels. Practically,

n is often chosen as n = {128, 192, 256}. This allows us for meaningful performance

comparisons between different cryptosystems. For example, in order to offer the 128-bit

security level, RSA must be designed to have 3072-bit keys but elliptic curve cryptography

which is introduced in the next subsection requires only 256-bit keys.

1.1.3 Cryptography using elliptic curves

Cryptography can be constructed by using various mathematical structures. Table 1.1

summarizes major cryptosystems with the perspective of their functions and structures.

The cryptosystems introduced in Sect. 1.1.2 are based on the problems related to factor-

ization and finite fields. This subsection introduces other cryptosystems which are using

elliptic curves and maps defined by using elliptic curves, i.e., pairings and isogenies.

Elliptic curve cryptography

In the middle of the 1980s, Miller [Mil85] and Koblitz [Kob87] independently proposed

cryptosystems using an equation E : y2 = x3 + ax + b, which is called an elliptic curve.

In the cryptosystems, we use a set of points on E which forms a group under a geometric

addition such that the third point on E is given by R = P +Q from two points P and Q
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Table 1.1: Cryptosystems.

Structures Key exchange Encryption Signature Others

Factorization - RSA RSA sig. -

Finite field DH ElGamal
ElGamal sig.

-
DSA

Elliptic curve ECDH EC ElGamal ECDSA -

Pairing Tripartite DH ID-based Short sig.
Attribute-based,
searchable enc.

Isogeny
SIDH

SIKE
CSI-FiSh

-
CSIDH SQISign

on E. The cryptosystems using the multiplicative group of the finite field can be easily

modified by using the group of the elliptic curve. For example, there are the elliptic curve

DH (ECDH) key exchange, elliptic curve ElGamal (EC ElGamal) encryption, and EC

ElGamal signature/Elliptic curve DSA (ECDSA). The security of these cryptosystems is

based on the difficulty of a problem for computing an integer s such that Q = sP for given

P and Q of E, which is called the elliptic curve discrete logarithm problem (ECDLP).

The cryptography based on the difficulty of ECDLP is called elliptic curve cryptography

(ECC). The key size of ECC is much smaller than that of cryptography based on the

finite field and factorization for similar security levels since algorithms for solving the

factorization problem and DLP cannot be extended for solving ECDLP. Therefore, when

high security is required for environments of limited resources, e.g., IoT devices, it is

more advantageous to use ECC. Furthermore, ECC will be the principal technology of

public-key cryptography in the future.

Pairing-based cryptography

In 2000, Joux [Jou00] and Sakai et al. [SOK00] independently proposed cryptosystems

using a map defined over an elliptic curve, which is called a pairing. The pairing is a map

with two inputs of points on an elliptic curve and one output of an element in a finite field.

The important fact is that the pairing has special properties, which are called bilinear and

non-degenerate. The properties allow us to realize many cryptosystems with convenient

functions involving ones that could not be realized by the previous cryptography. In

[Jou00], Joux introduced an one-round DH key exchange for three parties based on the

pairing, however, DH/ECDH is a key exchange for two parties. Sakai et al. [SOK00] and

Boneh et al. [BF01] introduced ID-based encryption, where use user’s unique ID, e.g.,

email address, can be used as a public key. In [Bar+02], Barreto et al. introduced a

short signature, which allows shorter signatures than the previous signatures for a similar
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level. The short signature has been adopted in Ethereum1, which is a decentralized, open-

source blockchain with smart contract functionality. In addition to this, there are many

innovative cryptosystems, e.g., searchable encryption [Bon+04] where the encrypted data

can be searched without decryption; attribute-based encryption [SW05], where is a type of

public-key encryption in which the secret key of a user and the ciphertext are dependent

upon attributes, and so on, which are expected to be applied for the secure database

systems in cloud technologies. Such convenient cryptosystems are called pairing-based

cryptography (PBC). Note that the security of PBC is typically based on the difficulties

of both DLP and ECDLP.

Post-quantum isogeny-based cryptography

We have seen that many cryptosystems rely on mathematical problems which are con-

sidered to be difficult for solving by using a classical computer. However, in 1994, Shor

described that the problems could be solved in a realistic time by using an algorithm

executed by a quantum computer [Sho94]. Although the large-scale quantum computer

has not been developed at this time, it is required to develop cryptography that cannot

be solved even though the quantum computer is applied. Such cryptography is so-called

post-quantum cryptography (PQC).

There are several candidates of PQC, e.g., code-base cryptography [McE78] introduced

by McEliece in 1978, multivariate cryptography [MI88] by Matsumoto and Imai in 1988,

and lattice-based cryptography [AD97] by Ajtai and Dwork in 1997. Some candidates

were published with other motivations which are not related to PQC before Shor’s result.

In 2006, Couveigues [Cou06] and Rostovtsev and Stolvunov [RS06] proposed another

candidate of PQC using maps φ : E → Ẽ between elliptic curves E and Ẽ, which are called

isogenies. The cryptosystems using the isogenies are called isogeny-based cryptography

(IBC). The security of IBC is based on the difficulty of a problem for computing an isogeny

φ : E → Ẽ from given two elliptic curves E and Ẽ, which is called an isogeny problem.

At this time, there is no known efficient algorithm for solving the problem in practical

time even though the quantum computer is applied. The problem complexities also make

the key sizes of IBC significantly smaller than the other candidates.

In 2011, Jao and De Feo proposed a variant of the DH key exchange based on the

isogeny problem for elliptic curves classified into supersingular in [JDF11], which is known

as the supersingular isogeny DH (SIDH) key exchange. In 2017, one kind of encryption by

using the SIDH, which is called an isogeny-based key encapsulation (SIKE), is proposed

by [Aza+17] and is submitted to the NIST standardization process on PQC. The SIKE is

the only candidate of which security is based on the isogeny problem and is selected as an

alternative candidate for the round 3 submissions at this time. Castryck et al. proposed

1https://ethereum.org
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another key exchange protocol using the isogenies in [Cas+18], which is a commutative

SIDH (CSIDH) in 2018. The CSIDH is more compatible with the original DH key ex-

change than the SIDH, however, it requires a huge amount of calculation costs. In 2019,

Beullens et al. proposed a signature algorithm CSI-FiSh [BKV19] with a short key length

and signature length. In 2020, De Feo et al. also presented SQISign [DF+20] which has

higher performance in signature verification than CSI-FiSh.

1.2 Previous research and remaining problems

According to recent cryptographic trends, the author focuses on PBC and IBC. Since the

pairing on the elliptic curve is the important tool for realizing PBC, it is important to

improve its performance and usability. There is a possibility that several techniques for

elliptic curve or pairing are extended for the operations related to the SIDH of IBC and

contribute to improving its performance. The following summarizes the previous research

and remaining problems related to the pairings and SIDH, which motivate this work.

1.2.1 For the pairing on elliptic curve

After the publication of the innovative protocols based on the pairings, researchers have

been working on constructing elliptic curves, which have the advantage of pairings. Par-

ticularly, the practical pairing should be defined over an elliptic curve with a small embed-

ding degree k, which is one of the parameters for specifying the elliptic curve. Such the

curve is called a pairing-friendly elliptic curve and is typically not easy to find by random

search. One of the construction methods for such curves is the use of the supersingular

elliptic curves or Cocks-Pinch method, which was given in the unpublished manuscript

[CP01] by Cocks and Pinch. The other remaining constructions of pairing-friendly curves

fall into the category of families of curves described in [MNT01; BLS02; BN05; KSS08],

which produce currently well-used curves, such as MNT, BLS, BN, and KSS curves. The

families of curves have integer parameters for determining unique curves. The research

of pairing-friendly curve constructions is extended and collected by Freeman et al. in

[FST10]. Note that there are several methods [Per+11; CLN11; Cos12] for generating

pairing-friendly curves for certain families which are advantages for the pairings.

Since the pairing computation can be the bottleneck of the protocols, researchers also

have been working on optimizing the pairings. The pairings on elliptic curves, such as a

reduced Tate pairing and its variants, are typically carried out by two steps, which are

the Miller loop and extra exponentiation in the finite field to bring the output of the

Miller loop to the unique value. The Miller loop is computed by an iterative algorithm,

which is proposed by Miller in [Mil04] and is called Miller’s algorithm. To shorten the

loop length, Hess et al. [HSV06] and Vercauteren [Ver09] proposed modification of the
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pairings. Around 2010, Costello et al. [CLN10] and related works [ZL12] presented efficient

formulas for computing the Miller loop using another elliptic curve, which is called twist.

The higher degree twist typically makes the computation of the Miller loop to be faster.

The extra exponentiation is called the final exponentiation and it becomes more of a

computational bottleneck with the curves with large k. Since the final exponentiation

has the specific exponent, Scott et al. [Sco+09] and Fuentes et al. [FCKRH11] provided

methods for constructing efficient algorithms using the Frobenius map which is a map in

the finite field with the low complexity.

In recent years, the security of the pairings are well-analyzed. In 2016, Kim et al. pro-

vided notable developments of the tower number field sieve (TNFS) algorithm [KB16;

KJ17], which is one of the best-known algorithms for solving DLP. Particularly, there

are many results [FK19; BD19; GS19; Gui20] that show that the special variant TNFS

(STNFS) are very efficient in finite fields that are target groups of the pairings on the

curves. Although it was previously considered that the BN curve with k = 12 is the best

choice for the pairings at the 128-bit security level, the results of the analyses expanded

the range of the choices of curves. In [RNL19], Barbulescu et al. reported that there are

many elliptic curves with various k, e.g., k = 12, 14, 15, 16, 24, and 27, which have a good

performance of the pairings. Moreover, Fouotsa et al. also suggested using the pairings on

the curves with k = 9, 15, and 27 in [FMP20]. In 2020, Guillevic also provided a shortlist

of the curves with k = 6, 8, 10, 11, 13, 14, and 16 that have a resistance to the STNFS

in [Gui20]. Their shortlist involves a curve with k = 12 which is given by Fotiadis and

Konstantinou in [FK19] and is called FK curve, and curves with k = 6, 8 found by using

Cocks-Pinch method in [GMT20].

There are the following two problems, which motivate this work.

• The first problem: The efficient formulas and algorithms for computing the pairings

have to be found corresponding to the curves. However, for several curves that are

newly suggested for the pairings in [FMP20; Gui20], there is no work for providing

efficient algorithms for computing the final exponentiation or there are possibilities

of improvement. It is desired to clarify that and to provide the explicit calculation

costs of the pairings for finding one of the best choices of the curves. As one more

issue related to the final exponentiation, it is also desired to overcome the problem

that the existing methods [Sco+09; FCKRH11] require complicated works for each

curve.

• The second problem: The pairings with the family of curves require initial settings

such that finding an integer parameter and constructing the curves and finite field.

During the search of the parameter, we need to consider that not only the security

of the pairings but also the efficiency of their computations strongly depends on
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the settings. However, since it is typically complicated to handle the favorite con-

structions of curves and finite fields, it is desired to establish some convenient ways

for the settings which are an advantage for the pairings. There exist the previous

works [Per+11; CLN11; Cos12] which came from the same motivation, however,

such works treated limited curves.

1.2.2 For the SIDH

Since the SIDH has a short history, research on optimizations and security analyses are

published in very recent years. In 2011, Jao and De Feo introduced the SIDH together with

its practical constructions in [JDF11]. According to [JDF11], the practical SIDH uses the

supersingular elliptic curves given by the Montgomery form defined over a specific finite

field, which is called an optimal extension field (OEF) given by [BP01]. Then, one can

enjoy efficient formulas for computing point arithmetics and small-degree isogenies and

are available. The large-degree isogenies required for the SIDH are efficiently computed

by decomposed into low-degree isogenies with point multiplications. Around 2017, when

the SIKE was submitted for the NIST standardization process, Costello et al. [CLN16;

CH17], Faz-Hernández [FH+17], Renes [Ren18] revised the formulas for computing the

small-degree isogenies and point arithmetics. Besides, Adj et al. [Adj+18] and Jaques and

Schanck [JS19] made the security analyses of the SIDH, which show that the SIKE used

rather conservative security estimates. This means that significantly smaller parameters

can be used than the SIKE developer thought. Currently, there are mainly four parameters

for specifying the curves that are suggested for the SIKE. Note that Matsuo [Mat19] and

Costello [Cos20] independently proposed the modification of the SIDH using twist. Their

modifications provide new candidates of the curves used for the practical SIDH.

There is the following problem, which also motivates this work.

• The third problem: It is needed to optimize the operations of the isogenies and point

arithmetics for the practical SIDH. Although the previous works [CLN16; CH17;

FH+17; Ren18] mainly focus on revising the formulas of the operations, there is

a possibility that the performance of the operations can be improved by changing

the construction of the finite field in which curves are defined. There are several

construction methods of the finite fields which have slightly lower computational

complexities of the multiplication than the OEF used for the typical SIDH. Although

there is a problem that the elliptic curves usable for the SIDH are very limited, the

change of the finite field might contribute to expanding the range of the elliptic

curves.
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1.3 Major contributions

The author tries to overcome the problems which are summarized in the previous section.

The summary of major contributions of this thesis is given as follows:

• The first contributions: For the BLS curves with k = 15, the algorithm for com-

puting the final exponentiation is improved by using the property related to the

family. It is also found that the improvement techniques can be extended for the

BLS curves with any k. This contributes to obtaining efficient final exponentia-

tion algorithms for any BLS curves with a small effort. Note that Hayashida et

al. achieved similar results for any family of curves in [HHT20] at the same time as

this work publication.

Although there are no efficient algorithms for computing the final exponentiations

for the curves with k = 10, 11, 13, and 14, the author provides them by applying the

existing construction methods. The author also provides explicit calculation costs

for executing the algorithms for an estimation of the performance of the pairings

on those curves. Comparing the estimation results between the shortlist curves in

[Gui20], it is found that the BLS curve with k = 12, FK curve with k = 12, and

Cocks-Pinch curve with k = 6 are attractive choices for efficient pairings.

The author proposes a new method for constructing the final exponentiation al-

gorithm for the specific cyclotomic family of curves with any prime k given by

k = 6n + 1 for n > 0. It is found that the proposed method results in one of the

same state-of-the-art algorithms for computing the final exponentiation produced

by the previous method [FCKRH11] for the cases of k = 7, 13, and 19. Unlike the

previous method, the proposed method can immediately produce the algorithms

by using mathematical formulas. Moreover, the proposed method can produce the

algorithm with O(n), however, the latest method [HHT20] generates the algorithm

with O(n2).

• The second contribution: To overcome the second problem, the author proposes a

simple method for generating the BN and BLS curves that have the advantage for

the pairings-based cryptography by finding parameters under specific restrictions.

The proposed method can generate the curves which automatically give rise to the

attractive settings of the curve and finite field for fast pairings. The proposal also

contributes to the smooth update of the parameters of the pairings corresponding

to the improvement of the security analyses. Moreover, since the proposed method

can generate the BLS curves with k = 2m · 3 and 3n with any m,n > 0, the method

will be useful for the researcher and implementer of the pairings for a long time.

Note that the proposal can result in the same curves as that of the previous method

for the BLS curves with k = 24 in [CLN11].



1.4. Organization 11

• Third contributions: To overcome the third problem, the author focuses on not

only OEF by [BP01] but also other construction methods [NSM03; KAH00] which

generate an all-one polynomial extension field (AOPF) and extension fields with

normal basis representation (EFN). The applicability of the finite fields shows that

not only the OEF but also AOPF and EFN can be used for SIDH. Moreover, the

EFN allows us to use new curves which have not been used for the previous SIDH. As

a result of the implementation of the SIDH with the possible finite fields, it is found

that the performances of SIDH with OEF and new candidates are competitive. As

one of the additional contributions, a simple map from the OEF to any finite fields

is provided for simple parameter settings of the SIDH.

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 provides the fundamentals of

the finite field, elliptic curves, pairings, and isogenies from the definition of the algebraic

systems. Although the descriptions of the fundamentals are not short, it is necessary

to understand the whole of the contributions. In Chapters 3, 4, and 5, the first, sec-

ond, and third contributions are provided, respectively. The background and motivations

are reviewed and then the previous works are formally described. After that, the pro-

posed contents are described. In Chapter 6, the conclusion is drawn with future works.

Additional descriptions of Chapters 3–5 are summarized in Apps. C–F.



Chapter 2

Fundamentals

This chapter describes the mathematical fundamentals of finite fields, elliptic curves,

pairings, and isogenies by referring to the textbooks [Sil09; EMJ17]. To make it easier to

understand, this thesis provides the descriptions together with some examples.

2.1 Group, ring, and field

This section provides a standard background of algebraic systems, which are materials on

sets in which arithmetics are defined. There are descriptions of groups, rings, and fields

that are very fundamental for discussing cryptography.

2.1.1 Groups

The definition of the groups are described in below.

Definition 2.1. (Group) Let G be a set and ◦ be a binary operation such that a ◦ b ∈ G
for all a, b ∈ G, i.e., ◦ is defined on G. The pair of G and ◦, which is denoted by (G, ◦)
and is called a group if the following conditions are satisfied:

1. Associative: (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G.

2. Identity: There exists e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G.

3. Inverse: Given a ∈ G, there exists b ∈ G such that a ◦ b = b ◦ a = e.

Then, we say G forms a group under ◦.

If we drop condition 3 of Definition 2.1, (G, ◦) is called a monoid. If we drop conditions

2 and 3, (G, ◦) is called a semigroup. Conversely, if we add the condition such that

a ◦ b = b ◦ a for all a, b ∈ G to Definition 2.1, (G, ◦) is called an abelian group or

commutative group. Hereafter a group is written by (G, ◦) if the operation is needed to

be specified; otherwise, the group is simply referred to by the corresponding set of G.

12
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The number of elements of G, i.e., #G, is called an order of the group G. If #G is

a finite number, G is called a finite group; otherwise, G is an infinite group. For a ∈ G
and positive integer m, let [m]a be an element in G by applying ◦ for m-terms of a,

i.e., [m]a = a ◦ a ◦ · · · ◦ a. An order of a is the smallest number n such that [n]a = e.

If G is a set given by 〈a〉 = {e, a, [2]a, . . . , [n − 1]a} for an element a ∈ G, G is called

a cyclic group and a is a generator of G. In this thesis, there appears a set given by

〈a, b〉 = {[m1]a+ [m2]b} for elements a, b ∈ G and any integers m1,m2.

Several examples of infinite groups are provided below. To present finite groups, it is

needed to study quotient groups described in the next subsection.

Example 2.2. (Group of integers) Let Z be a set of integers and let + be a natural

addition defined on Z. Then, (Z,+) is an abelian group. It is an infinite cyclic group of

which 1 or −1 can be generators.

Example 2.3. (Group of real numbers) Let R∗ be a set of real numbers excluding 0 and

let · be a natural multiplication defined on R. Then, (R∗, ·) is an abelian group. It is not

a cyclic group since there do not exist generators.

2.1.2 Quotient groups and homomorphisms

Suppose that G is an abelian group since the commutative property gives rise to simpli-

fying discussions. Let H be a subset of G such that H forms a group under the same

binary operation of G. Then, H is called a subgroup of G. Given a single element a ∈ G,
a coset is a subset of G defined by

a ◦H = {a ◦ h : h ∈ H}, (2.1)

which is a subset of G. Note that actually we need to distinguish the direction to apply

a from left and right but it can be ignored as long as we work on the commutative group.

The number of cosets is called the index of H in G, written as [G : H]. Then, it is

obtained #G = [G : H]#H from Lagrange’s theorem if G is a finite group. Let G/H be

a set of all cosets defined by

G/H = {a ◦H : a ∈ G}. (2.2)

For all a ◦ H, b ◦ H ∈ G/H, a binary operation ∗ can be defined by a ◦ H ∗ b ◦ H =

(a ◦ b) ◦H ∈ G/H. Then, G/H forms a group under ∗, which is called a quotient group

or factor group. Note that the order of G/H is explicitly given by #(G/H) = #G/#H

with a finite group G.

There is an easier understanding of the quotient groups with the following description.

If two element a1, a2 ∈ G produce the same coset, i.e., a1 ◦ H = a2 ◦ H, a1 and a2 are
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becomes to be equivalence, i.e., a1 ∼ a2. This equivalence relation leads to a set defined

by a = {x ∈ G : x ∼ a} for a ∈ G which is called an equivalence class. The important

fact is that this equivalence class a is exactly the same as the coset a ◦ H. Thus, the

set of the quotient group G/H is the same as the set of all equivalence classes, i.e.,

G/H = {a ◦H : a ∈ G} = {a : a ∈ G}. A binary operation ∗ can be naturally defined by

a ∗ b = a ◦ b ∈ G/H for all a, b ∈ G/H.

Example 2.4. (Quotient group of integers) Let (Z,+) be an abelian group. Then, nZ =

{n · a : a ∈ Z} is a subgroup of Z. For a given a ∈ Z, a coset is given by a + nZ =

{a + h : h ∈ nZ}, which produce an equivalence relation a ∼ a + n ∼ a + 2n ∼ · · · .
Assuming a is a equivalence class of a with this relation, there is a quotient group defined

by Z/nZ = {a + nZ : a ∈ Z} = {0, 1, . . . , n− 1} with a binary operation + defined by

a+ b = a+ b for all a, b ∈ Z/nZ. The quotient group is a finite abelian group of order n.

Example 2.5. Let Z/nZ be a finite abelian group described in Example 2.4 and let

n be a composite number. In this example, suppose that n = 12 and G = Z/12Z =

{0, 1, . . . , 11}. Then, there exists a subgroup H = {0, 3, 6, 9} of which the order #H = 4

divides #G = 12. There are only three cosets given by 0 = 0+H = 3+H = 6+H = 9+H,

1 = 1+H = 4+H = 7+H = 10+H, and 2 = 2+H = 5+H = 8+H = 11+H, which

is [G : H] = 3 and thus #G = [G : H] ·#H = 3 · 4 = 12. Then, it is obtained a quotient

group G/H = {0, 1, 2} of order 3 and confirm #G/H = #G/#H = 12/4 = 3.

Much of the importance of quotient groups is derived from their relation to homomor-

phisms, which is a structure-preserving map defined as follows:

Definition 2.6. (Group homomorphism) Let (G, ◦) and (G′, ◦′) be abelian groups of

which identities e and e′, respectively. A group homomorphism φ : G → G′ be a map

such that for all a, b ∈ G it holds that φ(a ◦ b) = φ(a) ◦′ φ(b) and φ(e) = e′. A set

ker(φ) = {a ∈ G : φ(a) = e′} is especially called a kernel of φ.

The homomorphisms φ are classified into several cases corresponding to their proper-

ties. If φ is a bijection, i.e., φ is a one-to-one map, we say φ is an isomorphism and G and

G′ are isomorphic, which is denoted by G ∼= G′. If G = G′, φ is called an endomorphism.

If φ is an isomorphism and G = G′, φ is called an automorphism.

In what follows, let us consider a map ϕ from a group G to a quotient group G/H by a

subgroup H of G. Then, ϕ : G→ G/H is a homomorphism such that ϕ(a) = aH ∈ G/H
for a ∈ G. Its kernel is given by ker(ϕ) = H. The correctness of the fact can be confirmed

by the following example.

Example 2.7. Let G = {0, 1, . . . , 11}, H = {0, 3, 6, 9}, and G/H = {0, 1, 2} be abelian

groups defined in Example 2.5, respectively. A map ψ : G → G/H is a homomorphism

such that 0 + H = {0, 3, 6, 9} → {0}, 1 + H = {1, 4, 7, 10} → {1}, and 2 + H =
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{2, 5, 8, 11} → {2}. From the definition, it is found that the kernel of ψ is ker(ψ) =

0 +H = H.

2.1.3 Direct product of groups

This subsection introduces one of the construction methods to create a larger group from

the given plural groups. Let G1 and G2 be abelian groups under binary operations +1

and +2 with identities e1 and e2, respectively. A direct product of G1 and G2 is a set

G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2}. (2.3)

Then, G1 × G2 forms a group under a binary operation ∗ such that (g1, g2) ∗ (g′1, g′2) =
(g1 +1 g

′
1, g2 +2 g

′
2) ∈ G1 ×G2 for all (g1, g2), (g

′
1, g

′
2) ∈ G1 ×G2 with the identity (e1, e2).

Such a group is called the direct product group. If G1 and G2 are finite groups, the order

of the direct product group is given by #G1#G2. In this thesis, the direct product group

Z/nZ× Z/nZ is often used to indicate a group structure.

2.1.4 Pairing

In the following, a map from a product of two groups to one group is described.

Definition 2.8. (Pairing) Let G1 and G2 be abelian groups under binary operations +1

and +2 with identities e1 and e2, respectively, and let GT be an abelian group under a

binary operation · with identity eT . A pairing is a map from a product of G1 and G2 to

GT defined by

e : G1 ×G2 → GT , (2.4)

which has the following properties:

1. Bilinear: For all g1, g
′
1 ∈ G1 and g2, g

′
2 ∈ G2,

e(g1 +1 g
′
1, g2) = e(g1, g2) · e(g′1, g2), (2.5)

e(g1, g2 +2 g
′
2) = e(g1, g2) · e(g1, g′2). (2.6)

2. Non-degenerate: For all g1 ∈ G1, e(g1, g2) = eT if and only if g2 = e2 ∈ G2. For all

g2 ∈ G2, e(g1, g2) = eT if and only if g1 = e1 ∈ G1.

Note that the bilinear map is not a group homomorphism out of the direct product

group. For some integer m, let [m]g1 and [m]g2 denote elements G1 and G2 applying m-

term operations for g1 ∈ G1 and g2 ∈ G2, respectively. Besides, let a
m
T denote an element
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in GT applying m-term operations for gT ∈ GT . Then, the property of the bilinear map

gives rise to the following fact for all a, b ∈ Z:

e([a]g1, [b]g2) = e([b]g1, [a]g2) = e(g1, g2)
ab. (2.7)

In cryptography, the pairing is typically defined on an elliptic curve over a finite field.

The details are introduced in the later sections.

2.1.5 Rings and fields

In the groups, there is only one binary operation. This subsection considers another

operation and studies the structure that results from their interaction.

Definition 2.9. (Ring) Let R be a set and + and · be binary operations defined on R.

The triple of R and two operations, which is denoted by (R,+, ·) and is called a ring if

the following conditions are satisfied:

1. Assosiative: (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) for all a, b, c ∈ R.

2. Commutative: a+ b = b+ a for all a, b ∈ R.

3. Distributive: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

4. Identities: There exist 0R, 1R ∈ R such that a+0R = 0R+a = a and a·1R = 1R·a = a

for all a ∈ R.

5. Inverse: Given a ∈ R, there exists b ∈ R such that a+ b = 0R.

Then, we say R forms a ring under + and ·.

The conditions of (R,+, ·) to be a ring are equivalence to ones that (R,+) is an

abelian group, (R, ·) is a monoid, and there is the distributive property. If there is one

more condition of commutative a · b = b · a for all a, b ∈ R to Definition 2.9, (R,+, ·)
is called a commutative ring. If there is a unique 0R in R, (R,+, ·) is called an integral

domain. For the integral domain (R,+, ·), a characteristic, which is denoted as char(R),

is the smallest positive number n such that [n]1R = 0R if such a number n exists; and 0

otherwise.

If a requirement for the existence of multiplicative inverses to the commutative ring

is joined, a field of the following definition is obtained.

Definition 2.10. (Field) Let F be a set and + and · be binary operations defined on F .

The triple of F and two operations, which is denoted by (F,+, ·) and is called a field if

the following conditions are satisfied:
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1. Assosiative: (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) for all a, b, c ∈ F .

2. Commutative: a+ b = b+ a and a · b = b · a for all a, b ∈ F .

3. Distributive: a · (b+ c) = a · b+ a · c for all a, b, c ∈ F .

4. Identities: There exist 0R, 1R ∈ R such that a+0R = 0R+a = a and a·1R = a·1R = a

for all a ∈ F .

5. Additive inverse: Given a ∈ R, there exists b ∈ R such that a+ b = 0R.

6. Multiplicative inverse: Given a ∈ R such that a 6= 0R, there exists b ∈ R such that

a · b = 1R.

Then, we say F forms a field under + and ·.

Let F ∗ be a set of elements of F excluding 0R, which is defined by F ∗ = F\{0R}.
Then, the conditions of (F,+, ·) being a field are equivalence to ones that (F,+) and

(F ∗, ·) are abelian groups with the distributive property. Hereafter a ring involving a field

is written by (R,+, ·) if the operations are needed to be specified; otherwise, the ring is

simply referred to by the corresponding set of R. The number of the set R is also called

an order of the ring (or field) and is denoted by #R. If #R is a finite number, R is called

a finite ring (or finite field).

The following provides examples of infinite rings and fields. For similar reasons with

the groups, examples of finite rings and fields are provided after describing the quotient

rings.

Example 2.11. (Ring of integers) As defined in Example 2.2, let Z be a set of integers.

Let + and · be a natural addition and multiplication defined on Z. Then, (Z,+, ·) is an
infinite commutative ring.

Example 2.12. (Ring of rational numbers) Let Q be a set of rational numbers and let +

and · be a natural addition and multiplication defined on Q. Then, (Q,+, ·) is an infinite

field.

2.1.6 Ideals, quotient rings, and homomorphisms

If a subset S of R forms a ring (or field) under the same laws of R, S is said to be a

subring (or subfield) of R. This subsection describes a special class of subrings.

Definition 2.13. (Ideal) Let (R,+, ·) be a commutative ring and let I be a subset of R.

We say I is an ideal of R if the following conditions are satisfied:

1. (I,+) is a subgroup of (R,+).
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2. r · i ∈ I for all r ∈ R and i ∈ I.

Among the ideals, an ideal I of R is called a principal ideal if there is an element if I

is generated by a single element a ∈ R, i.e., I = aR = {a · r : r ∈ R}. The principal ideal
I generated by a ∈ R is denoted as I = (a). Given a ∈ R and ideal I of R, let a+ I be a

coset of I defined by a+ I = {a+ i : i ∈ I}. Let R/I be a set of the cosets defined by

R/I = {a+ I : a ∈ R}. (2.8)

For the set R/I, one can define binary operations ∗ and ⋆ such that a+I∗b+I = (a+b)+I

and a+ I ⋆ b+ I = (a · b) + I for all a+ I, b+ I ∈ R/I. Then, R/I forms a ring under ∗
and ⋆, which is called a quotient ring.

In the same manner as the groups, there appear an equivalence relation a1 ∼ a2 for

a1, a2 ∈ R which produce the same coset a1 + I = a2 + I. Assuming a = {x ∈ G : x ∼ a}
is a equivalence class for a ∈ R with the equivalence relation, one can define the quotient

ring by the set of all equivalence classes given by R/I = {a : a ∈ G} with operations ∗
and ⋆ given by a ∗ a = a+ b = (a+ b) + I and a ⋆ b = a · b = (a · b) + I for all a, b ∈ R/I,
respectively.

Example 2.14. (Quotient ring of integers) As shown in Example 2.11, (Z,+, ·) is a

commutative ring. A subring of Z can be easily found by nZ = {n · a : a ∈ Z}, which is a

principal ideal of Z denoted by (n) = nZ. For a given a ∈ G, a coset is given by a+(n) =

{a+i : i ∈ (n)} and generates an equivalence relation a ∼ a+n ∼ a+2n ∼ · · · . Then, one
can also define the quotient ring by Z/(n) = {a + (n) : a ∈ R} = {0, 1, . . . , n− 1}, with
operations + and · defined by a+b = a+ b and a·b = a · b for all a, b ∈ Z, respectively. The
quotient ring is a finite commutative ring of order n. From the properties of the ring, note

that (Z/(n),+) is a finite abelian group, and (Z/(n)\{0}, ·) is a commutative semigroup.

It is easily confirmed that the group (Z/(n),+) is exactly the same as (Z/nZ,+) given in

Example 2.4. To make Z/(n) being a field, (Z/(n)\{0}, ·) must be an abelian group.

Example 2.15. Let Z/(n) be a commutative ring described in Example 2.14 and let

n be a composite number. In this example, suppose that n = 12 and R = Z/(12) =

{0, 1, . . . , 11}. Then, there exists a subring I = {0, 4, 8} with the multiplicative identity

4. Note that the identity elements of the subring and original ring do not always the

same. The subring I is a principal ideal denoted by I = (4) = 4R = {4 · r : r ∈ R}.
Then, there are only four cosets 0 = 0 + I = 4 + I = 8 + I, 1 = 1 + I = 5 + I = 9 + I,

and 2 = 2 + I = 6 + I = 10 + I, 3 = 3 + I = 7 + I = 11 + I. Then, it is obtained

a quotient ring R/I = {0, 1, 2, 3} under an addition + and multiplication · defined by

a+ b = a+ b = a+ b+ I and a · b = a · b = a · b+ I for all a, b ∈ R/I.

Similar to the case of quotient groups, the quotient ring is also related to homomor-

phisms.
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Definition 2.16. (Ring homomorphism) Let (R,+, ·) and (R′,+′, ·′) be abelian groups

of which identities 0R, 1R and 0R′ , 1R′ , respectively. A ring homomorphism φ : R → R′

be a map satisfying the following.

1. For all a, b ∈ G, φ(a+ b) = φ(a) +′ φ(b).

2. For all a, b ∈ G, φ(a · b) = φ(a) ·′ φ(b).

3. φ(1R) = 1R′ .

A set ker(φ) = {a ∈ R : φ(a) = 0R′} is a kernel of φ.

The homomorphisms φ are classified into the following cases if φ satisfies the specific

conditions. If φ is a bijection, φ is called an isomorphism, and R and R′ are isomorphic,

which is denoted by R ∼= R′. If R = R′, the isomorphism is called an endomorphism. If

φ is an isomorphism and R = R′, φ is called an automorphism.

Let us consider a map ψ from a ring R to a quotient ring R/I by an ideal I of R.

Then, ψ : R → R/I is a homomorphism such that ψ(a) = a + I ∈ R/I for a ∈ G. Its

kernel is given by ker(ψ) = I.

Example 2.17. Let R = Z/(12) = {0, 1, . . . , 11}, I = {0, 4, 8}, and R/I = {0, 1, 2, 3}
be rings defined in Example 2.15, respectively. Then, ϕ : R → R/I is a homomorphism

such that 0 + I = {0, 4, 8} → {0}, 1 + I = {1, 5, 9} → {1}, 2 + I = {2, 6, 10} → {2}, and
3 + I = {3, 7, 11} → {3}. The kernel of ψ is given by ker(ψ) = 0 + I = I.

A subring S of a ring R is discussed above. Then, a ring R is called an extension

ring (or extension field) of a subring S. A dimension of R as a vector space on S is said

to be an extension degree and denoted by [R : S]. A ring (or field) extension is a ring

homomorphism such that S → R, which plays an important role to discuss the finite

fields in cryptography. The context of the extension is explained at the same time on

presenting more details about the finite fields in Sect. 2.2.

2.2 Finite fields

This section provides details about the finite fields that are applied for cryptography.

2.2.1 Prime field

In this section, more details of the operations defined on the ring Z/(n) given in Exam-

ple 2.14 are described with a definition of a prime field.

We have seen that Z/(n) = {0, 1, . . . , n− 1} forms a ring under the binary operations

+ and · such that a+ b = a+ b and a · b = a · b for all a, b ∈ Z/(n). We also have studied
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that there is the equivalence relation a ∼ a+n ∼ a+2n ∼ · · · generated by the elements

of Z/(n). This relation can be more formally defined as follows: For a, b ∈ Z, if n divides

a − b, i.e., a can be denoted by a = n · l + b with l ∈ Z, we say a and b are congruent

modulo n and denote as follows:

a ≡ b (mod n). (2.9)

The congruence relation gives rise to an equivalence class of a modulo n, which is defined

by a = {a ∈ Z : x ≡ a (mod n)}. For example, if a ≡ b ≡ c (mod n) for a, b, c ∈
Z, then a, b, c ∈ a. Since the congruence relation is compatible with the addition and

multiplication, one can have the operations a+ b = a+ b and a · b = a · b for a, b ∈ Z/(n).
As a result, there is a quotient ring Z/(n) = {a : a ∈ Z} = {0, 1, . . . , n− 1} under the

above operations.

As mentioned in Example 2.14, to make Z/(n) being a field, it is required to make

Z/(n)\{0} to be an abelian group under ·. However, Z/(n)\{0} do not always form

a group for any n. This is because that · is not always defined on Z/(n)\{0} since

there are possibilities such that a · b = 0 6∈ Z/(n)\{0} for several a, b ∈ Z/nZ\{0}, e.g.,
2 · 2 = 0 6∈ Z/(4)\{0} and 3 · 5 = 0 6∈ Z/(15)\{0}. Fortunately, if n is a prime p, one can

avoid the possibilities and can make Z/(p)\{0} being an abelian group under ·. Then,

there is a field Z/(p) of order p and char(Z/(p)) = p. The field Z/(p) is especially called a

prime field. Note that the prime field and its isomorphic fields are the smallest subfields

of finite fields.

Although the elements of Z/(p) are equivalence classes of integers in Z modulo p, it

is preferred to operate Z/(p) by using only the limited elements in an environment with

limited resources. Therefore, we work on a field that is isomorphic to Z/(p). Indeed, let

Fp be a set defined by

Fp = {0, 1, . . . , p− 1}. (2.10)

Let us define binary operations a + b = (a + b)%p ∈ Fp and a · b = (a · b)%p ∈ Fp for all

a, b ∈ Fp where % is a reminder operation. It can be confirmed that Fp forms a field under

these operations. The multiplicative group of Fp is referred to as the set F∗
p = Fp\{0}.

Then, F∗
p is a cyclic group of order p − 1, i.e., there is a generator a ∈ F∗

p such that

F∗
p = 〈a〉. An example of Fp with a concrete p is provided in the following.

Example 2.18. (Prime field of order 5) Let F5 = {0, 1, 2, 3, 4} and let + and · be
multiplication and addition operation taking a reminder divided by 5. The operations

table in F5 is given in Table 2.1. From the table, it is found that F5 and F∗
5 form abelian

groups under + and ·, respectively. Thus, (F5,+, ·) is a prime field of order 5.
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+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 2.1: Operation tables in F5.

2.2.2 Polynomial rings and field extensions

This subsection introduces polynomial rings to describe the field extension from a subfield

to a field. Let R be a commutative ring. Let n be a positive integer and let f(x) be a

polynomial defined by

f(x) =
n∑

i=0

aix
i = anx

n + an−1x
n−1 + · · ·+ a1x+ a0, (2.11)

where ai ∈ R. Then, we say f(x) is defined over R. If an 6= 0, n is called degree of f(x)

and is denoted by n = deg(f). If f(x) has ai = 0 for all i, i.e., f(x) = 0, let us define

deg(f) = −∞. Let m be a positive integer such that m ≤ n and let g(x) be a polynomial

defined by

g(x) =
m∑
j=0

bjx
j = bmx

m + am−1x
m−1 + · · · b1x+ b0, (2.12)

where bi ∈ R. Let us define f(x) = g(x) if ai = bi for 0 ≤ i ≤ m and ai = 0 for m < i ≤ n.

For f(x), g(x), an addition and multiplication are defined as follows:

f(x) + g(x) =
n∑

i=0

aix
i +

m∑
j=0

bjx
j =

m∑
i=0

(ai + bi)x
i +

n∑
i=m+1

aix
i, (2.13)

f(x) · g(x) =

(
n∑

i=0

aix
i

)
·

(
m∑
j=0

bjx
j

)
=

m+n∑
k=0

(∑
i+j=k

aibj

)
xk, (2.14)

which f(x) + g(x) and f(x) · g(x) are also polynomials defined over R. Then, it can be

easily found that a set of polynomials defined over R forms a commutative ring under the

above operations. The ring is called a polynomial ring and is denoted by R[x]. Note that

a set of polynomial defined over R with variables x1, x2, . . . , xn also forms a polynomial

ring R[x1, x2, . . . , xn], however, here we only focus on R[x].

Let F be a field and let F [x] be a polynomial ring over F . Then, for all f(x), g(x) ∈
F [x] such that g(x) 6= 0, there exist polynomials q(x), r(x) ∈ F [x] such that f(x) =
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+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

Table 2.2: Operation tables in F2[x]/(x
2 + x+ 1).

q(x) · g(x) + r(x) where r(x) is 0 or a polynomial of degree such that deg(r) < deg(g).

Moreover, q(x) and r(x) are uniquely determined corresponding to f(x) and g(x). The

fact gives rise to an equivalence relation on F [x] producing an equivalence class of a(x) ∈
F [x] modulo f(x) 6= 0 ∈ F [x], which is denoted by a(x). In fact, a(x) is denoted by

a(x) = a(x) + (f(x)) where (f(x)) plays a principal ideal of R[x], there is a quotient ring

F [x]/(f(x)) consists of the set of all equivalence classes modulo f(x) under the addition

and multiplication defined by a(x) + b(x) = a(x) + b(x) and a(x) · b(x) = a(x) · b(x) for
a(x), b ∈ F [x]/(f(x)), respectively. Considering the fact that the ring Z/(n) can be a field

if n is a prime, a similar discussion can be held in this case. If f(x) is decomposed into

at least two polynomials of degree at least 1, we say f(x) is reducible; otherwise, f(x) is

irreducible. Then, there is a fact that F [x]/(f(x)) is a field if f(x) is irreducible. The

following shows an example.

Example 2.19. (Field of order 4) Let F2 = {0, 1} be a prime field of order 2 under

the operations + and · taking a reminder divided by 2. Then, there is an irreducible

polynomial given by x2 + x + 1 in F2[x]. The principal ideal (x2 + x + 1) produce four

costs given by 0 = 0 + (x2 + x + 1), 1 = 1 + (x2 + x + 1), x = x + (x2 + x + 1), and

x+ 1 = x+1+(x2+x+1). From the above, there is a quotient ring F2[x]/(x
2+x+1) =

{0, 1, x, x+ 1} under the addition and multiplication for a, b ∈ F2[x]/(x
2 + x + 1), e.g.,

1 + x+ 1 = x+ 2 = x and x · x+ 1 = x2 + x = −x− 1 + x = 1. It is observed that

one can compute a reminder divided by not only 2 but also x2 + x + 1. The operation

tables for F2[x]/(x
2 + x + 1) are given in Table 2.2. From the table, it can be confirmed

F2[x]/(x
2 + x+ 1) forms a field of order 4.

Suppose that f(x) is an irreducible polynomial of degree n > 1 and let α be a root of

the irreducible polynomial f(x). Then, F [x]/(f(x)) is isomorphic to a field F (α), which

is obtained from F by adjoining α, i.e., every element of F (α) can be uniquely expressed

in the form

an−1α
n−1 + an−2α

n−2 + · · ·+ a1α + a0, (2.15)

where ai ∈ F for 0 ≤ i ≤ n− 1 and which is a m-th dimensional vector space of F with a

basis {1, α, . . . αn−1}. Notice that F (α) is an extension field of F of degree [F (α) : F ] = n
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+ 0 1 α α + 1

0 0 1 α α + 1
1 1 0 α + 1 α
α α α + 1 0 1

α + 1 α + 1 α 1 0

· 0 1 α α + 1

0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1

α + 1 0 α + 1 1 α + 1

Table 2.3: Operation tables in F2(α).

and thus the number of elements of F (α) is given by (#F )n. Since the smallest subfield

of an extension field is a field isomorphic to Fp of order p, the extension field must have

an order p or power of p.

Example 2.20. Let F2 and F2[x]/(x
2 + x + 1) be fields defined in Example 2.19. The

irreducible polynomial x2 + x + 1 has a root α = ±
√
−3+1
2

which is an element not in

F2. Considering the field F2(α), there are four elements 0, 1, α, and α + 1 of the form

a1α + a0 ∈ F2(α) where a1, a1 ∈ F2. Since α is a root of the irreducible polynomial,

there is a relation α2 + α + 1 = 0, i.e., α2 = α + 1. The operation tables are given in

Table 2.3. As seen in the table, F2[x] and F2[x]/(x
2 + x + 1) are isomorphic since there

is an isomorphism F2[x]/(x
2 + x + 1) → F2(α) such that 0 7→ 0, 1 7→ 1, x 7→ α, and

x+ 1 7→ α + 1. It is also found [F2(α) : F2] = 2 and #F2(α) = 4 = 22.

A finite field order q = pm (m > 0) is denoted as Fq. Note that every field of order q

is isomorphic to Fq. The multiplicative group of Fq is referred to as the set F∗
q = Fq\{0}.

Similar to the case of Fp, the multiplicative group F∗
q is a cyclic group of order q− 1, i.e.,

there is a generator a ∈ F∗
q such that F∗

q = 〈a〉.
For positive integers m,n, o, . . ., let us consider a sequence of finite fields such that

Fqm
∼= Fq[x]/(fm(x)), F(qm)n

∼= Fqm [x]/(fn(x)), F((qm)n)o
∼= F(qm)n [x]/(fo(x)), . . . where

fm(x), fn(x), fo(x), . . . are irreducible polynomials in Fq[x], Fqm [x], F(qm)n [x], . . .. We

say the sequence is a tower of fields. Assuming αm, αn, αo, . . . be a root of fm(x), fn(x),

fo(x), . . ., the field F(···(((qm)n)o)··· ) is isomorphic to a field F adjoining αm, αn, αo, . . ., i.e.,

F (αm)(αn)(αo) · · · , of which elements can be written by using the following basis.

{1, αm, . . . , α
m−1
m } × {1, αn, . . . , α

n−1
n } × {1, αo, . . . , α

o−1
o } × · · · . (2.16)

A field adjoining roots of all polynomials over Fq is said to be an algebraic closure of Fq

and is denoted by Fq.

Example 2.21. (Field of order 16) Let F2 and F2[x]/(x
2 + x + 1) ∼= F2(α) be fields

found in Examples 2.19 and 2.20. There is an irreducible polynomial x2 + αx + 1 in

F2(α)[x]. Then, the principal ideal (x2 + αx + 1) produce 16 cosets given by the form

a1x+ a0 = a1x + a0 + (x2 + αx + 1) with a0, a1 ∈ F2(α) and gives rise to a finite field

F2(α)[x]/(x
2 + αx + 1) of order 16. Since the irreducible polynomial x2 + αx + 1 has a
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root β which is not an element in F2(α), the field F2(α)[x]/(x
2 +αx+1) is isomorphic to

F2(α)(β) having 16 elements of the form a1β+ a0 ∈ F2(α)(β) where a1, a1 ∈ F2(α). Since

there are the representations a0 = a01α + a00 ∈ F2(α) and a1 = a11α + a10 ∈ F2(α) with

a00, a01, a10, a11 ∈ F2, every element in F2(α)(β) is given by a1β + a0 = a11αβ + a10β +

a01α + a00 of which a basis is {1, α, β, αβ} = {1, α} × {1, β}.

2.2.3 Frobenius endomorphism and conjugates

This subsection introduces the properties of the finite fields. The definition of the impor-

tant endomorphism in the finite fields is provided below.

Definition 2.22. (Frobenius endomorphism) Let Fq be a finite field and let p = char(Fq).

Then, the Frobenius endomorphism is a map defined by

πp : Fq → Fq, a 7→ ap. (2.17)

The map πp is exactly endomorphism since it holds πp(a · b) = πp(a) · πp(b) and

πp(a + b) = πp(a) + πp(b) for all a, b ∈ Fq. From Fermat’s little theorem, πp(a) = ap = a

for all a ∈ Fp ⊆ Fq. A similar property is enjoyed on Fq by the m-th iterate of the

Frobenius endomorphisms, i.e., πm
p (a) = ap

m
= a for all a ∈ Fq. It is more often used the

q-th power Frobenius endomorphism defined by πq : Fq → Fq, a → aq. Note that it is an

automorphism in certain contexts, however, this is not true in general.

Applying the Frobenius endomorphisms, there are ap, ap
2
, . . . , ap

m
= a, which are

conjugates of a over Fq. Note that the explicit definition of the conjugates comes from

a minimal polynomial of a over Fp, which is a polynomial f(x) ∈ Fp[x] of the smallest

degree m satisfying f(a) = 0. If f(x) is a monic polynomial (a polynomial of which a

coefficient of the highest degree is 1), all of the roots of f(x) involving a are said to be

conjecture of a over Fp and are given by the form ap
i
with an integer 1 ≤ i ≤ m. The

product of all the conjugates of a is called a norm of a and is defined as follows:

NFq/Fp(a) =
n∏

i=1

ap
i ∈ Fp. (2.18)

The important fact is that NFq/Fp(a) becomes to be an element in the prime field Fp.

Example 2.23. Let F16
∼= F2(α)(β) be a finite field of order 16 described in Example 2.21.

The conjugates of β are β2 = βα + 1, β4 = β + α, β8 = βα + α, and β16 = β, which are

computed by using the relations α2 = α + 1 and β2 = βα + 1. Then, the norm of β is

computed by NF16/F2(β) = (βα + 1) · (β + α) · (βα + α) · β = α2β4 + (α3 + α2 + α)β3 +

(α3 + α2 + α)β2 + α2β. Since α3 + α2 + α = 0, it is obtained NF16/F2(β) = α2β4 + α2β =

(α + 1)(β + α) + (α + 1)β = (2α + 2)β + α2 + α = 1 ∈ F2.
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2.2.4 Power residue properties

This subsection presents the power residue properties in Fp. Let d be a cofactor of

#F∗
p = p− 1 such that d | (p− 1)1. Then, there exists a d-th root of the identity 1 in F∗

p.

If there exists g ∈ F∗
p such that a = gd for a ∈ F∗

p, we say that a is d-th residue in F∗
p;

otherwise, a is d-th non-residue in F∗
p.

Particularly, quadratic residue properties of d = 2 are well-studied. There is a conve-

nience symbol that indicates the quadratic residue properties by the values 1,−1, 0, which
was introduced by Legendre and is so-called the Legendre symbol.

Definition 2.24. (Legendre symbol) For a ∈ Fp and characteristic p, the Legendre symbol

is defined by

(
a

p

)
=


1 if a is quadratic residue in Fp and a 6= 0,

−1 if a is quadratic non-residue in Fp,

0 if a = 0.

(2.19)

Legendre’s original definition is given by using the explicit formula (a
p
) = a(p−1)/2.

There is the following theorem

Theorem 2.25. For an odd prime p, the following is true.(
−1
p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).
(2.20)

(
2

p

)
=

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).
(2.21)

(
−3
p

)
=

{
1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).
(2.22)

Proof. Please refer to [Kob94].

Example 2.26. Let F7 be a field of order 7. Since p = 7 satisfies p ≡ 3 (mod 4),

p ≡ −1 (mod 8), and p ≡ 1 (mod 3), it is determined (−1
p
) = (6

p
) = −1, (2

p
) = 1, and

(−3
p
) = (4

p
) = 1. The correctness is found from the facts 12 = 62 = 1, 22 = 52 = 4,

32 = 42 = 2, which indicates 1, 2, 4 are quadratic residue in F7, but 3, 5, 6 are quadratic

non-residue in F7.

In addition to the above, cubic residue properties of d = 3 are also important in

this thesis. Following the definition of the Legendre symbol, let us define a symbol that

indicates the cubic residue properties as follows:

1For integers a, b, note that a | b means that a divides b.
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Definition 2.27. Let p be a prime such that 3 | (p− 1). Let ϵ be a cube root of 1 in F∗
p.

Then, let us define the symbol

(
a

p

)
3

=


1 if a is cubic residue in Fp and a 6= 0,

ϵ, ϵ2 if a is cubic non-residue in Fp,

0 if a = 0.

(2.23)

The symbol is explicitly given by (a
p
)3 = a(p−1)/3. The properties of the cubic residue

properties are firstly studied by Euler who provided the following conjecture, which has

already been proven today.

Theorem 2.28. (Euler’s conjecture) Let p be a prime p ≡ 1 (mod 3). Then, p is written

by p = a2 + 3b2 with integers a and b, and the following is true.(
2

p

)
3

{
= 1 if 3 | b,
6= 1 otherwise.

(2.24)

(
3

p

)
3

{
= 1 if either 9 | b, 9 | (a+ b), or 9 | (a− b),
6= 1 otherwise.

(2.25)

(
6

p

)
3

{
= 1 if either 9 | b, 9 | (a+ 2b), or 9 | (a− 2b),

6= 1 otherwise.
(2.26)

Proof. Please refer to [Lem13].

Example 2.29. Let F7 be a field of order 7. Since p = 7 is decomposed into p = a2+3b2

with a = 2 and b = 1, it is determined (2
p
)3 6= 1, (3

p
)3 6= 1, and (6

p
)3 = 1. The correctness

is found from the facts 13 = 23 = 43 = 1 and 33 = 53 = 63 = 6, which indicates 1, 6 are

cubic residue in F7, but 2, 3, 4, 5 are cubic non-residue in F7.

The power residue properties can also be extended for an extension field Fq of Fp. For

a positive integer d such that d | (p− 1), the d-th power residue properties of a ∈ Fq can

be regarded as d-th residue properties of the norm NFq/Fp(a) ∈ Fp of a (see Eq. (2.18)).

This is because that there is a relation

a(q−1)/d = (NFq/Fp(a))
(p−1)/d. (2.27)

The power residue properties in Fq can help for the extensions of Fq.

2.2.5 Computational problems

This subsection introduces computational problems in the finite field Fq, which are two

of them are related to the DH key exchange protocol, which is introduced in Sect. 1.1.2.



2.2. Finite fields 27

Definition 2.30. (Diffie-Hellman problem (DHP)) Given g, gx, gy ∈ F∗
q with x, y ∈ Z/nZ,

compute gxy.

Definition 2.31. (Decisional Diffie-Hellman problem (DDHP)) Given g, gx, gy, gz ∈ F∗
q

with x, y, z ∈ Z/nZ, determine if gxy = gz or not.

Definition 2.32. (Discrete logarithm problem (DLP)) Given g, h ∈ F∗
q, compute x such

that h = gx.

It is believed that if DLP is difficult, both problems are difficult. If there is an efficient

algorithm for solving DHP, it is trivial to solve DDHP by computing gxy from g, gx, gy

and taking comparison with gz. If there is an efficient algorithm for solving DLP, it is

possible to solve DHP by computing x from g and gx and then computing (gy)x = gxy.

The algorithm for solving the DLP and its complexity are described in the following.

As one of the methods for solving the DLP, there are the number field sieve (NFS) and

its variants. Indeed, the NFS is firstly proposed as an algorithm for solving a factoring

problem of a special form by Lenstra in [Len+93] based on an idea by Pollard in [Pol93].

The original NFS is generalized for factoring any composite number. To classify the form

of the factorized number, the former and latter methods are called special NFS (SNFS)

and generalized NFS (GNFS), respectively.

As the first variant of GNFS, in [Sch93], Schirokauer provided the tower number field

sieve (TNFS) for computing DLP in fields Fq. The TNFS is classified into an algorithm

called an index calculus method introduced by Kraitchi and is the most efficient classical

algorithm for computing the DLP. Its complexity, i.e., the number of steps, for computing

the DLP in Fq is given by the form

Lq(α, c) = exp(c(ln q)α(ln ln q)1−α), (2.28)

where α and c are positive real numbers. For a finite field Fq, the complexity is typically

given by Lq(1/3,
3
√

64/9) ≈ Lq(1/3, 1.923). On the other hand, if Fq with a characteristic

p with a very sparse representation, the complexity is reduced to Lq(1/3,
3
√

32/9) ≈
Lq(1/3, 1.526).

In recent years, it turned out that prime fields and extension fields of the same size

of q and pn with a prime p and integer n > 1 do not offer the same security. Indeed,

in [BGK15; KB16; KJ17], Barbulescu and Kim et al. revised the TNFS by applying a

new setting to finite fields of composite extension degree n, which is called the extended

TNFS (exTNFS). Then, the complexity with this new algorithm decreased significantly to

Lq(1/3,
3
√
32/9) ≈ Lq(1/3, 1.526). There are many analyses of the special variant of TNFS

(STNFS) of which p is restricted by a special form for PBC [FK19; MSS16; BD19; BD19;

FM19; GMT20; Gui20]. Although there is some variation in the complexity corresponding

to the improvement of the variant of NFS, the running time is sub-exponential. Currently,
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to achieve security comparable to AES-128, which is so-called the 128-bit security level, it

is required to use around 5,000-bit sizes of q for the finite field used for pairings [Gui20].

2.3 Elliptic curves over finite fields

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on

which there is a specified point. Although not all terms in the definition are explained,

this section describes necessary and basic facts of the elliptic curves over finite fields,

which are used for cryptography. This section is written by referring to the textbook

[Sil09] by Silverman.

2.3.1 Algebraic varieties

The basic objects that arise in the study of algebraic geometry is briefly described. The

following shows the definitions of the affine and projective n-spaces over a finite field Fq.

Definition 2.33. (Affine n-space over Fq) Affine n-space over Fq is the set of n-tuples

An = An(Fq) = {(x1, x2, . . . , xn) : xi ∈ Fq}. (2.29)

Definition 2.34. (Projective n-space over Fq) Projective n-space over Fq, which is de-

noted by Pn or Pn(Fq), is the set of all (n+ 1)-tuples

(x0, x1, . . . , xn) ∈ An+1, (2.30)

such that at least one xi is nonzero and (x0, x1, . . . , xn) is equivalence to (x′0, x
′
1, . . . , x

′
n)

if there exists a λ ∈ F∗
q such that xi = λx′i for all i.

The tuples, which are elements in An and Pn, are called rational points or points. In

this thesis, an equivalence class of a rational point (x0, x2, . . . , xn) in P2 is denoted as

(x0 : x1 : . . . : xn). Then, the individual x0, x1, . . . , xn are called homogeneous coordinates

for the corresponding points in Pn. One can embed An into Pn by sending the coordinate

(x1, x2, . . . , xn) 7→ (x1 : x2 : . . . : xn : 1). Notice that there are additional homogenous

points (x1 : x2 : . . . : xn : 0) in Pn, which are called points at infinity in An.

2.3.2 Weierstrass equations

Every elliptic curve over a finite field Fq can be written by a cubic equation of the homo-

geneous coordinate in the 2-space P2 over Fq, where are written by the form (X : Y : Z)

with X,Y, Z ∈ Fq. In this context, the equation is given by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (2.31)



2.3. Elliptic curves over finite fields 29

y

x

(a) y2 = x3 − x over R

y

x

(b) y2 = x3 + x over R

y

x

(c) y2 = x3 − x+ 1 over R

Figure 2.1: Three elliptic curves.

where a1, a2, . . . , a6 ∈ Fq. Then, a point at infinity satisfying the above equation is written

as O = (0 : 1 : 0).

To ease notation, the equation is generally written by non-homogeneous coordinates

x = X/Z and y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.32)

which lies in the affine 2-space A2 over Fq. Aside from all the solutions of Eq. (2.32),

there is one extra point O out at infinity. As usual, if the coefficients of E are in Fq, E is

said to be defined over Fq and is denoted as E/Fq.

If the field characteristic char(Fq) is not 2 and 3, one can simplify Eq. (2.32). The

restriction permits the substitution y 7→ (y− a1x− a3)/2 that gives rise to an equation of

the form E : y2 = 4x3+b2x
2+2b4x+b6 where b2, b4, b6 ∈ Fq. Then, one more substitution

(x, y) 7→ ((x− 3b2)/36, y/108) results in

E : y2 = x3 + ax+ b, (2.33)

where a, b ∈ Fq. Eq. (2.33) is called the short Weierstrass equation.

Let C be a curve defined by f(x, y) = y2 − (x3 + ax + b) = 0. Not all a and b gives

rise to a curve C being an elliptic curve. If there exists a point P on C such that it is

not differentiable at P , the point P is called a singular point, and C is also said to be

singular. If C does not admit such points, we say C is non-singular or smooth and is an

elliptic curve. If and only if the discriminant defined by ∆ = −16(4a3+27b2) is not 0, C is

non-singular and elliptic curve. As the quantity related to ∆, we say j = −1728 · (4a)3/∆
is the j-invariant of an elliptic curve.

To support the understanding, Figures 2.1 and 2.2 illustrate the singular and non-

singular elliptic curves over a set R of real numbers, respectively. Note that the elliptic
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(a) y2 = x3 over R
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(b) y2 = x3 − 3x+ 2 over R

Figure 2.2: Two singular curves.
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Figure 2.3: y2 = x3 + 5 over F103.

curves over R will appear in the following descriptions. Figure 2.3 shows rational points

on the elliptic curve over a prime field Fp excluding O, which are actually used for cryp-

tography.

2.3.3 Group law

Let E be an elliptic curve given by the short Weierstrass equation. Let E(Fq) be a set of

rational points of E over Fq defined by

E(Fq) = {(x, y) ∈ Fq × Fq : (x, y) satisfies Eq. (2.33)} ∪ {O}. (2.34)

Note that sometimes the set E(Fq) is referred to E. There is a law ⊕ making the set to be

an abelian group, which is called a Fq-rational point group. The law comes from the fact

that a line l intersects E at exactly three points which are not necessary to be distinct.
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l⊖R

R = P ⊕Q

P

Q

x

(a) Elliptic curve addition.

l⊖R

R = P ⊕ P

P

x

(b) Elliptic curve doubling.

Figure 2.4: The composition law.

The fact is a special case of Bázout’s theorem [Har+75]. Let us define a composition law

⊕ by the following rule:

Definition 2.35. (Group law) Let l be a line passing through P and Q on E. If P = Q,

let l be a tangent line to E at P . Then, one can find the third point of intersection of l

with E, which is denoted as 	R. Let us take a point R of x-axis symmetry of 	R and

define that as P ⊕Q.

The instances of the law ⊕ are illustrated in Figure 2.4. The group law has the

following properties.

• The law ⊕ has the properties of the associative and commutative.

• The point O at infinity plays a role of the identity, i.e., P ⊕O = P for any P .

• For any P , there exists a point on E defined as 	P such that P ⊕ (	P ) = O. In

fact, 	P is P ’s reflected image over the x-axis.

The properties indicate that ⊕ makes E(Fq) into an abelian group with the identity

O. The properties also show that the result of the addition of all three points of the

intersections of a line and E becomes to be the identity O. Thus, the intersections are

given by points P , Q, and 	(P ⊕ Q). Even though the line is vertical, one can regard

that there are three intersections which consist of P , 	P , and O. For these reasons, the

notation 	R is used in Definition 2.35 and Figure 2.4.

From the definition, one can obtain point addition and doubling formulas as follows:

Lemma 2.36. (Doubling and addition formulas) Let P = (xP , yP ) and Q = (xQ, yQ)

be affine points on E. If Q 6= 	P , point addition and doubling formulas for computing

R = P ⊕Q = (xR, yR) are given as follows:
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• Addition formula (P 6= Q):

(xR, yR) = (λ2 − xP − xQ, λ(xP − xR)− yP ), λ =
yQ − yP
xQ − xP

. (2.35)

• Doubling formula (P = Q):

(xR, yR) = (λ2 − 2xP , λ(xP − xR)− yP ), λ =
3x2P + a

2yP
. (2.36)

If Q = 	P , it is clearly R = P ⊕Q = O.

In the following, the derivation of the formulas is briefly described. Let l be a line

passing through P and Q defined by l : y = λx + ν where λ, ν ∈ Fq. Then, the gradient

λ of l is given by λ = (yQ − yP )/(xQ − xP ) if P 6= Q; λ = (3x2P + a)/2yP if P = Q. Note

that the denominator of λ cannot be 0 since we work on the assumption Q 6= 	P , i.e.,
(xQ, yQ) 6= (xP ,−yP ), which gives rise to xQ − yP 6= 0 and yQ + yP 6= 0. The y-intercept

ν of l is also given as ν = −λxP + yP . Assuming R = (xR, yR), the third point of the

intersections of l and E is written as 	R = (xR,−yR). Since P,Q, and R (or 	R) are on
E, one can represent x3+ax+b−y2 = (x−xP )(x−xQ)(x−xR). When substituting l into

the left side and expanding the right side, it is obtained x3−λ2x2+(a− 2λν)x+ b− ν2 =
x3+(−xP−xQ−xR)x2+(xPxQ+xQxR+xRxP )x−xPxQxR. Looking the coefficient of x2,

we have −xP −xQ−xR = −λ2, which leads to xR = λ2−xP −xQ. Since 	R = (xR,−yR)
is on l, yR = λ(xP − xR)− yP . As a result, the above formulas are derived.

The following example confirms how ⊕ does work on the curves on a finite field.

Example 2.37. (Point addition) Let E be an elliptic curve defined by E/F11 : y2 =

x3 + 2x+ 1. Then, there are points P = (1, 9) and Q = (3, 10) in E(F11). A line passing

through P and Q is easily obtained as l : y = (1/2)x + 17/2, which is equivalence to

l : y = 6x+ 3 over F11. Applying the addition formula given in Eq. (2.35), it is obtained

R = P ⊕ Q = (xR, yR) where xR = 62 − 1− 3 ≡ 10 (mod 11) and yR = 6(1− 10)− 9 ≡
3 (mod 11), i.e., R = (10, 3). Figure 2.5 illustrates that the points on E(F11) excluding

O and process of the addition (1, 9)⊕ (3, 10) = (10, 3).

Repeating to use ⊕ for P ∈ E leads to the definition of a point mP which is P

multiplied by m ∈ Z. For m > 0, let

mP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
m-terms

. (2.37)

For m < 0, set mP = −m(	P ) and define 0P = O. The point multiplication can be

performed as shown in the following example.
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Figure 2.5: Point addition in E/F11 :
y2 = x3 + 2x+ 1.
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Figure 2.6: Point miultiplication in
E/F11 : y

2 = x3 + 2x+ 1.

Example 2.38. (Point multiplication) Let E be an elliptic curve defined by E/F11 :

y2 = x3 + 2x + 1. For P = (1, 9) ∈ E, one can compute 2P = (1, 9) ⊕ (1, 9) = (3, 10),

3P = (3, 10)⊕ (1, 9) = (10, 3), 4P = (10, 3)⊕ (1, 9) = (9, 0), 5P = (9, 0)⊕ (1, 9) = (10, 8),

6P = (10, 8) ⊕ (1, 9) = (3, 1), 7P = (3, 1) ⊕ (1, 9) = (1, 2), and 8P = (1, 2) ⊕ (1, 9) = O.
Thus, G = 〈P 〉 forms a cyclic group of order 8. Figure 2.6 illustrates that these points

excluding O.

From here on, we drop the special symbols ⊕ and 	, and simply write + and − for

the group operations on an elliptic curve E.

2.3.4 Point multiplication and Frobenius endomorphisms

Since the rational point group of an elliptic curve E over Fq is defined, this subsection

discusses the endomorphisms from E to E. This subsection provides very elementary

endomorphisms that play an important role in E. Note that the endomorphisms are one

kind of map which is called an isogeny and is defined in Sect. 2.5.

In this context, the group law on E leads to a map from a point P ∈ E to a multiplied

point mP ∈ E with certain integer m, which results in the following endomorphism.

Definition 2.39. (Point multiplication endomorphism) Let E : y2 = x3 + ax + b be an

elliptic curve over Fq and let m be an integer. The point multiplication endomorphism is

defined by

[m] : E → E,P 7→ mP. (2.38)

For m > 0, the explicit descriptions of the point multiplication endomorphism are
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usually given in terms of division polynomials Ψi ∈ Z[x, y] defined by

Ψ1 = 1, (2.39)

Ψ2 = 2y, (2.40)

Ψ3 = 3x4 + 6ax2 + 12bx− a2, (2.41)

Ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3), (2.42)

and then inductively by the formulas

Ψ2i+1 = Ψi+2Ψi −Ψi−1Ψ
3
i+1, i ≥ 2, (2.43)

2yΨ2i = Ψi(Ψi+2Ψ
2
i−1 −Ψi−2Ψ

2
i+1), i ≥ 3. (2.44)

In addition to this, let us define polynomials Φi and Ωi:

Φi = xΨ2
i −Ψi+1Ψi−1, 4yΩi = Ψi+2Ψ

2
i−1 −Ψi−2Ψ

2
i+1. (2.45)

Then, the image of (x, y) ∈ E under [m] is given as follows:

[m](x, y) =

(
Φm(x, y)

Ψ2
m(x, y)

,
Ωm(x, y)

Ψ3
m(x, y)

)
. (2.46)

There is the Frobenius endomorphism in Fq such that πq : Fq → Fq, a→ aq. Applying

the endomorphism for the both side of E in short Weierstrass equation, we have (y2)q =

(x3 + ax + b)q which can be written as (yq)2 = (xq)3 + aqxq + bq = (xq)3 + axq + b and

thus (xq, yq) ∈ E. This leads to the following endomorphism.

Definition 2.40. (Frobenius endomorphism on E) Let E : y2 = x3+ax+ b be an elliptic

curve over Fq. The Frobenius endomorphism on E is defined by

πp : E → E, (x, y) 7→ (xq, yq). (2.47)

Similar to the Frobenius endomorphism in Fq, there is a property such that πq(P ) = P

for a point P = (x, y) with x, y ∈ Fq. This leads to the following representation of Fq-

rational point group.

E(Fq) = {P ∈ E : πq(P ) = P} ⊂ E. (2.48)

In the following, m-th iterate of the Frobenius endomorphism in E is denoted by πm
q .

Besides the above, one can also define various endomorphisms from E to E. Let

End(E) be a set of all endomorphisms, End(E) forms a ring under the following addition

and multiplication. For φ, ϕ ∈ End(E), the addition φ+ ϕ ∈ End(E) and multiplication
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φ · ϕ ∈ End(E) are defined by (φ + ϕ)(P ) = φ(P ) + ϕ(P ) and (φ · ϕ)(P ) = ϕ(φ(P )),

respectively. Similarly, there is a subtraction φ − ϕ ∈ End(E) by (φ − ϕ)(P ) = φ(P ) +

(−ϕ(P )). As we used the notation of the m-th iterate of Frobenius endomorphism, a

power φ to m is defined by φm(P ) = φ · φ · · · · · φ.

2.3.5 Twisting isomorphisms

This subsection describes the isomorphisms between two elliptic curves. In the following,

let E and E ′ be elliptic curves defined over Fq.

Definition 2.41. (Twist) If there exists such isomorphism ϕd : E
′ → E defined over Fqd

with the minimal integer d, then E ′ is called a twist of degree d of E.

In this thesis, ϕd : E
′ → E is called a twisting isomorphism. It is naturally found that

there is an inverse isomorphism ϕ−1
d : E → E ′, which is called an untwisting isomorphism.

The important fact is that there are only possibilities d = 1, 2, 3, 4, and 6 which depend

on the j-invariant of E. If d = 1, E ′ is typically not called the twist, E ′ is also considered

as a twist in this thesis. If d = 2, 3, 4, and 6, E ′ is called a quadratic twist, cubic twist,

quartic twist, and sextic twist, respectively. The explicit formulas of the twist E ′ of degree

d of E and twisting isomorphism ϕd : E
′ → E are summarized below.

• d = 1, 2: The twist can be occur for every value of j(E). For E : y2 = x3 + ax+ b,

the twist E ′ of E is given by y2 = x3 + a/δ2x+ b/δ3 where δ is quadratic-residue if

d = 1; quadratic non-residue in F∗
q if d = 2. The twisting isomorphism is written as

follows:

ϕd : E
′ → E, (x, y) 7→ (δx, δ

1
2y). (2.49)

• d = 4: The twist occur only the case of j(E) = 1728, i.e., E is given by y2 = x3+ax.

The twist E ′ of E is given by y2 = x3 + a/δx where δ is quartic non-residue (4-th

non-residue) in F∗
q. The twisting isomorphism is given by

ϕd : E
′ → E, (x, y) 7→ (δ

1
2x, δ

3
4y). (2.50)

• d = 3, 6: The twist occur only the case of j(E) = 0, i.e., E is given by y2 = x3 + b.

The twist E ′ of E is given by y2 = x3 + b/δ where δ is quadratic residue but cubic

non-residue in F∗
q if d = 3; quadratic and cubic non-residue in F∗

q if d = 6. The

twisting isomorphism is given as follows:

ϕd : E
′ → E, (x, y) 7→ (δ

1
3x, δ

1
2y). (2.51)
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The twisting and untwisting isomorphisms are often used for computing the pairings

on elliptic curves efficiently. The high degree twists result in speeding up the pairings.

2.3.6 n-torsion subgroups

Since the point multiplication endomorphism is defined, a subset of an elliptic curve can

be defined as follows:

Definition 2.42. Let E be an elliptic curve defined over Fq and let n be a positive

integer. An n-torsion subgroup is a subgroup of E which consists of rational points of

order n defined by

E[n] = {P ∈ E : [n]P = O}. (2.52)

Let p = char(Fq) and i > 0 be an integer. Then, the structure of E[n] is determined

as follows:

E[n] ∼=

{
Z/nZ× Z/nZ if n 6= pi,

Z/nZ or {0} if n = pi.
(2.53)

From the above, there are two possibilities for the case of n = pi. The difference of the

structure leads to the definition of exceptional elliptic curves described in Sect. 2.3.7.

Our main concern is in the n-torsion subgroup of the structure given by Z/nZ×Z/nZ.
The details of the structure are described below. The structure Z/nZ × Z/nZ indicates

that the number of points in E[n] is given by #E[n] = n2. This implies that E[n] consists

of (n + 1) subgroups of order n. This is because that the identity O overlaps into all

subgroups of order n, i.e., #E[n] is decomposed into #E[n] = n2 = (n+ 1)n− n.

Example 2.43. (2-torsion subgroup) Let E be an elliptic curve over Fq given by y2 =

x3 + ax+ b. It is easily found that the y-coordinate of the point of order 2 is zero. Since

E is nonsingular, x3 + ax + b = 0 has three distinct solutions, there are three points of

order 2 of the form (α, 0) over Fq. Thus, E[2] consists of the three points of order 2 and

O. Since a subgroup of order 2 is generated per one point of order 2, it is found that E[2]

consists of three subgroups of order 2, which leads to E[2] ∼= Z/2Z× Z/2Z.

Let picking up two distinct subgroups G1 and G2 from E[n] and let P1 and P2 be

points in G1 and G2, respectively. Then, any point P ∈ E[n] can be represented by the

Z/nZ-linear combination of P1 and P2 as follows:

P = m1P1 +m2P2, (2.54)

where m1,m2 ∈ Z/nZ. Thus, we have E[n] = 〈P1, P2〉 by using generators P1 and P2.
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Let restrict the endomorphisms φ : E → E to φn : E[n] → E[n]. Since P ∈ E[n] is
given by vector of the basis (P1, P2), one can represent the endomorphism φn as a 2 × 2

matrix φn = [ a b
c d ] where a, b, c, d ∈ Z/nZ that are determined by

φn(P1) = aP1 + bP2, (2.55)

φn(P2) = cP1 + dP2. (2.56)

The trace and determinant of φn are computed by tr(φn) = a+d and det(φn) = ad−bc and
are the values in Z. Unlike the matrix representation, tr(φn) and det(φn) are independent

of the choice of basis. Assuming E = [ 1 0
0 1 ] is the identity matrix, the characteristic

polynomial of φn is defined by det(λE − φn) = λ2 − tr(φn)λ + det(φn) where λ ∈ Z.
According to the Cayley-Hamilton theorem, φn satisfies the following.

φ2
n − [tr(φn)]n · φn + [det(φn)]n = [0]n, (2.57)

where [m]n is the restricted point multiplication endomorphism defined by [m]n : E[n]→
E[n], P 7→ mP . It is also possible to eliminate the subscript n from Eq. (2.57) since tr(φn)

and det(φn) are independent on n and ∪∞n=1E[n] = E. Particularly, the characteristic

polynomial of the Frobenius endomorphism is explicitly determined by Hasse. This is

also related to the estimation of the number of points on a certain rational point group.

The details are described in the next subsection.

In the rest of this subsection, the belonging of the n-torsion subgroup is discussed.

Theorem 2.44. Let E be an elliptic curve over Fq, let n > 0 be an integer satisfying

gcd(q−1, n) = 12, and let k > 0 be the smallest integer such that there is a multiplicative

subgroup µn of F∗
qk

of order n. If there exists a point P of order n in the Fq-rational point

group E(Fq), then E[n] ⊂ E(Fqk).

The quantity k is called the embedding degree with respect to n. Since the multiplicative

group F∗
qk

is a cyclic group of order qk − 1, it can be said that k is the smallest integer

satisfying n | (qk − 1).

2.3.7 Supersingular elliptic curves

As seen in the previous subsection, there are two possibilities of the structure of the

p-torsion subgroup E[p] of a prime p. This leads to the exceptional elliptic curves:

Definition 2.45. (Supersingularity) Let E be an elliptic curve over Fq with p = char(Fq).

If E[p] has the structure E[p] ∼= {0}, E is said to be supersingular ; otherwise, E is non-

supersingular or ordinary.

2gcd is a function that returns the greatest common divisor of integers.
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Note that the term “supersingular” has nothing to do with “singular” curves, and

all supersingular elliptic curves are non-singular. Elliptic curves over such fields which

are not supersingular are called ordinary and these two classes of elliptic curves behave

fundamentally differently in many aspects.

There is a convenient theorem that can determine the supersingularity from the curve

equation.

Theorem 2.46. Let E be an elliptic curve over Fq given by y2 = x3 + ax + b. Then, E

is supersingular if and only if the coefficient of xp−1 in (x3 + ax+ b)(p−1)/2 is zero.

The following shows the application of the above theorem.

Example 2.47. (Supersingular elliptic curve) Let E be an elliptic curve given by y2 =

x3 + x. We need to compute the coefficient of xp−1 in the polynomial (x3 + x)(p−1)/2.

Since x(p−1)/2(x2 + 1)(p−1)/2 and xp−1 = x(p−1)/2+(p−1)/2, this is equivalence to compute

the coefficient of x(p−1)/2 in the polynomial (x2 + 1)(p−1)/2. If p ≡ 1 (mod 4), the target

coefficient can exist in the (p− 1)/2-th row and (p− 1)/4-th column of Pascal’s triangle,

which is computed by (p−1)/2C(p−1)/4. If p ≡ 3 (mod 4), the coefficient cannot be exist in

the triangle, and thus it is zero. Hence, E is supersingular if p ≡ 3 (mod 4) and ordinary

if p ≡ 1 (mod 4).

2.3.8 The number of rational points

This section wishes to estimate the number of points in the subset of an elliptic curve E

over Fq. The border of the number of Fq-rational point E(Fq) is conjectured by E. Artin

in his thesis, which is proven by Hasse, and is given as follows [Sil09]:

Theorem 2.48. (Hasse) Let E be an elliptic curve defined over Fq.

#E(Fq) = q + 1− t, |t| ≤ 2
√
q. (2.58)

The quantity t is called the Frobenius trace since that plays the trace tr(πq) of the Frobe-

nius endomorphism πq in the n-torsion subgroups for 1 ≤ n ≤ ∞ that is given by the

2× 2 matrix as described in Sect. 2.3.6. Indeed, Hasse also proved the following theorem.

Theorem 2.49. Let E be an elliptic curve over Fq and let πq be the Frobenius endo-

morphism πq : E → E, (x, y) → (xq, yq). Then, the characteristic polynomial of πq is

λ2 − tλ+ q and πq satisfies

π2
q − [t] · π + [q] = [0]. (2.59)

For an integer m > 1, the number of Fqm-rational point group E(Fqm) can also be

estimated from the knowledge of q and t.
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Theorem 2.50. (Weil) Let E be an elliptic curve and let t = q + 1−#E(Fq). Let α, β

be roots of the polynomial x2 − tx + q ∈ C[x]. Then, α and β are complex conjectures

satisfying αβ = q and α + β = t, and for any m > 0,

#E(Fqm) = qm + 1− tm, tm = αm + βm. (2.60)

If E is supersingular, there is a special number of the points as shown below.

Corollary 2.51. Let E be a supersingular elliptic curve over Fp with a prime p such that

p > 3. For m > 0,

#E(Fpm) =

{
pm + 1 if m is odd,

(pm/2 − (−1)m/2)2 if m is even.
(2.61)

Besides, the change of the number of rational points by the twisting isomorphisms are

described below. Given elliptic curve E, the number of rational points of a twist E ′ of E

is specifically determined as follows [HSV06]:

Theorem 2.52. Let E be an elliptic curve defined over Fq such that #E(Fq) = q+1− t.
Let E ′ be a twist of degree d of E. Then, the number of points on E ′(Fq) is given by

#E ′(Fq) =



q + 1− t if d = 1,

q + 1 + t if d = 2,

q + 1− ±3f−t
2

if d = 3,

q + 1± f if d = 4,

q + 1− ±3f+t
2

if d = 6,

(2.62)

where f is an integer satisfying f 2 = 4q − t2 if d = 4; 3f 2 = 4q − t2 if d = 3, 6.

Let D be an integer satisfying Df 2 = 4q − t2. Since D is often used for the complex

multiplication (CM) method [AM93] for constructing an elliptic curve with the desirable

number of rational points, D is called the CM discriminant. Note that the value of D is

corresponding to the j-invariant j(E), e.g., D = 3 if j(E) = 0; D = 1 if j(E) = 1728.

2.3.9 Computational problems

This subsection presents computational problems related to elliptic curves E over Fq.

Similar to the finite field, there are problems related to the ECDH key exchange.

Definition 2.53. (Elliptic curve Diffie-Hellman problem (ECDHP)) Given P, xP, yP ∈
E(Fq) with x, y ∈ Z, compute xyP ∈ E(Fq).

Definition 2.54. (Elliptic curve decisional Diffie-Hellman problem (ECDDHP)) Given

P, xP, yP, zP ∈ E(Fq) with integers x, y, z ∈ Z, determine if xyP = zP or not.
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Definition 2.55. (Elliptic curve discrete logarithm problem (ECDLP)) Given P,Q ∈
E(Fq), an integer x such that Q = xP .

If there is an efficient algorithm for solving ECDHP, it is trivial to solve ECDDHP

since xyP can be computed from P, xP, yP . If there is an efficient algorithm for solving

ECDLP, it is also possible to solve ECDHP by computing x from P and xP and then

computing x(yP ) = xyP . The algorithm for solving ECDLP and its complexity are

summarized below.

In [Pol78], Pollard introduced an algorithm for solving ECDLP, which is known as

Pollard’s rho algorithm. An original idea of the algorithm comes from the analogous to

Pollard’s rho algorithm for factoring a composite number. The algorithm is known as

the most efficient solution to ECDLP except for special curves such that supersingular

elliptic curves, and it require O(
√
q) steps. There are several revisions of Pollard’s rho

algorithm, however, there is no dramatic improvement at this time. Thus, the running

time is exponential. Unlike the DLP in Fq, since there is no sub-exponential algorithm

for solving ECDLP, the size of q can be fixed smaller than that of DLP. Thus, it is

expected that the cryptographic systems based on ECDLP are faster and more compact

cryptographic systems than that are based on the DLP or factorization problem at the

same security level. To achieve the 128-bit security level, it is needed to use 256-bit size

of order of P ∈ E.

2.4 Pairings on elliptic curves

Recall that the pairing is a bilinear and non-degenerate map defined by e : G1 × G2 →
GT where G1, G2, and GT are abelian groups of common order (see Sect. 2.1.3). In

cryptography, for practical reasons, it is used the pairings defined on elliptic curves E

over Fq. Let fix G1 and G2 as two rational point groups of E of prime order r, which are

subgroups in r-torsion subgroup E[r] generated by points P1, P2 ∈ E[r], and let define

the pairing as follows:

e : 〈P1〉 × 〈P2〉 → µr, (2.63)

where µr is a multiplicative subgroup of Fq of order r. This section provides the necessary

fundamentals of the pairings on elliptic curves and defines the Weil and Tate pairings,

which are the most well-known and are often applied for cryptography based on the

pairings. Note that the descriptions are written by referring to the textbook [EMJ17] by

El Mrabet and Joye.
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2.4.1 Function fields

This subsection describes the field built from an elliptic curve E. For easy understanding,

we work on the affine space A2, however, we actually have to work on the projective

space P2. Let Fq[x, y] be a set of all polynomials defined over Fq with two variables x

and y, which forms a polynomial ring. The important fact is that a polynomial f(x, y)

in Fq[x, y] is absolutely irreducible over Fq if f(x, y) is non-singular. Thus, the elliptic

curve equation E(x, y) is irreducible in Fq[x, y]. This leads to the following definition of

a function field.

Definition 2.56. (Function field) Let E be an elliptic curve defined over Fq given by

the Weierstrass equation y2 = x3 + ax + b and let E(x, y) = y2 − x3 − ax − b ∈ Fq[x, y].

Let Fq[E] be a polynomial ring defined by Fq[E] = Fq[x, y]/(E(x, y)), which is an integral

domain. A function field of E is a quotient field of Fq[E] defined by

Fq(E) = {f = g/h : g ∈ Fq[E], 0 6= h ∈ Fq[E]}. (2.64)

The set of Fq[E] consists of equivalence classes of polynomials f(x, y) modulo E(x, y).

Every element in Fq[E] can be denoted by the form f(x, y) = u(x) + v(x)y where u(x)

and v(x) are polynomials in Fq[x]. Therefore, an element in Fq(E) can be considered as

a rational function.

Let f be a rational function in Fq(E) given by f = g/h where g and h are elements

in Fq[E] that have no common factors. When evaluating f at a point on E, there are

the points that are roots of g and h, and which are called zeros and poles, respectively.

For example, suppose that g = (u(x) + v(x)y)m and h = (s(x) + t(x)y)n and P and Q

are points on E such that g(P ) = 0 and h(Q) = 0. Then, we say f has zeros at P

with multiplicity m and poles at Q with multiplicity n. It can also be considered the

poles of multiplicity n to be the zeros of negative multiplicity −n. Notice that the zeros

are intersection points of f(x, y) = g(x, y)/h(x, y) = 0 and E(x, y) = 0. The following

examples provide the zeros and poles of sloped and vertical line functions in Fq(E).

Example 2.57. (Zeros and poles of a sloped line) Let E be an elliptic curve over Fq

given by y2 = x3 + ax + b and let l = y − λx− ν be a sloped line function in Fq(E). As

described in Sect. 2.3.3, when substituting l(x, y) = 0 into E(x, y) = 0, there is an equation

x3−λ2x2+(a−2λν)x−ν2+b = 0, which indicates that there are three intersection points

P , Q, and −(P+Q) of l and E. Thus, l has zeros at P , Q, and −(P+Q) with multiplicity

1. Moving the function into P2, since we have X3−λ2X2Z+(a−2λν)XZ2−(ν2−b)Z3

Z3 = 0, it is also

confirmed that l has a pole at O = (0 : 1 : 0) with multiplicity 3. Specifically, if Q = P ,

it is confirmed that l has a zero at P with multiplicity 2, zero at −2P with multiplicity

1, and pole at O with multiplicity 3.
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Example 2.58. (Zeros and poles of a vertical line) Let E be an elliptic curve over Fq

given by y2 = x3 + ax + b and let v = x − µ be a vertical line function in Fq(E). When

substituting v(x, y) = 0 into E(x, y) = 0, there are y2 − µ3 − aµ− b = 0, which indicates

there are two intersection points R and −R of v and E. Therefore, v has zeros at R

and −R with multiplicity 1. Besides, v also has a pole at O with multiplicity 2 since

y2 − µ3 − ax− b = 0 is represented by Y 2−µ3Z2−aµZ2−bZ2

Z2 = 0 in P2.

2.4.2 Divisors

This subsection describes divisors which are necessary materials to define pairings on

elliptic curves E over Fq.

Definition 2.59. (Divisor) A divisor D on E is a way to denote a multi-set of all rational

points on E and is denoted by

D =
∑
i

ni(Pi), (2.65)

where Pi is a point on E, ni ∈ Z, and ni = 0 for all but finitely many points Pi ∈ E.

Given divisor D, the set of all points P such that ni 6= 0 is said to be a support of

D and is defined by supp(D) = {Pi ∈ E : ni 6= 0}. Given two divisors D1 and D2, if

supp(D1)∩ supp(D2) is empty set, we say D1 and D2 have disjoint supports. Let us define

the degree of D by deg(D) =
∑

i ni. The set of all divisors on E is denoted by Div(E).

Then, Div(E) forms an abelian group under the following addition. For D1 =
∑

i ni(Pi)

and D2 =
∑

imi(Pi) in Div(E), an addition is defined by

D1 +D2 =
∑
i

(ni +mi)(Pi). (2.66)

In the same manner, the subtraction in Div(E) can be naturally defined by D1 − D2 =∑
i(ni − mi)(Pi). The identity of Div(E) is the divisor of ni = 0 for all Pi ∈ E. An

examples of divisors are given in the following.

Example 2.60. Let P,Q,R be points on E. Let D1 and D2 are divisors given by D1 =

3(P )+ (Q)− 2(R) and D2 = (P )− (Q)+3(R). Then, the degrees of D1 and D2 are given

by deg(D1) = 2 and deg(D2) = 3. Since D1, D2 ∈ Div(E), the other divisor is obtained

by computing D1 +D2 = 3(P ) + (Q)− 2(R) + (P )− (Q) + 3(R) = 4(P ) + (R) ∈ Div(E).

The supports of D1 and D2 are given by supp(D1) = supp(D2) = {P,Q,R}, respectively.
On the other hand, the support of D1 + D2 is given by supp(D1 + D2) = {P,R}. The

divisors D1, D2, and D1 +D2 are not disjoint supports.

Associating divisors with a function f in Fq(E) is a convenient way to write down the

intersection points and their multiplicities of f and E defined as follows:
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Definition 2.61. (Divisor of function) Let f be a rational function in Fq(E) such that

f has zeros at P1, P2, . . . ∈ E with multiplicity n1, n2, . . . ∈ Z, respectively. Note that if

ni < 0, then f has a pole at Pi. A divisor of f is a way to denote a multi-set of the zeros

and is defined as follows:

div(f) =
∑
i

ni(Pi). (2.67)

A divisor D is said to be principal if there exists a function f such that D = div(f).

Two divisors D1 and D2 are said to be linearly equivalent if there exists a function f such

that D1 −D2 = div(f). The divisor of function has the following properties:

• Given f, g ∈ Fq(E), if and only if f is a non-zero constant multiplication by g, then

div(f) = div(g).

• For all f ∈ Fq(E), the degree of div(f) is zero.

• Given f ∈ Fq(E) with a divisor div(f) =
∑

i ni(Pi),
∑

i niPi = O ∈ E, and vice

versa.

The properties lead to the fact that the set of all divisors of functions forms a subgroup of

Div(E). Moreover, the multiplication and inversion in Fq(E) naturally translates across

to the addition and subtraction in Div(E), i.e., for f, g ∈ Fq(E), it is obtained div(f ·g) =
div(f) + div(g) and div(f/g) = div(f)− div(g). Several examples of the divisor of some

functions are provided below.

Example 2.62. (Divisor of lines) Let E be an elliptic curve and l and v be rational

functions in Fq(E) as defined in Examples 2.57 and 2.58. Since l has zeros at three points

P , Q, and −(P + Q) with multiplicities 1 and pole at O with multiplicity 3, the divisor

of l is given as follows:

div(l) = (P ) + (Q) + (−(P +Q))− 3(O). (2.68)

If Q = P , it is computed div(l) = (P )+(P )+(−(P +P ))−3(O) = 2(P )+(−2P )−3(O).
Since v has zeros at two points R and −R with multiplicities 1 and pole at O with

multiplicity 2,

div(v) = (R) + (−R)− 2(O). (2.69)

If v is regarded as l with P = R and Q = −P , the divisor of v can also be estimated by

div(l) = (R)+(−R)+(−(R−R))−3(O) = (R)+(−R)+(O)−3(O) = (R)+(−R)−2(O) =
div(v). As seen in the above, the degree of div(l) and div(v) are exactly zero. It is also

found that P +Q− (P +Q)− 3O = O and R−R− 2(O) = O.
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Example 2.63. (Divisor of a function) Let l and v be rational functions in Fq(E) as

defined in Examples 2.57 and 2.58 of which divisors are div(l) = (P ) + (Q) + (−(P +

Q))−3(O) and div(v) = (R)+(−R)−2(O), respectively. Then, the divisor of the function
l · v = (y − λx− ν) · (x− µ) is computed as follows:

div(l · v) = div(l) + div(v)

= (P ) + (Q) + (−(P +Q))− 3(O) + (R) + (−R)− 2(O)
= (P ) + (Q) + (−(P +Q)) + (R) + (−R)− 5(O). (2.70)

On the other hand, the divisor of the function l/v = y−λx−ν
x−µ

is computed as follows:

div(f/v) = div(l)− div(v)

= (P ) + (Q) + (−(P +Q))− 3(O)− (R) + (−R) + 2(O)
= (P ) + (Q) + (−(P +Q))− (R)− (−R)− (O). (2.71)

Particularly, if R = P + Q, it is found div(f) = (P ) + (Q) + (−(P + Q)) − (P + Q) −
(−(P + Q)) − (O) = (P ) + (Q) − (P + Q) − (O). The function l/v plays an important

role of pairing computations which are described in the later.

Example 2.64. (Divisor of a function) Let l1, l2, and v be line functions in Fq(E) with

divisors div(l1) = (P )+(Q)+(−R)−3(O), div(l2) = (P )+(R)+(−(P +R))−3(O), and
div(v) = (R) + (−R) − 2(O) where P,Q ∈ E and R = P + Q ∈ E, respectively. Then,

the divisor of the function l1 · l2 is computed by

div(l1 · l2) = div(l1) + div(l2)

= 2(P ) + (Q) + (R) + (−R) + (−(P +R))− 6(O). (2.72)

The divisor of the function l1 · l2/v is also computed by

div((l1 · l2)/v) = div(l1) + div(l2)− div(v)

= 2(P ) + (Q) + (R) + (−R) + (−(P +R))− 6(O)− (R)− (−R) + 2(O)
= 2(P ) + (Q) + (−(P +R))− 4(O). (2.73)

Fortunately, one can illustrate the functions l1, l2, v, and (l1 · l2)/v over R together

with intersections of these functions and E over R in Figures 2.7 and 2.8, respectively.

Figure 2.8 indicates that the function (l1 · l2)/v is a parabola. It is also possible to find

the correctness of the computed divisor.

The rest of this subsection describes the Weil reciprocity given by André Weil, which

is a heat of the pairings. The theorem comes from a requirement of an evaluation of an
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l1−R

R

P

Q

−(P +R)

l2
v

x

Figure 2.7: The lines l1, l2, v, and elliptic
curve E over R.

−(P +R)

P

Q

(l1 · l2)/v

x

Figure 2.8: The function (l1 · l2)/v and E
over R.

element f ∈ Fq at a divisor D =
∑

i ni(Pi), where the divisors div(f) and D have disjoint

support. Indeed, there is the following definition of the evaluation.

f(D) =
∏
i

f(Pi)
ni . (2.74)

Then, Weil provided the following theorem.

Theorem 2.65. (Weil reciprocity) Let f, g ∈ Fq(E) having disjoint supports. Then,

f(div(g)) = g(div(f)). (2.75)

The following example confirms the correctness of the Weil theorem with the concrete

E and functions in Fq(E).

Example 2.66. Let E be an elliptic curve E/F103 : y2 = x3 + 5. Let f and g be an

element in Fq(E) given by f = y − 82x + 19 and g = y−60x+62
y−91x+69

, respectively. Then,

the divisors of f and g are given by div(f) = (28, 11) + (102, 2) + (2, 42) − 3(O) and

div(g) = (36, 38) + (95, 76) + (70, 18) − 3(O) − (95, 27) − (82, 80) − (70, 18) + 3(O) =

(36, 38) + (95, 76)− (95, 27)− (82, 80), respectively. Computing f(div(g)) results in

f(div(g)) =
(38− 82 · 36 + 19) · (76− 82 · 95 + 19)

(27− 82 · 95 + 19) · (80− 82 · 82 + 19)
=

82

9
= 32. (2.76)

On the other hand, computing g(div(f)) results in

g(div(f)) =
11−60·28+62
11−91·28+69

· 2−60·102+62
2−91·102+69

· 42−60·2+62
42−91·2+69(

1−60·0+62·0
1−91·0+69·0

)3 =
41
4
· 21
59
· 87
32

1
=

26

33
= 32. (2.77)
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Note that O = (0 : 1 : 0) is substituted in the projective formula of g. As a result, it is

confirmed that f(div(g)) = g(div(f)).

2.4.3 Weil and Tate pairings

This subsection provides basic definitions of the Weil and Tate pairing. Let us assume

that E is an elliptic curve over Fq, r is a prime such that r 6= char(Fq) and divides

#E(Fq), and k > 1 is the embedding degree with respect to r, which lead to µr ⊂ Fqk

and E[r] ⊂ E(Fqk).

Definition 2.67. (The Weil pairing) Let P,Q ∈ E[r] and let DP and DQ be divisors that

have disjoint supports and are linearly equivalent to (P )−(O) and (Q)−(O), respectively.
Then, there exist functions frDP

and frDQ
in Fqk(E) such that div(frDP

) = rDP and

div(frDQ
) = rDQ. The Weil pairing is a pairing defined as follows:

eWr : E[r]× E[r]→ µr, (2.78)

eWr(P,Q) =
frDP

(DQ)

frDQ
(DP )

. (2.79)

For constructing the Weil pairing, it is needed to find suitable divisors DP and DQ.

When taking a point R ∈ E(Fqk) such that R 6= P, P − Q,−Q, the desired divisors are

given by DP = (P )− (O) and DQ = (Q+R)− (R). Then, the Weil pairing can be defined

as follows:

eWr(P,Q) =
frDP

(Q+R)

frDP
(R) · frDQ

(P )
. (2.80)

Note that frDQ
(O) = 1. Since there are several candidates of DP and DQ, note that there

exist other constructions of the Weil pairings.

The Weil pairing has the following properties.

• Bilinear: For all P,Q ∈ E[r], eWr(aP, bQ) = eWr(P,Q)
ab for all a, b ∈ Z.

• Alternating: For all P,Q ∈ E[r], eWr(P,Q) = eWr(Q,P )
−1.

• Non-degenerate: For all P ∈ E[r], eWr(P,Q) = 1 if and only if Q = O. For all

Q ∈ E[n], eWr(P,Q) = 1 if and only if P = O.

• Endomorphisms: For all P,Q ∈ E[r], eWr(φ(P ), φ(Q)) = eWr(P,Q)
deg(φ) for any

non-zero endomorphism φ. (The definition of the degree of φ is found in Sect. 2.5.2.)

The proof of the fact that the pairing is well-defined and many facts of the properties are

based on the Weil reciprocity.
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For the definition of the Tate pairing, we need to define several quotient groups. Let

rE(Fqk) be a subgroup of E(Fqk) defined by rE(Fqk) = {[r]P : P ∈ E(Fqk)} and let

E(Fqk)/rE(Fqk) be a quotient group which consists of equivalence classes of points in

E(Fqk) with the equivalence relation P1 ∼ P2 if P1 − P2 ∈ rE(Fqk). Let (F∗
qk
)r be a

subgroup of F∗
qk

such that (F∗
qk
)r = {ar : a ∈ F∗

qk
} and let F∗

q/(F∗
qk
)r be a quotient group

which consists of equivalence classes of elements in F∗
qk

with a1 ∼ a2 if a1/a2 ∈ (F∗
qk
)r.

Definition 2.68. (The Tate pairing) Let P ∈ E[r] and Q ∈ E(Fqk) be in any equivalence

class in E(Fq)/rE(Fqk). Let DP and DQ be divisors that have disjoint supports and are

linearly equivalent to (P )− (O) and (Q)− (O), respectively. Then, there exist a functions

frDP
∈ Fqk(E) such that div(frDP

) = rDP . The Tate pairing is a pairing defined as

follows:

eTr : E[r]× E(Fqk)/rE(Fqk)→ F∗
q/(F∗

qk
)r, (2.81)

eTr(P,Q) = frDP
(DQ). (2.82)

When taking a point R ∈ E(Fqk) such that R 6= P, P −Q,−Q, the desired divisors are

given by DP = (P )− (O) and DQ = (Q+R)− (R), the Tate pairing is given as follows:

eTr(P,Q) =
frDP

(Q+R)

frDP
(R)

. (2.83)

The Tate pairing has the following properties.

• Bilinear: For all P ∈ E[r] and Q ∈ E(Fq)/rE(Fqk), eTr(aP, bQ) = eTr(P,Q)
ab for

all a, b ∈ Z.

• Non-degenerate: For all P ∈ E[r], eTr(P,Q) = 1 if and only if Q = O. For all

Q ∈ E(Fq)/rE(Fqk), eTr(P,Q) = 1 if and only if P = O.

• Endomorphisms: For all P ∈ E[r] and Q ∈ E(Fq)/rE(Fqk), eTr(φ(P ), φ(Q)) =

eTr(P,Q)
deg(φ) for any non-zero endomorphism φ. (The definition of the degree of

φ is found in Sect. 2.5.2.)

Unlike the Weil pairing, the Tate pairing does not have the alternating property but it is

not needed in cryptography. However, the Tate pairing has an undesirable property such

that the output value lies on an equivalence class in F∗
q/(F∗

qk
)r. To be suitable in practice,

the following modified Tate pairing is typically used.

Definition 2.69. (The reduced Tate pairing) Let P,Q,DP , DQ, and frDP
be as in Defi-

nition 2.68. The reduced Tate pairing is a pairing defined as follows:

ẽTr : E[r]× E(Fqk)/rE(Fqk)→ µr, (2.84)
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ẽTr(P,Q) = frDP
(DQ)

qk−1
r . (2.85)

Exponentiating elements in F∗
q/(F∗

qk
)r to the power of (qk − 1)/r kills r-th powers

and sends the elements to r-th roots of identity in F∗
qk
. The additional exponentiation is

called the final exponentiation. In PBC, the above definition of the reduced Tate pairing

is typically adopted for efficiency reasons.

2.4.4 Miller’s algorithm

To compute the Weil and Tate pairings, it is required to build functions with the specific

divisors, e.g., frDP
∈ Fqk(E) with the divisor div(frDP

) = r(P )− r(O). For constructing
the function, let us define a function fm,P ∈ Fq(E) with a point P ∈ E and integer m of

which divisor is given as follows:

div(fm,P ) = m(P )− (mP )− (m− 1)(O). (2.86)

If m = r and P ∈ E[r], since div(fr,P ) = r(P )− (rP )− (r − 1)(O) = r(P )− (O)− (r −
1)(O) = r(P ) − r(O) = div(frDP

), one can define frDP
= fr,P . In [Mil04], Miller gave

an algorithm for constructing fm,P with any m, which is called Miller’s algorithm. The

original Miller’s algorithm is proposed for computing the Weil pairing and is a double-

and-add algorithm governed by a binary representation of m. Currently, an extended

algorithm that is managed by a signed binary representation of m is often employed

[Beu+10; Ter+13]. The heart of the algorithms is based on the fact that fm,P is possible

to build via lines functions as described below.

For P,Q ∈ E[r], let lP,Q be a line function in Fqk(E) passing through P and Q and let

vP+Q be a vertical line function in Fqk(E) passing through the point P +Q. Let us recall

Example 2.62 that shows the line functions have specific divisors given by div(lP,Q) =

(P )+ (Q)+ (−(P +Q))−3(O) and div(vP,Q) = (P +Q)+ (−(P +Q))−2(O). Then, one
can build a function lP,Q/vP+Q of which divisor is given as follows (see Example 2.63):

div

(
lP,Q
vP+Q

)
= div(lP,Q)− div(vP+Q) = (P ) + (Q)− (P +Q)− (O). (2.87)

For any integers i, j, considering a function fi,P · fj,P · liP,jP/viP+jP ,

div

(
fi,P · fj,P ·

liP,jP
viP+jP

)
=div(fi,P ) + div(fj,P ) + div

(
liP,jP
viP+jP

)
=i(P )− (iP )− (i− 1)(O) + j(P )− (jP )− (j − 1)(O)
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+ (iP ) + (jP )− ((i+ j)P )− (O)
=(i+ j)(P )− ((i+ j)P )− (i+ j − 1)(O). (2.88)

This leads to the following definition of the function fi+j,P .

fi+j,P = fi,P · fj,P ·
liP,jP
viP+jP

. (2.89)

According to Eq. (2.86), since div(f1,P ) = 0, one can set f1,P = 1 and f−1,P = v−1
P .

Then, f2i,P , fi+1,P , and fi−1,P can be built from the knowledge of fi,P and R = iP :

f2i,P = f 2
i,P ·

lR,R

vR+R

, fi+1,P = fi,P ·
lR,P

vR+P

, fi−1,P = fi,P ·
lR,−P

vR−P

· v−1
P . (2.90)

Thus, it is possible to advance from fi,P to either f2i,P , fi+1,P , or fi−1,P , which is corre-

sponding to the doubling, addition, or subtraction operation of i, respectively. This gives

rise to a double-and-add/sub algorithm to reach fm,P in O(log2m) steps governed by a

signed binary representation of m as shown in Algorithm 2.1. In the algorithm, we look

i-th bit mi of m from the highest bit. After the initializations, we execute the doubling

operation with the addition operation if mi = 1; subtraction operation if mi = −1 for

each bit.

Note that there are several cases that Miller’s algorithm does not correctly work,

however, it does not happen in most cases of E used for practical pairings. The details

are described in [Ogu+12].

2.4.5 Base-field and trace-zero subgroups

In the Tate and Weil pairings, we always work on an elliptic curve E over Fq such that

there is an r-torsion subgroup E[r] ⊂ E(Fqk) with a prime r 6= char(Fq) and embedding

degree k. This subsection introduces two interest subgroups in E[r] for the Tate and Weil

pairings.

Definition 2.70. (Base-field subgroup) Let πq be the Frobenius endomorphism in E.

A base-field subgroup is a unique subgroup of E[r] defined over Fq, which is defined as

follows:

G1 = {P ∈ E[r] : πq(P ) = P}. (2.91)

Definition 2.71. (Trace-zero subgroup) Let πq be as in Definition 2.70. A trace-zero

subgroup is a unique subgroup of E[n] defined over Fqk , which is defined by

G2 = {P ∈ E[r] : πq(P ) = [q]P}. (2.92)
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Algorithm 2.1: Miller’s algorithm (extended version).

Input: P,Q ∈ E, m = ml2
l +ml−12

l−1 + · · ·+m02
0 where l + 1 is a bit length

of m and mi ∈ {−1, 0, 1} for 0 ≤ i ≤ l.
Output: fm,P (Q)

1 If ml = 1 then
2 f ← 1, R← P ;
3 else if ml = −1 then
4 f ← v−1

P (Q), R← −P ;
5 endif
6 For i from l − 1 downto 0 do

7 f ← f 2 · lR,R(Q)

vR+R(Q)
, R← R +R; //DBL

8 If mi = 1 then

9 f ← f · lR,P (Q)

vR+P (Q)
, R← R + P ; //ADD

10 else if mi = −1 then

11 f ← f · lR,−P (Q)

vR−P (Q)
· v−1

P (Q), R← R− P ; //SUB

12 endif
13 endfor

return f ;

The subgroups are more often denoted by G1 = E[r] ∩ ker(πq − [1]) and G2 = E[r] ∩
ker(πq− [q]). In fact, G1 and G2 are 1- and q-eigenspaces of πq. It has been described that

πq can be denoted by a 2× 2 matrix with the specific trace tr(πq) = t = q + 1−#E(Fq)

and determinant det(πq) = q. This leads to the characteristic polynomial of πq is given by

λ2−tλ+q, which can be written by λ2−tλ+q ≡ λ2−(q+1)λ+q = (x−1)(x−q) ( mod r).

Then, the eigenvalues of πq restrict to E[r] are determined by q and 1. From the definition,

it is obvious that G1 and G2 are corresponding to 1- and q-eigenspaces of πq, respectively.

The above fact also indicates G1 × G2 = E[r].

We need to investigate maps between G1, G2, and any subgroup G of E[r] such that

G 6= G1,G2. There are two endomorphisms that play important roles in E[r].

Definition 2.72. (Trace map) Let πq be the Frobenius endomorphism in E. A trace map

is an endomorphism defined as follows:

Tr : E → E,P + πq(P ) + · · ·+ πk−1
q (P ). (2.93)

Definition 2.73. (Anti-trace map) Let Tr be as in Definition 2.72. An anti-trace map is

an endomorphism defined by

aTr : E → E,P → [k]P − Tr(P ). (2.94)
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When restricting the above maps to E[r] ⊂ E(Fqk), one can see that the trace map

acts as Tr : G → G1, G1 → G1, and G2 → {O}. The fact that the trace map sends all

points in G2 into O leads to the name of the trace-zero subgroup G2. In contrast to this,

the anti-trace map acts as aTr : G → G2, G1 → {O}, and G2 → G2.
As for the existence of the practical computable map between G1 and G2, it is cor-

responding to the supersingularity of E. If E is supersingular, there is an isomorphism

ϕ : G2 → G1 which is called a distortion map. Since ϕ is an isomorphism, there is an inverse

map ϕ−1 : G1 → G2. However, if E is ordinary, there is no known efficient isomorphism

out of G1 or G2.

2.4.6 Restricting the pairings to the subgroups

For practical applications, it is more convenient to restrict the pairings to the subgroups,

rather than full r-torsion subgroup E[r]. In the following, let G1 and G2 be the base-field

and trace-zero subgroups of E[r] described in the previous section. Let G be a subgroup

of E[r] such that G 6= G1,G2.
According to Proposition 3.4 in [EMJ17], the Weil and reduced Tate pairings can be

generally restricted to G1×G, G×G1, G2×G, and G×G2 are non-degenerate. Besides, it is
trivial that the Weil pairing restricted to G1×G2 or G2×G1 is non-degenerate. Although
the Tate pairing is not as simple as the Weil pairing, if there are no points r2-torsion

subgroup in E(Fqk), which means that k > 1, the Tate pairing restricted to G1 × G2 or

G2 × G1 is non-degenerate. Particularly, the reduced Tate pairing restricted to G1 × G2
leads to remove the conditions of the divisors having disjoint supports and allows us the

following definition:

ẽTr : G1 × G2 → µr, (2.95)

ẽTr(P,Q) = fr,P (Q)
qk−1

r , (2.96)

where fr,P is a function in Fq(E) with the divisor div(fr,P ) = r(P ) − r(O). Since the

original definition of the Tate pairings involves evaluation of fr,P at two points in E,

it is expected that the restriction results in reducing the computational complexity of

the pairing. In order to reduce the more computational complexity, Hess et al. provided

a variant of the above reduced Tate pairings in [HSV06]. They observed that t − 1 ≡
q (mod r) where t is the Frobenius trace results in πq(Q) = [q]Q = [t − 1]Q for Q ∈ G2

and found that it leads to the following definition of the pairing, which is called the ate

pairing.

Definition 2.74. (Ate pairing) Let t be the Frobenius trace and let T = t− 1. The ate
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pairing is a pairing defined as follows:

eaT : G2 × G1 → µr, (2.97)

eaT (Q,P ) = fT,Q(P )
qk−1

r , (2.98)

where fT,Q is a function in Fqk(E) with the divisor div(fT,Q) = T (Q)−(TQ)−(T −1)(O).

The important fact is that the ate pairing requires log2 T steps of Miller’s algorithm for

computing fT,Q(P ), instead of log2 r for fr,P (Q). From Hasse’s theorem, log2 T < log2 r

is typically satisfied for the practical pairings. The ate pairing corresponding to T ≡
q (mod r) is one of the special cases of ate-like pairings which are obtained by taking

any power T i ≡ qi (mod r). More generally, in [Ver09], Vercauteren proposed an ate-like

pairing constructed by any linear combination of
∑

i ciq
i ≡ 0 (mod r) as follows:

Definition 2.75. (Ate-like pairing) Let k′ = ϕ(k) with Euler’s totient function ϕ and let

λ =
∑k′−1

i=0 ciq
i with ci ∈ Z such that λ = mr and mkqk−1 6= qk−1

r

∑k′−1
i=0 iciq

i−1 (mod r)

with some integer m. Then, an ate-like pairing is defined as follows:

eaci : G2 × G1 → µr, (2.99)

eaci (Q,P ) =

(∏k′−1
i=0 fci,Q(P )

qi ·
∏k′−2

i=0

lsi+1Q,ciq
iQ(P )

vsiQ(P )

) qk−1
r

, (2.100)

where si =
∑k′−1

j=i cjq
j and lsi+1Q,ciqiQ and vsiQ(P ) are line function in Fqk(E) with the

divisors div(lsi+1Q,ciqiQ) = (si+1Q)+(ciq
iQ)+(−(si+1+ciq

i)Q)−3(O) and div(vsiQ(P )) =

(siQ) + (−siQ)− 2(O), respectively.

Then, one can find λ =
∑k′−1

i=0 ciq
i which generates the ate-like pairings with one of the

smallest numbers of the steps of Miller’s algorithm. Indeed, the number of steps can be

fixed at least log2 r/ϕ(k). Such ate-like pairing is especially called the optimal-ate pairing.

2.4.7 Use of twists

Let E be an elliptic curve over Fq such that G1×G2 = E[r] ⊂ E(Fqk). Since G1 is defined
over Fq, it admits an efficient representation. This subsection describes G2 which is defined

over Fqk also admits an efficient representation on a twist E ′ of E.

Let d be a factor of k such that d = 1, 2, 3, 4, or 6. One can find a twist E ′ of degree d

of E defined over Fqk/d with an isomorphism ϕd : E
′ → E over Fqk . The more important

fact is that one can also find a unique twist E ′ such that r | #E(Fqk/d), which is called

the correct twist in this thesis. Then, since E ′ and E are isomorphic over Fqk , there is an

r-torsion subgroup E ′[r] ⊂ E ′(Fqk). Furthermore, there are subgroups G ′1 and G ′2 of E ′[r]

which are preimages of G1 and G2, i.e., G ′1 = ϕ−1
d (G1) and G ′2 = ϕ−1

d (G2), respectively. In
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fact, G ′2 is a unique subgroup of E ′[r] such that G ′2 = E ′[r]∩E(Fqk/d) which is defined over

a subfield Fqk/d of Fqk , however, G1 is a unique subgroup of E ′[r] defined over Fqk . Since

G1 → G ′1 and G2 → G ′2 are group isomorphisms, G ′1 and G ′2 have the similar properties of

G1 and G2 described in Sect. 2.4.5.

The above gives rise to the ate pairing moved entirely on E ′ given as follows:

e′aT : G ′2 × G ′1 → µr, (2.101)

e′aT (Q
′, P ′) = f ′

T,Q′(P ′)
pk−1

r , (2.102)

where f ′
T,Q′ is a function in Fqk(E

′) with the divisor div(f ′
T,Q′) = T (Q′)−(TQ′)−(T−1)(O′)

where O′ is the point on E ′ at infinity. Although the ate pairings on E and E ′ are typically

not distinguished, note that eaT (Q,P ) and e
′
aT
(Q′, P ′) do not always take the same value

even though there are relations P ′ = ϕ−1
d (P ) and Q′ = ϕ−1

d (Q). Indeed, Costello et

al. provided the following theorem [CLN10].

Theorem 2.76. Let E be an elliptic curve over Fq given by y2 = x3 + ax+ b, let E ′ be a

correct twist of degree d of E, and let ϕd : E
′ → E. For P ∈ G1, Q ∈ G2, P ′ = ϕ−1

d (P ) ∈ G ′1,
and Q′ = ϕ−1

d (Q) ∈ G ′2,

eaT (Q,P )
gcd(d,6) = e′aT (Q

′, P ′)gcd(d,6). (2.103)

Since the fields in which the groups G1 and G ′2 are defined are smaller than these of G ′1
and G ′2, respectively, the ate pairings are often regarded as G ′2×G1 → µr which is defined

by either of the following.

eaT (ϕd(Q
′), P ) = fT,ϕd(Q′)(P )

pk−1
r , (2.104)

e′aT (Q
′, ϕ−1

d (P )) = f ′
T,Q′(ϕ−1

d (P ))
pk−1

r . (2.105)

To make the movement of the curves easily and enable efficient arithmetics, it is often

used a tower of extension fields constructed by quotient rings by binomial ideals as follows

[BS10]: {
Fp(z)d

∼= Fp(z)[x]/(x
d − c) ∼= Fp(z)(α),

Fp(z)k
∼= Fp(z)d [x]/(x

k/d − α) ∼= Fp(z)d(β),
(2.106)

where α and β are elements in Fp(z)d and Fp(z)k such that αd = c and βk/d = α, respectively.

Note that there are many optimizations related to the twist corresponding to its degree,

e.g., the twist enables the smooth application of the denominator elimination techniques

[Bar+02; Lin+08; CLN10; ZL12]. Particularly, if the curve admits the quadratic twist, all

values of vertical line functions that appeared in Miller’s algorithm can be ignored since
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the final exponentiation by (qk − 1)/r brings these values for the identity in F∗
pk
.

2.4.8 Types of pairings

The differences in the restrictions give rise to three types of pairings, which are introduced

by Galbraith et al. in [GPS08]. Actually, there are four types in the literature; Galbraith et

al. originally presented three, but a fourth type was added soon after by Shacham [Sha06],

however, the fourth type is not discussed. The details of the types are summarized below.

• Type 1: The pairings G1 × G2 → GT with G1 = G2, i.e., there are G1 → G2 and

G2 → G1; Suppose that E is a supersingular curve such that there is a distortion

map ϕ : G2 → G1. Then, the Weil and Tate pairings given by eWr(P, ϕ(P )) and

eTr(P, ϕ(P )) give rise to the pairings restricted to G1 × G1, which are classified into

this type.

• Type 2: The pairings G1 × G2 → GT with G1 6= G2 but an efficiently computable

isomorphism G2 → G1 is known, while none is known in the other direction; If E

is an ordinary elliptic curve, the Weil and Tate pairings restricted to G1 × G (or

G2 × G) in this type since there is Tr : G → G1 (or aTr : G → G2) but there is no

known efficient map G1 → G (or G2 → G).

• Type 3: The pairings G1 × G2 → GT with G1 6= G2 and no efficiently computable

isomorphism is known between G1 and G2, in either direction; If E is an ordinary

elliptic curve, the Weil and Tate pairings restricted to G1 × G2 or G2 × G1 classified

into this type since there are known efficient map out of G1 and G2 in E[r]. The

ate pairings restricted to G2 × G1 or G ′2 × G ′1, which is often regarded G ′2 × G1, also
classified into this type.

It is known that the properties of the different types of pairings provide subtle dif-

ferences to protocols and their proofs. The type 1 pairings were used in the early age of

pairing-based protocols, they have gradually been discarded in favor of type 3 pairings.

In fact, the state-of-the-art implementations of pairings take place on the ordinary curves

that assume the type 3 pairings. Moreover, Chatterjee and Menezes [CM11] argued that

there are no known protocols and proofs of security that cannot be translated into the

type 3 setting. Thus, it is currently recommended to design the protocols with the type

3 pairings.

2.4.9 Computational problems

This subsection provides computational difficult problems related to the pairings. Al-

though the problems related to the pairings are still often discussed with type 1 settings,
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let us focus on type 2 or 3 settings. Many pairing-based protocols are based on the

difficulty of one or both of the following problems.

Definition 2.77. (Bilinear Diffie-Hellman problem (BDHP)) Given P, xP, yP ∈ G1 and

Q, xQ, zQ ∈ G2 with x, y, z ∈ Z, compute e(P,Q)xyz ∈ GT .

Definition 2.78. (Bilinear decisional Diffie-Hellman problem (BDDHP)) Given P, xP, yP ∈
G1, Q, xQ, zQ ∈ G2 with x, y, z ∈ Z, and g ∈ GT , determine whether or not g =

e(P,Q)xyz ∈ GT .

If the BDHP is solved, the BDDHP can be broken. Moreover, the BDHP is no harder

than either the ECDHP in G1 and G2 or DHP in GT ; If the ECDHP in G1 (or G2) is

solved, one can solve the BDHP by computing xyP (or xzQ) and thus e(xyP, zQ) (or

e(yP, xzQ)) is obtained; If the DHP in GT is solved, one can also solve the BDHP by

computing g = e(P,Q), gxy = e(yP, xQ), and gz = e(P, zQ) and thus gxyz is obtained.

Since the ECDHP and DHP are solved if the ECDLP and DLP are solved, respectively,

the security of the pairings depends on the difficulty of solving both the ECDLP in G1

and G2, and the DLP in GT .

Besides, there is a basic calculation problem peculiar to the pairing operations.

Definition 2.79. (Pairing inverse problem) Let e : G1 × G2 → GT be a pairing. There

are the following problems related to the pairing inversion problems.

1. (The fixed argument pairing inversion 1 problem (FAPI-1P)) Given Q ∈ G2 and

g ∈ GT , compute P ∈ G1 such that e(P,Q) = g.

2. (The fixed argument pairing inversion 2 problem (FAPI-2P)) Given P ∈ G1 and

g ∈ GT , compute Q ∈ G2 such that e(P,Q) = g.

3. (The generalized pairing inversion problem (GPIP)) Given g ∈ GT , compute P ∈ G1

and Q ∈ G2 such that e(P,Q) = g.

If the FAPI-1 and FAPI-2 problems are solved, one can solve all the ECDHP on G1

and G2 and DLP on GT . Conversely, assuming the difficulties of the ECDHP and DHP

problems, the difficulty of the FAPI-1 and FAPI-2 problems are guaranteed. At this time,

there are no known special curves that give rise to efficient computation of the GPIP

which is typically easier than FAPI-1 and FAPI-2 problems.

2.4.10 Pairing-friendly elliptic curves

For secure and efficient pairings, it is needed to carefully choose an elliptic curve in which

the pairing is defined. To guarantee the security of the pairings, the DLPs should be

infeasible in both G1, G2 ⊂ E[r] and GT ⊂ Fqk having the common order r. Thus, it is
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necessary to set the appropriate sizes of the r and qk that can achieve the certain security

level; for the 128-bit security level, it is suggested to fix log2 r ≥ 256 and log2 q
k ≥ 5000

around [Gui20]. As discussed in Sects. 2.2.5 and 2.3.9, G1 and G2 currently obtain much

greater security per bit than GT since the best-known attacks for the ECDLP in G1 and

G2 have exponential complexity, however, that of the DLP in GT have sub-exponential

complexity. Moreover, since the attacks for the DLP in GT are improved in recent years,

we have to pay much more attention to the settings of GT than that of G1 and G2.

In addition to this, to guarantee the efficiency of the pairings, it is important that the

order r is a large factor of #E(Fq) = q + 1 − t. To discuss this idea conveniently, let us

define a quantity that indicates the ratio of the sizes of q and r.

ρ =
log2 q

log2 r
, (2.107)

which is called the ρ-value. Since it is preferred that #E(Fq) = q+1− t involves the large
factor r, the ideal case is considered to be ρ ≈ 1. Note that the size of the embedding

degree k with respect to r is entirely determined by ρ and the choice of the bit sizes of r

and qk, since log2 q
k/ log2 r = ρk.

Based on the above facts, Freeman et al. gave the following definition of the elliptic

curves suitable for the pairings [FST10]:

Definition 2.80. (Pairing-friendly elliptic curve) An elliptic curve E is pairing-friendly

if the following conditions are satisfied:

1. The ρ-value satisfies 1 ≤ ρ ≤ 2.

2. The embedding degree k with respect to r satisfies k ≤ log2 r/8.

Notice that the pairing-friendly elliptic curves are very special since randomly found

E typically have k ≈ q.

One can heuristically find the pairing-friendly curves with ρ ≈ 2 by the Cocks-Pinch

method of which algorithm is presented in [FST10]. The pairing-friendly curves with ρ < 2

can also be found by the Brezing-Weng methods [BW05]. Rather than this method,

it is more often used construction methods of the pairing-friendly curves based on the

parameterization of q, r, and t by the polynomials making the curves with the favorite

properties which are defined as follows [FST10]:

Definition 2.81. (Family of pairing-friendly elliptic curves) Let q(x), r(x), and t(x) be

non-zero polynomials in Q[x], k be a positive integer, and D be a square-free integers.

The triple (q(x), r(x), t(x)) is referred to as family of pairing-friendly elliptic curve with

embedding degree k and CM discriminant D if the following conditions are satisfied:
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1. q(x) = p(x)i for some i ≥ 1 and p(x) that represent primes. (It is typically chosen

as i = 1.)

2. r(x) is non-constant, irreducible, integer-valued, i.e., r(x0) ∈ Z for all x0 ∈ Z, and
has positive-leading coefficients.

3. r(x) divides Φk(t(x)− 1) where Φk is the k-th cyclotomic polynomial.

4. r(x) divides q(x) + 1− t(x)

5. The equation Dy2 = 4q(x)− t(x)2 in (x, y) has infinitely many integer solutions.

The family is ordinary if gcd(t(x), q(x)) = 1 and is also complete if y is denoted by

y(x) ∈ Q[x]. In the case of family, the ρ-value of the family is defined by

ρ =
deg q(x)

deg r(x)
, (2.108)

instead of the typical definition in Eq. (2.107). There are families of pairing-friendly

curves, such that Miyaji-Nakabayashi-Takano (MNT) family [MNT01], Barreto-Lynn-

Scott (BLS) family [BLS02], Barreto-Naehrig (BN) family [BN05], Kachisa-Schaefer-Scott

(KSS) family [KSS08], and many others [FST10].

Note that it is required to find an integer seed z making p = p(z) and r = r(z) being

primes for specifying the curves. Then, there is an elliptic curve E/Fq(z) such that

• The group order is given by n(z) = #E(Fq(z)) = q(z) + 1 − t(z), which is divisible

by r(z).

• The embedding degree with respect to r(z) is k, i.e., k is the minimal integer satis-

fying r(z) | (q(z)k − 1).

Then, there exist the correct twist E ′/Fq(z)k/d of degree d of E such that r(z) | n′(z) =

#E ′(Fq(z)k/d) and twisting isomorphism ϕd : E ′ → E defined over Fq(z)k . It is typically

exploited the pairings defined over such E or E ′ for practical protocol implementation.

The following example presents the curve E/Fq(z) which is generated by the BN family.

Example 2.82. (BN curve) Let p(x), r(x), t(x) be the polynomials in Q[x] defined as

follows: 
p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

t(x) = 6x2 + 1.

(2.109)

Then, (p(x), r(x), t(x)) parametrizes a family of pairing-friendly elliptic curves with k =

12, D = 3, and ρ = 1. A curve in the BN family is called the BN curve. As a
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toy example, the seed x0 = 1 generates p(x0) = 103, r(x0) = 97, t(x0) = 7, which

leads to the BN curve given by E/Fp(x0) : y2 = x3 + 5 such that r(x0) = 97 divides

#E(Fp(x0)) = p(x0) + 1− t(x0) = 103+ 1− 7 = 97 and #F∗
p(x)k

= p(x0)
k − 1 = 9712− 1 =

1425760886846178945447840 = 25 · 32 · 5 · 7 · 13 · 17 · 19 · 37 · 79 · 97 · 1061 · 3571 · 31357.
Actually, we already have seen this curve in Figure 2.3.

2.5 Isogenies between elliptic curves

This section provides the mathematical preliminaries of the isogenies which leads to the

isogeny problems which are hard to compute even though the quantum computers are

applied. The definition of the isogenies is referred to [Sil09].

2.5.1 Isgenies

This subsection describes maps between elliptic curves, which are called isogenies.

Definition 2.83. (Isogeny) Let E and Ẽ be elliptic curves. Let us define that an isogeny

from E to Ẽ is a morphism given as follows:

φ : E → Ẽ satisfying ϕ(O) = Õ. (2.110)

Note that this thesis considers a zero morphism such that φ(E) = {Õ} as an isogeny.

This zero morphism is called the zero isogeny ; otherwise, non-zero isogeny. If there exists

a non-zero isogeny from E to Ẽ, we say E and Ẽ are isogenous. If there exist non-zero

isogenies φ : E → Ẽ and φ̃ : Ẽ → E such that φ̃(φ(P )) = P for any P ∈ E, then E and

Ẽ are isomorphic, i.e., j(E) = j(Ẽ). The isogenies φ and φ̃ are endomorphisms if E = Ẽ.

Furthermore, if φ is an isomorphism and E = Ẽ, φ is called an automorphism.

The set of all isogenies from E and Ẽ are denoted as follows:

Hom(E, Ẽ) = {isogenies E → Ẽ}. (2.111)

Then, Hom(E, Ẽ) form an abelian group under an additive law, i.e., for φ, ψ ∈ Hom(E, Ẽ),

φ + ψ ∈ Hom(E, Ẽ) is defined by (φ + ψ)P = φ(P ) + ψ(P ), where the right side of +

is the point addition. Note that the zero isogeny [0] : E → Ẽ, P 7→ 0P plays a role

of the identity. Besides, if E = Ẽ, End(E) = Hom(E, Ẽ) also forms a monoid under a

multiplicative law · defined by (φ · ψ)(P ) = ψ(φ(P )) with the identity [1] : E → E,P 7→
1P . This means that End(E) form a ring under the above addition and multiplication.

The ring is called the endomorphism ring of E. A set of invertible elements of End(E)

forms the automorphism group of E, which is denoted by Aut(E).
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2.5.2 A standard form for isogenies

For easily understanding, this subsection considers the isogenies from E and Ẽ in the

affine space. Note that we actually have to work on the projective space for the point

O that cannot express in the affine space. If E and Ẽ are defined over Fq, a non-zero

isogeny can be defined by an affine rational map

φ(x, y) = (r1(x, y), r2(x, y)) , (2.112)

where r1(x, y), r2(x, y) are rational functions defined over Fq. If E and Ẽ are elliptic

curves over Fq given by short Weierstrass equations, a non-zero isogeny from E to Ẽ is

defined by an affine map

φ(x, y) =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
, (2.113)

where u(x), v(x), s(x), t(x) ∈ Fq[x] such that u(x) and v(x) have no common factor over

Fq, and s(x) and t(x) are too. The form of the isogeny given by Eq. (2.113) is a standard

form. Let us define two important invariants of the non-zero isogeny that can be easily

determined when it is in this form. For the isogeny from E1 to E2 given by the standard

form, let us define the degree of φ as deg φ = max(deg u, deg v). An isogeny of degree

l is said to be l-isogeny. If there exists an l-isogeny from E to Ẽ, we say E and Ẽ are

l-isogenous. Besides, φ is called separable if the derivative of u(x)
v(x)

is non-zero; otherwise,

it is called inseparable. If the isogeny φ is separable, then degφ = #kerφ.

There are examples of isogenies, which we already have seen in Sects. 2.3.4 and 2.3.5,

respectively.

Example 2.84. (Point multiplication endomorphism) Let E : y2 = x3 + ax + b be

an elliptic curve over Fq. Then, the point multiplication endomorphism [m] : E →
E, (x, y) 7→ m(x, y) is an isogeny. If m 6= 0 and m 6= char(Fq), the isogeny [m] is

separable and deg[m] = m2 (see Corollary 6.4. in [Sil09]), which is related to the fact that

#E[m] = m2. For some small m, the standard form, separability, and degree of isogenies

are obtained as follows:

• m = −1: The image of (x, y) under [−1] is given by [−1](x, y) = (x,−y) in the

standard form. It is separable and has degree deg[−1] = 1.

• m = 2: The image of (x, y) under [2] is given by [2](x, y) = (r1(x, y), r2(x, y))

= (λ2− 2x, λ(x− r1(x, y))− y) where λ = 3x2+a
2y

(see Eq. (2.36)). Then, r1(x, y) and

r2(x, y) can be modified as follows:

r1(x, y) = λ2 − 2x =
(3x2 + a)2

4y2
− 2x =

9x4 + 6ax2 + a2

4(x3 + ax+ b)
− 2x =

x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
,
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r2(x, y) = λ(x− r1(x, y))− y =
(3x2 + a)y

2y2

(
3x4 + 6ax2 + 12bx− a2

4(x3 + ax+ b)

)
− y

=
x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3

8(x3 + ax+ b)
y.

Thus, the standard form of [2] is given by

[2](x, y) =

(
x4−2ax2−8bx+a2

4(x3+ax+b)
,
x6+5ax4+20bx3−5a2x2−4abx−8b2−a3

8(x3+ax+b)
y

)
.

It is separable since d
dx
(r1(x, y)) 6= 0 in Fq and has deg[2] = 4.

Example 2.85. (Frobenius endomorphism) Let E : y2 = x3 + ax+ b be an elliptic curve

over Fq. The Frobenius endomorphism πq : E → E, (x, y) 7→ (xq, yq) is an isogeny. Since

yq = yq−1y = (y2)
q−1
2 y = (x3 + ax + b)

q−1
2 y, the standard form is given by π(x, y) =

(xq, (x3 + ax + b)
q−1
2 y). According to the form, it is found deg πq = q. Besides, πq is

inseparable since d
dx
(xq) = qxq−1 = 0 in Fq.

Example 2.86. (Twisting isomorphism) Let E : y2 = x3 + b be an elliptic curve over Fq.

Let E ′ be a twist of degree 2 of E given by y2 = x3 + a/δ2 + b/δ3 where δ is quadratic

non-residue in F∗
q. Then, a twisting isomorphism ϕ2 : E ′ → E, (x, y) 7→ (δx, δ1/2y) over

Fq2 is an isogeny which already has a standard form. According to the form, it is found

deg ϕ2 = 1. Besides, πq is inseparable since d
dx
(δx) = δ in Fq2 .

2.5.3 Vélu’s formula

For a given curve E and subgroup G, there is a unique separable isogeny ϕ : E → Ẽ

such that Ẽ is isomorphic to a quotient group E/G. Then, ϕ is an #G-isogeny since

ker(ϕ) = G. In [Vél71], Vélu describes how to explicitly write down equations for the

curve Ẽ such that Ẽ ∼= E/G and isogeny ϕ : E → Ẽ. In the context, an explicit formula

for 2-isogenies is given as follows:

Theorem 2.87. (2-isogeny) Let E be an elliptic curve over Fq given by y2 = x3+ ax+ b.

Let G be a group of E of order 2 defined by G = 〈(x0, 0)〉 where x0 ∈ Fq be a root of

x3 + ax+ b. Assuming t = 3x20 + a and w = x0t, the following rational map

φ(x, y) =

(
x2 − x0x+ t

x− x0
,
(x− x0)2 − t
(x− x0)2

y

)
, (2.114)

is a separable isogeny from E to Ẽ : y2 = x3 + ãx + b̃ where ã = a − 5t and b̃ = b − 7w

such that Ẽ = E/G.

Example 2.88. (2-isogeny) Let E : y2 = x3−x be an elliptic curve over Fq where a = −1
and b = 0. Then, roots of x3 − x are 0, 1, and −1. When taking x0 = 1, it is obtained
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t = 3i2 + a = 2, w = x0t = 2, and 2-isogeny φ given by

φ(x, y) =

(
x2 − x+ 2

x− 1
,
x2 − 2x− 1

x2 − 2x+ 1
y

)
. (2.115)

It is also found ã = a − 5t = −11 and b̃ = b − 7w = −14 and thus the curve equation is

Ẽ : y2 = x3 − 11x− 14.

Besides, an explicit formula for l-isogenies with odd l is given as follows:

Theorem 2.89. (l-isogeny with odd number l) Let E be an elliptic curve given by y2 =

x3 + ax + b defined over Fq. Let G be a subgroup of E of odd order. For a generator

Q = (xQ, yQ) 6= O of G, let

tQ = 3x2Q + a, uQ = 2y2Q, wQ = uQ + tQxQ, (2.116)

t =
∑

Q∈G,Q ̸=O

tQ, w =
∑

Q∈G,Q ̸=O

wQ, (2.117)

r(x) = x+
∑

Q∈G,Q ̸=O

(
tQ

x− xQ
+

uQ
(x− xQ)2

)
. (2.118)

Then, the rational map

φ(x, y) =

(
r(x),

d

dx
r(x)y

)
, (2.119)

is a separable isogeny from E to Ẽ : y2 = x3 + ãx + b̃ where ã = a − 5t and b̃ = b − 7w

such that Ẽ = E/G.

If l = #G is odd, any point Q 6= O in G end up to a negation point −Q = (xQ,−yQ)
in G. Since the formulas of t, w, and r(x) only depend on x-coordinates xQ, it is enough

to sum over the half of the points in G and double the result.

Example 2.90. (3-isogeny) Let E : y2 = x3 + 1 be an elliptic curve over Fq where a = 0

and b = 1. Let G be a subgroup of E of order 3 which consists by O, (0, 1), and (0,−1).
When taking Q = (0, 1), tQ = 0, uQ = 2, wQ = 2, t = 0, w = 4 and r(x) = x+4/x2 which

leads to d
dx
r(x) = 1− 8/x3. Thus, the formula of 3-isogeny φ is given by

φ(x, y) =

(
x+

4

x2
, y − 8y

x3

)
. (2.120)

Since ã = a−5t = 0 and b̃ = b−7w = −27 and thus the curve equation is Ẽ : y2 = x3−27.

An isogeny of composite degrees can always be decomposed into a sequence of isogenies

of prime degrees. This means that if an isogeny has degree le11 l
e2
2 · · · lenn with primes li and
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positive integers ei for 1 ≤ i ≤ n, the isogeny is decomposed into e1 l1-isogenies, e2 l2-

isogenies, . . ., and en ln-isogenies. Particularly, let us consider the case of l
e-isogeny where

l and e are positive integers with small l. Let G be a subgroup of E of order le and R be

a generator of G, i.e., G = 〈R〉. Then, le-isogeny φ : E → Ẽ ∼= E/G is decomposed into e

isogenies of degree l and is computed by initializing E0 = E and R0 = R and constructing

the curve Ei+1 and isogeny φi for 0 ≤ i < e as follows [JDF11]:

Ei+1 = Ei/〈[le−i−1]Ri〉, φi : Ei → Ei+1, Ri+1 = φi(R). (2.121)

This results in φ = φe−1◦· · ·◦φ1◦φ0 where ◦ is a symbol of composite mapping and φi for

0 ≤ i ≤ e − 1 are l-isogenies. Note that the large-degree isogenies can be accelerated by

finding an optimal path of a directed acyclic graph as described in Sect. 4.2.2 of [JDF11].

The optimal path is determined by the relative costs of point multiplication by l and

l-isogeny evaluation.

2.5.4 Isogeny graphs

An isogeny graph is often used to discuss the security of the protocols based on the

isogeny. The isogeny graph has nodes of the j-invariant of isogenous elliptic curves of an

elliptic curve E over Fq, which are elements in Fq. If E and Ẽ are isogenous over Fq,

i.e., if there exists an isogeny φ : E → Ẽ, the nodes j(E) and j(Ẽ) are connected by an

edge. Since isogenous elliptic curves of E is supersingular if and only if E is supersingular,

there appear ordinary and supersingular isogeny graphs. For the l-isogeny graph which

is considered the l-isogenous curves of E with a small prime l such that l 6= p = char(Fq),

there are structural differences between the graphs; the supersingular l-isogeny graph is

one of Ramanujan graphs which have attractive properties in cryptography.

2.5.5 Computational problems

This subsection presents basic computational problems of the isogenies. Since the su-

persingular isogeny DH (SIDH) key exchange is not so simpler than DH/ECDH, this

subsection does not provide the problems related to SIDH. Note that the details of the

problems are described in Sect. 5.2.3 after the description of the details of the steps of

SIDH. The following is a problem that is the template for the whole subject.

Definition 2.91. (General isogeny problem) Given x, y ∈ Fq, find an isogeny φ : E → Ẽ

such that j(E) = x and j(Ẽ) = y.

This is equivalent to finding an isogeny φ : E → Ẽ for given E and Ẽ over Fq. A

variant of this problem is when the degree of φ is given.
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Table 2.4: The running time for solving the computational problems.

Problems Classical Quantum

DLP Sub-exponential Polynomial
ECDLP Exponential Polynomial

Isogeny Ordinary Exponential Sub-exponential
problem Supersingular Exponential Exponential

Definition 2.92. (le-isogeny problem) Given x, y ∈ Fq and positive integer le, compute

an le-isogeny φ : E → Ẽ such that j(E) = x and j(Ẽ) = y.

The isogeny problems are classified into supersingular and ordinary cases, which are

corresponding to the differences of the isogeny graphs. Currently, the best generic algo-

rithm for finding a path between two vertices in the isogeny graph is given by Galbraith

[Gal99], which is a meet-in-the-middle strategy. In the supersingular case, Delfs and

Galbraith improved the algorithm to only use a constant amount of memory in [DG16].

In general, the complexity for executing the algorithms for solving the isogeny problems

would be exponential in the input size. In certain special cases that are used for practical

applications such as SIDH key exchange, there is a compact description of the path.

For such cases of the problems, the algorithm typically requires the number of steps

O(
√
q) and O( 4

√
q) for solving the supersingular and ordinary isogeny problems with a

classical computer, respectively. Furthermore, even though the algorithm is executed with

a quantum computer, it requires the number of steps O( 4
√
q) for the supersingular isogeny

problems having the exponential running time, however, it is sub-exponential time for the

ordinary case. Indeed, using the form of Eq. (2.28), the algorithm takes Lq(1/2,
√
3/2)

for solving the ordinary case.

2.6 Chapter summary

This chapter described the fundamentals of the materials of the finite fields, elliptic curves,

pairings, and isogenies used for cryptography. The important facts of the materials are

summarized in the following descriptions. Table 2.4 also summarizes the computational

problems and running time for solving the problems.

• A finite field is a set that consists of finite elements in which addition + and mul-

tiplication are defined. A prime field Fp is the smallest subgroups of a field Fq. If

q = pm (m > 1), Fq is an extension field of Fp and is isomorphic to a quotient

ring Fp[x]/(f(x)) with an irreducible polynomial f(x) of degree m in a polynomial

ring Fp[x]. There is a computational problem called the discrete logarithm problem

(DLP) in a multiplicative group of Fq. For solving the problem, it is required the

sub-exponential running time by using the variant of the number field sieve (NFS).
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• An elliptic curve defined over Fq with a characteristic p > 3 is given by the short

Weierstrass affine equation y2 = x3 + ax + b. Note that the equation drop out a

point O = (0 : 1 : 0) in projective space into infinity. For the set E of all rational

points on the elliptic curve, there is a law ⊕ based on the chord-and-tangent rule.

Then, E forms a group under ⊕. There is a computational problem called the

elliptic curve discrete logarithm problem (ECDLP) in an Fq-rational point group

E(Fq). Unlike the DLP in Fq, the most efficient algorithm for solving ECDLP, i.e.,

Pollard’s rho algorithm, requires the exponential running time. This means that

there is an advantage to using the elliptic curves for cryptography in terms of the

size of the security parameter q.

• A pairing on elliptic curve E is a map e : G1×G2 → GT where G1 and G2 are sub-

groups of r-torsion subgroup of E and GT is a multiplicative subgroup of F∗
qk

of order

r. For P ∈ G1 and Q ∈ G2, the ate pairing is defined by e(Q,P ) = fT,Q(P )
(qk−1)/r ∈

GT where fT,Q(P ) is a rational function with the divisor div(fT,Q) = TQ− (TQ)−
(T − 1)(O) and T = t − 1 with the Frobenius trace t. The value fT,Q(P ) is com-

puted by Miller’s algorithm and then the final exponentiation by (qk − 1)/r in F∗
qk

is applied. The security of the pairing-based protocols is based on the difficulties of

the ECDLP in G1 and G2, and DLP in GT . To balance the security and efficiency,

the families of pairing-friendly elliptic curves, e.g., the BLS, BN, and KSS families,

are typically adopted.

• For two elliptic curves E and Ẽ over Fq, an isogeny is a morphism φ : E → Ẽ such

that φ(O) = Õ. If the curves are Weierstrass form, the isogeny is written by the

standard form which gives rise to easy determination of the degree and separability.

For E and cyclic subgroup G ∈ E of order l, there exists an isogeny φ : E → Ẽ

of degree l such that Ẽ = E/G and ker(φ) = G. Then, the equations of Ẽ and φ

are determined by Vélu’s formula. It is difficult to find an isogeny E → Ẽ from

E and Ẽ, which is also known as the isogeny problem. Although solving the DLP

and ECDLP only require the polynomial time with the quantum computer, solving

the ordinary and supersingular isogeny problems requires the sub-exponential and

exponential running times by the meet-in-middle attack, respectively. Thus, it is

expected that the isogenies are used for post-quantum cryptography.



Chapter 3

Final Exponentiation for Fast

Pairings

Pairings on elliptic curves are important tools for realizing innovative protocols such as

searchable encryption and attribute-based encryption for secure database systems in cloud

service. This chapter presents research for optimizing a computation of pairing, especially,

a step of the final exponentiation, which is introduced in Sect. 1.3. In the following, the

background and motivation of this research are described.

3.1 Background and motivation

Pairings are typically carried out by two steps, which are the Miller loop and final ex-

ponentiation for practical reasons. The final exponentiation is a powering an output of

the Miller loop to the specific exponent in a finite field of order qk to bring the output

in an equivalence class to be the unique value. However, there is a problem that the

final exponentiation becomes more of a computational bottleneck with a large embedding

degree k. To achieve fact final exponentiation, the author tries to optimize that.

Before describing the details, the previous optimizations techniques are briefly de-

scribed. The techniques are typically based on the p-adic expansion of d or its multiple d′

of d that allows us to use the Frobenius endomorphism with low computational complex-

ity. In [Sco+09], Scott et al. gave a systematic method to find short vectorial addition

chains to compute the final exponentiation. In [FCKRH11], Fuentes et al. presented a

lattice-based method for determining d′ which results in an efficient final exponentiation.

It is considered that the lattice-based method provides one of the most efficient final

exponentiation algorithms for many curves.

The author works on the following topic.

• The author focuses on the BLS family of pairing-friendly elliptic curves with k = 15

which is suggested for the pairings at the 128-bit security level in the recent works

65
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[FMP20; BEMG19]. In [FMP20], Fouotsa et al. found one of the best multiple d′

by using the lattice-based method and provided the steps for computing the final

exponentiation. Thus, the author presents another computation method with a

new multiple of the exponent which results in more efficient final exponentiation

than the previous method [FMP20]. Indeed, it is obtained by using the property

of the polynomial parameterization of q for the BLS family, which is also used for

expanding the exponent for the BLS curves with k = 27 in [ZL12] by Zhang et al.

After the publication of the first work, in [HHT20], Hayashida et al. showed the

generalization of Zhang et al.’s method [ZL12] for any family of curves. Their method

exactly gives rise to the same decomposition as the proposed method for the BLS family

of curves with k = 15. At the same time as the publication of [HHT20], the generalization

of the method for the BLS curves with any k is published by the author, which is also

described together with the first work. The author also works on the following two topics.

• For the pairing at the 128-bit security level, in [Gui20], Guillevic provided a shortlist

of the curves with k = 10, 11, 12, 13, 14, and 16 that have a resistance to the STNFS.

Since it had been considered that the pairings on curves with k of multiple of 4 or

6 are the best choices of the pairings, there is not enough research of the pairings

on curves with a prime k or k of multiple of 2 or 3. Particularly, for the curves

with k = 10, 11, 13, and 14, the algorithms for computing the final exponentiations

have not been provided. Thus, the author provides them by using the lattice-

based method [FCKRH11]. The author also applies the latest work [HHT20] for the

curves and compares the calculation costs of the final exponentiations between the

two methods.

• Although the lattice-based method [FCKRH11] might produce one of the most effi-

cient algorithms for computing the final exponentiation, it involves several heuristic

processes and thus it is complicated. Contrary, the generalized method [HHT20]

can generate the algorithm without not so much effort, however, it is not effective

for the majority of the families of curves having the property deg t > 1. Thus, the

author establishes similar methods that are especially effective for such families of

curves. Since the importance of curves with a prime k has been notably increased

for STNFS-secure pairing, the author focuses on the specific family of curves with

any prime k of k ≡ 1 (mod 6) and proposes the decomposition of the multiple d′

for that family.

Notation. The calculation costs of the exponentiation by s, multiplication, squaring,

cubing, inversion, and pi-th power Frobenius endomorphism in F∗
pk

are denoted as usk,

mk, sk, ck, ik, and f
i
k, respectively. The calculation costs of the inversion, squaring, and
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cubing in a subgroup of F∗
pk

of order Φk(p) where Φk is the cyclotomic polynomial are

denoted as ick, sck, and cck, respectively.

Organization. Sect. 3.2 reviews the basic facts of the final exponentiation. Sects. 3.3,

3.4, and 3.5 describe the first, second, and third works of the final exponentiation, respec-

tively. Finally, the contributions are summarized in Sect. 3.6.

3.2 Review of the final exponentiation

This section describes the cyclotomic polynomial and reviews the basic structure of the fi-

nal exponentiation. Particularly, this section reviews two related methods for constructing

the algorithm for computing the final exponentiation by [FCKRH11; HHT20].

3.2.1 Cyclotomic polynomial

This subsection introduces cyclotomic polynomials which play an important role in the

final exponentiation. Before providing the description, Euler’s totient function is defined

as follows:

Definition 3.1. (Euler’s totient function) For any positive integer n, Euler’s totient

function ϕ is given as follows:

ϕ(n) = #{i ∈ 1, 2, . . . , n− 1 : gcd(i, n) = 1}. (3.1)

Definition 3.2. (Cyclotomic polynomial) For any positive integer n, the n-th cyclotomic

polynomial is defined by

Φn(x) =
∏

1≤i≤n
gcd(i,n)=1

(x− e2πik/n). (3.2)

When enumerating the cyclotomic polynomials from the smallest order n, we have the

following.

Φ1(x) = x− 1, Φ2(x) = x+ 1,

Φ3(x) = x3 + x+ 1, Φ4(x) = x2 + 1,

Φ5(x) = x4 + x3 + x2 + x+ 1, Φ6(x) = x2 − x+ 1, . . .

As seen above, the cyclotomic polynomial can be defined by a polynomial with one

variable and integer coefficients that is the minimal polynomial over the field of the ra-

tional numbers of a primitive n-th root of unity. The degree of Φn is given by ϕ(n). A
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fundamental relation involving cyclotomic polynomials is∏
i|n

Φi(x) = xn − 1. (3.3)

The following shows a new concept of homogeneous cyclotomic polynomial built from

the cyclotomic polynomial, which is introduced in [HHT20] and is used for the final

exponentiation technique.

Definition 3.3. (Homogeneous cyclotomic polynomial) For any positive integer n, the

n-th homogeneous cyclotomic polynomial is defined as follows:

Ψn(x, y) =

{
Φn(x/y)y

ϕ(n) if n > 1,

1 if n = 1.
(3.4)

When enumerating the homogeneous cyclotomic polynomials from the smallest order

n, we have the following.

Ψ1(x, y) = 1, Ψ2(x, y) = x+ y,

Ψ3(x, y) = x2 + yx+ y2, Ψ4(x, y) = x2 + y2,

Ψ5(x, y) = x4 + x3y + x2y2 + xy3 + y4, Ψ6(x, y) = x2 − xy + y2, . . .

The homogeneous cyclotomic polynomial can also be defined by a polynomial with two

variables and integer coefficients. For n > 2, a fundamental relation involving cyclotomic

polynomials is given as follows:

∏
i|n

Ψi(x, y) =
n−1∑
j=0

xn−1−jyj. (3.5)

3.2.2 Decomposition of the final exponentiation

The pairings such that the reduced Tate pairing and its variants are typically computed

by two steps, i.e., the Miller loop and final exponentiation. The final exponentiation step

is given as a powering (qk− 1)/r in the finite field of order qk. For easy description, let us

assume that q is not a power of a prime p but p, which is adopted for many cases of the

settings of the pairings. To achieve fast computation, the exponent is typically broken

into two parts as follows [KM05]:

pk − 1

r
=

(
pk − 1

Φk(p)

)
·
(
Φk(p)

r

)
. (3.6)
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Then, the final exponentiation is performed as follows:

F∗
pk → GΦk(p) → µr,

f0 7→ f1 = f
pk−1
Φk(p)

0 7→ f
Φk(p)

r
1 , (3.7)

where GΦk(p) and µr is a multiplicative subgroup of F∗
pk

of order Φk(p) and r, respectively.

Note that GΦk(p) is especially called a cyclotomic subgroup. The first part can be denoted

as (pk − 1)/Φk(p) =
∑

i cipi with a small integer ci. Since the computation is clearly

inexpensive by using the Frobenius endomorphisms, the first part is called the easy part.

However, the second part, i.e, d = Φk(p)/r, is more difficult to compute than the easy

part and is called the hard part. The usual continuation is to express d to the base p;

This is because the p-th powering in Fpk is computed by the Frobenius endomorphism.

Indeed, let us denote d as d = d0 + d1p + · · · + dk′−1p
k′−1 where k′ = ϕ(k) and di for

0 ≤ i ≤ k′−1 are integers such that 0 ≤ di < p. Assuming f is an element after raising to

the power of the easy part, the hard part fd of the final exponentiation can be computed

as fd = fd0 · (fd1)p · · · · · (fdk′−1)p
k′−1

. Then, one can construct a multi-exponentiation

algorithm for computing fd0 , fd1 , . . ., fdk′−1 .

Since we can work on GΦk(p) after raising to the easy part, several efficient operations,

which are called cyclotomic operations, can be used during the hard part computation.

It is trivial that there is an efficient inversion for any case of k. For curves with even

k, several efficient arithmetic operations are also available GΦk(p) as described in [SL02;

GS10; Kar13]. It is also mentioned that there is an efficient cubing for curves with k

of multiple of 3 in [GS10]. Since there is no explicit formula of this cubing, the author

provides that in App. A.

3.2.3 Related works for constructing the algorithm

For families of pairing-friendly elliptic curves that have polynomial parameters p(x), r(x),

and t(x) in Q[x], there are several construction methods of the algorithms for computing

the hard part of the final exponentiation [Sco+09; FCKRH11; ZL12; HHT20]. A curve

in a family is specified by finding an integer z making p(z) and r(z) being primes and

t(z) being an integer. Thus, it is possible to consider the polynomials p(z), r(z), and t(z)

with the integer variable z. Then, the hard part can be expressed by a polynomial d(z) =

Φk(p(z))/r(z) = d0(z) + d1(z)p(z) + · · · + dk′−1(z)p(z)
k′−1 where di(z) for 0 ≤ i ≤ k′ − 1

are polynomials of degree 0 ≤ deg di < deg p. This subsection describes the two state-of-

the-art methods given by Fuentes et al. in [FCKRH11] and Hayashida et al. in [HHT20],

which are referred to as the lattice-based method and generalized method, respectively.
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The lattice-based method

In [Sco+09], Scott et al. proposed to construct the algorithm by using an addition-

chain method for the integer coefficients of d0(z), d1(z), . . . , dk′−1(z). Although Scott

et al. straightforwardly decompose d(z), it is also possible to use a multiple d′(z) of d(z)

such that r(z) ∤ d′(z) instead of d(z) for the hard part since this change does not affect to

the non-degenerate and bilinear of the pairings. In [FCKRH11], Fuentes et al. focused on

this fact and presented a lattice-based method for determining d′(z) such that f 7→ fd′(z)

can be computed at least as efficiently as f 7→ fd(z) applied [Sco+09].

In this context, an efficient d′(z) can be found by constructing a rational matrix M ′

with dimensions k′ × (k′ deg p(z)) with k′ = ϕ(k) given as follows:
d(z)

xd(z)
...

xk
′−1d(z)

 =M ′




1

p(z)
...

p(z)k
′−1

⊗


1

z
...

zdeg p−1


 , (3.8)

where ⊗ is a Kronecker product. Note that a i-th row and j-th column of M ′ consists

of integer coefficients of zip(z)j with the basis {1, z, . . . , zdeg p−1}×{1, p(z), . . . , p(z)k′−1}.
Then, let us consider the integer matrix M constructed from M ′ as the unique matrix

whose rows are multiples of the rows ofM ′ such that the entries ofM are integers, and the

greatest common divisor of the set of entries is 1. Applying the LLL algorithm [LLL82] to

M , a matrix with small entries can be obtained. Then, small integer linear combinations

of the basis elements of the matrix are examined with the hope of finding attractive d′(z).

As an example, the author refers to the application of the lattice-based method to the

BN family of pairing-friendly elliptic curves with k = 12 in [FCKRH11] and describes the

details of the derivation.

Example 3.4. (The hard part of the BN curves with k = 12) The BN family of curves

has the following parameters.
p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

t(x) = 6x2 + 1.

(3.9)

For an integer z making p(z) and r(z) being primes and t(z) be an integer, the exponent

of the final exponentiation is expressed as follows:

p(z)12 − 1

r(z)
=
(
(p(z)6 − 1) · (p(z)2 + 1)

)
· p(z)

4 − p(z)2 + 1

r(z)
, (3.10)

where d(z) = (p(z)4 − p(z)2 + 1)/r(z) is the hard part. In order to derive one of the best
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multiple d′(z) of d(z), let us construct a matrix M such that
d(z)

xd(z)

6x2d(z)

6x3d(z)

 =M




1

p(z)

p(z)2

p(z)3

⊗

1

z

z2

z3


 . (3.11)

Note that one can choose 6z2d(z) and 6z3d(z) which are the smallest multiples of z2d(z)

and z3d(z) that do not involve the denominators, respectively. Indeed, M is represented

as follows:

M =


−2 −18 −30 −36 1 −12 −18 −36 1 0 6 0 1 0 0 0

1 4 6 6 0 7 12 18 −1 1 0 6 0 1 0 0

−1 0 0 0 −2 −18 −30 −36 2 −12 −18 −36 1 0 6 0

0 −1 0 0 1 4 6 6 0 8 12 18 −1 1 0 6

 .

Applying the LLL algorithm to M , we have

LLL(M) =


1 −3 −6 −12 0 2 6 6 −1 0 0 6 1 5 6 6

0 −2 −6 −6 0 3 6 6 −1 −5 −6 −6 1 −3 −6 −12
1 0 0 −6 −1 −5 −6 −6 0 −3 −6 −6 1 7 12 12

1 7 12 12 −1 0 0 6 0 −2 −6 −6 0 3 6 6

 .

When considering the linear combinations of the i-th row of LLL(M), there is one of the

simplest sequences given as follows:(
1 −3 −6 −12 0 2 6 6 −1 0 0 6 1 5 6 6

)
−
(
0 −2 −6 −6 0 3 6 6 −1 −5 −6 −6 1 −3 −6 −12

)
−
(
1 0 0 −6 −1 −5 −6 −6 0 −3 −6 −6 1 7 12 12

)
+
(
1 7 12 12 −1 0 0 6 0 −2 −6 −6 0 3 6 6

)
=
(
1 6 12 12 0 4 6 12 0 6 6 12 −1 4 6 12

)
.

This corresponds to the multiple d′(z) = (12z3 + 6z2 + 2z) · d(z) = d′0(z) + d′1(z)p(z) +

d′2(z)p(z)
2 + d′3(z)p(z)

3 where d′i(z) for 0 ≤ i ≤ 3 are the following polynomials.

d′0(z) = 12z3 + 12z2 + 6z + 1, (3.12a)

d′1(z) = 12z3 + 6z2 + 4z, (3.12b)

d′2(z) = 12z3 + 6z2 + 6z, (3.12c)

d′3(z) = 12z3 + 6z2 + 4z − 1. (3.12d)
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Then, the polynomials verify the relation such that

d′2(z) = 12z3 + 6z2 + 6z, d′1(z) = d′2(z)− 2z,

d′3(z) = d′1(z)− 1, d′0(z) = d′2(z) + 6z2 + 1.

Let f be an element in GΦ12(p(z)) after computing the easy part. Then, the hard part

can be computed by fd′(z) = µ0 · µp(z)
1 · µp(z)2

2 · µp(z)3

3 where µi = fd′i(z) for 0 ≤ i ≤ 3 are

computed by the following sequence of operations.

t0 = f z, t1 = t20, t2 = t31, t3 = tz2, t4 = t23, t5 = tz4,

µ2 = t5 · t3 · t2, µ1 = µ2 · t−1
1 , µ3 = µ1 · f−1, µ0 = µ2 · t3 · f. (3.13)

where ti for 0 ≤ i ≤ 5 are variables. Then, the hard part requires 3 exponentiations

by z, 9 multiplications, 2 cyclotomic squarings, 1 p(z), p(z)2, p(z)3-th power Frobenius

endomorphisms in Fp(z)12 , 1 cyclotomic cubing, and 2 cyclotomic inversion in GΦ12(p(z)),

i.e., 3uz12 + 9m12 + 2sc12 + cc12 + 2ic12 + f 1
12 + f 2

12 + f 3
12.

It is considered that the lattice-based method can produce one of the most efficient

algorithms for the majority of families of curves. However, as seen in the example, the

method involves several heuristic processes and requires complicated works for each family

of curves.

The generalized method

The hard part can also be decomposed by using the relation between p(x) and r(x) as

Zhang et al. used for the BLS curves with k = 27 in [ZL12]. As the latest work, in [HHT20],

Hayashida et al. generalized Zhang et al.’s method and provided a fixed expansion of the

hard part for any families of curves. The heart of their method is the fact that one can

express p(x), r(x), and t(x) in Q[x] parameterizing a family of pairing-friendly elliptic

curves by the following form of the polynomials:
p(x) = h1(z) · r(z) + T (z),

r(x) = Φk(T (z))/h2(z),

t(x) = T (x) + 1,

(3.14)

where T (x), h1(x), and h2(x) are certain polynomials in Q[x]. When taking an integer

z making p(z) and r(z) being primes, the hard part d(z) = Φk(p(z))/r(z) of the final

exponentiation can be automatically written by a polynomial in base p(z) by using T (z),

h1(z), and h2(z) as follows:
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Theorem 3.5. Let k′ = ϕ(k) and let ci for 0 ≤ i ≤ k′ be integers such that Φk(X) =∑k′

i=0 ciX
i. Then,

d(z) = h1(z)

(
k′−1∑
i=0

λi(z)p(z)
i

)
+ h2(z), (3.15)

where λk′−1(z) = ck′ and λi(z) = T (z)λi+1(z) + ci+1 for 0 ≤ i < k′ − 1.

Although the hard part is typically decomposed by using a one-variable polynomial,

they also proposed to factorize the hard part as a two-variable polynomial. The factor-

ization can be obtained by using homogeneous cyclotomic polynomials.

Theorem 3.6. For any positive integers m and n, the following is true.

1. If k = 2m,

d(z) = h1(z)

∏
i| k

2

Ψi(T (z), p(z)))

+ h2(z). (3.16)

2. If k = 3n,

d(z) = h1(z)

∏
i| k

3

Ψi(T (z), p(z)))

 (T (z)
k
3 + p(z)

k
3 + 1) + h2(z). (3.17)

3. If k = 2m · 3n,

d(z) = h1(z)

∏
i| k

6

Ψi(T (z), p(z)))

 (T (z)
k
6 + p(z)

k
6 + 1) + h2(z). (3.18)

As an example, we refer to the application of Theorems 3.5 and 3.6 to the BLS family

of pairing-friendly elliptic curves with k = 12 in [HHT20].

Example 3.7. (The hard part of the BLS curves with k = 12) The BLS family of curves

with k = 12 has the parameterization
p(x) = 1

3
(x− 1)2 · r(x) + x,

r(x) = Φ12(x) = x4 − x2 + 1,

t(x) = x+ 1.

(3.19)

Then, we have h1(x) = 1
3
(x − 1)2, h2(x) = 1, and T (x) = x. For an integer z making

p(z) and r(z) being primes, the exponent of the final exponentiation is given by the same

equation as Eq. (3.10), where d(z) = (p(z)4 − p(z)2 + 1)/r(z) is the hard part.
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Applying Theorem 3.5, it is obtained that d(z) = 1
3
(z−1)2(

∑3
i=0 λi(z)p(z)

i)+1 where

λ3(z) = 1, λ2(z) = zλ3(z), λ1(z) = zλ2(z)− λ3(z), and λ0(z) = zλ1(z) + 1. When taking

the smallest multiple d′(z) = 3d(z) and assuming d′(z) = d′0(z)+ d
′
1(z)p(z)+ d

′
2(z)p(z)

2+

d′3(z)p(z)
3, there are following relations between the coefficients.

d′3(z) = (z − 1)2, d′2(z) = zd′3(z),

d′1(z) = zd′2(z)− d′3(z), d′0(z) = zd′1(z) + 3.

Assuming f is an element in GΦ12(p(z)) after computing the easy part, the hard part can be

computed by fd′(z) = µ0 · µp(z)
1 · µp(z)2

2 · µp(z)3

3 where µi = fd′i(z) for 0 ≤ i ≤ 3 are computed

by the following sequence of operations.

µ3 = (f z−1)z−1, µ2 = µz
3, µ1 = µz

2 · µ−1
3 , µ0 = µz

1 · f 3. (3.20)

Then, the hard part requires 2 exponentiations by (z−1), 3 exponentiation by z, 5 multi-

plications, 1 p(z), p(z)2, p(z)3-th power Frobenius endomorphism in Fp(z)12 , 1 cyclotomic

cubing, and 1 cyclotomic inversion in GΦ12(p(z)), i.e., 2u
z−1
12 + 3uz12 + 5m12 + cc12 + ic12 +

f 1
12 + f 2

12 + f 3
12.

On the other hand, applying Theorem 3.6, it is obtained that d(z) = 1
3
(z − 1)2 · (z +

p(z)) · (z2 + p(z)2 − 1) + 1. When taking the smallest multiple d′(z) = 3d(z), the hard

part µ = fd′(z) can be computed by

t0 = (f z−1)z−1, t1 = tz0 · t
p(z)
0 , t2 = (tz1)

z · tp(z)
2

1 · t−1
1 , µ = t2 · f 3, (3.21)

where ti for 0 ≤ i ≤ 2 are variables. Then, the hard part takes 2 exponentiations

by (z − 1), 3 exponentiation by z, 4 multiplications, 1 p(z), p(z)2-th power Frobenius

endomorphism in Fp(z)12 , 1 cyclotomic cubing, and 1 cyclotomic inversion in GΦ12(p(z)) i.e.,

2uz−1
12 +3uz12+4m12+cc12+ ic12+f

1
12+f

2
12. If 2 | z, the following modification is available.

t0 = f 2, t1 = tz0, t2 = tw0 , t1 = t2 · t−1
1 · f,

t1 = tz0 · t
p(z)
0 , t2 = (tz1)

z · tp(z)
2

1 · t−1
1 , µ = t2 · t0 · f. (3.22)

where w = z/2. This hard part takes 4 exponentiations by z, 1 exponentiation by w, 7

multiplications, 1 p(z), p(z)2-th power Frobenius endomorphism in Fp(z)12 , 1 cyclotomic

squaring, and 2 cyclotomic inversions in GΦ12(p(z)), i.e., 4u
z
12 + uw12 + 7m12 + sc12 + 2ic12 +

f 1
12 + f 2

12.

Unlike the lattice-based method, the generalized method does not require complicated

works for constructing an algorithm. In fact, assuming s is the smallest integer making

sh1(z) and sh2(z) to be integers, an algorithm for computing the hard part f → f sd(z)
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Algorithm 3.1: Hard part computation [HHT20].

Input: h1(z), h2(z), T (z), k
′, ci for 0 ≤ i ≤ k′, and s, f ∈ GΦk(p(z))

Output: f sd(z) ∈ µr(z)

1 t← f sh2(z), u← f sh1(z); //INIT

2 vn−1 = uck′ ; //EVAL INIT

3 for i = k′ − 2 downto 0 do

4 vi ← v
T (z)
i+1 · uci+1 ; //EVAL

5 endfor
6 w ← v0 · t; //PROD INIT

7 for i = 1 to k′ − 1 do

8 w ← w · vp(z)
i

i ; //PROD

9 endfor

return w = f sd(z);

is constructed for any family of curves as seen in Algorithm 3.1. Moreover, especially

for the families of curves with deg t = 1, e.g., the BLS family, the generalized method

might provide more efficient algorithms for computing the hard part than the lattice-

based method. However, for the families of curves with deg t > 1, it is considered that the

lattice-based method still provides an efficient algorithm than the generalized method.

3.3 Improvement of the final exponentiation for the

BLS curves with k = 15

This section proposes a new decomposition of the hard part of the final exponentiation

for the BLS curves with k = 15. This section also compares the operation counts of the

final exponentiation for the pairing at the 128-bit security level with the previous work.

The proposed decomposition is also generalized for the BLS curves with any k.

3.3.1 BLS family of pairing-friendly curves with k = 15

Let us recall the parameterizations p(x), r(x), and t(x) in Q[x] of the BLS family of

pairing-friendly elliptic curves with the CM discriminant D = 3 and embedding degree

k of a composite number generated by 2m, 3n, and lo where m,n, o are positive integers

l > 3 is a prime [BLS02]:

• k = 2m · 3 
p(x) = 1

3
(x− 1)2 · r(x) + x,

r(x) = Φk(x),

t(x) = x+ 1.

(3.23)
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• k = 3n 
p(x) = (x− 1)2 · r(x) + x,

r(x) = 1
3
Φk(x),

t(x) = x+ 1.

(3.24)

• k = 3n · lo 
p(x) = 1

3
(x− 1)2 · Φ3n(x

lo−1
) · r(x) + x,

r(x) = Φk(x),

t(x) = x+ 1.

(3.25)

• k = 2m · 3n · lo 
p(x) = 1

3
(x− 1)2 · Φ2m·3(x

3n−1lo−1
) · r(x) + x,

r(x) = Φk(x),

t(x) = x+ 1.

(3.26)

This section mainly focuses on the BLS family of curves with k = 15, D = 3, and

ρ = 1.5 having the following parameters.
p(x) = 1

3
(x− 1)2 · (x2 + x+ 1) · Φ15(x) + x,

r(x) = Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1,

t(x) = x+ 1.

(3.27)

The above parameterization is also found by Duan et al. in [DCC05]. For constructing

the curve, we need to find an integer z making p(z) and r(z) being primes. One can find

z by applying the restriction z ≡ 1 (mod 3).

3.3.2 Previous final exponentiation

In [FMP20], Fouotsa et al. proposed to decompose the exponent as follows:

p(z)15 − 1

r(z)
=
(
p(z)5 − 1

)
·
(
Φ3(p(z)

5)

r(z)

)
. (3.28)

Note that they dared to use the above decomposition, however, the exponent is typically

decomposed as shown in Eq. (3.6). The first and second parts are referred to as the easy

and hard parts, respectively.

For the hard part d̃(z) = Φ3(p(z)
5)/r(z), they found one of the best multiple d̃′(z) of

d̃(z) by the lattice-based method [FCKRH11]. In the context, they found d̃′(z) = 3z3 ·d̃(z)
which is represented as a polynomial in base p(z) given as d̃′(z) = d̃′0(z) + d̃′1(z)p(z) +
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· · ·+ d̃′9(z)p(z)
9 where d̃′i(z) for 0 ≤ i ≤ 9 are polynomials given as follows:

d̃′0(z) = −z6 + z5 + z3 − z2,
d̃′1(z) = −z5 + z4 + z2 − z,
d̃′2(z) = −z4 + z3 + z − 1,

d̃′3(z) = z11 − 2z10 + z9 + z6 − 2z5 + z4 − z3 + z2 + z + 2,

d̃′4(z) = z11 − z10 − z9 + z8 + z6 − z5 − z4 + z3 − z2 + 2z + 2,

d̃′5(z) = z11 − z10 − z8 + z7 + 3,

d̃′6(z) = z10 − z9 − z7 + z6,

d̃′7(z) = z9 − z8 − z6 + z5,

d̃′8(z) = z8 − z7 − z5 + z4,

d̃′9(z) = z7 − z6 − z4 + z3.

(3.29)

These polynomials verify the following relations.

d̃′2(z) = −(z − 1)2 · (z2 + z + 1), d̃′1(z) = zd̃′2(z),

d̃′0(z) = zd̃′1(z), d̃′9(z) = −zd̃′0(z),
d̃′8(z) = zd̃′9(z), d̃′7(z) = zd̃′8(z),

d̃′6(z) = zd̃′7(z), d̃′5(z) = zd̃′6(z) + 3,

d̃′4(z) = v(z)− (d̃′1(z) + d̃′7(z)), d̃′3(z) = v(z)− (d̃′0(z) + d̃′6(z) + d̃′9(z)),

where v(z) = d̃′2(z) + d̃′5(z) + d̃′8(z).

For an element f̃ in GΦ3(p(z)5) after raising to the power of the easy part (p(z)5 − 1),

the exponentiation by the hard part f̃ 7→ f̃ d̃′(z) is given by f̃ d̃′(z) = µ0 ·µp(z)
1 ·µp(z)2

2 ·µp(z)3

3 ·
µ
p(z)4

4 · µp(z)5

5 · µp(z)6

6 · µp(z)7

7 · µp(z)8

8 · µp(z)9

9 where µi = f̃ d̃′i(z) for 0 ≤ i ≤ 9 are computed by

the following sequence of operations.

t0 = (f̃ z−1)z−1, t1 = tz0, t2 = tz1, µ2 = (t0 · t1 · t2)−1,

µ1 = µz
2, µ0 = µz

1, µ9 = (µz
0)

−1, µ8 = µz
9,

µ7 = µz
8, µ6 = µz

7, µ5 = µz
6 · f̃ 3, t3 = µ2 · µ5 · µ8,

µ4 = t3 · (µ1 · µ7)
−1, µ3 = t3 · (µ0 · µ6 · µ9)

−1, (3.30)

where ti for 0 ≤ i ≤ 3 are variables.

Applying the above method, the calculation cost of powering the easy part is 1 p(z)5-

Frobenius endomorphism, 1 inversion, and 1 multiplication in Fp(z)15 . Besides, the calcula-

tion cost of powering the hard part is 2 exponentiations by (z−1), 9 exponentiations by z,

19 multiplications, 1 p(z), p(z)2, p(z)3, p(z)4, p(z)5, p(z)6, p(z)7, p(z)8, p(z)9-Frobenius en-

domorphisms in Fp(z)15 , 1 cubing and 4 inversions in GΦ3(p(z)5). Thus, the calculation cost

of the final exponentiation is given by 2uz−1
15 +9uz15+20m15+cc15+4ic15+i15+

∑9
i=0 f

i
15+f

5
15.
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3.3.3 Proposed final exponentiation

Unlike Fouotsa et al.’s method [FMP20], the author decomposes the exponent according

to Eq. (3.6) as follows:

p(z)15 − 1

r
=
(
(p(z)5 − 1) · (p(z)2 + p(z) + 1)

)
·
(
Φ15(p(z))

r(z)

)
, (3.31)

where the first and second parts are easy and hard parts of the final exponentiation,

respectively. With the above decomposition, the author proposes to represent a multiple

of d(z) = Φ15(p(z))/r(z) as a polynomial in base p(z) which are derived by the following

process.

Let us define an extra parameter m(z) such that

m(z) = 1
3
(z − 1)2 · (z2 + z + 1). (3.32)

Then, p(z) is denoted by p(z) = m(z) · r(z) + z and the hard part d(z) is represented as

a polynomial in base r(z) such that d(z) = Φ15(m(z) · r(z) + z)/r(z). Since the constant

term of numerator of d(z) in base r(z) is Φ15(z) = r(z), the denominator of d(z) is easily

canceled. Then, the polynomial d(z) in base r(z) can be converted to a polynomial in

base p(z) by replacing r with (p(z) − z)/m(z) in a straightforward way. Note that in

[ZL12], Zhang et al. also expanded the polynomial of the hard part for the BLS curves

with k = 27 by using the property of p(z) = m(z) · r(z) + z which leads to a recursion

relation p(z)i+1 = m(z) · r(z) · p(z)i + zp(z)i where i is a positive integer.

As a result, it is found that d(z) = d0(z)+ d1(z)p(z)+ · · ·+ d7(z)p(z)
7 where di(z) for

0 ≤ i ≤ 7 are polynomials given as follows:

d0(z) = m(z) · (z7 − z6 + z4 − z3 + z2 − 1) + 1,

d1(z) = m(z) · (z6 − z5 + z3 − z2 + z),

d2(z) = m(z) · (z5 − z4 + z2 − z + 1),

d3(z) = m(z) · (z4 − z3 + z − 1),

d4(z) = m(z) · (z3 − z2 + 1),

d5(z) = m(z) · (z2 − z),
d6(z) = m(z) · (z − 1),

d7(z) = m(z).

(3.33)

Then, it is observed that the above polynomials already have the following simple relations

before applying the lattice-based method [FCKRH11].

d7(z) = m(z), d6(z) = (z − 1) · d7(z),
d5(z) = zd6(z), d4(z) = zd5(z) + d7(z),
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d3(z) = zd4(z)− d7(z), d2(z) = zd3(z) + d7(z),

d1(z) = zd2(z), d0(z) = zd1(z)− d7(z) + 1,

which implies that the relations can provide one of the efficient computations for the

final exponentiation. Indeed, since there exists a denominator 3 of d7(z) = m(z) =
1
3
(z − 1)2 · (z2 + z + 1) which leads to a cube root computation, the author proposes to

use a minimum multiple d′(z) = 3d(z) for a practical final exponentiation. Assuming

d′(z) = d′0(z) + d′1(z)p(z) + · · · + d′7(z)p(z)
7 where d′i(z) = 3di(z) for 0 ≤ i ≤ 7, the

polynomials clearly verify the following simpler relations than that of the previous method

[FMP20].

d′7(z) = (z − 1)2 · (z2 + z + 1), d′6(z) = (z − 1) · d′7(z),
d′5(z) = zd′6(z), d′4(z) = zd′5(z) + d′7(z),

d′3(z) = zd′4(z)− d′7(z), d′2(z) = zd′3(z) + d′7(z),

d′1(z) = zd′2(z), d′0(z) = zd′1(z)− d′7(z) + 3.

Note that above decomposition is the exactly same as the current state-of-the-art given

by Theorem 3.5 by [HHT20].

For an element f in GΦ15(p(z)) after raising to the power of the easy part given as

(p(z)5−1) · (p(z)2+p(z)+1), the exponentiation by the hard part f 7→ fd′(z) is computed

as fd′(z) = ν0 · νp(z)1 · νp(z)
2

2 · νp(z)
3

3 · νp(z)
4

4 · νp(z)
5

5 · νp(z)
6

6 · νp(z)
7

7 where νi = fd′i(z) for 0 ≤ i ≤ 7

are computed by the following sequence of operations.

t0 = (f z−1)z−1, t1 = tz0, t2 = tz1, ν7 = t0 · t1 · t2,
ν6 = νz−1

7 , ν5 = νz6 , ν4 = νz5 · ν7, t3 = ν−1
7 , ν3 = νz4 · t3

ν2 = νz3 · ν7, ν1 = νz2 , ν0 = νz1 · t3 · f 3, (3.34)

where ti for 0 ≤ i ≤ 3 are variables.

As a result, the calculation cost of powering the easy part is 1 p(z), p(z)2, p(z)5-

Frobenius endomorphisms, 1 inversion, and 3 multiplications in Fp(z)15 . The calculation

cost of powering the hard part is 3 exponentiations by (z− 1), 8 exponentiations by z, 14

multiplications, 1 p(z), p(z)2, p(z)3, p(z)4, p(z)5, p(z)6, p(z)7-Frobenius endomorphisms

in Fp(z)15 , and 1 cubing and 1 inversion in GΦ15(p(z)) ⊂ GΦ3(p(z)5). Thus, the calculation

cost of the final exponentiation is given by 3uz−1
15 + 8uz15 + 17m15 + cc15 + ic15 + i15 +∑7

i=0 f
i
15 + f 1

15 + f 2
15 + f 5

15. Comparing the previous and proposed methods, the proposed

method results in reducing uz−1
15 + 3m15 + 3ic15 + f 8

15 + f 9
15 and increasing uz15 + f 1

15 + f 2
15.
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Table 3.1: The number of operations in Fp(z)15 for computing single final exponentiation
of the pairing at the 128-bit security level.

Method m15 s15 i15 cc15 ic15
Frobenius end.

p p2 p3 p4 p5 p6 p7 p8 p9

Fouotsa et al. [FMP20] 55 341 1 1 6 1 1 1 1 2 1 1 1 1
This work 53 341 1 1 4 2 2 1 1 2 1 1 0 0

Table 3.2: The calculation cost of arithmetic operations in Fp(z)15 .

m15 s15 i15 cc15 ic15 f i
15

78m1 78m1 229m1 117m1 78m1 14m1

Table 3.3: The number of operations in Fp(z) for computing single final exponentiation of
the pairing at the 128-bit security level.

Methods Calculation costs
Fouotsa et al. [FMP20] 31842m1

This work 31530m1

3.3.4 Calculation cost estimations

The author estimates the calculation costs of the previous and proposed final exponenti-

ations of the pairings on the BLS with k = 15 at the 128-bit security level. In [FMP20],

Fouotsa et al. provided an integer seed z for the pairings on the BLS curves with k = 15

at the 128-bit security level given as follows:

z = 231 + 219 + 25 + 22. (3.35)

The above parameter can generate primes p(z) and r(z) with 383-bit and 249-bit lengths,

which is closed to the 256-bit as required to have 128-bit security on elliptic curves.

With the square-and-multiply algorithm, the exponentiation by z in Fp(z)15 takes uz15 =

3m15+31s15. The exponentiation by (z−1) in Fp(z)15 also takes u
z−1
15 = 4m15+31s15+ic15.

Substituting the calculation costs of uz15 and uz−1
15 , the number of operations in Fp(z)15

for the previous and proposed final exponentiations are obtained as in Table 3.1. Com-

paring the costs, the proposed method results in reducing 2m15+2ic15+f
8
15+f

9
15 from the

previous cost of the final exponentiation. Although the proposal also results in increasing

f 1
15 + f 2

15, the reduced calculation costs are still larger than the increased ones.

The calculation costs for the arithmetic operations in Fp15 are denoted by the calcu-

lation cost m1 of multiplication in Fp(z) as in Table 3.2, which is derived by referring to

[GMT20]. Replacing the costs of operations in Fp(z)k with that of Fp(z), the costs of the

proposed and previous final exponentiations are denoted as in Table 3.3. This indicates

that the proposed method results in reducing 312m1 from the previous ones. Thus, it is
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concluded that the proposed method is clearly more effective than the previous method

by Fouotsa et al. in [FMP20].

3.3.5 Generalization for any k

The author briefly describes the generalization of the proposed method of the BLS curve

with k = 15 for the BLS curves with any k. It is observed that one can find a polynomial

m(z) such that p(z) by p(z) = m(z) · r(z) + z for the case of any k. Indeed, m(z) and

r(z) are given as follows:

• k = 2m · 3 {
m(z) = 1

3
(z − 1)2,

r(z) = Φk(z).
(3.36)

• k = 3n {
m(z) = (z − 1)2,

r(z) = 1
3
Φk(z).

(3.37)

• k = 3n · lo {
m(z) = 1

3
(z − 1)2 · Φ3n(z

lo−1
),

r(z) = Φk(z).
(3.38)

• k = 2m · 3n · lo {
m(z) = 1

3
(z − 1)2 · Φ2m·3(z

3n−1lo−1
),

r(z) = Φk(z).
(3.39)

Thus, the derivation of the decomposition of the hard part d(z) = Φk(p(z))/r(z) of the

final exponentiation for the case of k = 15 described in Sect. 3.3.2 can be extended for

the case of any k.

Theorem 3.8. Let k′ = ϕ(k) and let ci for 0 ≤ i ≤ k′ be integers such that Φk(X) =∑k′

i=0 ciX
i. Then, the polynomials di(z) for 0 ≤ i ≤ k′−1 such that d(z) =

∑k′−1
i=0 di(z)p(z)

i

are generated by Algorithm 3.2.

Before providing proof of Theorem 3.8, the following lemma is provided.

Lemma 3.9. Let m′(z) be any polynomial and let p(z) be a polynomial such that p(z) =

m′(z) · Φk(z) + z. Let µi(z) for 0 ≤ i ≤ k′ − 1 be polynomials defined as follows:

µk′−1(z) = ck′m
′(z),
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Algorithm 3.2: Generation of the coefficients of the hard part in base p for the
BLS curves with any k.

Input: k, k′, ci for 0 ≤ i ≤ k′, m(z)
Output: di(z) for 0 ≤ i ≤ k′ − 1

1 dk′−1(z)← ck′m(z);
2 For i from k′ − 2 downto 0 do
3 di(z)← zdi+1(z) + ci+1m(z);
4 endfor
5 If k = 3n then
6 d0(z)← d0(z) + 3c0;
7 else
8 d0(z)← d0(z) + c0;
9 endif
return di(z) for 0 ≤ i ≤ k′ − 1

µk′−2(z) = zµk′−1(z) + ck′−1m
′(z),

µk′−3(z) = zµk′−2(z) + ck′−2m
′(z),

...

µ1(z) = zµ2(z) + c2m
′(z),

µ0(z) = zµ1(z) + c1m
′(z) + c0.

Then, the following is true.

Φk(p(z))

Φk(z)
=

k′−1∑
i=0

µi(z)p(z)
i. (3.40)

Proof of Lemma 3.9. Let α be one of roots of Φk(z). Then, since Φk(α) = 0, we have

Φk(p(α)) = Φk(m(α) · Φk(α) + α) = Φk(α) = 0. (3.41)

This means that Φk(p(z)) has a factor Φk(z) and thus there exits a polynomial Φk(p(z))/Φk(z).

Since deg(Φk(p(z))/Φk(z)) = deg(Φk(p(z)))−deg(Φk(z)) = k′(deg p−1), one can find νi(z)

for 0 ≤ i ≤ k′−1 of degree deg νi = deg p−1 such that Φk(p(z))/Φk(z) =
∑k′−1

i=0 νi(z)p(z)
i.

From the definition of p(z), we have Φk(z) = (p(z)− z)/m′(z), the above equation can be

modified as follows:

m′(z) · Φk(p(z)) = (p(z)− z) ·
k′−1∑
i=0

νi(z)p(z)
i. (3.42)
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Expanding the left and right sides of the equation, we have

m′(z) · (ck′p(z)k
′
+ ck′−1p(z)

k′−1 + · · ·+ c1p(z) + c0)

=νk′−1(z)p(z)
k′

+ (νk′−2(z)− zνk′−1(z))p(z)
k′−1

+ (νk′−3(z)− zνk′−2(z))p(z)
k′−2

+ · · ·
+ (ν1(z)− zν2(z))p(z)2

+ (ν0(z)− zν1(z))p(z)
− zν0(z). (3.43)

The equation is regarded as a polynomial in base p(z) and the coefficients of p(z)i are

compared for 2 ≤ i ≤ k′. Then, one can determine the polynomials νi(z) for 0 ≤ i ≤ k′ − 1

as follows:

νk′−1(z) = ck′m
′(z),

νk′−2(z) = zνk′−1 + ck′−1m
′(z) from νk′−2(z)− zνk′−1(z) = ck′−1m

′(z),

νk′−3(z) = zνk′−2 + ck′−2m
′(z) from νk′−3(z)− zνk′−2(z) = ck′−2m

′(z),

...

ν1(z) = ν2(z) + c2m
′(z) from ν1(z)− zν2 = c2m

′(z).

The construction results in the relation ν1(z) = m′(z)·(ck′zk
′−2+ck′−1z

k′−3+· · ·+c3z+c2).
The remaining ν0(z) needs to satisfy m′(z) · (c1p(z)+ c0) = (ν0−ν1)p(z)−ν0z which leads

to ν0(z) = c1ν1(z) + c0. Since νi = µi for 0 ≤ i ≤ k′ − 1, the lemma is true. □

Proof of Theorem 3.8. If k 6= 3n, r(z) = Φk(z) and p(z) = m(z) · Φk(z) + z. Applica-

tion of Lemma 3.9 straightforwardly leads to d(z) = Φk(p(z))/Φk(z) =
∑k′−1

i=0 µi(z)p(z)
i,

which indicates di(z) = µi(z) for 0 ≤ i ≤ k′ − 1. On the other hand, if k = 3n,

r(z) = 1
3
Φk(z) and p(z) = 1

3
m(z) · Φk(z) + z. Application of Lemma 3.9 also indicates

d(z) = 3Φk(p(z))/Φk(z) = 3
∑k′−1

i=0 µi(z)p(z)
i. Since the multiple 3 is canceled by m′(z) =

m(z)/3, this indicates di(z) = µi(z) for 1 ≤ i ≤ k′− 1 and d0(z) = zµ1(z) + c1m(z) + 3c0.

It can be easy confirmed that Algorithm 3.2 generates such di(z) for 0 ≤ i ≤ k′ − 1. □

Note that Theorem 3.8 exactly provides the same of the hard part d(z) = Φk(z)/r(z)

as Theorem 3.5 by Hayashida et al. in [HHT20]. For the case of k = 2m · 3n with any

positive integers m and n, Theorem 3.6 might give rise to a slightly simpler decomposition

than Theorem 3.8.
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3.4 Efficient final exponentiation for the curves re-

sistant to STNFS

This section provides the final exponentiation computations for the families of pairing-

friendly elliptic curves with k = 10, 11, 13, and 14 that are suggested for the STNFS-secure

pairings at the 128-bit security level. Both the lattice-based and generalized methods are

applied for estimations of the calculation costs of the final exponentiation.

3.4.1 Cyclotomic families of pairing-friendly curves with k = 10,

11, 13, and 14

There are five families of pairing-friendly elliptic curves with k = 10, 11, 13, and 14

and which are the cyclotomic families introduced in [FST10] and its variants and are

suggested for the STNFS-secure pairings in [Gui20]. To distinguish the families, the CM

discriminant D and ρ-value are also presented. The following shows the polynomials p(x),

r(x), and t(x) in Q[x] parameterizing the families of curves.

(i) k = 10, D = 15, and ρ = 1.75
p(x) = 1

15
(4x14 + 4x13 + x12 − 12x11 − 12x10 − 7x9 + 11x8

+17x7 + 15x6 − 3x5 − 11x4 + x3 − 2x2 + 3x+ 6),

r(x) = Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1,

t(x) = x3 + 1.

(3.44)

(ii) k = 11, D = 3, and ρ = 1.30
p(x) = 1

3
(x26 + x24 + x22 + x15 − 2x13 + x11 + x4 − 2x2 + 1),

r(x) = Φ33(x) = x20 − x19 + x17 − x16 + x14

−x13 + x11 − x10 + x9 − x7 + x6 − x4 + x3 − x+ 1,

t(x) = −x13 − x2 + 1.

(3.45)

(iii) k = 11, D = 11, and ρ = 1.60
p(x) = 1

11
(x16 + 2x15 + x14 − x12 − 3x11 − x5 + 9x4 − x3 + x+ 3),

r(x) = Φ11(x) = x10 + x9 + x8 + x7

+x6 + x5 + x4 + x3 + x2 + x+ 1,

t(x) = x4 + 1.

(3.46)



3.4. Efficient final exponentiation for the curves resistant to STNFS 85

(iv) k = 13, D = 3, and ρ = 1.17
p(x) = 1

3
(x28 + x27 + x26 + x15 − 2x14 + x13 + x2 − 2x+ 1),

r(x) = Φ39(x) = x24 − x23 + x21 − x20 + x18 − x17 + x15

−x14 + x12 − x10 + x9 − x7 + x6 − x4 + x3 − x+ 1,

t(x) = −x14 − x+ 1.

(3.47)

(v) k = 14, D = 3, and ρ = 1.33
p(x) = 1

3
(x16 + x15 + x14 − x9 + 2x8 − x7 + x2 − 2x+ 1),

r(x) = Φ42(x) = x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1,

t(x) = x8 − x+ 1.

(3.48)

In the following, for corresponding parameterizations, let z be an integer making p(z) and

r(z) being primes.

3.4.2 Final exponentiations by the lattice-based method

The author provides the algorithm for computing the hard part by applying the lattice-

based method [FCKRH11] for the families of curves with k = 10, 11, 13, and 14 described

in the previous section.

(i) The cyclotomic family of curves with k = 10, D = 15, and ρ = 1.75

The exponent of the final exponentiation is expressed by

p(z)10 − 1

r(z)
=
(
(p(z)5 − 1) · (p(z) + 1)

)
·
(
Φ10(p(z))

r(z)

)
, (3.49)

where d(z) = Φ10(p(z))/r(z) = (p(z)4−p(z)3+p(z)2−p(z)+1)/r(z) is the hard part. Let

us refer to the lattice-based method and derive a multiple d′(z) of d(z) by constructing

the matrix M such that 
15d(z)

15zd(z)

15z2d(z)

15z3d(z)

 =M




1

p(z)

p(z)2

p(z)3

⊗


1

z
...

z13


 . (3.50)

As a result of the application the LLL algorithm to M , one of the rows of M indicates

the multiple d′(z) = 15z(z + 1) · d(z) =
∑3

i=0 d
′
i(z)p(z)

i where d′i(z) for 0 ≤ i ≤ 3 are
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Table 3.4: The hard part computation for the cyclotomic family of curves with k = 10,
D = 15, and ρ = 1.75.

Steps Computed Cost
Input: f ∈ GΦ10(p(z))

Output: fd′(z) ∈ µr(z)

t0 ← (((f 2)2)2)2 · f−1 f 15 m10 + 4sc10 + ic10
v0 ← f z−1, v0 ← vz−1

0 , 2uz−1
10

t1 ← vz0, t2 ← tz1, v0 ← (t2 · v0)2 · t1, 2uz10 + 2m10 + sc10
t1 ← vz0, t2 ← tz1, t1 ← t1 · v0, 2uz10 +m10

t2 ← t1 · t2, v0 ← t1 · t22, fm(z) 2m10 + sc10
v1 ← vz0, v2 ← vz1, g3 ← v1 · v2 fd′3(z) 2uz10 +m10

g1 ← gz3 · v−1
0 , fd′1(z) uz10 +m10 + ic10

t1 ← v−1
1 , g2 ← gz

2

1 · t1 · t0, fd′2(z) 2uz10 + 2m10 + ic10
g0 ← gz2 · t1, fd′0(z) uz10 +m10

g ← g0 · gp(z)1 · gp(z)
2

2 · gp(z)
3

3 , fd′(z) 3m10 +
∑3

i=1 f
i
10

Returen g;

polynomials given as follows:

d′0(z) = 4z12 + 4z11 + z10 − 12z9 − 12z8 − 7z7

+11z6 + 13z5 + 11z4 − 4z3 − 3z2 + 9z,

d′1(z) = 4z9 + 4z8 + z7 − 12z6 − 8z5 − 3z4 + 12z3 + 5z2 + 3z − 6,

d′2(z) = 4z11 + 4z10 + z9 − 12z8 − 12z7 − 3z6

+11z5 + 14z4 + 2z3 − 3z2 − 6z + 15,

d′3(z) = 4z8 + 4z7 + z6 − 8z5 − 8z4 − 2z3 + 3z2 + 6z.

(3.51)

Assuming m(z) = (z− 1)2 · (2z2 + z+2) · (2z2 +3z+3), there are the following relations:

d′3(z) = z2m(z) + zm(z), d′1(z) = zd′3(z)−m(z),

d′2(z) = z2d′1(z)− zm+ 15, d′0(z) = zd′2(z)− zm(z),

which leads to the computation of the hard part given in Table 3.4.

As a result, the hard part computations requires 2uz−1
10 +10uz10+14m10+6sc10+3ic10+∑3

i=1 f
i
10. Since the calculation cost of the easy part is given by i10 + 2m10 + f 1

10 + f 5
10,

the cost of the final exponentiation is 2uz−1
10 +10uz10 + i10 +16m10 +6sc10 +3ic10 +2f 1

10 +

f 2
10 + f 3

10 + f 5
10.
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(ii) The cyclotomic family of curves with k = 11, D = 3, and ρ = 1.30

The exponent of the final exponentiation is expressed as follows:

p(z)11 − 1

r(z)
= (p(z)− 1) ·

(
Φ11(p(z))

r(z)

)
, (3.52)

where d(z) = Φ11(p(z))/r(z) =
∑10

i=0 p(z)
i/r(z) is the hard part. Following the lattice-

based method, let us construct the matrix M such that
3d(z)

3zd(z)
...

3z9d(z)

 =M




1

p(z)
...

p(z)9

⊗


1

z
...

z25


 . (3.53)

Application of the LLL algorithm to M leads to a multiple of the hard part given by

d′(z) = 3(z − 1) · (z6 + z3 + 1) · d(z) =
∑9

i=0 d
′
i(z)p(z)

i where d′i(z) for 0 ≤ i ≤ 9 are

polynomials defined as follows:

d′0(z) = −z22 − z20 − z18 + z13 + z11 + 4z9 − 3,

d′1(z) = z20 + z18 + z16 + z13 + z11 + 2z9 − 2z7 + z5 − 3,

d′2(z) = z13 + z11 + z9 − z7 − z5 − z3 − 3,

d′3(z) = −z16 − z14 + z13 − z12 + z11 + z9 + 3z3 − 3,

d′4(z) = −z25 − z23 − z21 + z13 + 3z12 + z11 + z9 − 3,

d′5(z) = z23 + z21 + z19 + z13 + z12 + z11 − 2z10 + z9 + z8 − 3,

d′6(z) = z13 + z11 − z10 + z9 − z8 − z6 − 3,

d′7(z) = −z19 − z17 − z15 + z13 + z11 + z9 + 3z6 − 3,

d′8(z) = z17 + z15 + 2z13 + z11 + z9 + z6 − 2z4 + z2 − 3,

d′9(z) = z13 + z11 + z9 − z4 − z2 − 4.

(3.54)

Assuming m(z) = (z2 + z + 1) · (z4 + z2 + 1), we have the following.

d′6(z) = (z7 − z6)m(z)− 3, d′2(z) = d′6(z) + (z4 − z3)m(z),

d′9(z) = d′2(z) + (z − 1)m(z), d′3(z) = −z3d′2(z) + d′6(z),

d′8(z) = z(d′2(z)− d′3(z)) + d′2(z) + z2m(z), d′7(z) = z2(d′2(z)− d′8(z)) + d′6(z) + z4m(z),

d′1(z) = z(d′2(z)− d′7(z)) + d′6(z) + z4m(z), d′0(z) = z2(d′6(z)− d′1(z)) + d′6(z) + z6m(z),

d′5(z) = z(d′6(z)− d′0(z)) + d′6(z) + z6m(z), d′4(z) = −z3(d′6(z)− d′0(z))− 3.

The above formulas lead to the hard part computation given in Table 3.5.

The algorithm requires the calculation cost 25uz11 + 35m11 + s11 + 10ic11 +
∑9

i=1 f
i
11.

Since the calculation cost of the easy part is given by i11 +m11 + f 1
11, the cost of the final
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Table 3.5: The hard part computation for the cyclotomic family of curves with k = 11,
D = 3, and ρ = 1.30.

Steps Computed Cost
Input: f ∈ GΦ11(p(z))

Output: fd′(z) ∈ µr(z)

t0 ← f 2 · f , f 3 m11 + s11
t1 ← f z, t2 ← tz1, v0 ← f · t1 · t2, 2uz11 + 2m11

t1 ← vz
2

0 , t2 ← tz
2

1 , v0 ← v0 · t1 · t2 fm(z) 4uz11 + 2m11

v1 ← vz0, v2 ← vz1, v3 ← vz2, v4 ← vz3, 4uz11
v5 ← vz4, v6 ← vz5, v7 ← vz6, 3uz11
g6 ← v6 · t0, g6 ← g−1

6 , g6 ← g6 · v7, fd′6(z) 2m11 + ic11
g2 ← v−1

3 · v4, g2 ← g2 · g6, fd′2(z) 2m11 + ic11
g9 ← v−1

0 · v1, g9 ← g9 · g2, fd′9(z) 2m11 + ic11
g3 ← gz

3

2 , g3 ← g−1
3 · g6, fd′3(z) 3uz11 +m11 + ic11

g8 ← g−1
3 · g2, g8 ← gz8, g8 ← g8 · g2 · v2, fd′8(z) uz11 + 3m11 + ic11

g7 ← g−1
8 · g2, g7 ← gz

2

7 , 2uz11 +m11 + ic11
t1 ← g6 · v4, g7 ← g7 · t1, fd′7(z) 2m11

g1 ← g−1
7 · g2, g1 ← gz1, g1 ← g1 · t1, fd′1(z) uz11 + 2m11 + ic11

g0 ← g−1
1 · g6, g0 ← gz

2

0 , 2uz11 +m11 + ic11
t1 ← g6 · v6, g0 ← g0 · t1, fd′0(z) 2m11

t2 ← g−1
0 · g6, t2 ← tz2, g5 ← t1 · t2, fd′5(z) uz11 + 2m11 + ic11

g4 ← tz
2

2 , g4 ← g4 · t0, g4 ← g−1
4 fd′4(z) 2uz11 +m11 + ic11

g←g0 · gp(z)1 · gp(z)
2

2 · gp(z)
3

3 · gp(z)
4

4 , 4m11 +
∑4

i=1 f
i
11

g←g · gp(z)
5

5 · gp(z)
6

6 · gp(z)
7

7 · gp(z)
8

8 · gp(z)
9

9 , fd′(z) 5m11 +
∑9

i=5 f
i
11

Returen g;

exponentiation is 25uz11 + i11 + 36m11 + 1s11 + 10ic11 + 2f 1
11 +

∑9
i=2 f

i
11.

(iii) The cyclotomic family of curves with k = 11, D = 11, and ρ = 1.60

The exponent of the final exponentiation is represented by the same equation as Eq. (3.52)

where d(z) = Φ11(p(z))/r(z) =
∑10

i=0 p(z)
i/r(z) is the hard part. Then, let us construct

the matrix M such that 
11d(z)

11zd(z)
...

11z9d(z)

 =M




1

p(z)
...

p(z)9

⊗


1

z
...

z15


 . (3.55)

As a result, one of the best multiples of the hard part is given by d′(z) = 11z5 · (z + 1) ·
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Table 3.6: The hard part computation for the cyclotomic family of curves with k = 11,
D = 11, and ρ = 1.60.

Steps Computed Cost
Input: f ∈ GΦ11(p(z))

Output: fd′(z) ∈ µr(z)

t1 ← f 2, t0 ← t1 · f , t1 ← (t0 · t1)2 · f f 3, f 11 3m11 + 2s11
v0 ← f z, t2 ← v20, v0 ← vz0 · t2, 2uz11 +m11 + s11
t2 ← v20, t3 ← vz0, v0 ← tz3, 2uz11 + s11
v0 ← t2 · t3 · t0, 2m11

v0 ← vz−1
0 , v0 ← vz−1

0 , v0 ← v−1
0 , fm(z) 2uz−1

11 + ic11
v1 ← vz0, v2 ← vz1, v3 ← vz2, 3uz11
g2 ← vz3, g5 ← g2 · v3 fd′2(z), fd′5(z) uz11 +m11

g8 ← g5 · v2, g0 ← g8 · v1 fd′8(z), fd′0(z) 2m11

g3 ← g0 · v0, g7 ← gz2 · g−1
7 , fd′3(z), fd′7(z) uz11 + 2m11 + ic11

g4 ← gz+1
7 · t3, g1 ← gz4 · g7, fd′4(z), fd′1(z) uz+1

11 + uz11 + 2m11

g9 ← gz1 · g7, g6 ← gz9 · g7, fd′9(z), fd′6(z) 2uz11 + 2m11

g ← g0 · gp(z)1 · gp(z)
2

2 · gp(z)
3

3 · gp(z)
4

4 , 4m11 +
∑4

i=1 f
i
11

g ← g · gp(z)
5

5 · gp(z)
6

6 · gp(z)
7

7 · gp(z)
8

8 · gp(z)
9

9 , fd′(z) 5m11 +
∑9

i=5 f
i
11

Returen g;

(z2 + 1) · d(z) =
∑9

i=0 d
′
i(z)p(z)

i where d′i(z) for 0 ≤ i ≤ 9 are polynomials defined by

d′0(z) = −z10 − 2z9 − z8 + 2z6 + 5z5 + z4 − z2 − 3z,

d′1(z) = z13 + 2z12 + z11 − z10 − 3z9 − 4z8 + z6 + 3z5 + 11z,

d′2(z) = −z10 − z9 + z8 + z7 + z6 + 2z5 − 3z4,

d′3(z) = −z10 − 2z9 − z8 + z6 + 4z5 + 2z4 + z3 − z − 3,

d′4(z) = z12 + 2z11 − 2z9 − 2z8 − 3z7 + z6 + 3z5 + 11,

d′5(z) = −z10 − 2z9 + 2z7 + 2z6 + 3z5 − z4 − 3z3,

d′6(z) = z15 + 2z14 + z13 − z11 − 4z10 − 2z9 − z8 + z6 + 3z5 + 11z3,

d′7(z) = z11 + z10 − z9 − z8 − z7 − 2z6 + 3z5,

d′8(z) = −z10 − 2z9 − z8 + z7 + 3z6 + 4z5 − z3 − 3z2,

d′9(z) = z14 + 2z13 + z12 − 2z10 − 5z9 − z8 + z6 + 3z5 + 11z2.

(3.56)

Assuming m(z) = −(z − 1)2 · (z4 + 3z3 + 4z2 + 4z + 3), there are the following relations.

d′2(z) = z4m(z), d′5(z) = d′2(z) + z3m(z),

d′8(z) = d′5(z) + z2m(z), d′0(z) = d′8(z) + zm(z),

d′3(z) = d′0(z) +m(z), d′7(z) = −zd′2(z),
d′4(z) = (z + 1)d′7(z) + 11, d′1(z) = zd′4(z) + d′7(z),

d′9(z) = zd′1(z) + d′7(z), d′6(z) = zd′9(z) + d′7(z).
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The above formulas lead to the hard part computation given in Table 3.6.

The calculation cost of the hard part is given by 12uz11+u
z+1
11 +2uz−1

11 +24m11+4s11+

2ic11+
∑9

i=1 f
i
11. Adding the cost of computing the easy part i11+m11+f

1
11, the cost of the

hard part are obtained by 12uz11+u
z+1
11 +2uz−1

11 +i11+25m11+4s11+2ic11+2f 1
11+

∑9
i=2 f

i
11.

(iv) The cyclotomic family of curves with k = 13, D = 3, and ρ = 1.17

The exponent of the final exponentiation is given by

p(z)13 − 1

r(z)
= (p(z)− 1) ·

(
Φ13(p(z))

r(z)

)
, (3.57)

where d(z) = Φ13(p(z))/r(z) is the pard part. Let us refer to the lattice-based method

and construct the matrix M such that
3d(z)

3zd(z)
...

3z11d(z)

 =M




1

p(z)
...

p(z)11

⊗


1

z
...

z27


 . (3.58)

Applying the LLL algorithm to M , one can obtain one of the best multiples of d(z) by

d′(z) = 3(z − 1) · (z + 1) · (z2 + 1) · (z2 − z + 1) · (z4 − z2 + 1) · d(z) =
∑11

i=0 d
′
i(z) · p(z)i,

where di(z) for 0 ≤ i ≤ 11 are polynomials in Q[z] is defined as follows:

d′0(z) = −z26 − z25 − z24 + z14 + z13 + 4z12 − 3,

d′1(z) = z25 + z24 + z23 + z14 + z13 + 2z12 − 2z11 + z10 − 3,

d′2(z) = z14 + z13 + z12 − z11 − z10 − z9 − 3,

d′3(z) = −z23 − z22 − z21 + z14 + z13 + z12 + 3z9 − 3,

d′4(z) = z22 + z21 + z20 + z14 + z13 + z12 + z9 − 2z8 + z7 − 3,

d′5(z) = z14 + z13 + z12 − z8 − z7 − z6 − 3,

d′6(z) = −z20 − z19 − z18 + z14 + z13 + z12 + 3z6 − 3,

d′7(z) = z19 + z18 + z17 + z14 + z13 + z12 + z6 − 2z5 + z4 − 3,

d′8(z) = z14 + z13 + z12 − z5 − z4 − z3 − 3,

d′9(z) = −z17 − z16 − z15 + z14 + z13 + z12 + 3z3 − 3,

d′10(z) = z16 + z15 + 2z14 + z13 + z12 + z3 − 2z2 + z − 3,

d′11(z) = z14 + z13 + z12 − z2 − z − 4.

(3.59)

Assuming m(z) = (z2 + z + 1)2, there are the following relations:

d′2(z) = (z10 − z9)m(z)− 3, d′5(z) = d′2(z) + (z7 − z6)m(z),

d′8(z) = d′5(z) + (z4 − z3)m(z), d′11(z) = d′8(z) + (z − 1)m(z),
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Table 3.7: The hard part computation for the cyclotomic family of curves with k = 13,
D = 3, and ρ = 1.17.

Steps Computed Cost
Input: f ∈ GΦ13(p(z))

Output: fd′(z) ∈ µr(z)

t0 ← f 2 · f , f 3 m13 + s13
t1 ← f z, t2 ← tz1, v0 ← f · t1 · t2, 2uz13 + 2m13

t1 ← vz0, t2 ← tz1, v0 ← v0 · t1 · t2, fm(z) 2uz13 + 2m13

v1 ← vz0, v2 ← vz1, v3 ← vz2, v4 ← vz3, 4uz13
v5 ← vz4, v6 ← vz5, v7 ← vz6, v8 ← vz7, 4uz13
v9 ← vz8, v10 ← vz9, 2uz13
g2 ← v9 · t0, g2 ← g−1

2 · v10, fd′2(z) 2m13 + ic13
g5 ← v−1

6 · v7, g5 ← g5 · g2, fd′5(z) 2m13 + ic13
g8 ← v−1

3 · v4, g8 ← g8 · g5, fd′8(z) 2m13 + ic13
g11 ← v−1

0 · v1, g11 ← g11 · g8, fd′11(z) 2m13 + ic13
t1 ← g11 · v0, g10 ← gz

2

11, g10 ← g10 · t1, fd′10(z) 2uz13 + 2m13

g9 ← g−1
10 · g11, g9 ← gz9, g9 ← g9 · t1, fd′9(z) uz13 + 2m13 + ic13

t1 ← g5 · v4, g7 ← g−1
9 · g8, 2m13 + ic13

g7 ← gz
2

7 , g7 ← g7 · t1, fd′7(z) 2uz13 +m13

g6 ← g−1
7 · g8, g6 ← gz6, g6 ← g6 · t1, fd′6(z) uz13 + 2m13 + ic13

t1 ← g5 · v6, g4 ← g−1
6 · g5, 2m13 + ic13

g4 ← gz
2

4 , g4 ← g4 · t1, fd′4(z) 2uz13 +m13

g3 ← g−1
4 · g5, g3 ← gz3, g3 ← g3 · t1, fd′3(z) uz13 + 2m13 + ic13

t1 ← g2 · v9, g1 ← g−1
3 · g2, 2m13 + ic13

g1 ← gz
2

1 , g1 ← g1 · t1, fd′1(z) 2uz13 +m13

g0 ← g−1
1 · g2, g0 ← gz0, g0 ← g0 · t1, fd′0(z) uz13 + 2m13 + ic13

g ← g0 · gp(z)1 · gp(z)
2

2 · gp(z)
3

3 · gp(z)
4

4 · gp(z)
5

5 5m13 +
∑5

i=1 f
i
13

g ← g · gp(z)
6

6 · gp(z)
7

7 · gp(z)
8

8 · gp(z)
9

9 · gp(z)
10

10 · gp(z)
11

11 , fd′(z) 6m13 +
∑11

i=6 f
i
13

Returen g;

d′10(z) = z2d′11(z) + d′11(z) +m(z), d′9(z) = −z(d′10(z)− d′11(z)) + d′11(z) +m(z),

d′7(z) = z2(d′8(z)− d′9(z)) + d′5(z) + z4m(z), d′6(z) = z(d′8(z)− d′7(z)) + d′5(z) + z4m(z),

d′4(z) = z2(d′5(z)− d′6(z)) + d′5(z) + z6m(z), d′3(z) = z(d′5(z)− d′4(z)) + d′5(z) + z6m(z),

d′1(z) = z2(d′2(z)− d′3(z)) + d′2(z) + z9m(z), d′0(z) = z(d′2(z)− d′1(z)) + d′2(z) + z9m(z).

The above formulas lead to the hard part computation given in Table 3.7.

As a result, the calculation costs of the easy and hard parts given by i13 +m13 + f 1
13

and 26uz13+43m13+ s13+11ic13+
∑11

i=1 f
i
13, respectively. The calculation cost of the final

exponentiation is 26uz13 + i13 + 44m13 + s13 + 11ic13 + 2f 1
13 +

∑11
i=2 f

i
13.
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Table 3.8: The hard part computation for the cyclotomic family of curves with k = 14,
D = 3, and ρ = 1.33.

Steps Computed Cost
Input: f ∈ GΦ14(p(z))

Output: fd′(z) ∈ µr(z)

t0 ← f 2 · f , f 3 m14 + sGΦ14(p)

t1 ← f z2 , t2 ← tz
2

1 , v0 ← t1 · t2 · f , fm(z) 4uz14 + 2m14

v1 ← vz0, v2 ← vz1, v3 ← vz2, v4 ← vz3, 4uz14
g2 ← v4 · v3, g2 ← g2 · t0, g2 ← g−1

2 , fd′2(z) 2m14 + ic14
g5 ← v1 · v0, g5 ← g5 · g2, g5 ← g−1

5 , fd′5(z) 2m14 + ic14
g4 ← gz

2

5 , g4 ← g−1
4 , 2uz14 + ic14

t1 ← g2 · v1, g4 ← g4 · t1, fd′4(z) 2m14

g3 ← g4 · g5, g3 ← gz3, uz14 +m14

g3 ← g3 · t1, g3 ← g−1
3 , fd′3(z) m14 + ic14

g1 ← g3 · g2, g1 ← gz
2

1 , 2uz14 +m14

t1 ← g2 · v3, g1 ← g1 · t1, g1 ← g−1
1 , fd′1(z) 2m14 + ic14

g0 ← g1 · g2, g0 ← gz0, uz14 +m14

g0 ← g−1
0 , g0 ← g0 · t1, fd′0(z) m14 + ic14

g ← g0 · gp(z)1 · gp(z)
2

2 · gp(z)
3

3 · gp(z)
4

4 · gp(z)
5

5 , fd′(z) 5m14 +
∑5

i=1 f
i
14

Returen g;

(v) The cyclotomic family of curves with k = 14, D = 3, and ρ = 1.33

The exponent of the final exponentiation is expressed as

p(z)14 − 1

r(z)
=
(
(p(z)7 − 1) · (p(z) + 1)

)
·
(
Φ14(p(z))

r(z)

)
, (3.60)

where d(z) = Φ14(p(z))/r(z) is the hard part. Let us refer to the lattice-based method

and construct the matrix M such that
3d(z)

3zd(z)
...

3z5d(z)

 =M




1

p(z)
...

p(z)5

⊗


1

z
...

z15


 . (3.61)

As a result, one of the best multiples of d(z) is given by d′(z) = 3(z − 1) · (z + 1) · (z2 +
z + 1) · d(z) =

∑5
i=0 d

′
i(z)p(z)

i, where d′i(z) for 0 ≤ i ≤ 5 is defined as follows:
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

d′0(z) = z14 + z13 + z12 − z8 − z7 + 2z6 − 3,

d′1(z) = −z13 − z12 − z11 + z8 + z7 + 2z6 − 2z5 + z4 + 3,

d′2(z) = −z8 − z7 − z6 − z5 − z4 − z3 − 3,

d′3(z) = z11 + z10 + z9 + z8 + z7 + z6 + 3z3 + 3,

d′4(z) = −z10 − z9 − 2z8 − z7 − z6 + z3 − 2z2 + z − 3,

d′5(z) = z8 + z7 + z6 − z2 − z + 2.

(3.62)

Assuming m(z) = z4 + z2 + 1, there are the following relations:

d′2(z) = (−z4 − z3)m(z)− 3, d′5(z) = −d′2(z)− (z + 1)m(z),

d′4(z) = −z2d′5(z) + d′2(z) + zm(z), d′3 = −z(d′4(z) + d′5(z))− d′2(z)− zm(z),

d′1(z) = −z2(d′3(z) + d′2(z))− d′2(z)− z3m(z), d′0 = −z(d′1(z) + d′2(z)) + d′2(z) + z3m(z).

The above formulas lead to the hard part computation given in Table 3.8.

As a result, the calculation costs of the easy and hard parts given by i14+2m14+f
1
14+f

7
14

and 14uz14+21m14+ sc14+6ic14+
∑5

i=1 f
i
14, respectively. Thus, the calculation cost of the

final exponentiation is given by 14uz14 + i14 + 23m14 + sc14 + 6ic14 + 2f 1
14 +

∑5
i=2 f

i
14 + f 7

14.

3.4.3 Final exponentiations by the generalized method

The final exponentiation by applying the generalized method is also considered. The

author provides the input of h1(z), h2(z), T (z), k
′, ci for 0 ≤ i ≤ k′, and s of Algorithm 3.1

for the families of curves with k = 10, 11, 13, and 14. Note that one can obtain T (x) =

t(x)− 1, h1(x) = (p(x)− T (x))/r(x), and h2(x) = Φk(T (x))/r(x) in Q[x].

(i) The cyclotomic family of curves with k = 10, D = 15, and ρ = 1.75

The polynomials h1(x), h2(x), and T (x) are given as follows:
h1(x) = 1

15
(2x2 + 3x+ 3) · (2x2 + x+ 2) · (x− 1)2,

h2(x) = x4 − x3 + x2 − x+ 1,

T (x) = x3.

(3.63)

For h1(z), h2(z), and T (z) with an integer seed z, it is found that s = 15 makes sh1(z)

and sh2(z) being integers. Since Φ10(X) = X4 −X3 +X2 −X + 1, it is obtained k′ = 4,

c4 = 1, c3 = −1, c2 = 1, c1 = −1, and c0 = 1.

According to Algorithm 3.1, the calculation cost of the INIT step is approximately

given by ≈ 6uz10. Besides, the calculation costs of the EVAL INIT, EVAL, and PROD INIT,

PROD steps are given by 3(3uz10 + m10) + ic10 and 4m10 +
∑3

i=1 f
i
10, respectively. Thus,

the hard part requires 15uz10 + 7m10 + ic10 +
∑3

i=1 f
i
10. When adding the calculation cost
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of the easy part i10 + 2m10 + f 1
10 + f 5

10, it is found that the final exponentiation requires

15uz10 + 9m10 + i10 + ic10 + 2f 1
10 + f 2

10 + f 3
10 + f 5

10.

(ii) The cyclotomic family of curves with k = 11, D = 3, and ρ = 1.30

The polynomials h1(x), h2(x), and T (x) in Q[x], are given by

h1(x) = 1
3
(x2 − x+ 1) · (x2 + x+ 1)2,

h2(x) = x110 + x109 + x108 + 9x99 + 9x98 + 8x97 − x96 − x95

+35x88 + 35x87 + 27x86 − 8x85 − 7x84 + x83 + x82

+76x77 + 76x76 + 49x75 − 27x74 − 20x73 + 7x72

+6x71 − x70 − x69 + 99x66 + 99x65 + 50x64 − 49x63

−29x62 + 20x61 + 14x60 − 6x59 − 5x58 + x57 + x56

+77x55 + 77x54 + 27x53 − 50x52 − 21x51 + 29x50

+15x49 − 14x48 − 9x47 + 5x46 + 4x45 + 33x44 + 33x43

+7x42 − 27x41 − 6x40 + 21x39 + 6x38 − 15x37 − 6x36

+9x35 + 5x34 + 5x33 + 6x32 + 3x31 − 6x30 − x29

+6x28 − 6x26 + 6x24 + x23 − 3x22 + 3x20 − 2x18 + x16

−x12 − 2x11 + x9 − x7 + x5 − x3 + x+ 1,

T (x) = −x13 − x2.

(3.64)

For h1(z), h2(z), and T (z) with an integer z, it is found that s = 3 makes sh1(z) and sh2(z)

being integers. Since Φ11(X) = X10+X9+X8+X7+X6+X5+X4+X3+X2+X +1,

k′ = 10 and ci = 1 for 0 ≤ i ≤ k′.

Then, the calculation cost of the INIT step, EVAL INIT and EVAL steps, and PROD INIT

and PROD steps in Algorithm 3.1 for computing the hard part are given by ≈ 110uz11,

9(13uz11 + 2m11 + ic11), and 10m11 +
∑9

i=1 f
i
11, respectively. Thus, the calculation cost of

the hard part is given by 15uz10 + 7m10 + ic10 +
∑3

i=1 f
i
10. Since the easy part requires

m11+i11+f
1
11, the calculation cost of the final exponentiation is given by 227uz11+29m11+

i11 + 9ic11 + 2f 1
11 +

∑9
i=2 f

i
11.

(iii) The cyclotomic family of curves with k = 11, D = 11, and ρ = 1.60

The polynomials h1(x), h2(x), and T (x) in Q[x] are given as follows:
h1(x) = 1

11
(x− 1)2 · (x4 + 3x3 + 4x2 + 4x+ 3),

h2(x) = (x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x+ 1)

·(x20 − x18 + x16 − x14 + x12 − x10 + x8 − x6 + x4 − x2 + 1),

T (x) = x4.

(3.65)
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For h1(z), h2(z), and T (z) with an integer seed z, it is found that s = 11 makes sh1(z)

and sh2(z) being integers. It is also found that k′ = 10 and ci = 1 for 0 ≤ i ≤ k′.

As a result, the calculation cost of the INIT step, EVAL INIT and EVAL steps, and

PROD INIT, PROD steps in Algorithm 3.1 for computing the hard part are given by ≈
30uz11, 9(4u

z
11+1m11), and 10m11+

∑9
i=1 f

i
11, respectively. Therefore, the calculation cost

of the final exponentiation is given by 66uz11 + 19m11 +
∑9

i=1 f
i
11. Since the easy part

requires m11 + i11 + f 1
11, the calculation cost of the final exponentiation can be obtained

as 66uz11 + 20m11 + i11 + 2f 1
11 +

∑9
i=2 f

i
11.

(iv) The cyclotomic family of curves with k = 13, D = 3, and ρ = 1.17

The polynomials h1(x), h2(x), and T (x) are given by

h1(x) = 1
3
(x2 + x+ 1)2,

h2(x) = x144 + x143 + x142 + 11x131 + 10x130 + 10x129 − x128

+54x118 + 44x117 + 45x116 − 9x115 + x114 + 155x105

+111x104 + 120x103 − 36x102 + 8x101 − x100 + 286x92

+175x91 + 210x90 − 84x89 + 28x88 − 7x87 + x86 + 351x79

+176x78 + 252x77 − 126x76 + 56x75 − 21x74 + 6x73 − x72

+287x66 + 111x65 + 210x64 − 126x63 + 70x62 − 35x61

+15x60 − 5x59 + x58 + 154x53 + 43x52 + 120x51 − 84x50

+56x49 − 35x48 + 20x47 − 10x46 + 4x45 − x44 + 54x40

+11x39 + 45x38 − 36x37 + 28x36 − 21x35 + 15x34 − 10x33

+6x32 − 3x31 + x30 + 12x27 + x26 + 10x25 − 9x24 + 8x23

−7x22 + 6x21 − 5x20 + 4x19 − 3x18 + 2x17 − x16 − x13

+x12 − x11 + x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3

+x2 + 1,

T (x) = −x14 − x.

(3.66)

For h1(z), h2(z), and T (z) with an integer seed z, one can find the smallest integer s = 3

such that sh1(z) and sh2(z) being integers. Since Φ13(X) = X12+X11+X10+X9+X8+

X7+X6+X5+X4+X3+X2+X +1, it is found that k′ = 12 and ci = 1 for 0 ≤ i ≤ k′.

From the above, the calculation costs of the INIT step, EVAL INIT and EVAL steps, and

PROD INIT, PROD steps in Algorithm 3.1 for computing the hard part are estimated by

≈ 144uz13, 11(14u
z
13+2m13+1ic13)), and 12m13+

∑11
i=1 f

i
13. Since the costs of the easy part

and hard part are m13+ i13+f
1
13 and 298uz13+34m13+11ic13+

∑11
i=1 f

i
13, respectively, it is

found that the final exponentiation requires 298uz13+35m13+i13+11ic13+2f 1
13+

∑11
i=2 f

i
13.
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Table 3.9: The curves for the STNFS-secure pairings at the 128-bit security level.

Families (k,D, ρ) Seeds z
Bit sizes

p(z) p(z)k r(z)
(i) (10, 15, 1.75) 232 − 226 − 217 + 210 − 1 446 4460 256
(ii) (11, 3, 1.30) −213 + 210 − 28 − 25 − 23 − 2 333 3663 258
(iii) (11, 11, 1.60) −226 + 221 + 219 − 211 − 29 − 1 412 4522 256
(iv) (13, 3, 1.17) 211 + 28 − 26 − 24 310 4027 267
(v) (14, 3, 1.33) 221 + 219 + 210 − 26 340 4755 256

(v) The cyclotomic family of curves with k = 14, D = 3, and ρ = 1.33

The polynomials h1(x), h2(x), and T (x) in Q[x] given as follows:

h1(x) = 1
3
(x2 − x+ 1) · (x2 + x+ 1),

h2(x) = x36 − x35 + x34 − 5x29 + 4x28 − 4x27 − x26 + 9x22 − 5x21

+6x20 + 3x19 + x18 − 6x15 + x14 − 4x13 − 3x12 − 2x11

−x10 + x7 + x6 + x5 + x4 + x3 + x2 + 1,

T (x) = x8 − x.

(3.67)

Then, s = 3 is the smallest integer such that sh1(x) and sh2(x) being integers. Since

Φ14(X) = X6 −X5 +X4 −X3 +X2 −X + 1, it is found that k′ = 6, c6 = 1, c5 = −1,
c4 = 1, c3 = −1, c2 = 1, c1 = −1, and c0 = 1.

Since the calculation costs of the INIT step, EVAL INIT and EVAL steps, and PROD INIT,

PROD steps in Algorithm 3.1 for computing the hard part are given by ≈ 36uz14, 5(8u
z
14 +

2m14 + 1ic14) + 1iΦ14(p), and 6m14 +
∑5

i=1 f
i
14, respectively, It is found that the hard part

requires 76uz14 +16m14 +6iΦ14(p) +
∑5

i=1 f
i
14. In addition, since the calculation cost of the

easy part is given by 2m14+ i14+f
1
14+f

7
14, the final exponentiation takes 76uz14+18m14+

i14 + 6iΦ14(p) + 2f 1
14 +

∑5
i=2 f

i
14 + f 7

14.

3.4.4 Calculation cost estimations

In this subsection, the author estimates the calculation costs of the final exponentiations

for the STNFS-secure pairings at the 128-bit security level. Indeed, in [Gui20], Guillevic

suggested using the integer seeds z for the families of curves with k = 10, 11, 13, and 14

in Table 3.9. Then, the calculation costs uzk, u
z−1
k , and uz+1

k of the exponentiation by z,

z − 1, and z + 1 performed by the square-and-multiply algorithm are specifically given

as Table 3.10. Substituting the calculation costs uzk, u
z−1
k , and uz+1

k to the costs of the

final exponentiations for the families of curves with k = 10, 11, 13, and 14, it is obtained

the operation counts given in Table 3.11. For k = 10, 11, 13, and 14, the calculation costs

of the arithmetic operations in Fpk can be replaced with the cost m1 as in Table 3.12,
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Table 3.10: The calculation costs of the exponentiations by z, z − 1, and z + 1 in Fpk .

Families (k,D, ρ) uzk uz−1
k uz+1

k

(i) (10, 15, 1.75) 4m10 + 32sc10 + ic10 4m10 + 32sc10 + ic10 -
(ii) (11, 3, 1.30) 5m11 + 13s11 + ic11 - -
(iii) (11, 11, 1.60) 5m11 + 26s11 + ic11 5m11 + 26s11 + ic11 4m11 + 26s11 + ic11
(iv) (13, 3, 1.17) 3m13 + 11s13 + ic13 - -
(v) (14, 3, 1.33) 3m14 + 21sc14 + ic14 - -

Table 3.11: The number of operations in Fpk for computing the final exponentiation of
the pairings at the 128-bit security level.

Families (k,D, ρ) Methods mk
sk/ ik ick f

1
k f

2
k f

3
k f

4
k f

5
k f

6
k f

7
k f

8
k f

9
k f

10
k f 11

ksck

(i) (10, 15, 1.75)
Lattice-based 64 390 1 15 2 1 1 0 1 0 0 0 0 0 0
Generalized 69 480 1 16 2 1 1 0 1 0 0 0 0 0 0

(ii) (11, 3, 1.30)
Lattice-based 161 326 1 35 2 1 1 1 1 1 1 1 1 0 0
Generalized 1164 2951 1 236 2 1 1 1 1 1 1 1 1 0 0

(iii) (11, 11, 1.60)
Lattice-based 98 395 1 17 2 1 1 1 1 1 1 1 1 0 0
Generalized 350 1716 1 66 2 1 1 1 1 1 1 1 1 0 0

(iv) (13, 3, 1.17)
Lattice-based 122 287 1 37 2 1 1 1 1 1 1 1 1 1 1
Generalized 929 3278 1 309 2 1 1 1 1 1 1 1 1 1 1

(v) (14, 3, 1.33)
Lattice-based 65 295 1 20 2 1 1 1 1 0 1 0 0 0 0
Generalized 246 1596 1 82 2 1 1 1 1 0 1 0 0 0 0

which is derived from [Gui20; GMT20]. Replacing the costs in Table 3.11 with m1, the

calculation costs of the final exponentiations are finally estimated as in Table 3.13.

According to Table 3.13, it is found that the lattice-based method [FCKRH11] is a

better choice than the generalized method [HHT20] for constructing the algorithm for

computing the final exponentiation for the target family of curves. In fact, the final

exponentiations given by lattice-based method successfully reduce 16.4%, 87.2%, 75.5%,

89.3%, and 80.0% calculation costs from that of the generalized method for the families of

curves with (k,D, ρ) such that (10, 15, 1.75), (11, 3, 1.30), (11, 11, 1.60), (13, 3, 1.17), and

(14, 3, 1.33), respectively. This is because not only the high degree T (x) but also the com-

plicated polynomial representations of h1(z) and h2(z) result in increasing the calculation

costs for computing Algorithm 3.1. For such families of curves, it is considered that the

INIT step in Algorithm 3.1 should be optimized by exploiting p(z)-adic representations

of h1(z) and h2(z).

3.4.5 Performance comparison of the STNFS-secure pairings

The author compares the performance of the STNFS-secure pairings on the candidate

curves at the 128-bit security level in [Gui20]. Table 3.14 shows the calculation costs of
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Table 3.12: The calculation costs of the arithmetic operations in Fpk with k = 10, 11, 13,
and 14.

k mk sk/sck ik ick f i
k

10 39m1 26m1 125m1 8m1 8m1

11 45m1 45m1 332m1 285m1 10m1

13 59m1 59m1 489m1 438m1 12m1

14 66m1 44m1 217m1 12m1 12m1

Table 3.13: The calculation costs for computing the final exponentiation of the pairings
at the 128-bit security level.

Families (k,D, ρ) Methods Costs

(i) (10, 15, 1.75)
Lattice-based 12921m1

Generalized ≈ 15464m1

(ii) (11, 3, 1.30)
Lattice-based 32322m1

Generalized ≈ 252867m1

(iii) (11, 11, 1.60)
Lattice-based 27462m1

Generalized ≈ 112212m1

(iv) (13, 3, 1.17)
Lattice-based 40970m1

Generalized ≈ 384188m1

(v) (14, 3, 1.33)
Lattice-based 17811m1

Generalized ≈ 87745m1

the Miller loop, final exponentiation, and total pairing with the time estimation. The

calculation costs of the pairings on the Cocks-Pinch curves with k = 6 and 8 [GMT20],

BN curves with k = 12 [BN05], BLS curves with k = 12 [BN05], FK curves with k = 12

(FK12) [FM19], and KSS curves with k = 16 [KSS08] are given by [GMT20; FM19].

For the curves with k = 10, 11, 13, and 14, the calculation costs of the Miller loop are

given by [Gui20] and these of the final exponentiations are given by this work. Note

that the inversions involved in the costs of the Miller loop are replaced with m1 by

this work. For the Cocks-Pinch curve with k = 6 and BLS curve with k = 12, the

calculation costs of the final exponentiation are also reproduced in App. B. The timing is

estimated from the Fp-multiplication timing for RELIC [Ara13] on a Intel Core i7-8700

CPU, 3.20GHz with TurboBoost disabled, i.e., Fp-multiplication can be performed in 65ns

for 320 < log2 p ≤ 384, 85ns for 384 < log2 p ≤ 448, 129ns for 512 < log2 p ≤ 576, and

181ns for 640 < log2 p ≤ 704 (see Table 9 in [GMT20]). Although there is no data for

log2 p = 310, the author assumes that the timing is 65ns.

According to Table 3.14, it is found that the BLS curve with k = 12 might be the

best choice for the pairings at the 128-bit security level. The second-best candidates are

the Cocks-Pinch curve with k = 6 and the FK12 curve with k = 12. Although the author
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Table 3.14: The calculation costs and time estimations for computing the pairings of
Miller’s algorithm (ML) and final exponentiation (FE) with the curves resistant to the
STNFS at the 128-bit security level.

Curves, (k,D, ρ) log2 p ML FE Total Time est.
Cocks-Pinch, (6, 3, 2.63) 672 4601m1 2977m1 7578m1 ≈ 1.37ms
Cocks-Pinch, (8, 4, 2.13) 544 4502m1 7056m1 11558m1 ≈ 1.49ms
(i) Cyclo, (10, 15, 1.75) 446 15982m1 12921m1 28903m1 ≈ 2.46ms
(ii) Cyclo, (11, 3, 1.30) 333 29851m1 32322m1 62173m1 ≈ 4.04ms
(iii) Cyclo, (11, 11, 1.60) 412 25485m1 27462m1 52947m1 ≈ 4.50ms
BN, (12, 3, 1.00) 446 11620m1 5349m1 16969m1 ≈ 1.44ms
BLS, (12, 3, 1.50) 446 7805m1 6161m1 13966m1 ≈ 1.19ms
FK, (12, 3, 1.50) 446 7853m1 8002m1 15855m1 ≈ 1.35ms
(iv) Cyclo, (13, 3, 1.17) 310 30897m1 40970m1 71867m1 ≈ 4.67ms
(v) Cyclo, (14, 3, 1.33) 340 16546m1 17811m1 34357m1 ≈ 2.23ms
KSS, (16, 1, 1.25) 339 7691m1 18235m1 25926m1 ≈ 1.69ms

improves the final exponentiation for the curves with k = 10, 11, 13, and 14, these curves

can not give rise to efficient pairings compared with the other curves. This is because

these curves do not have high-degree twists for the efficient Miller loop and also do not

have efficient squaring in the cyclotomic subgroups of Fpk that contribute to speeding up

the final exponentiation. To prepare further improvements of the STNFS, it is considered

that more optimization techniques for these curves are required.

3.5 A new construction method of the final exponen-

tiation

This section provides a new construction method of the algorithm for computing the hard

part of the final exponentiation for the cyclotomic family of pairing-friendly elliptic curves

with prime embedding degree k of k ≡ 1 (mod 6).

3.5.1 Cyclotomic family of pairing-friendly curves of k of k ≡
1 (mod 6)

In [FST10], Freeman et al. introduced the cyclotomic families of pairing-friendly elliptic

curves with any embedding degree k except for 18 ∤ k. For k ≡ 1 (mod 6), there is the
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following parameterization of p(x), r(x), and t(x) in Q[x].
p(x) = 1

3
(x+ 1)2(x2k − xk + 1)− x2k+1,

r(x) = Φ6k(x),

t(x) = −xk+1 + x+ 1.

(3.68)

The above allows us to construct pairing-friendly curves with a prime k that have the

advantage in terms of the resistance of the STNFS. In the following, let z be an integer

making p(z) and r(z) being primes.

3.5.2 Proposed final exponentiation

For the curves in the cyclotomic family with a prime k of k ≡ 1 (mod 6), the exponent

of the final exponentiation is given as follows:

p(z)k − 1

r(z)
= (p(z)− 1) ·

(
Φk(p(z))

r(z)

)
, (3.69)

where d(z) = Φk(p(z))/r(z) =
∑k−1

i=0 p(z)
i/r(z) the hard part. The author proposes to

decompose the hard part d(z) as shown below.

Theorem 3.10. Let n be an integer defined by n = (k − 1)/6 and c(z) be a polynomial

defined as follows:

c(z) = 3Φ1(z)Φ2(z)Φ3(z)
n−1∑
i=0

z6i. (3.70)

Then, d′(z) = c(z) · d(z) is represented as follows:

d′(z) =
6n−1∑
i=0

(
z6nΦ6(z)− 3 + µ6n−1−i(z)

)
· p(z)i, (3.71)

where µs(z) with an integer s such that 0 ≤ s < 6n is a polynomial defined as follows:

µs(z) =



−zsΦ6(z) if s ≡ 0 (mod 6),

z6n+1+sΦ6(z)− zsΦ6(z)− 3zs+1 if s ≡ 1 (mod 6),

z6n+1+sΦ6(z)− 3zs+1 if s ≡ 2 (mod 6),

zsΦ6(z) if s ≡ 3 (mod 6),

−z6n+1+sΦ6(z) + zsΦ6(z) + 3zs+1 if s ≡ 4 (mod 6),

−z6n+1+sΦ6(z) + 3zs+1 if s ≡ 5 (mod 6).

(3.72)

Proof of Theorem 3.10. Let us start to modify d′(z) = c(z)d(z) by using the expansion of
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d(z) = Φk(p(z))/r(z) by Theorem 3.5 in [HHT20]. In this case of the cyclotomic family

for a prime k = 6n + 1, since ϕ(k) = 6n and Φk(X) is the all one polynomial of degree

6n, d′(z) can be denoted as

d′(z) = c(z)h1(z)

(
6n−1∑
i=0

6n−1−i∑
j=0

T (z)j · p(z)i
)

︸ ︷︷ ︸
=A(z)

+ c(z)h2(z)︸ ︷︷ ︸
=B(z)

, (3.73)

where h1(z) =
1
3
Φ6(z)

2, h2(z) =
∑6n

i=0 T (z)
i/r(z), and T (z) = −z6n+2+z. In the following,

the first and second terms of d′(z) are referred to A(z) and B(z), respectively.

Modification of A(z)

Firstly, the polynomial A(z) of d′(z) are modified as follows: The coefficient of p(z)i of

A(z) is denoted as c(z)h1(z)
∑s

j=0 T (z)
j where s = 6n − 1 − i. If s = 0, the coefficient

can be easily obtained by c(z)h1(z) = (z6n − 1)Φ6(z). If s > 0, the coefficients can be

denoted as

c(z)h1(z)
s∑

j=0

T (z)j = −3
s−1∑
i=0

T (z)ip(z) + (z6n − T (z)s)Φ6(z) + 3
s∑

i=1

T (z)i, (3.74)

which can be proven by the injection of s.

Applying the equations to the polynomial A(z),

A(z) = c(z)h1(z)
6n−1∑
i=0

6n−1−i∑
j=0

T (z)jp(z)i

= c(z)h1(z)p(z)
6n−1

+ c(z)h1(z)(T (z) + 1)p(z)6n−2

+ c(z)h1(z)(T (z)
2 + T (z) + 1)p(z)6n−3 + · · ·

+ c(z)h1(z)
6n−1∑
j=0

T (z)jp(z)0

= (z6nΦ6(z)− Φ6(z))p(z)
6n−1

+ (−3p(z)− Φ6(z)T (z) + z6nΦ6(z) + 3T (z))p(z)6n−2

+ (−3(T (z) + 1)p(z)− Φ6(z)T (z)
2 + z6nΦ6(z) + 3(T (z)2 + T (z)))p(z)6n−3 + · · ·

+

(
−3

6n−2∑
i=0

T (z)ip(z)− Φ6(z)T (z)
6n−1z6nΦ6(z) + 3

6n−1∑
i=1

T (z)i

)
p(z)0

= (z6nΦ6(z)− 3− Φ6(z))p(z)
6n−1

+ (z6nΦ6(z)− 3− Φ6(z)T (z))p(z)
6n−2
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+ (z6nΦ6(z)− 3− Φ6(z)T (z)
2)p(z)6n−3 + · · ·

+ (z6nΦ6(z)− 3− Φ6(z)T (z)
6n−1)p(z)0 + 3

6n−1∑
i=0

T (z)i

=

(
6n−1∑
i=0

(z6nΦ6(z)− 3)p(z)i

)
︸ ︷︷ ︸

=A1(z)

+

(
−Φ6(z)

6n−1∑
i=0

T (z)6n−1−ip(z)i

)
︸ ︷︷ ︸

=A2(z)

+

(
3
6n−1∑
i=0

T (z)i

)
︸ ︷︷ ︸

=A3(z)

.

(3.75)

The first, second, and third terms of A(z) are referred to as A1(z), A2(z), and A3(z),

respectively.

Modification of A2(z)

Then, let us modify A2(z). The coefficient of p(z)i of A2(z) is denoted as −Φ6(z)T (z)
s

where s = 6n− 1− i. For s > 0, Φ6(z)T (z)
s can be denoted as follows:

Φ6(z)T (z)
s = αs(z)(p(z)− T (z)) + βs(z), (3.76)

where αs(z) and βs(z) are polynomials in Q[z] defined with γs(z) ∈ Q[z] as follows:

α1(z) = 0, αs(z) = αs−1(z)T (z) + γs(z), (3.77)

βs(z) =



zsΦ6(z) if s ≡ 0 (mod 6),

−z6n+1+sΦ6(z) + zsΦ6(z) if s ≡ 1 (mod 6),

−z6n+1+sΦ6(z) if s ≡ 2 (mod 6),

−zsΦ6(z) if s ≡ 3 (mod 6),

z6n+1+sΦ6(z)− zsΦ6(z) if s ≡ 4 (mod 6),

z6n+1+sΦ6(z) if s ≡ 5 (mod 6),

(3.78)

γs(z) =


0 if s ≡ 1, 4 (mod 6),

3zs if s ≡ 2, 3 (mod 6),

−3zs if s ≡ 0, 5 (mod 6).

(3.79)

The correctness of the above equation can be proven by induction on s′ ≥ 0 such that

s = 6s′ + i > 0 for i ∈ {1, 2, 3, 4, 5, 6}, however, the details are omitted in this thesis.

Applying the above to A2(z), there is the following modification.

A2(z) = −Φ6(z)
6n−1∑
i=0

T (z)6n−1−ip(z)i

= −Φ6(z)p(z)
6n−1

− β1(z)p(z)6n−2
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− (α2(z)(p(z)− T (z)) + β2(z))p(z)
6n−3

− (α3(z)(p(z)− T (z)) + β3(z))p(z)
6n−4 − · · ·

− (α6n−1(z)(p(z)− T (z)) + β6n−1(z))p(z)
0

= −Φ6(z)p(z)
6n−1

− (β1(z) + α2(z))p(z)
6n−2

− (−α2(z)T (z) + β2(z) + α3(z))p(z)
6n−3

− (−α3(z)T (z) + β3(z) + α4(z))p(z)
6n−4 − · · ·

− (−α6n−1(z)T (z) + β6n−1(z))p(z)
0

= −Φ6(z)p(z)
6n−1

− (β1(z) + α1(z)T (z) + γ2(z))p(z)
6n−2

− (−α2(z)T (z) + β2(z) + α2(z)T (z) + γ3(z))p(z)
6n−3

− (−α3(z)T (z) + β3(z) + α3(z)T (z) + γ4(z))p(z)
6n−4 − · · ·

− (−α6n−1(z)T (z) + β6n−1(z))p(z)
0

= −Φ6(z)p(z)
6n−1

− (β1(z) + γ2(z))p(z)
6n−2

− (β2(z) + γ3(z))p(z)
6n−3

− (β3(z) + γ4(z))p(z)
6n−4 − · · ·

− (β6n−1(z) + γ6n(z))p(z)
0

+ (α6n−1(z)T (z) + γ6n(z))

=

(
6n−1∑
i=0

−(β6n−1−i(z) + γ6n−i(z))p(z)
i

)
︸ ︷︷ ︸

=A21(z)

+(α6n−1(z)T (z) + γ6n(z))︸ ︷︷ ︸
=A22(z)

, (3.80)

where the first and second terms of A2(z) are referred to A21(z) and A22(z), respectively.

From the definition, it is easily found −(βs(z)+γs+1(z)) = µs(z) for s = 6n−1− i. Thus,
A21(z) can be denoted as follows:

A21(z) =
6n−1∑
i=0

µ6n−1−i(z)p(z)
i. (3.81)

Besides, A22(z) can also be denoted as follows:

A22(z) =α6n−1(z)T (z) + γ6n(z) =
6n−1∑
i=0

γ6n−i(z)T (z)
i

=3
n−1∑
i=0

(
−z6n−6iT (z)6i − z6n−(6i+1)T (z)6i+1
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+z6n−(6i+3)(z)T (z)6i+3 + z6n−(6i+4)T (z)6i+4
)
. (3.82)

Modification of B(x).

The polynomial B(z) can be modified as follows:

B(z) = c(z)h2(z)

=
c(z)T (z)

∑6n−1
i=0 T (z)i + c(z)

r(z)

=
(−3r(z) + z2c(z) + 3)

∑6n−1
i=0 T (z)i + c(z)

r(z)

= −3
6n−1∑
i=0

T (z)i︸ ︷︷ ︸
=B1(z)

+
(z2c(z) + 3)

∑6n−1
i=0 T (z)i + c(z)

r(z)︸ ︷︷ ︸
=B2(z)

. (3.83)

The first and second terms are referred to as B1(z) and B2(z), respectively. From the

modifications, it is found B1(z) + A3(z) = 0.

In the following, proof of B2(z) + A22(z) = 0 is provided. Since B2(z) involves de-

nominator r(z) = Φ6(z
6n+1)/Φ6(z), it is enough to show t1(z) = Φ6(z)r(z)B2(z) and

t2(z) = −Φ6(z
6n+1)A22(z) are the same as shown in the below.

t1(z) = Φ6(z)

(
(z2c(z) + 3)

6n−1∑
i=0

T (z)i + c(z)

)

= 3(z6n+1 − z + 1)
6n−1∑
i=0

T (z)i + 3(z6n − 1)

= 3(−T (z) + 1)
6n−1∑
i=0

T (z)i + 3(z6n − 1)

= 3(−T 6n + 1) + 3(z6n − 1)

= 3(−T 6n + z6n). (3.84)

t2(z) = 3Φ6(z
6n+1)

n−1∑
i=0

(
z6n−6iT (z)6i + z6n−(6i+1)T (z)6i+1

−z6n−(6i+3)T (z)6i+3 − z6n−(6i+4)T (z)6i+4
)

= 3(T (z)2 − zT (z) + z2)

·
n−1∑
i=0

(
z6n−6i−2T (z)6i + z6n−(6i+1)−2T (z)6i+1

−z6n−(6i+3)−2(z)T (z)6i+3 − z6n−(6i+4)−2T (z)6i+4
)
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= 3

(
n−1∑
i=0

z6n−6i−2T (z)6i+2 +
n−1∑
i=0

z6n−6i−3T (z)6i+3

−
n−1∑
i=0

z6n−6i−5(z)T (z)6i+5 −
n−1∑
i=0

z6n−6i−6T (z)6i+6

−
n−1∑
i=0

z6n−6i−1T (z)6i+1 −
n−1∑
i=0

z6n−6i−2T (z)6i+2

+
n−1∑
i=0

z6n−6i−4(z)T (z)6i+4 +
n−1∑
i=0

z6n−6i−5T (z)6i+5

+
n−1∑
i=0

z6n−6iT (z)6i +
n−1∑
i=0

z6n−6i−1T (z)6i+1

−
n−1∑
i=0

z6n−6i−3(z)T (z)6i+3 −
n−1∑
i=0

z6n−6i−4T (z)6i+4

)

= 3

(
n−1∑
i=0

z6n−6iT (z)6i −
n−1∑
i=0

z6n−6i−6T (z)6i+6

)
= 3(−T 6n + z6n). (3.85)

Since t1(z) = t2(z), it is obtained that B2(z) + A22(z) = 0.

As a result of the modifications, it is obtained d′(z) = A(z)+B(z) = A1(z)+(A21(z)+

A22(z))+A3(z)+B1(z)+B2(z) with the relations B1(z)+A3(z) = 0 and B2(z)+A22(z) = 0,

i.e., d′(z) = A1(z) + A21(z) =
∑6n−1

i=0 (z6nΦ6(z)− 3 + µ6n−1−i(z))p(z)
i. □

3.5.3 Application

In this subsection, the author applies Theorem 3.10 and presents the representation of

the hard part for the curves with several embedding degrees, e.g., k = 7, 13, and 19.

Example 3.11. (k = 7) The cyclotomic family of curves with k = 7 has the following

parameters. 
p(x) = 1

3
(x+ 1)2(x14 − x7 + 1)− x15,

r(x) = Φ42(x),

t(x) = −x8 + x+ 1.

(3.86)

For an integer seed z making p(z) and r(z) being primes, the hard part of the final

exponentiation is d(z) = Φ7(p(z))/r(z). Applying Theorem 1, it is obtained n = 1,

c(z) = 3Φ1(z)Φ2(z)Φ3(z), and d
′(z) =

∑5
i=0 d

′
i(z)p(z)

i where d′i(z) = z6Φ6(z)−3+µ6n−1−i



3.5. A new construction method of the final exponentiation 106

are given as follows:

d′5(z) = z6Φ6(z)− 3− Φ6(z),

d′4(z) = z6Φ6(z)− 3 + z8Φ6(z)− zΦ6(z)− 3z2,

d′3(z) = z6Φ6(z)− 3 + z9Φ6(z)− 3z3,

d′2(z) = z6Φ6(z)− 3 + z3Φ6(z),

d′1(z) = z6Φ6(z)− 3− z11Φ6(z) + z4Φ6(z) + 3z5,

d′0(z) = z6Φ6(z)− 3− z12Φ6(z) + 3z6.

(3.87)

Example 3.12. (k = 13) The cyclotomic family of curves with k = 13 has the following

parameters. 
p(x) = 1

3
(x+ 1)2(x26 − x13 + 1)− x27,

r(x) = Φ78(x),

t(x) = −x14 + x+ 1.

(3.88)

Then, for an integer seed z making p(z) and r(z) being primes, the exponent of the

hard part is d(z) = Φ13(p(z))/r(z). Applying Theorem 1, it is obtained n = 2, c(z) =

3Φ1(z)Φ2(z)Φ3(z)(z
6+1), and d′(z) =

∑11
i=0 d

′
i(z)p(z)

i where d′i(z) = z12Φ6(z)−3+µ6n−1−i

are given as follows:

d′11(z) = z12Φ6(z)− 3− Φ6(z),

d′10(z) = z12Φ6(z)− 3 + z14Φ6(z)− zΦ6(z)− 3z2,

d′9(z) = z12Φ6(z)− 3 + z15Φ6(z)− 3z3,

d′8(z) = z12Φ6(z)− 3 + z3Φ6(z),

d′7(z) = z12Φ6(z)− 3− z17Φ6(z) + z4Φ6(z) + 3z5,

d′6(z) = z12Φ6(z)− 3− z18Φ6(z) + 3z6,

d′5(z) = z12Φ6(z)− 3− z6Φ6(z),

d′4(z) = z12Φ6(z)− 3 + z20Φ6(z)− z7Φ6(z)− 3z8,

d′3(z) = z12Φ6(z)− 3 + z21Φ6(z)− 3z9,

d′2(z) = z12Φ6(z)− 3 + z9Φ6(z),

d′1(z) = z12Φ6(z)− 3− z23Φ6(z) + z10Φ6(z) + 3z11,

d′0(z) = z12Φ6(z)− 3− z24Φ6(z) + 3z12.

(3.89)

Example 3.13. (k = 19) The cyclotomic family of curves with k = 19 has the following

parameters. 
p(x) = 1

3
(x+ 1)2(x38 − x19 + 1)− x39,

r(x) = Φ114(x),

t(x) = −x20 + x+ 1.

(3.90)
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In this case, for an integer seed z making p(z) and r(z) being primes, the exponent of

the hard part is d(z) = Φ19(p(z))/r(z). Applying Theorem 1, it is obtained n = 3,

c(x) = 3Φ1(x)Φ2(x)Φ3(x)(x
12 + x6 + 1), and d′(x) =

∑19
i=0(x

18Φ6(x) − 3 + µ6n−1−i)p(x)
i

where µ6n−1−i are given as follows: Applying Theorem 1, it is obtained n = 3, c(z) =

3Φ1(z)Φ2(z)Φ3(z)(z
12 + z6 + 1), and d′(z) =

∑19
i=0(z

18Φ6(z) − 3 + µ6n−1−i)p(z)
i where

µ6n−1−i are given as follows:

d′17(z) = z18Φ6(z)− 3− Φ6(z),

d′16(z) = z18Φ6(z)− 3 + z20Φ6(z)− zΦ6(z)− 3z2,

d′15(z) = z18Φ6(z)− 3 + z21Φ6(z)− 3z3,

d′14(z) = z18Φ6(z)− 3 + z3Φ6(z),

d′13(z) = z18Φ6(z)− 3− z23Φ6(z) + z4Φ6(z) + 3z5,

d′12(z) = z18Φ6(z)− 3− z24Φ6(z) + 3z6,

d′11(z) = z18Φ6(z)− 3− z6Φ6(z),

d′10(z) = z18Φ6(z)− 3 + z26Φ6(z)− z7Φ6(z)− 3z8,

d′9(z) = z18Φ6(z)− 3 + z27Φ6(z)− 3z9,

d′8(z) = z18Φ6(z)− 3 + z9Φ6(z),

d′7(z) = z18Φ6(z)− 3− z29Φ6(z) + z10Φ6(z) + 3z11,

d′6(z) = z18Φ6(z)− 3− z30Φ6(z) + 3z12,

d′5(z) = z18Φ6(z)− 3− z12Φ6(z),

d′4(z) = z18Φ6(z)− 3 + z32Φ6(z)− z13Φ6(z)− 3z14,

d′3(z) = z18Φ6(z)− 3 + z33Φ6(z)− 3z15,

d′2(z) = z18Φ6(z)− 3 + z15Φ6(z),

d′1(z) = z18Φ6(z)− 3− z35Φ6(z) + z16Φ6(z) + 3z17,

d′0(z) = z18Φ6(z)− 3− z36Φ6(z) + 3z18.

(3.91)

For the curves with k = 7, 13, and 19, the multiple d′(z) and its decomposition are

exactly one of the same representations given by the lattice-based method [FCKRH11].

For curves with arbitrary prime k of k ≡ 1 (mod 6), there is a possibility that the

proposed method gives rise to one of the same results as [FCKRH11]. Besides, since

the decomposition of d′(z) has systematic relations between the coefficients d′i(z) which

consists of f zi for 0 ≤ i ≤ 6n and f ziΦ6(z) for 0 ≤ i ≤ 12n, one can construct an

efficient algorithm for computing f 7→ fd′(z) in Algorithm 3.3. The details of the steps in

Algorithm 3.3 are summarized below.

• Steps 1–3 compute fi = f zi for 1 ≤ i ≤ 6n, which take 6nuzk.

• Steps 4–8 compute gi = f ziΦ6(z) for 0 ≤ i ≤ 6n− 2 from fi, which require n(6mk +

4ick.

• Steps 9–11 also compute gi = f ziΦ6(z) for 6n− 1 ≤ i ≤ 12n, which take (6n+ 2)uzk.

• Steps 12–19 compute v6i+j = f z6nΦ6(z)−3+µ6n−1−(6i+j)(z) for 0 ≤ i ≤ n−1 and 0 ≤ j ≤ 5
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from the knowledge of the fi and gi, which take iGΦk(p)
+ ck + n(18mk + 4ck + 6ick.

• Steps 20–22 compute w =
∑6n−1

i=0 v
p(z)i

i , which require (6n− 1)mk +
∑6n−1

i=1 f i
k.

Algorithm 3.3: Proposed hard part computation for the family of curves with
prime k of k ≡ 1 (mod 6).

Input: f ∈ GΦk(p(z))

Output: fd′(z) ∈ µr(z)

1 f0 ← f ;
2 for i = 1 to 6n do
3 fi ← f z

i−1;
4 endfor
5 For i = 0 to n− 1 do
6 t1 ← f6i+5 · f−1

6i+4, t2 ← t−1
1 ;

7 g6i+3 ← t1 · f6i+3, g6i+4 ← t2 · f6i+6;
8 t1 ← f6i+2 · f−1

6i+1, t2 ← t−1
1 ;

9 g6i ← t1 · f6i, g6i+1 ← t2 · f6i+3;
10 endfor

11 g6n ← gz
2

6n−2;
12 for i = 1 to 6n do
13 g6n+i ← gz6n+i−1;
14 endfor
15 t1 ← f−1, t2 ← t31
16 for i = 0 to n− 1 do
17 v6i+5 ← g6n · g−1

6n−1−(6i+5) · t2;
18 v6i+4 ← g6n · g12n−(6i+4) · g−1

6n−1−(6i+4) · (f6n−(6i+4) · f)−3;

19 v6i+3 ← g6n · g12n−(6i+3) · (f6n−(6i+3) · f)−3;
20 v6i+2 ← g6n · g6n−1−(6i+2) · t2;
21 v6i+1 ← g6n · g−1

12n−(6i+1) · g6n−1−(6i+1) · (f6n−(6i+1) · t1)3;
22 v6i ← g6n · g−1

12n−6i · (f6n−6i · t1)3;
23 endfor
24 w ← v0;
25 for i = 1 to 6n− 1

26 w ← w · vp(z)
i

i ;
27 endfor

return w;

Thus, the total of the calculation costs for executing the algorithm is given by (12n+2)uzk+

(30n−1)mk+(4n+1)ck+(10n+1)ick+
∑6n−1

i=1 f i
k in this case. In the target family of curves,

the proposed algorithm is considered to be more efficient than that of the generalized

method [HHT20]; This is because Algorithm 3.1 requires at least (k′ − 1) deg Tuzk =

(6n− 1)(6n+ 2)uzk = (36n2 + 6n− 2)uzk in the EVAL step.
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3.6 Summary of contributions

This section presents the works related to optimization of the final exponentiation of the

pairings. The major contributions are summarized as follows:

• The author improves the final exponentiation for the pairing on the BLS curves

with k = 15 by using the property of the characteristic of the BLS family, which is

also used by Zhang et al. in [ZL12]. For the pairing at the 128-bit security level,

the proposed method contributes to reducing the calculation cost 312m1 from the

previous final exponentiation given by Fouotsa et al. in [FMP20]. It is also found

that the decomposition method can be extended for the BLS curves with any k. At

the same time as this publication, Hayashida et al. generalized Zhang et al.’s method

for any family of curves in [HHT20], however, the result is still in the state-of-the-art

for the BLS curves with k = 15.

• For the families of curves with k = 10, 11, 13, and 14 resistant to the STNFS,

the author presents the final exponentiation computations that are constructed by

applying the lattice-based method [FCKRH11] and generalized method [HHT20].

Comparing the calculation costs of the final exponentiations between two methods,

it is found that the lattice-based method results in notable reducing the calculation

costs. However, comparing the calculation costs of the STNFS-secure pairings be-

tween the shortlist curves in [Gui20], it is found that the curves with k = 10, 11, 13,

and 14 are not efficient choices for the pairings at the 128-bit security level. As one

of the future works, the author would like to achieve more optimizations for these

curves, e.g., optimizations of the arithmetic operations in the cyclotomic subgroup

of the full extension field for these curves.

• The author proposes a new decomposition method of the hard part for the cyclo-

tomic family of pairing-friendly curves with any prime k of k ≡ 1 (mod 6). It is

found that the proposed method results in one of the same state-of-the-art algo-

rithms for computing the hard part given by the lattice-based method for the cases

of k = 7, 13, and 19. Unlike the lattice-based method, the proposed method can

easily reach the same result. Moreover, the proposed hard part takes approximately

(12n + 2)uzk, however, that of the generalized method [HHT20] requires at least

(36n2 + 6n − 2)uzk. As one of the future works, the author would like to obtain

similar results for the other families of curves.



Chapter 4

Attractive Subfamilies of

Pairing-friendly Curves for Fast

Pairings

The algorithms for computing the final exponentiation of the pairings are optimized in

Chapter 3. To achieve more efficient pairings, it is necessary to consider the efficiency of

elliptic curves and finite fields in which the pairings are defined. This chapter describes

research for generating curves and finite fields that have advantages for the pairings,

which is introduced as the second work in Sect. 1.3. This chapter starts to review the

background and motivation.

4.1 Background and motivation

The family of pairing-friendly curves with fixed embedding degree k are parameterized

by polynomials p(x), r(x), and t(x) in Q[x]. The pairings with the family require several

initial settings such that finding an integer parameter z and constructing a field, curve,

and its correct twist corresponding to z. In the settings, it is needed to consider not

only the security of pairing but also the efficiency of pairing computation since it strongly

depends on the field construction, curve equation, and twisting or untwisting isomorphism.

However, since it is typically complicated to handle the favorite constructions, it is desired

to establish some convenient ways for the settings which have advantages for the pairings.

The author would like to overcome this problem.

There are several related works that focused on the specific families of curves which

offer advantages with respect to some aspects of a pairing computation [Shi10; Per+11;

CLN11; Cos12; YTS15]. Particularly, in [Per+11], Pereira et al. firstly consider the

problem for the BN family. In [CLN11], Costello et al. were motivated by [Per+11]

and provided attractive subfamilies of the BLS family with k = 24 which guarantee

110
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the implementation-friendly field and curve equations. The important fact is that the

subfamilies are simply generated by finding z satisfying certain restrictions. In short,

once finding z, we can automatically have favorite constructions of field and curve. After

this publication, Costello treated the other eight stand-out candidates’ families of curves

with 8 ≤ k < 50 and point out attractive subfamilies of each in [Cos12].

This work is summarized below.

• Although there are previous works for the BN family [Shi10; Per+11; YTS15], it is

still ambiguous about the generation of the BN subfamilies. Thus, the author refers

to [CLN11] and explicitly provides restrictions of z for generating the attractive

subfamilies of the BN family. The author shows sample seeds z for generating

concrete curves and confirms the performance of the pairings by an implementation.

The efficiency of the untwist isomorphisms for the pairings is also observed.

• According to recent works, the BLS family is often used for the pairings at the

various security levels rather than the BN family. Since the BLS family has high

flexibility of k and can strongly support optimizing the pairings, it will be regularly

adopted for the pairings even if there is progress in the security analyses in the

future. Thus, the author extends [CLN11] and provides restrictions for finding z

that can generate the specific BLS subfamilies with more generalized embedding

degrees k = 2m · 3 and 3n for any integers m,n > 0. For the BLS family of curves

with k = 9, 12, 24, and 27, the author provides sample seeds z for generating concrete

curves for the pairings at the 128- and 192-bit security levels. The pairings with the

proposed curves are also evaluated by an implementation.

Organization. Sect. 4.2 reviews the previous work and provides mathematical descrip-

tions. The main results of the attractive subfamilies of the BN and BLS families with

k = 2m · 3 and 3n are proposed in Sects. 4.3 and 4.4, respectively. Sect. 4.5 summarizes

the major contributions in this chapter.

4.2 Related works and mathematical materials

This section reviews the related works for the BLS family of curves with k = 24 given by

Costello et al. in [CLN11]. This section also provides the mathematical preliminaries for

generating attractive subfamilies of curves which are referred to in [CLN11].

4.2.1 Related works

There are several related works for the determination of the construction of the tower

of extension fields and curve equations in [Shi10; Per+11; CLN11; Cos12; YTS15]. In
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[CLN11], Costello et al. proposed the restrictions of z for generating specific subfamilies

of the BLS family of curves with k = 24, D = 3, and ρ = 1.25, which facilitate efficient

instantiations of the pairings. In this context, the BLS family of curves with k = 24 has

the following parameterizations.
p(x) = 1

3
(x− 1)2 · r(x) + x,

r(x) = Φ24(x) = x8 − x4 + 1,

t(x) = x+ 1.

(4.1)

Let us find an integer seed z making p(z) and r(z) being primes and t(z) being an integer

satisfying the condition given as follows:

z ≡ 7, 16, 31, 64 (mod 72). (4.2)

Then, we have the specific subfamilies of the BLS family with attractive options, i.e.,

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;

(ii) The BLS curve E/Fp(z) is immediately determined;

(iii) The correct twist E ′/Fp(z)4 of degree 6 of E is also immediately determined.

The details of the options are found in the following theorems.

Theorem 4.1. If z satisfies Eq. (4.2), the following tower of extension fields is always

available. 
Fp(z)2

∼= Fp(z)[x]/(x
2 + 1) ∼= Fp(z)(α),

Fp(z)4
∼= Fp(z)2 [x]/(x

2 + (α + 1)) ∼= Fp(z)2(β),

Fp(z)24
∼= Fp(z)4 [x]/(x

6 + β) ∼= Fp(z)4(γ),

(4.3)

where α, β, and γ are elements in Fp(z)2 , Fp(z)4 , and Fp(z)24 such that α2 = −1, β2 =

−(α + 1), and γ6 = −β, respectively.

Theorem 4.2. If z satisfies Eq. (4.2), the BLS curve E/Fp(z) is determined by

E/Fp(z) :


y2 = x3 + 1, if z ≡ 7, 31 (mod 72),

y2 = x3 + 4, if z ≡ 16 (mod 72),

y2 = x3 − 2, if z ≡ 64 (mod 72).

(4.4)

Theorem 4.3. Suppose that the tower of extension fields of degree k = 24 and BLS curve

E/Fp(z) are constructed as in Theorems 4.1 and 4.2 with z satisfying Eq. (4.2). Then, the
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correct twist E ′/Fp(z)4 of degree 6 of E is determined by

E ′/Fp(z)4 :


y2 = x3 ± 1/β, if z ≡ 7 (mod 72),

y2 = x3 ± 4β, if z ≡ 16 (mod 72),

y2 = x3 ± β, if z ≡ 31 (mod 72),

y2 = x3 ± 2/β, if z ≡ 64 (mod 72),

(4.5)

where β is an element in Fp(z)4 such that β2 = −(α + 1).

Proof of Theorems 4.1, 4.2, and 4.3. Please refer to [CLN11]. □

The field and curve options can reduce the time-consuming pre-computation of the

curve constructions. Moreover, the fixed constructions give rise to the flexibility of scaling

the size of the parameters without changing any of the implementations for the field and

curve arithmetics. In [Cos12], Costello also treated the other eight stand-out candidates

such that the Brezing-Weng family with k = 8, the BLS families with k = 12, 27, and 48,

and the KSS families with k = 16, 18, 32, and 36 for pairing implementations and point

out highly attractive subfamilies of each.

4.2.2 Mathematical materials

This subsection briefly describes the construction method of extension fields and the

determination method of curve equations used for proof of the theorems in [CLN11].

The construction method of the tower of the extension field

Let p be a prime and q = pn with an integer n > 0. To admit an extension field Fqm

of degree m of Fq defined as Fqm = Fq[x]/(x
m − ζ) with ζ ∈ Fq, it is known that the

binomial xm − ζ must be irreducible in Fq[x]. According to [BS10], the irreducibility of

the binomial can be verified as follows:

Lemma 4.4. The binomial xm − ζ is irreducible in Fq[x] if the following two conditions

are satisfied.

(a) Each prime factor d of m divides (p− 1) and the Norm of ζ, i.e., NFq/Fp(ζ), is d-th

non-residue in F∗
p.

(b) If m ≡ 0 (mod 4), then q ≡ 1 (mod 4).

Proof of Lemma 4.4. Please refer to [BS10]. □

In [BS10], Benger and Scott described that a condition of p for constructing a fixed

extension field of degree k = 2m · 3n for n,m > 0 can be easily obtained by applying

Lemma 4.4 since the quadratic and cubic residue properties of the specific element in F∗
p
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can be obtained by Lemmas 2.25 and 2.28. As examples, they provided conditions for

constructing some implementation-friendly towers of extension fields for the BN and KSS

families of curves with k = 12 and 18, respectively. With the same strategy, Costello et

al. reached the condition of the integer parameter z for constructing the tower of extension

fields as shown in Theorem 4.1.

Determination method of the curve equations

Let p be a prime such that p ≡ 1 (mod 6) and let q = pn with an integer n > 0. Let E/Fq

be an ordinary elliptic curve defined over Fq given by y2 = x3+b. Then, all possible number

#E(Fq) of rational points of E(Fq) can be obtained by taking b ∈ {1, g, g2, g3, g4, g5}
where g is quadratic and cubic non-residue in F∗

q. In fact, there are only six possibilities

of #E(Fq) = ni for 0 ≤ i ≤ 5: 

n0 = q + 1− t,
n1 = q + 1− t−3V

2
,

n2 = q + 1− −t−3V
2

,

n3 = q + 1 + t,

n4 = q + 1− −t+3V
2

,

n5 = q + 1− t+3V
2
,

(4.6)

where t and V are integers satisfying 3V 2 = 4q − t2. Therefore, the curve E with the

specific order can be obtained by a randomly chosen b with a probability of 1/6.

Let E ′/Fq be a twist of degree d of E. Since j(E) = 0, there are only the possibilities

d ∈ {1, 2, 3, 6}. The curve equation of E ′/Fq is explicitly given as y2 = x3 + b/δ where δ

is an element in F∗
q having the specific properties:

δ is


quadratic and cubic residue in F∗

q if d = 1,

quadratic non-residue and cubic residue in F∗
q if d = 2,

quadratic residue and cubic non-residue in F∗
q if d = 3,

quadratic and cubic non-residue in F∗
q if d = 6.

(4.7)

Thus, once E is determined, the possibilities of finding the twist E ′ of degree d = {1, 2}
and {3, 6} of E are 1 and 1/2, respectively. According to Theorem 2.52 given by [HSV06],

if #E(Fq) = n0, the possible group orders #E ′(Fq) are also determined by

#E ′(Fq) =


n0 if d = 1,

n3 if d = 2,

n2, n4 if d = 3,

n1, n5 if d = 6.

(4.8)
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The curve equations can be determined or narrowed down by checking the small co-

factors of #E(Fq) by using the following Lemma 4.5. Note that (a) and (b) in Lemma 4.5

are found by [CLN11] (similar lemmas can also be found in [Per+11]), and (c) is found

by the author. The following shows the complete proof of Lemma 4.5.

Lemma 4.5. Let E be an ordinary elliptic curve with D = 3 defined over Fq, where

q = pn with an integer n > 0 and p is an odd prime such that p ≡ 1 (mod 6). Then, the

following is true.

(a) If and only if 2 | #E(Fq), b is cubic residue in F∗
q.

(b) If and only if 3 | #E(Fq) and 9 ∤ #E(Fq), b is quadratic residue in F∗
q and 4b is

cubic non-residue in F∗
q.

(c) If and only if 9 | #E(Fq), b is quadratic residue in F∗
q and 4b is cubic residue in F∗

q.

Proof of Lemma 4.5. (a): If 2 | #E(Fq), E(Fq) involves points of order 2 given as

P2 = (− 3
√
b, 0), which is not equal to O. Thus, b is cubic residue in F∗

q.

(b): If 3 | #E(Fq), E(Fq) involves a subgroup or subgroups of E(Fq) of order 3, i.e.,

there exists a group structure given as E(Fq)[3] ∼= Z/3Z or Z/3Z× Z/3Z, which consists

points of order 3 given as P3 = (0,
√
b) or both P3 and P ′

3 = (− 3
√
4b,
√
−3 ·

√
b). Note

that
√
−3 ∈ F∗

q from (c) in Lemma 2.25. If 3 | #E(Fq) and 9 ∤ #E(Fq), then E(Fq) has a

group structure of E(Fq)[3] ∼= Z/3Z but does not have Z/3Z × Z/3Z. This means P3 is

in E(Fq) but P
′
3 is not in E(Fq). Therefore, it is found that b is quadratic residue in F∗

q

and 4b is cubic non-residue in F∗
q.

(c): If 9 | #E(Fq), E(Fq) involves either E(Fq)[9] ∼= Z/9Z or E(Fq)[3] ∼= Z/3Z×Z/3Z.
Indeed, E(Fq) does not have E(Fq)[9] ∼= Z/9Z but has E(Fq)[3] ∼= Z/3Z × Z/3Z for the

following reasons.

(i) In this case of q, 9 does not divide the possible group orders except for #E(Fq).

This can be easily found by checking the values of the possible group orders modulo

9 with the possible q, t, and V satisfying 3V 2 = 4q − t2.

(ii) There exists an ordinary elliptic curve given as Ẽ/Fq : y
2 = x3 + b̃ defined over Fq

having a group order of multiple of 9 with the group structure Ẽ(Fq)[3] ∼= Z/3Z×
Z/3Z since there exactly exists b̃ in F∗

q which gives rise to points of order 3 denoted

as P̃3 = (0,
√
b̃) and P̃ ′

3 = (− 3
√

4b̃,
√
−3 ·

√
b̃) in Ẽ(Fq).

The above means that E is isomorphic to Ẽ over Fq. Thus, there exist points P3 and P ′
3

in E(Fq) and b is quadratic residue in F∗
q and 4b is cubic residue in F∗

q. □
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In [CLN11], Costello et al. applied (a) and (b) of Lemma 4.5 for the BLS family of

curves with k = 24 and completely determined the curve equations as found in Theo-

rems 4.2 and 4.3. There is a possibility that this strategy is also available for the BLS

family of curves with the other k.

4.3 Proposed BN subfamilies

In this section, the author provides the proposed subfamilies of the BN family of curves

which gives rise to a fixed tower of extension field and curve equation. The mathematical

proof to reach the results are also described.

4.3.1 Review of the pairings with the BN family

The BN family of curves with k = 12, D = 3, and ρ = 1 has the specific parameterization

of p(x), r(x), and t(x) in Q[x]. Since the BN family is complete, there is a polynomial

V (x) in Q[x] such that 3V (x)2 = 4p(x)−t(x)2 The polynomials p(x), r(x), t(x), and V (x)

are given as follows [BN05]:
p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1,

t(x) = 6x2 + 1,

V (x) = 6x2 + 4x+ 1.

(4.9)

Let z be an integer seed making p(z) and r(z) being primes and t(z) and V (z) being

integers. One can find an elliptic curve E/Fp(z) : y
2 = x3 + b such that the group order

is given by n(z) = #E(Fp(z)) = p(z) + 1− t(z) = r(z), which we say E is the BN curve.

Besides, one can also find a correct twist E ′/Fp(z)2 : y
2 = x3+b′ of degree 6 of E such that

r(z) | n′(z) = #E ′(Fp(z)2) which results in a twisting isomorphism ϕ6 : E ′ → E defined

over Fp(z)12 .

Let µr(z) be the multiplicative subgroup of Fp(z)k of order r(z) consisting of the r(z)-th

root of identity. Let G1 and G2 be the base-field and trace-zero groups of r(z)-torsion

subgroup E[r(z)], respectively. Since T (z) = t(z)− 1 = 6z2, the standard ate pairing on

the BN curve is defined as follows:

eaT : G2 × G1 → µr(z),

eaT (Q,P ) = f6z2,Q(P )
p(z)12−1

r(z) . (4.10)

The ate pairing requires log2 6z
2 iterations of Miller’s algorithm for computing f6z2,Q(P ).

To reduce the number of iterations, it is often adopted an ate-like pairing by taking
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p(z)3 − p(z)2 + p(z) + 6z + 2 ≡ 0 (mod r(z)) as follows [Ver09]:

eoci : G2 × G1 → µr,

eoci (Q,P ) =
(
f6z+2,Q(P ) · f1,Q(P )p(z) · f−1,Q(P )

p(z)2 · f1,Q(P )p(z)
3

·
l(p(z)3−p(z)2+p(z))Q,(6z+2)Q(P )

vp(z)3−p(z)2+p(z)+6z+2(P )
·
l(p(z)3−p(z)2)Q,p(z)Q(P )

v(p(z)3−p(z)2+p(z))Q(P )
·
lp(z)3Q,−p(z)2Q(P )

v(p(z)3−p(z)2)Q(P )

) p(z)12−1
r(z)

.

When discarding the elements which disappear in the final exponentiation and modifying

the line functions, we have

eoci (Q,P ) =
(
f6z+2,Q(P ) · l(6z+2)Q,πp(z)(Q)(P )

·l(6z+2)Q+πp(z)(Q),−π2
p(z)

(Q)(P )
) p(z)12−1

r(z)
. (4.11)

This pairing requires one of the shortest log2(6z + 2) iterations of Miller’s algorithm for

computing f6z+2,Q(P ) since log2 r(z)/ϕ(12) = log2 r(z)/4 ≈ log2 x. In [Nog+08], Nogami

et al. also provided another ate-like pairing defined by

eoci (Q,P ) =

((
fz,Q(P )

p3+1 · lzQ,π3
p(z)

(zQ)(P )
)p(z)10+1

·lzQ+π3
p(z)

(zQ),π10
p (zQ+π3

p(z)
(zQ))(P )

) p(z)12−1
r(z)

, (4.12)

which leads to slightly faster pairing than Eq. (4.11). The pairings can be moved entirely

on E ′, which we denote an optimal ate pairing defined on E ′ as e′oci . Assuming G ′2 is a

preimage of G2 under ϕ6 and letting P ∈ G1 and Q′ ∈ G ′2, the ate pairing is computed by

either eoci (ϕ6(Q
′), P ) or e′oci (Q

′, ϕ−1
6 (P )).

Not only Miller’s algorithm but also the final exponentiation can be optimized by

using the decomposition of (p(z)k − 1)/r(z) in base p(z). The state-of-the-art algorithm

for computing the hard part is given by the lattice-based method [FCKRH11] where the

calculation step is described in Example 3.4 in Sect. 3.2.3.

4.3.2 Proposed BN subfamilies of curves with k = 12

For an integer seed z for specifying the curves in the BN family, the author proposes to

restrict z as follows:

z ≡ 7, 11 (mod 12). (4.13)

Once finding z satisfies the condition, the specific BN subfamilies with the following

options are obtained.
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Table 4.1: The field and curve options for the proposed BN subfamilies of curves with
k = 12.

z Tower BN curve E/Fp(z) Twist E ′/Fp(z)2

(mod 12) (see Theorem 4.7) (see Theorem 4.9) (see Theorem 4.10)
7 Fp(z)2

∼= Fp(z)(α) y2 = x3 + 26n−1 y2 = x3 + 26n−1ζ
11 Fp(z)12

∼= Fp(z)2(β) y2 = x3 + 26n+1 y2 = x3 + 26n+1/ζ

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;

(ii) The BLS curve E/Fp(z) is immediately determined;

(iii) The correct twist E ′/Fp(z)2 is also immediately determined.

These constructions also enable one of the simplest twist isomorphisms. The details of the

field and curve options (i), (ii), and (iii) are summarized in Table 4.1, where n ∈ Z, α and

β are elements in Fp(z)2 and Fp(z)12 such that α2 = −1 and β6 = α + 1, respectively, and

ζ = α + 1 ∈ Fp(z)2 . The correctness of Table 4.1 is found in the following theorems with

proof. Before describing that, the author refers to [Shi10] and presents the knowledge of

the quadratic and cubic residue properties in F∗
p(z).

Lemma 4.6. For the symbols ( ·
p(z)

) and ( ·
p(z)

)3, the following is true.

(
−1
p(z)

)
=

{
1 if z ≡ 0 (mod 2),

−1 if z ≡ 1 (mod 2).
(4.14)

(
2

p(z)

)
=

{
1 if z ≡ 0, 1 (mod 4),

−1 if z ≡ 2, 3 (mod 4).
(4.15)

(
2

p(z)

)
3

{
= 1 if z ≡ 0 (mod 3),

6= 1 if z ≡ 1, 2 (mod 3).
(4.16)

Proof of Lemma 4.6. Please refer to [Shi10]. □

In what follows, the author provides the theorem which shows the construction of the

tower of extension field of degree 12.

Theorem 4.7. If z satisfies z ≡ 7, 11 (mod 12), the following tower of extension field is

always available. {
Fp(z)2

∼= Fp(z)[x]/(x
2 + 1) ∼= Fp(z)(α),

Fp(z)12
∼= Fp(z)2 [x]/(x

6 − (α + 1)) ∼= Fp(z)2(β),
(4.17)
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where α and β are elements in Fp(z)2 and Fp(z)12 such that α2 = −1 and β6 = α + 1,

respectively.

Proof of Theorem 4.7. To admit the tower of extension field given in Eq. (4.17), the

binomial x2+1 and x6− (α+1) must be irreducible in Fp(z)[x] and Fp(z)2 [x], respectively.

According to Theorem 4.4, x2+1 is irreducible in Fp(z)[x] if −1 is quadratic non-residue in

F∗
p(z); x

6− (α+1) is irreducible in Fp(z)2 [x] if the norm of α+1, i.e., NFp(z)2/Fp(z)
(α+1) =

(α+1) · (α+1)p(z) = (α+1) · (−α+1) = −α2+1 = 2, is quadratic and cubic non-residue

in F∗
p(z). As seen in Lemma 4.6, if z ≡ 7, 11 (mod 12), we have ( −1

p(z)
) = −1, ( 2

p(z)
) = −1,

and ( 2
p(z)

)3 6= 1. □

The author shows how uniquely the coefficients of the BN curves and its twisted curves

can be determined in E/Fp(z) and E
′/Fp(z)2 , respectively. For the reference in the proof,

the lemma given by [Shi10] is presented below.

Lemma 4.8. Let ni(z) for 0 ≤ i ≤ 5 be polynomial defined as follows:

n0(z) = 12z2(3z2 + 3z + 1), n1(z) = 36z4 + 36z3 + 18z2 + 1,

n2(z) = 3(12z4 + 12z3 + 10z2 + 2z + 1), n3(z) = 4(9z4 + 9z3 + 9z2 + 3z + 1),

n4(z) = 3(12z4 + 12z3 + 10z2 + 4z + 1), n5(z) = 36z4 + 36z3 + 18z2 + 6z + 1.

Then, the group orders of E2/Fp(z) : y
2 = x3 + 2 are determined as follows:

#E2(Fp(z)) =



n0(z) if z ≡ 0, 9 (mod 12),

n1(z) if z ≡ 7, 10 (mod 12),

n2(z) if z ≡ 5, 8 (mod 12),

n3(z) if z ≡ 3, 6 (mod 12),

n4(z) if z ≡ 1, 4 (mod 12),

n5(z) if z ≡ 2, 11 (mod 12).

(4.18)

Proof of Lemma 4.8. Please refer to [Shi10]. □

Theorem 4.9. If z satisfies z ≡ 7, 11 (mod 12), the BN curve is determined as follows:

E/Fp(z) :

{
y2 = x3 + 26n−1 if z ≡ 7 (mod 12),

y2 = x3 + 26n+1 if z ≡ 11 (mod 12),
(4.19)

where n is any integer.

Proof of Theorem 4.9. From the definition, an elliptic curve E/Fp(z) such that #E(Fp(z)) =

p(z)+1−t(z) = r(z) = 36z4+36z3+18z2+6z+1 is the BN curve. According to Lemma 4.8,

if z ≡ 11( mod 12), E2/Fp(z) : y
2 = x3+2 is the BN curve since #E(Fp(z)) = n5(z) = r(z).
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Then, it is easily found that an elliptic curve E6n+1/Fp(z) : y
2 = x3 + 26n+1 is a twist of

degree 1 of E2. Since isomorphic two curves have the same group order, E6n+1 is also

being the BN curve.

On the other hand, if z ≡ 7 (mod 12), it is found that #E2(Fp(z)) = n1(z) = 36z4 +

36z3 + 18z2 + 1. Then, an elliptic curve E26n−1/Fp(z) : y
2 = x3 + 26n−1 is a twist of degree

3 of E6n+1 since δ = 22 of 26n+1/δ = 26n−1 is quadratic residue and cubic non-residue in

F∗
p(z) under the condition. The author refer to Eq. (4.8) and find that E26n−1 has only two

possible numbers n5(z) = 36z4+36z3+18z2+6z+1 and n3(z) = 4(9z4+9z3+9z2+3z+1).

According to (a) in Lemma 4.5, if the group order of elliptic curves can be divisible by

2, coefficients of the curve have to be cubic residue in F∗
p(z). Here, #E26n−1(Fp(z)) cannot

have 2 as a factor since the curve coefficient of E26n−1 has cubic non-residue in F∗
p(z). Since

#E26n−1(Fp(z)) = n5(z), E6n−1 ends up to the BN curve for the respective conditions of z.

□

Theorem 4.10. Suppose that the tower of extension fields is constructed as in Theo-

rem 4.7 and E/Fp(z) be the BLS curve determined as in Theorem 4.9. If z satisfies the

condition given in Eq. (4.13), the correct twist BN curve is determined as follows:

E ′/Fp(z)2 :

{
y2 = x3 + 26n−1(α + 1) if z ≡ 7 (mod 12),

y2 = x3 + 26n+1/(α + 1) if z ≡ 11 (mod 12),
(4.20)

where α is an element in Fp(z)2 such that α2 = −1.

Proof of Theorem 4.10. Since there exist two candidates of the twists of E with the

degree 6, E ′ has only two possible group orders given as p(z)2 + 1− (t2(z)− 3V2(z))/2 or

p(z)2+1−(t2(z)+3V2(z))/2 where t2(z) = p2+1−#E(Fp(z)2) and V2(z) is an integer such

that 4p(z)2 = t2(z)
2 + 3V2(z)

2. In the context of the BN curve, t2(z) and V2(z) are given

by t2(z) = −36z4−72z3−36z2−12z−1 and V2(z) = (6z2+1)(6z2+4z+1), respectively.

Thus, the possible group orders can be denoted by either 4(324z8+648z7+756z6+540z5+

288z4+108z3+30z2+6z+1) or (36z4+36z3+18z2+6z+1)(36z4+36z3+30z2+6z+1).

Since the correct twist E ′/Fp(z)2 has a group of order r(z), i.e., r(z) | #E ′(Fp(z)2), we can

guess #E ′(Fp(z)2) = (36z4 + 36z3 + 18z2 + 6z + 1)(36z4 + 36z3 + 30z2 + 6z + 1). Since it

is found that E ′(Fp(z)2) is not divisible by 2, the twisted curve E ′ coefficients should be a

cubic non-residue in F∗
p(z)2 . Now, in the case of the BN curve denoted by y2 = x3 +26n+1,

twisted curves can be denoted as y2 = x3 + 26n+1(α+ 1) or y2 = x3 + 26n+1/(α+ 1) since

(α + 1) and 1/(α + 1) are quadratic and cubic non-residue in F∗
p(z)2 . Then, the cubic

residue properties of each curve coefficients are denoted as follows:

(
26n+1(α + 1)

) p2−1
3 =

((
26n+1(α + 1)

)p+1
) p−1

3
=
(
(26n+1)2 · 2

) p−1
3 = 1,
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Table 4.2: The twisting and untwisting isomorphisms for the proposed BN subfamilies of
curves with k = 12.

z Twisting isomorphism Untwisting isomorphism
(mod 12) ϕ6 : E

′ → E ϕ−1
6 : E → E ′

7 (x, y) 7→ (ζ−1xβ4, ζ−1yβ3) (x, y) 7→ (xβ2, yβ3)
11 (x, y) 7→ (xβ2, yβ3) (x, y) 7→ (ζ−1xβ4, ζ−1yβ3)

(
26n+1(α + 1)−1

) p2−1
3 =

((
26n+1(α + 1)−1

)p+1
) p−1

3
=
(
(26n+1)2 · 2−1

) p−1
3 6= 1.

Since the coefficient of E ′ needs to be a cubic non-residue in F∗
p(z)2 , the twisted curve is

determined as y2 = x3 + 26n+1/(α+ 1). In the case of y2 = x3 + 26n−1, its twisted curves

are also derived in the same way. □

Since the equations of E and E ′ are determined, it is easily obtained the twisting

and untwisting isomorphisms as in Table 4.2. For z ≡ 11 (mod 12), since E and E ′ are

given by y2 = x3 + 26n+1 and y2 = x3 + 26n+1/ζ, the twisting isomorphism is given by

ϕ6 : E ′ → E, (x, y) 7→ (δ1/3x, δ1/2y). Since there is a relation δ1/3 = β2 and δ1/2 = β3,

the image of (x, y) under ϕ6 is modified as (xβ2, yβ3). On the other hand, the untwisting

isomorphism is ϕ6 : E ′ → E, (x, y) 7→ (δ−1/3x, δ−1/2y), which is the image is simplified

as (δ−1/3x, δ−1/2y) = (δ−1δ2/3x, δ−1δ1/2y) = (δ−1xβ4, δ−1yβ3). For the other case z ≡
7 (mod 12), the author obtains the result in the same manner. The important fact is

that the twisting and untwisting isomorphisms are low complexity since {1, β, . . . , β5} is
a basis of the 6-th dimensional vector space of Fp(z)2 .

4.3.3 Sample parameters and evaluation

Applying the restrictions, the author obtains several seeds for generating the BN curves

for the pairings at the 128-bit security level shown in Table 4.3. For the search of z, the

author refers to security analyses [Gui20] and tries to find z which gives rise to r(z) with

log2 r(z) ≥ 256 and log2 p(z) ≥ 5376 to ensure the pairings at the 128-bit security level.

For the efficiency reason of Miller’s algorithm, the author also finds z with low-Hamming

weight.

The author evaluates the seeds for the pairings on the BN curves given in Table 4.3 by

an implementation. For the implementation, the author adopts the optimal ate pairing

given in Eq. (4.12) and efficient projective formulas for computing Miller’s algorithm given

by Costello et al. in [CLN10]. Note that the optimal ate pairing e′oci (Q
′, ϕ−1

6 (P )) on E ′

with the untwisting isomorphism ϕ−1
6 : E → E ′ is employed. The author also adopts

the state-of-the-art algorithm for computing the final exponentiation by Fuentes et al. in

[HHT20] (see Example 3.4).
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Table 4.3: Sample parameters for the attractive BN subfamilies of curves with k = 12 at
the 128-bit security level.

No.
z

Seed z HW
Bit size

(mod 12) p(z) p(z)k r(z)
1 7 +2114 + 2101 − 214 − 20 [BD19] 4 462 5535 462
2 7 −2114 + 288 − 278 − 20 4 462 5535 462
3 7 −2113 − 242 + 211 − 20 4 458 5487 458
4 7 +2113 − 263 − 250 − 20 4 458 5487 458
5 7 +2113 + 278 + 253 − 20 4 458 5487 458
6 7 +2113 − 226 + 24 − 20 4 458 5487 458
7 7 +2113 − 267 − 258 − 20 4 458 5487 458
8 7 −2113 − 238 + 213 − 20 4 458 5487 458
9 11 −2114 − 262 − 230 − 20 4 462 5535 462
10 11 +2114 + 284 − 253 − 20 4 462 5535 462
11 11 +2113 − 286 + 263 − 20 4 458 5487 458
12 11 −2113 + 262 + 216 − 20 4 458 5487 458

With the optimizations, the author implements the software for executing the pairings

by C language. The big integer arithmetics are implemented by using mp limb t data

type of the GMP library in [tea15]. The software is compiled with GCC 8.3.0 with the

option -O2 -march=native and is executed by 3.50GHz Intel(R) Core(TM) i7-7567U CPU

running macOS Big Sur version 11.6. To evaluate the parameters, the average execution

times of 100,000 trials of Miller’s algorithm and final exponentiation are measured. Note

that the measurement is performed by repeating the functions for 1,000 random inputs

100 times.

Table 4.4 shows the results of the average execution time of Miller’s algorithm and final

exponentiation. The author could not find a significant difference between the timings of

the candidates of the curves, however, there are differences between the equations of ϕ−1
6 .

As seen in Table 4.2, since the equation is simpler than that of z ≡ 11 (mod 12), it is

theoretically better to use z satisfying z ≡ 7 (mod 12), however, it is considered that the

effect is very small in this environment.

4.4 Proposed BLS subfamilies of curves with k = 2m ·3
and 3n for any m,n > 0

The author extends Costello et al.’s work for the BLS family of curves with k = 24 and

provides the attractive subfamilies of the BLS family of curves with k = 2m · 3 and 3n for

any integers m,n > 0.
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Table 4.4: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on the BN curves with k = 12 at the 128-bit security
level.

No.
z

Seed z HW
Word ML FE Total

(mod 12) size [ms] [ms] [ms]
1 7 +2114 + 2101 − 214 − 20 [BD19] 4 8 2.37 1.41 3.78
2 7 −2114 + 288 − 278 − 20 4 8 2.37 1.41 3.78
3 7 −2113 − 242 + 211 − 20 4 8 2.34 1.40 3.73
4 7 +2113 − 263 − 250 − 20 4 8 2.35 1.40 3.75
5 7 +2113 + 278 + 253 − 20 4 8 2.34 1.39 3.74
6 7 +2113 − 226 + 24 − 20 4 8 2.35 1.40 3.75
7 7 +2113 − 267 − 258 − 20 4 8 2.34 1.40 3.74
8 7 −2113 − 238 + 213 − 20 4 8 2.34 1.40 3.74
9 11 −2114 − 262 − 230 − 20 4 8 2.37 1.40 3.77
10 11 +2114 + 284 − 253 − 20 4 8 2.44 1.44 3.88
11 11 +2113 − 286 + 263 − 20 4 8 2.40 1.41 3.81
12 11 −2113 + 262 + 216 − 20 4 8 2.39 1.41 3.80

4.4.1 Review of the pairings with the BLS family

The BLS family is a family of curves E with the CM discriminant D = 3, i.e., j(E) = 0,

and the embedding degree k of multiple of 3 except for k = 18. The parameterizations of

the BLS family are given by triples of p(x), r(x), and t(x) in Q[x]. Since the BLS family

is complete, one can find a polynomial V (x) ∈ Q[x] such that 3V (x)2 = 4p(x) − t(x)2.
For the case of k = 2m · 3 and 3n with any integers m,n > 0, the polynomial parameters

p(x), r(x), t(x), and V (x) in Q[x] are given as follows [BLS02]:

• k = 2m · 3 
p(x) = 1

3
(x− 1)2 · r(x) + x,

r(x) = Φk(x) = x2
m − x2m−1

+ 1,

t(x) = x+ 1,

V (x) = 1
3
(x− 1) · (2x2m−1 − 1).

(4.21)

• k = 3n 
p(x) = (x− 1)2 · r(x) + x,

r(x) = 1
3
Φk(x) =

1
3
(x2·3

n−1
+ x3

n−1
+ 1),

t(x) = x+ 1,

V (x) = 1
3
(x− 1) · (2x3n−1

+ 1).

(4.22)

Let z be an integer making p(z) and r(z) being primes and t(z) and V (z) being integers
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where the condition z ≡ 1 (mod 3) leads to all involved parameters being integers. One

can find an elliptic curve E/Fp(z) : y
2 = x3+b such that n(z) = #E(Fp(z)) = p(z)+1−t(z)

with the prime divisor r(z), which we say E is the BLS curve. Let d = 6 and 3 for k = 2m·3
and 3n, respectively. Then, one can also find a correct twist E ′/Fp(z)k/d : y2 = x3 + b′ of

degree d of E such that r(z) | n′(z) = #E ′(Fp(z)k/d) and twisting isomorphism ϕd : E
′ → E

defined over Fp(z)k .

Let µr(z) be the multiplicative subgroup of Fp(z)k of order r(z) consisting of the r(z)-th

root of identity. Let G1 and G2 be the base-field and trace-zero groups of r(z)-torsion

subgroup E[r(z)], respectively. Since T (z) = t(z) − 1 = z, the standard ate pairing is

defined as follows:

eaT : G2 × G1 → µr(z),

eaT (Q,P ) = fz,Q′(P )
p(z)k−1

r(z) . (4.23)

Since log2 r(z)/ϕ(k) ≈ log2 z, the ate pairing can be computed by Miller’s algorithm with

one of the shortest iterations. This means that the ate pairing is exactly one of the

optimal ate pairings given by [Ver09]. It is possible to define the pairing on E ′ by using

the preimages G ′2 and G ′1 of G2 and G1 under ϕd, respectively. Assuming e′aT is an ate

pairing on E ′ and P ∈ G1 and Q′ ∈ G ′2, one can efficiently compute the ate pairing either

eaT (ϕd(Q), P ) or e
′
aT
(Q, ϕ−1

d (P )).

As the other optimization, the exponent (p(z)k−1)/r(z) of the final exponentiation can

be decomposed by using Theorem 3.6 by Hayashida et al. in [HHT20]. This immediately

provides one of the efficient algorithms for computing the final exponentiation by using

the Frobenius endomorphisms.

4.4.2 Determination of the number of rational points on the

correct twists

To determine the twist equation E ′ by using Lemma 4.5, the knowledge of the number of

the rational points on E ′ is required. This subsection shows the knowledge for the BLS

family of curves for k = 2m · 3 and 3n with any integers m,n > 0, respectively.

(i) The case of k = 2m · 3 for any m > 0

Let p(x), r(x), t(x), and V (x) be the polynomials fixed as Eq. (4.21) for the BLS family of

curves with k = 2m ·3 for any integer m > 0. For an integer z making p(z) and r(z) being

primes and t(z) and V (z) being integers, let E/Fp(z) and E
′/Fp(z)2m−1 be the BLS curve and

correct twist of degree 6 of E. For any integer s > 0, let ts(z) = p(z)s+1−#E(Fp(z)s) be a

trace of E defined over Fp(z)s and Vs(z) be a parameter such that 3Vs(z)
2 = 4p(z)s−ts(z)2.



4.4. Proposed BLS subfamilies of curves with k = 2m · 3 and 3n for any m,n > 0 125

Then, the group order of the correct twist is specifically represented as follows:

Theorem 4.11. For k = 2m · 3 with any m > 0, the group order of the correct twist

E ′/Fp(z)2m−1 of degree 6 of E is uniquely given as

#E ′(Fp(z)2m−1 ) = p(z)2
m−1

+ 1− t2m−1(z)− 3V2m−1(z)

2
. (4.24)

To prove Theorem 4.11, the author provides the following Lemmas 4.12, 4.13, and 4.14.

Lemma 4.12. For any integer l ≥ 0, t2l+1(z) and V2l+1(z) can be built from the knowledge

of t2l(z) and V2l(z) as follows:

t2l+1(z) = t2l(z)
2 − 2p(z)2

l

, (4.25)

V2l+1(z) = t2l(z) · V2l(z). (4.26)

Proof of Lemma 4.12. According to Theorem 2.50, for any l > 0, the trace t2l(z) =

p2
l
+ 1−#E(F

p(z)2l
) can be written as t2l(z) = α2l + β2l where α and β are roots of the

polynomial X2− t(z) ·X + p(z), i.e., α · β = p(z) and α+ β = t(z). Thus, t2l+1(z) can be

represented as

t2l+1(z) = α2l+1

+ β2l+1

= (α2l + β2l)2 − 2(α · β)2l = t2l(z)
2 − 2p(z)2

l

. (4.27)

Moreover, with the above, the following is also obtained.

3V2l+1(z)2 = 4p(z)2
l+1 − t2l+1(z)2

= 4p(z)2
l+1 − (t2l(z)

2 − 2p(z)2
l

)2

= 4p(z)2
l+1 − t2l(z)4 + 4t2l(z)

2 · p(z)2l − 4p(z)2
l+1

= t2l(z)
2 · (4 · p(z)2l − t2l(z)2)

= t2l(z)
2 · 3V2l(z)2, (4.28)

which leads to V2l+1(z) = t2l(z) · V2l(z). □

Lemma 4.13. For any integer l ≥ 0, the following holds.

t2l(z) ≡ z2
l

+ 1 (mod r(z)). (4.29)

Proof of Lemma 4.13. The lemma can be proven by induction on l.

(i) For l = 0, it is obvious that t20(z) = t(z) ≡ z + 1 (mod r(z)).
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(ii) For l = s with an integer s > 0, suppose that t2s(z) ≡ z2
s
+1 ( mod r(z)). According

to Lemma 4.12 and p(z) = (z − 1)2/3 · r(z) + z ≡ z (mod r(z)),

t2s+1(z) = t2s(z)
2 − 2p(z)2

s

≡ t2s(z)
2 − 2z2

s ≡ (z2
s

+ 1)2 − 2z2
s ≡ z2

s+1

+ 1 (mod r(z)). (4.30)

Thus, t2s+1(z) ≡ z2
s+1

+ 1 (mod r(z)) is also true for l = s+ 1.

Since both the base case (i) and the inductive step (ii) have been proven, t2l(z) ≡ z2
l
+

1 (mod r(z)) holds for any l ≥ 0. □

Lemma 4.14. For any integer l > 0, the following holds.

t2l(z)± 3V2l(z)

2
≡

2l−1∑
i=0

zi · t(z)± 3V (z)

2
−

2l−1∑
i=1

zi (mod r(z)). (4.31)

Proof of Lemma 4.14. The lemma can be proven by induction on l.

(i) For l = 1, from Lemmas 4.12, 4.13, and p(z) ≡ z (mod r(z)), the following can be

obtained.

t2(z)± 3V2(z)

2
=

(t(z)2 − 2p(z))± (t(z) · 3V (z))

2

= t(z) · t(z)± 3V (z)

2
− p(z)

≡ (z + 1) · t(z)± 3V (z)

2
− z (mod r(z)). (4.32)

Thus, the lemma is true for l = 1.

(ii) For l = s with an integer s > 1, suppose that the lemma is true. Then, the following

is obtained.

t2s+1(z)± 3V2s+1(z)

2

=
(t2s(z)

2 − 2p(z)2
s
)± (t2s(z) · 3V2s(z))
2

(mod r(z))

=t2s(z) ·
t2s(z)± 3V2s(z)

2
− p(z)2s

≡(z2s + 1) ·

(
2s−1∑
i=0

zi · t(z)± 3V (z)

2
−

2s−1∑
i=1

zi

)
− z2s (mod r(z))

≡

(
2s+1−1∑
i=2s

zi +
2s−1∑
i=0

zi

)
· t(z)± 3V (z)

2
−

2s+1−1∑
i=2s+1

zi −
2s−1∑
i=1

zi − z2s (mod r(z))
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≡
2s+1−1∑
i=0

zi · t(z)± 3V (z)

2
−

2s+1−1∑
i=1

zi (mod r(z)).

(4.33)

Thus, the lemma is also true for l = s+ 1.

Since both the base case (i) and the inductive step (ii) have been proven, it is clear that

the lemma is true for any l > 0. □

Then, the author provides the proof of Theorem 4.11 by using the above lemmas.

Proof of Theorem 4.11. According to Eq. (4.8), the group order of the twist of E/Fp(z)

can be determined corresponding to the twist degree d. In this case, since d = 6, it is

found that #E ′(Fp(z)2m−1 ) is given by one of the following.

n′
0(z) = p(z)2

m−1

+ 1− t2m−1(z) + 3V2m−1(z)

2
, (4.34)

n′
1(z) = p(z)2

m−1

+ 1− t2m−1(z)− 3V2m−1(z)

2
. (4.35)

Besides, from the definition, the group order of the correct twist is divisible by r(z).

Thus, to prove the theorem, it is enough to show that r(z) divides n′
1(z) but does not

divide n′
0(z), i.e., n

′
0(z) 6≡ 0 (mod r(z)) and n′

1(z) ≡ 0 (mod r(z)). Note that r(z) =

z2
m − z2m−1

+ 1 ≡ 0 (mod r(z)) in this case.

Applying Lemma 4.14, the possible group orders n′
0(z) modulo r(z) can be denoted

as follows:

n′
0(z) ≡ z2

m−1

+ 1−

(
2m−1−1∑

i=0

zi · t(z) + 3V (z)

2
−

2m−1−1∑
i=1

zi

)
(mod r(z))

≡ z2
m−1

+ 1−
2m−1−1∑

i=0

zi · ((z − 1) · x2m−1

+ 1) +
2m−1−1∑

i=1

zi (mod r(z))

≡ z2
m−1

+ 1− (z2
m−1 − 1) · z2m−1 −

2m−1−1∑
i=0

zi +
2m−1−1∑

i=1

zi (mod r(z))

≡ z2
m−1

+ 1− z2m + z2
m−1 − 1 (mod r(z))

≡ −z2m + 2z2
m−1

(mod r(z)). (4.36)

On the other hand, for n′
1(z) modulo r(z), the following is obtained.

n′
1(z) ≡ z2

m−1

+ 1−

(
2m−1−1∑

i=0

zi · t(z)− 3V (z)

2
−

2m−1−1∑
i=1

zi

)
(mod r(z))



4.4. Proposed BLS subfamilies of curves with k = 2m · 3 and 3n for any m,n > 0 128

≡ z2
m−1

+ 1−
2m−1−1∑

i=0

zi · (−(z − 1) · x2m−1

+ z) +
2m−1−1∑

i=1

zi (mod r(z))

≡ z2
m−1

+ 1 + (z2
m−1 − 1) · z2m−1 −

2m−1∑
i=1

zi +
2m−1−1∑

i=1

zi (mod r(z))

≡ z2
m−1

+ 1 + z2
m − z2m−1 − z2m−1

(mod r(z))

≡ z2
m − z2m−1

+ 1 (mod r(z))

≡ 0 (mod r(z)). (4.37)

Thus, Theorem 4.11 is true. □

(ii) The case of k = 3n for any n > 0

Let p(x), r(x), t(x), and V (x) be the polynomials fixed as Eq. (4.22) for the BLS family of

curves with k = 3n for any n > 0. For an integer z making p(z) and r(z) being primes and

t(z) and V (z) being integers, let E/Fp(z) and E
′/Fp(z)3n−1 be the BLS curve and correct

twist of degree 3 of E. For any integer s > 0, let ts(z) = p(z)s + 1 − #E(Fp(z)s) be a

trace of E defined over Fp(z)s and Vs(z) be an integer such that 3Vs(z)
2 = 4p(z)s− ts(z)2.

Then, the group order of the correct twist can be represented as shown in the below.

Theorem 4.15. For k = 3n with any n > 0, the group order of the correct twist

E ′/Fp(z)3n−1 of degree 3 of E is uniquely given as the following.

#E ′(Fp(z)3
n−1 ) = p(z)3

n−1

+ 1− −t3
n−1(z)− 3V3n−1(z)

2
. (4.38)

Theorem 4.15 can be proven with the following Lemmas 4.16, 4.17, and 4.18.

Lemma 4.16. For any integer l ≥ 0, t3l+1(z) and V3l+1(z) can be built from the knowledge

of t3l(z) and V3l(z) as follows:

t3l+1(z) = t3l(z)
3 − 3p(z)3

l · t3l(z), (4.39)

V3l+1(z) = V3l(z) · (t3l(z)2 − p(z)3
l

). (4.40)

Proof of Lemma 4.16. Similar to proof of Lemma 4.12, for any l > 0, the trace t3l(z) =

p3
l
+ 1−#E(F

p(z)3l
) can be written as t3l(z) = α3l + β3l where α and β are roots of the

polynomial X2 − t(z) ·X + p(z), i.e., α · β = p(z) and α + β = t(z) (see [Sil09]). Thus,

t3l+1(z) can be denoted as follows:

t3l+1(z) = α3l+1

+ β3l+1

= (α3l + β3l)3 − 3(α · β)3l · (α3l + β3l)

= t3l(z)
3 − 3p(z)3

l · t3l(z). (4.41)
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Besides, it is also denoted as follows:

3V3l+1(z)2 = 4p(z)3
l+1 − t3l+1(z)2

= 4p(z)3
l+1 − (t3l(z)

3 − 3p(z)3
l · t3l(z))2

= 4p(z)3
l+1 − t3l(z)6 + 6p(z)3

l · t3l(z)4 − 9p(z)2·3
l · t3l(z)2

= (4p(z)3
l − t3l(z)2) · (t3l(z)2 − p(z)3

l

)2

= 3V3l(z)
2 · (t3l(z)2 − p(z)3

l

)2, (4.42)

which leads to V3l+1(z) = V3l(z) · (t3l(z)2 − p(z)3
l
). □

Lemma 4.17. For any integer l ≥ 0, the following holds.

t3l(z) ≡ z3
l

+ 1 (mod r(z)). (4.43)

Proof of Lemma 4.17. The lemma can be proven by induction on l.

(i) For l = 0, it is clear that t30(z) = t(z) ≡ z + 1 (mod r(z)).

(ii) For l = s with an integer s > 0, let t3s(z) ≡ z3
s
+ 1 (mod r(z)) be ture. Then,

according to Lemma 4.12 and p(z) ≡ z (mod r(z)), the case of l = s + 1 can be

obtained as follows:

t3s+1(z) = t3l(z)
3 − 3p(z)3

s · t3s(z)
≡ (z3

s

+ 1)3 − 3z3
s · (z3s + 1) (mod r(z))

≡ z3
s+1

+ 3z2·3
s

+ 3z3
s

+ 1− 3z2·3
s − 3z3

s

(mod r(z))

≡ z3
s+1

+ 1 (mod r(z)). (4.44)

Thus, t3s+1(z) ≡ z3
s+1

+ 1 (mod r(z)) is also held for l = s+ 1.

Since both the base case (i) and inductive step (ii) have been proven, t3l(z) ≡ z3
l
+

1 (mod r(z)) is true for any l > 0. □

Lemma 4.18. For any integer l > 0, the following holds.

−t3l(z)± 3V3l(z)

2
≡

3l−1∑
i=0

zi · −t(z)± 3V (z)

2
+

3l−1∑
i=1

zi (mod r(z)). (4.45)

Proof of Lemma 4.18. The lemma can be proven by induction on l.

(i) For l = 1, from Lemmas 4.16, 4.17, and p(z) ≡ z (mod r(z)), it is found that

−t3(z)± 3V3(z)

2
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=
−(t(z)3 − 3p(z) · t(z))± 3V (z) · (t(z)2 − p(z))

2

=
−t(z) · (t(z)2 − p(z)) + 2p(z) · t(z)± 3V (z) · (t(z)2 − p(z))

2

=(t(z)2 − p(z)) · −t(z)± 3V (z)

2
+ p(z) · t(z). (4.46)

Then, taking modulo r(z),

−t3(z)± 3V3(z)

2
≡ (z2 + z + 1) · −t(z)± 3V (z)

2
+ (z2 + z) (mod r(z)). (4.47)

The above shows that the lemma is true for l = 1.

(ii) For l = s with an integer s > 1, suppose that the lemma is true. With the assump-

tion, for l = s+ 1, the following can be obtained.

−t3s+1(z)± 3V3s+1(z)

2

=
−(t3s(z)3 − 3p(z)3

s · t3s(z))± 3V3s(z) · (t3s(z)2 − p(z)3
s
)

2

=
−t3s(z)·(t3s(z)2−p(z)3

s
)+2p(z)3

s·t3s(z)±3V3s(z)·(t3s(z)2−p(z)3
s
)

2

=(t3s(z)
2 − p(z)3s) · −t3

s(z)± 3V3s(z)

2
+ p(z)3

s · t3s(z). (4.48)

Similarly, taking modulo r(z), the following is obtained.

−t3s+1(z)± 3V3s+1(z)

2

≡(z2·3s + z3
s

+ 1) ·

(
3s−1∑
i=0

zi · −t(z)± 3V (z)

2
+

3s−1∑
i=1

zi

)
+ (z2·3

s

+ z3
s

) (mod r(z))

≡

(
3s+1−1∑
i=2·3s

zi +
2·3s−1∑
i=3s

zi +
3s−1∑
i=0

zi

)
· −t(z)± 3V (z)

2
(mod r(z))

+
3s+1−1∑
i=2·3s+1

zi +
2·3s−1∑
i=3s+1

zi +
3s−1∑
i=1

zi + (z2·3
s

+ z3
s

) (mod r(z))

≡
3s+1−1∑
i=0

zi · −t(z)± 3V (z)

2
+

3s+1−1∑
i=1

zi (mod r(z)). (4.49)

Thus, the lemma is also true for l = s+ 1.

Since both the base case (i) and the inductive step (ii) have been proven, the lemma is

true for any l > 0. □
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In the following, the author provides the proof of Theorem 4.15 by using the above

lemmas.

Proof of Theorem 4.15. According to Eq. (4.8), the group order #E(Fp(z)3n−1 ) of twist of

degree 3 of E/Fp(z) is given by one of the following.

n′
0(z) = p(z)3

n−1

+ 1− −t3
n−1(z) + 3V3n−1(z)

2
, (4.50)

n′
1(z) = p(z)3

n−1

+ 1− −t3
n−1(z)− 3V3n−1(z)

2
. (4.51)

Since the group order is divisible by r(z), it is enough to show that r(z) divides n′
1(z) but

does not divide n′
0(z), i.e., n

′
0(z) 6≡ 0 (mod r(z)) and n′

1(z) ≡ 0 (mod r(z)). Applying

Lemma 4.18, the possible group order n′
0(z) modulo r(z) = 1

3
(z2·3

n−1
+ z3

n−1
+ 1) can be

written as follows:

n′
0(z) ≡ z3

n−1

+ 1−

(
3n−1−1∑
i=0

zi · −t(z) + 3V (z)

2
+

3n−1−1∑
i=1

zi

)
(mod r(z))

≡ z3
n−1

+ 1−
3n−1−1∑
i=0

zi · ((z − 1) · z3n−1 − 1)−
3n−1−1∑
i=1

zi (mod r(z))

≡ z3
n−1

+ 1− (z3
n−1 − 1) · z3n−1

+
3n−1−1∑
i=0

zi −
3n−1−1∑
i=1

zi (mod r(z))

≡ z3
n−1

+ 1− z2·3n−1

+ z3
n−1

+ 1 (mod r(z))

≡ −z2·3n−1

+ 2z3
n−1

+ 2 (mod r(z)). (4.52)

For the case of n′
1(z) modulo r(z),

n′
0(z) ≡ z3

n−1

+ 1−

(
3n−1−1∑
i=0

zi · −t(z)− 3V (z)

2
+

3n−1−1∑
i=1

zi

)
(mod r(z))

≡ z3
n−1

+ 1−
3n−1−1∑
i=0

zi · (−(z − 1) · z3n−1 − z)−
3n−1−1∑
i=1

zi (mod r(z))

≡ z3
n−1

+ 1 + (z3
n−1 − 1) · z3n−1

+
3n−1∑
i=1

zi −
3n−1−1∑
i=1

zi (mod r(z))

≡ z3
n−1

+ 1 + z2·3
n−1 − z3n−1

+ z3
n−1

(mod r(z))

≡ z2·3
n−1

+ z3
n−1

+ 1 (mod r(z))

≡ 0 (mod r(z)). (4.53)

From the above, Theorem 4.15 is true. □
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4.4.3 Proposed restriction of integer parameters

The author extends Costello et al.’s work [CLN11] and provides the restrictions of integer

parameters for the BLS subfamilies of curves with k = 2m · 3 and 3n with any m,n > 0.

The details of the proposals for the cases of k = 2m ·3 and 3n are described in the following.

(i) The case of k = 2m · 3 for any m > 0

Let z be an integer parameter for the BLS family of curves with k = 2m · 3 where m > 0

is an arbitrary integer. The author proposes to restrict z as follows:

z ≡

{
7, 10, 16, 28, 31, 34 (mod 36) if m = 1,

7, 16, 31, 64 (mod 72) if m > 1.
(4.54)

Once finding z under the above restrictions, the specific subfamilies of the BLS family

with the options are obtained.

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;

(ii) The BLS curve E/Fp(z) is immediately determined;

(iii) The correct twist E ′/Fp(z)2m−1 is also immediately determined.

The constructions also enable one of the simplest twist isomorphisms. The details of the

field and curve options (i), (ii), and (iii) are summarized in Table 4.5, where α and β

are elements in Fp(z)2 and Fp(z)2m·3 such that α2 = −1 and β2m−1·3 = α + 1, respectively,

and where ζ = β6 ∈ Fp(z)2m−1 . Note that the case of m = 3 can provide almost the same

results of [CLN11] described in Sect. 4.2.1. The correctness of Table 4.5 is provided in the

following theorem. Before describing the theorems, the author presents the knowledge of

the quadratic and cubic residue properties in F∗
p(z) in the following Lemma 4.19.

Lemma 4.19. For the symbols ( ·
p(z)

) and ( ·
p(z)

)3, the following is true.

(a) For m = 1,

(
−1
p(z)

)
=

{
1 if z ≡ 1 (mod 12),

−1 if z ≡ 4, 7, 10 (mod 12).
(4.55)

For m > 1, (
−1
p(z)

)
=

{
1 if z ≡ 1, 10 (mod 12),

−1 if z ≡ 4, 7 (mod 12).
(4.56)
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Table 4.5: The field and curve options for the proposed BLS subfamilies of curves with
k = 2m · 3 for any m > 0.

(a) m = 1
z Tower BLS curve E/Fp(z) Twist E ′/Fp(z)2m−1

(mod 36) (see Theorem 4.20) (see Theorem 4.21) (see Theorem 4.22)
7 y2 = x3 + 1 y2 = x3 − 4

16, 34 Fp(z)2
∼= Fp(z)(α) y2 = x3 + 4 y2 = x3 − 1

31 Fp(z)6
∼= Fp(z)2(β) y2 = x3 + 1 y2 = x3 − 1/4

10, 28 y2 = x3 + 16 y2 = x3 − 1

(b) m > 1
z Tower BLS curve E/Fp(z) Twist E ′/Fp(z)2m−1

(mod 72) (see Theorem 4.20) (see Theorem 4.21) (see Theorem 4.22)
7 y2 = x3 + 1 y2 = x3 + 1/ζ
16 Fp(z)2

∼= Fp(z)(α) y2 = x3 + 4 y2 = x3 + 4ζ
31 Fp(z)2m·3 ∼= Fp(z)2(β) y2 = x3 + 1 y2 = x3 + ζ
64 y2 = x3 − 2 y2 = x3 − 2/ζ

(b) For m = 1,

(
2

p(z)

)
=

{
1 if z ≡ 1, 19 (mod 24),

−1 if z ≡ 4, 7, 10, 13, 16, 22 (mod24).
(4.57)

For m = 2, (
2

p(z)

)
=

{
1 if z ≡ 1, 4, 10, 19 (mod 24),

−1 if z ≡ 7, 13, 16, 22 (mod 24).
(4.58)

For m > 2, (
2

p(z)

)
=

{
1 if z ≡ 1, 4, 19, 22 (mod 24),

−1 if z ≡ 7, 10, 13, 16 (mod 24).
(4.59)

(c) For m > 0,

(
2

p(z)

)
3

{
= 1 if z ≡ 1, 4 (mod 18),

6= 1 if z ≡ 7, 10, 13, 16 (mod 18).
(4.60)

Proof of Lemma 4.19. (a) and (b): The author refers to Lemma 2.25 and verifies the

value of p(z) modulo 4 and 8. As a result, (a) and (b) are obtained.

(c): The author refers to Euler’s conjecture given in Lemma 2.28. In the following,
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the author classifies z satisfying z ≡ 1 (mod 3) into two cases, i.e., z ≡ 1 (mod 6) and

z ≡ 4 (mod 6).

If z ≡ 1 (mod 6), p(z) can be modified as follows:

p(z) =

(
t(z)

2

)2

+ 3

(
V (z)

2

)2

=

(
z + 1

2

)2

+ 3

(
z − 1

6
· (2z2m−1 − 1)

)2

. (4.61)

For b(z) = (z − 1)/6 · (2z2m−1 − 1), if z ≡ 1 (mod 18) then 3 divides b(z); if z ≡
7, 13 (mod 18) then 3 does not divides b(z). Thus, according to (b) in Lemma 2.28, if

z ≡ 1 (mod 18) then (2
p
)3 = 1; if z ≡ 7, 13 (mod 18) then (2

p
)3 6= 1.

If z ≡ 4 (mod 6), p(z) can be represented as follows:

p(z) =

(
t(z)− 3V (z)

4

)2

+ 3

(
t(z) + V (z)

4

)2

=

(
−(z − 1) · z2m−1

+ z

2

)2

+ 3

(
(z − 1) · z2m−1

+ z + 2

6

)2

. (4.62)

For b(z) = ((z − 1) · z2m−1
+ z + 2)/6, if z ≡ 4 (mod 18) then 3 divides b(z); if z ≡

10, 16 (mod 18) then 3 does not divide b(z). In the same manner, it is obtained that if

z ≡ 4 (mod 18) then ( 2
p(z)

)3 = 1; if z ≡ 10, 16 (mod 18) then ( 2
p(z)

)3 6= 1. □
Then, the author provides Theorems 4.20, 4.21, and 4.22 associated with the con-

struction of the tower of extension fields, the BLS curve with k = 2m · 3, and its correct

twist.

Theorem 4.20. If z satisfies the condition Eq. (4.54), the following tower of extension

fields is always available. For m = 1,{
Fp(z)2

∼= Fp(z)[x]/(x
2 + 1) ∼= Fp(z)(α),

Fp(z)6
∼= Fp(z)2 [x]/(x

3 − 2) ∼= Fp(z)2(β),
(4.63)

where α and β are elements in Fp(z)2 and Fp(z)6 such that α2 = −1 and β3 = 2, respectively.

For m > 1, {
Fp(z)2

∼= Fp(z)[x]/(x
2 + 1) ∼= Fp(z)(α),

Fp(z)2m·3 ∼= Fp(z)2 [x]/(x
2m−1·3 − (α + 1)) ∼= Fp(z)2(β),

(4.64)

where α and β are elements in Fp(z)2 and Fp(z)2m·3 such that α2 = −1 and β2m−1·3 = α+1,

respectively.

Proof of Theorem 4.20. For m = 1, to admit the tower of extension fields, the binomials
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x2 + 1 and x3 − 2 must be irreducible in Fp(z)[x] and Fp(z)2 [x], respectively. According to

(a) in Lemma 4.4, the binomial x2 + 1 is irreducible in Fp(z)[x] if −1 is quadratic non-

residue in F∗
p(z). The binomial x3 − 2 is irreducible in Fp(z)2 [x] if the norm of 2, which is

computed as NFp(z)2/Fp(z)
(2) = 2 · 2p(z) = 22 = 4, is cubic non-residue in F∗

p(z). Note that

(b) in Lemma 4.4 is satisfied for both cases. Since it is found that if z satisfies Eq. (4.54),

( −1
p(z)

) = −1 and ( 2
p(z)

)3 6= 1 which results in ( 4
p(z)

)3 6= 1 from Lemma 4.19, the tower is

available.

Similarly, for m > 1, to admit the tower of extension fields, the binomials x2 + 1 and

x2
m−1·3−(α+1) must be irreducible in Fp(z)[x] and Fp(z)2 [x], respectively. According to (a)

in Lemma 4.4, the binomial x2+1 is irreducible in Fp(z)[x] if −1 is quadratic non-residue in
F∗
p(z). The binomial x2

m−1·3−(α+1) is irreducible in Fp(z)2 [x] if the the norm of α+1, which

is computed by NFp(z)2/Fp(z)
(α+1) = (α+1) ·(α+1)p(z) = (α+1) ·(−α+1) = −α2+1 = 2,

is quadratic and cubic non-residue in F∗
p(z). Besides, (b) in Lemma 4.4 is satisfies for both

cases. Since it is found that if z satisfies Eq. (4.54), ( −1
p(z)

) = −1, ( 2
p(z)

) = −1, and

( 2
p(z)

)3 6= 1 from Lemma 4.19, the tower is available. □

Theorem 4.21. Under the same assumptions as in Theorem 4.20, the BLS curve E/Fp(z)

can be determined as follows: For m = 1,

E/Fp(z) :


y2 = x3 + 1 if z ≡ 7, 31 (mod 36),

y2 = x3 + 4 if z ≡ 16, 34 (mod 36),

y2 = x3 + 16 if z ≡ 10, 28 (mod 36).

(4.65)

For m > 1,

E/Fp(z) :


y2 = x3 + 1 if z ≡ 7, 31 (mod 72),

y2 = x3 + 4 if z ≡ 16 (mod 72),

y2 = x3 − 2 if z ≡ 64 (mod 72).

(4.66)

Proof of Theorem 4.21. The author verifies the cofactors of the possible group orders to

determine the coefficient b of the BLS curve by using Lemma 4.5. From the definition,

the curve with the group order n(z) = p(z) + 1− t(z) is the BLS curve.

If z ≡ 7, 31 (mod 36) for m = 1; z ≡ 7, 31 (mod 72) for m > 1, then n(z) is divisible

by 6 but the other group orders are not divisible by 6. According to (a) and (b) in

Lemma 4.5, the coefficient b of the BLS curve is quadratic and cubic residue element b in

F∗
p(z). Such the coefficient can be chosen as b = 1 since it is obvious that ( 1

p(z)
) = 1 and

( 1
p(z)

)3 = 1.

Similarly, if z ≡ 16, 34 (mod 36) for m = 1; z ≡ 16 (mod 72) for m > 1, n(z) is

always divisible by 3 but is not divisible by 2 and 9, however, the other group orders do

not have such the properties of cofactors. Thus, according to (a) and (b) in Lemma 4.5,
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b is quadratic residue and cubic non-residue in F∗
p(z) and 4b is cubic non-residue in F∗

p(z).

Then, the coefficient b of the BLS curve can be explicitly chosen as b = 4 since ( 2
p(z)

)3 6= 1

from Lemma 4.19.

Finally, if z ≡ 10, 28 (mod 36) for m = 1; z ≡ 64 (mod 72) for m > 1, 9 always

divides n(z) but 2 does not divide n(z) and the other group orders are not divisible by 9.

According to (a) and (c) in Lemma 4.5, it is found that b is quadratic residue and cubic

non-residue in F∗
p(z), and 4b is cubic residue in F∗

p(z). Such the coefficient b of the BLS

curve can be chosen as b = 16 since ( 2
p(z)

)3 6= 1 from Lemma 4.19. For m > 1, since the

quadratic and cubic residue properties of −2 and 16 are exactly the same, b = −2 can

also be chosen for the BLS curve. □

Theorem 4.22. Suppose that the tower of extension fields is constructed as in The-

orem 4.20 and E/Fp(z) be the BLS curve determined as in Theorem 4.21. Then, the

correct twist E ′/Fp(z)2m−1 of degree 6 of E can be determined as follows: For m = 1,

E ′/Fp(z)2m−1 :


y2 = x3 − 4 if z ≡ 7 (mod 36),

y2 = x3 − 1/4 if z ≡ 31 (mod 36),

y2 = x3 − 1 if z ≡ 10, 16, 28, 34 (mod 36).

(4.67)

For m > 1, letting ζ = β6 ∈ Fp(z)2m−1 with β ∈ Fp(z)2
m·3 such that β2m−1·3 = α + 1,

E ′/Fp(z)2m−1 :


y2 = x3 + 1/ζ if z ≡ 7 (mod 72),

y2 = x3 + 4ζ if z ≡ 16 (mod 72),

y2 = x3 + ζ if z ≡ 31 (mod 72),

y2 = x3 − 2/ζ if z ≡ 64 (mod 72).

(4.68)

Proof of Theorem 4.22. The author verifies the cofactors of the group order n′(z) of the

correct twist E ′/Fp(z)2m−1 : y2 = x3+ b′ to determine b′ by using Lemma 4.5. Then, b′ can

be represented as b′ = b/δ, where b is the coefficient of the BLS curve and δ is quadratic

and cubic non-residue in F∗
p(z)2m−1 . The author also verifies the cofactors of the group order

n′′(z) of the twist E ′′/Fp(z)2m−1 : y2 = x3 + b′′ of degree 2 of E ′, where b′′ = b′/δ3 = b · δ4.
Note that n′(z) is derived as in Theorem 4.11 and n′′(z) = 2p(z)2

m−1
+ 2 − n′(z) from

Eq. (4.8).

For m = 1, if z ≡ 7 (mod 36), it is found that n′(z) is not divisible by 2, 3, and 9. It

is also found that n′′(z) is divisible by 3, but is not divisible by 2 and 9. Thus, according

to Lemma 4.5, the following information is obtained.

(a) b′ is quadratic and cubic non-residue in F∗
p(z).

(b) b′′ is quadratic residue and cubic non-residue in F∗
p(z).
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(c) 4b′′ is cubic non-residue in F∗
p(z).

In this condition, the coefficient b of the BLS curve is determined as b = 1 and −4 is

quadratic and cubic non-residue in F∗
p(z). Thus, the coefficient b′ of the correct twist

E ′/F∗
p(z) can be denoted as either b′ = −1/4 or −4. In addition, the coefficient b′′ of the

twist E ′′/F∗
p(z) of degree 2 of E ′ can also be denoted as either b′′ = 1/44 or 44. From the

above, it is found that both candidates of b′ and b′′ satisfy (a) and (b), however, (c) is

satisfied if b′′ = (−4)4, which leads to b′ = −4. Thus, b′ = −4 is obtained. In the same

manner, the other cases of z ≡ 10, 16, 28, 31, 34 (mod 36) can also be obtained.

For m > 1, if z ≡ 7 (mod 72), n′(z) is not divisible by 2, 3, and 9. Besides, if m is

even, n′′(z) is divisible by 9 but is not divisible by 2, otherwise, n′′(z) is divisible by 3, but

is not divisible by 2 and 9. Thus, the following information is obtained from Lemma 4.5.

(a) b′ is quadratic and cubic non-residue in F∗
p(z)2m−1 .

(b) b′′ is quadratic residue and cubic non-residue in F∗
p(z)2m−1 .

(c) If m is even, 4b′′ is cubic residue in F∗
p(z)2m−1 , otherwise, 4b′′ is cubic non-residue in

F∗
p(z)2m−1 .

Under this condition, the coefficient b of the BLS curve is determined as b = 1. Besides,

ζ = β6 is quadratic and cubic non-residue in F∗
p(z)2m−1 since the norm of ζ, which is

computed as follows, is quadratic and cubic non-residue in F∗
p(z).

NF
p(z)2

m−1 /Fp(z)
(ζ) = ζ

∑2m−1−1
i=0 p(z)i = ζ(p

2m−2
+1)·

∑2m−2−1
i=0 p(z)i

= (−ζ2)
∑2m−2−1

i=0 p(z)i = (−ζ22)
∑2m−3−1

i=0 p(z)i

= · · ·
= (−ζ2m−2

)p(z)+1= (−β2m−1·3)p(z)+1 = (−(α + 1))p(z)+1

= −(α + 1) · (α− 1) = 2. (4.69)

Thus, the coefficient b′ of the correct twist E ′/F∗
p(z)2m−1 can be denoted as either b′ = 1/ζ

or ζ. Besides, the coefficient b′′ of the twist E ′′/F∗
p(z)2m−1 of degree 2 of E ′ can also be

denoted as either b′′ = 1/ζ4 or ζ4. From the above, it is found that both candidates of b′

and b′′ satisfy (a) and (b). As for (c), since the norm of 4/ζ4 and 4ζ4 are computed as

NF
p(z)2

m−1 /Fp(z)
(4/ζ4) = 22·2

m−1−4 and NF
p(z)2

m−1 /Fp(z)
(4ζ4) = 22·2

m−1+4 in the same manner

as the computation of the norm of ζ, respectively, it is found that (c) is satisfied if

b′′ = 1/ζ4, which leads to b′ = 1/ζ. Thus, b′ = 1/ζ is obtained. The other cases of

z ≡ 16, 31, 64 (mod 72) can also be determined. □

From the above theorems, the equations of E and E ′ are determined corresponding to

z. This gives rise to the twisting and untwisting isomorphisms as in Table 4.6. For m > 1,
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Table 4.6: Twisting and untwisting isomorphisms for the proposed BLS subfamilies with
k = 2m · 3.

(a) m = 1
z Twisting isomorphism Untwisting isomorphism

(mod 36) ϕ6 : E
′ → E ϕ6 : E → E ′

7 (x, y) 7→ (−2−1xβ,−2−1yα) (x, y) 7→ (−xβ2, 2yα)
16, 34 (x, y) 7→ (−xβ2, 2yα) (x, y) 7→ (−2−1xβ,−2−1yα)
31 (x, y) 7→ (−xβ2, 2yα) (x, y) 7→ (−2−1xβ,−2−1yα)

10, 28 (x, y) 7→ (−2xβ, 4yα) (x, y) 7→ (−4−1xβ2,−4−1yα)

(b) m > 1
z Twisting isomorphism Untwisting isomorphism

(mod 72) ϕ6 : E
′ → E ϕ6 : E → E ′

7 (x, y) 7→ (xβ2, yβ3) (x, y) 7→ (ζ−1xβ4, ζ−1yβ3)
16 (x, y) 7→ (ζ−1xβ4, ζ−1yβ3) (x, y) 7→ (xβ2, yβ3)
31 (x, y) 7→ (ζ−1xβ4, ζ−1yβ3) (x, y) 7→ (xβ2, yβ3)
64 (x, y) 7→ (xβ2, yβ3) (x, y) 7→ (ζ−1xβ4, ζ−1yβ3)

the twisting and untwisting isomorphisms constructions are similar to the case of the BN

subfamilies of curves. Since {1, β, . . . , β5} is a basis of the 6-th dimensional vector space of

Fp(z)2m−1 , the isomorphisms are low complexity. For m = 1, the isomorphisms are also de-

termined by using the relations α2 = −1 and β3 = 2. For example, if z ≡ 7 ( mod 36), it is

obtained ϕ6 : E
′ → E, (x, y) 7→ ((−4)−1/3x, (−4)−1/2y) where the image of (x, y) under ϕ6

is given by ((−4)−1/3x, (−4)−1/2y) = (−2−121/3x,−(−1)1/22−1y) = (−2−1xβ,−2−1yα);

ϕ−1
6 : E → E ′, (x, y) 7→ ((−4)1/3x, (−4)1/2y) where ((−4)1/3x, (−4)1/2y) = (−22/3x,

(−1)1/22y) = (−xβ2, 2yα). For the other cases of z ≡ 10, 16, 28, 31, 34 (mod 36), the

formulas of isomorphisms are explicitly obtained. Note that the isomorphisms are also

efficiently computable since {1, α} × {1, β, β2} is a basis of the 6-th dimensional vector

space of Fp(z).

(ii) The case of k = 3n for any n > 0

Let z be an integer parameter for the BLS family of curves with k = 3n where n > 0 is

an arbitrary integer. The author proposes to restrict z by

z ≡ 4 (mod 6). (4.70)

Once finding z under the above restriction, the specific BLS subfamily with the options

are obtained.

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;
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Table 4.7: The field and curve options for the proposed BLS subfamily of curves with
k = 3n for any n > 0.

z Tower BLS curve E/Fp(z) Twist E ′/Fp(z)3n−1

(mod 6) (see Theorem 4.24) (see Theorem 4.25) (see Conjecture 4.26)
4 Fp(z)3n

∼= Fp(z)(α) y2 = x3 + 16 y2 = x3 + 16ζ2

(ii) The BLS curve E/Fp(z) is immediately determined;

In addition to this, the BLS subfamily might have the option (iii) the correct twist

E ′/Fp(z)3n−1 is also immediately determined. If that is true, these constructions also

enable one of the simplest twist isomorphisms. The details of the field and curve options

are found in Table 4.7, where α is an element in Fp(z)3n such that α3n = 2 and ζ = α3.

The author also provides Theorems 4.24 and 4.25 which show the correctness that the

proposed BLS subfamily has the options (i) and (ii), respectively. Although it is required

another theorem for the discussion, unfortunately, the author does not complete proof,

yet. Therefore, the author shows Conjecture 4.26 about the options (iii). Before providing

the theorems and conjecture, the knowledge of the quadratic and cubic residue properties

in F∗
p(z) is provided in the following Lemma 4.23.

Lemma 4.23. For any n > 0, the following is true.(
2

p(z)

)
3

{
= 1 if z ≡ 1 (mod 6),

6= 1 if z ≡ 4 (mod 6).
(4.71)

Proof of Lemma 4.23. The author classifies z into z ≡ 1 (mod 6) and z ≡ 4 (mod 6).

If z ≡ 1 (mod 6), p(z) can be modified as follows:

p(z) =

(
t(z)

2

)2

+ 3

(
V (z)

2

)2

=

(
z + 1

2

)2

+ 3

(
z − 1

6
· (2z3n−1

+ 1)

)2

. (4.72)

For b(z) = (z − 1)/6 · (2z3n−1
+ 1), 3 divides b(z). According to Lemma 2.28, 2 is cubic

residue in F∗
p(z) under this condition.

Similarly, if z ≡ 4 (mod 6), p(z) can be modified as follows:

p(z) =

(
t(z) + 3V (z)

4

)2

+ 3

(
t(z)− V (z)

4

)2

=

(
(z − 1) · z3n−1

+ z

2

)2

+ 3

(
−(z − 1) · z3n−1

+ z + 2

6

)2

. (4.73)
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For b(z) = (−(z − 1) · z3n−1
+ z + 2)/6, 3 does not divide b(z). Thus, it is obtained that

2 is cubic non-residue in F∗
p(z) from Lemma 2.28. □

Then, the author provides Theorems 4.24 and 4.25 associated with the construction

of the tower of extension fields and the BLS curve.

Theorem 4.24. If z satisfies Eq. (4.70), the following tower of extension fields is always

available.

Fp(z)3n
∼= Fp(z)[x]/(x

3n − 2) ∼= Fp(z)(α), (4.74)

where α is an element in Fp(z)3n such that α3n = 2.

Proof of Theorem 4.24. To adopt the tower of extension fields given in Eq. (4.74), the

binomial x3
n−2 has to be irreducible in Fp(z)[x], i.e., 3 | (p(z)−1) and 2 is cubic non-residue

in F∗
p(z) from Lemma 4.4. The former requirement is satisfied for any z. If z ≡ 4 (mod 6),

the latter requirement is also satisfied since ( 2
p(z)

)3 6= 1 under this condition as found in

Lemma 4.23. □

Theorem 4.25. Under the same assumptions as Theorem 4.24, the BLS curve with

k = 3n is immediately determined as E/Fp(z) : y
2 = x3 + 16 for any n > 0.

Proof of Theorem 4.25. The author verifies the cofactors of the possible group orders,

which n(z) = p(z) + 1 − t(z) is the group order of the BLS curve. If z ≡ 4 (mod 6), 9

always divides n(z), however, 2 does not divide that. Note that the other group orders

cannot be divisible by 9. According to (a) and (c) in Lemma 4.5, the coefficient b of the

BLS curve is quadratic residue and cubic non-residue in F∗
p(z) and 4b is cubic residue in

F∗
p(z). From Lemma 4.23, such the coefficient can be chosen as b = 16. □

Unfortunately, it could not determine the correct twistE ′/Fp(z)3n−1 by using Lemma 4.5

since the field Fp(z)3n−1 in which twist is defined always makes the coefficient b of the BLS

curves E/Fp(z) being cubic residue in F∗
p(z)3n−1 . However, the author makes the following

prediction from the experimental results of the determination of the twist equation with

some small n.

Conjecture 4.26. With z satisfying Eq. (4.70), suppose that the tower of extension

fields is constructed as in Theorem 4.24 and E/Fp(z) be the BLS curve determined as in

Theorem 4.25. The correct twist of degree 3 of E can be determined as E ′/Fp(z)3n−1 :

y2 = x3 + 16ζ2 where ζ = α3 ∈ Fp(z)3n−1 with α ∈ Fp(z)3n such that α3n = 2.

Note that there is a possibility that Conjecture 4.26 can be proven by using another

twist determination technique given by Yasuda et al. in [YTS15], however, their technique

is not so simpler than Costello et al.’s one [CLN11] and require the knowledge of number
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Table 4.8: The twisting and untwisting isomorphisms for the proposed BLS subfamily of
curves with k = 3n.

z Twisting isomorphism Untwisting isomorphsim
(mod 6) ϕ3 : E

′ → E ϕ3 : E → E ′

4 (x, y) 7→ (ζ−1xα, ζ−1y) (x, y) 7→ (xα2, ζy)

theory. According to [YTS15], the author just finds that if the following Conjecture 4.27

is true, Conjecture 4.26 is true.

Conjecture 4.27. Let ϵ be a primitive cube root of the identity in F∗
p(z) which is rep-

resented as ϵ ≡ −(1 + t(z) · V (z)−1)/2 (mod p(z)). If z ≡ 4 (mod 6), the following is

always true.

ϵ · 2
p(z)−1

3 ≡ 1 (mod p(z)). (4.75)

If the conjectures are true, there are efficient performing twisting and untwisting iso-

morphisms shown in Table 4.8. Since there is a relation ζ = α3, the twisting isomorphism

is given by ϕ3 : E ′ → E, (x, y) 7→ (ζ−2/3x, ζ−2/2y) = (ζ−1ζ1/3x, ζ−1y) = (ζ−1xα, ζ−1y).

The untwisting isomorphism is also given by ϕ3 : E ′ → E, (x, y) 7→ (ζ2/3x, ζ2/2y) =

(xα2, ζy).

4.4.4 Sample parameters and evaluation

The author applies the proposal and obtains sample parameters z for generating the

proposed BLS subfamilies of curves with k = 2m · 3 and 3n for m,n ∈ {2, 3}, i.e., k = 9,

12, 24, and 27. For k = 24, although Costello et al. provided many candidates of z

in [CLN11], the author reproduces the parameters based on the latest security analysis

[Gui20]. According to the suggestions of [Gui20], the curves with k ∈ {9, 12} and {24, 27}
are adopted for the pairings at the 128 and 192-bit security levels, respectively. For

the pairings at the 128-bit security, the author searches z which gives rise to r(z) with

log2 r(z) ≥ 256 and p(z) with log2 p(z)
k ≥ 5472 for k = 9 and log2 p(z)

k ≥ 5376 for k = 12.

For the pairings at the 192-bit security, the author also searches z which gives rise to r(z)

with log2 r(z) ≥ 384 and p(z) with log2 p(z)
k ≥ 12202 for k = 24 and log2 p(z)

k ≥ 11496

for k = 27. The parameters z having the low-Hamming weight are found for efficiency

reasons of the pairings. For k = 3n such that 2 ∤ k, it is effective to choose z with the

specific binary representations such that z =
∑log2 z−1

i=0 2iti where ti ∈ {0, 1} or {−1, 0} for
searching z. The details of the fact are described in App. C.

Tables 4.9, 4.10, 4.11, and 4.12 show the sample parameters z for the pairings with the

BLS family of curves with k = 9, 12, 24, and 27, respectively. Note that all the seeds for
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Table 4.9: Sample seeds z for the attractive BLS subfamily of curves with k = 9 for the
pairings at the 128-bit security level.

No.
z

Seed z HW
Bit size

(mod 6) p(z) p(z)k r(z)
1 4 −277 − 262 + 220 3 615 5530 461
2 4 −277 − 219 + 29 3 615 5530 461
3 4 −277 − 275 − 232 3 617 5553 463
4 4 +277 + 262 + 235 + 225 4 615 5530 461
5 4 +276 + 274 + 246 + 222 4 609 5481 457
6 4 −276 − 275 − 270 − 225 − 21 5 612 5501 459
7 4 −276 − 274 − 265 − 263 − 219 5 609 5481 457
8 4 −276 − 275 − 257 − 251 − 218 5 612 5500 458
9 4 −276 − 274 − 254 − 234 − 228 5 609 5481 457
10 4 +276 + 274 + 242 + 231 + 227 5 609 5481 457
11 4 +276 + 275 + 274 + 260 + 219 5 613 5516 460
12 4 +276 + 274 + 265 + 254 + 211 5 609 5481 457

Table 4.10: Sample seeds z for the attractive BLS subfamilies of curves with k = 12 for
the pairings at the 128-bit security levels.

No.
z

Seed z HW
Bit size

(mod 72) p(z) p(z)k r(z)
1 7 −276 − 228 − 223 − 20 4 455 5453 305
2 7 +275 − 261 + 231 − 20 4 449 5381 300
3 7 −275 + 252 + 240 + 27 − 20 5 449 5381 300
4 7 −275 + 254 − 236 + 24 − 20 5 449 5381 300
5 7 −275 + 270 + 250 − 244 − 20 5 449 5378 300
6 16 −277 − 259 + 29 [BD19] 3 461 5525 309
7 16 −277 + 250 + 233 [BD19] 3 461 5525 308
8 16 +275 + 265 − 245 − 210 4 449 5382 301
9 16 −275 − 226 + 221 − 210 4 449 5381 301
10 16 +275 − 260 + 245 + 224 4 449 5381 300
11 31 +276 − 272 − 212 − 20 4 454 5447 304
12 31 +275 + 240 − 236 − 20 4 449 5381 301
13 31 +275 − 270 − 25 − 20 4 449 5378 300
14 31 −275 − 255 − 242 + 240 − 20 5 449 5381 301
15 31 −275 − 251 + 240 − 214 − 20 5 449 5381 301
16 64 +275 + 254 − 227 3 449 5381 301
17 64 +276 − 270 + 266 3 455 5452 304
18 64 +275 + 269 + 264 + 235 4 449 5383 301
19 64 +275 + 255 − 254 − 227 4 449 5381 301
20 64 −275 + 245 + 243 − 26 4 449 5381 300
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Table 4.11: Sample seeds z for the attractive BLS subfamilies of curves with k = 24 for
the pairings at the 192-bit security levels.

No.
z

Seed z HW
Bit size

(mod 72) p(z) p(z)k r(z)
1 7 −251 − 228 + 211 − 20 [CLN11] 4 509 12202 409
2 7 +251 − 232 − 220 + 23 − 20 5 509 12202 408
3 7 −251 − 234 + 224 + 214 − 20 5 509 12202 409
4 7 −251 + 230 − 224 − 213 − 20 5 509 12202 408
5 7 −251 − 248 − 221 − 213 − 20 5 511 12243 410
6 16 +251 + 241 + 234 + 211 4 509 12203 409
7 16 −251 − 248 + 245 + 239 [CLN11] 4 510 12238 410
8 16 +251 + 241 − 236 − 25 4 509 12203 409
9 16 +252 − 249 + 220 + 210 4 517 12396 415
10 16 +252 − 248 − 246 + 215 4 518 12414 416
11 31 +251 − 215 − 28 − 20 [CLN11] 4 509 12202 408
12 31 −252 − 228 + 218 − 20 [CLN11] 4 519 12442 417
13 31 −251 + 230 − 219 + 211 − 20 5 509 12202 408
14 31 +251 + 227 − 212 + 23 − 20 5 509 12202 409
15 31 −251 + 238 − 210 + 24 − 20 5 509 12202 408
16 64 −251 + 234 − 24 3 509 12202 408
17 64 −252 − 239 + 216 [BD19] 3 519 12443 417
18 64 −251 + 235 − 234 − 24 4 509 12202 408
19 64 +251 + 227 + 217 + 24 4 509 12202 409
20 64 +251 − 239 + 233 − 210 4 509 12202 408

Table 4.12: Sample seeds z for the attractive BLS subfamily of curves with k = 27 for
the pairings at the 192-bit security level.

No.
z

Seed z HW
Bit size

(mod 6) p(z) p(z)k r(z)
1 4 −222 − 212 + 28 − 26 4 439 11838 395
2 4 +223 − 218 + 214 − 210 4 458 12354 412
3 4 −223 − 217 + 28 − 21 4 459 12390 413
4 4 +222 + 218 + 213 + 24 + 21 5 441 11886 397
5 4 −222 − 221 − 219 − 26 − 21 5 453 12216 408
6 4 −223 − 217 − 211 − 210 − 28 5 459 12390 413
7 4 −223 − 218 − 28 − 27 − 23 5 460 12402 414
8 4 +222 + 221 + 219 + 214 + 29 + 27 6 453 12218 408
9 4 +222 + 220 + 214 + 29 + 24 + 22 6 445 12014 401
10 4 +222 + 214 + 211 + 28 + 24 + 22 6 439 11841 395
11 4 +222 + 217 + 29 + 27 + 25 + 24 6 440 11862 396
12 4 −222 − 221 − 215 − 213 − 211 − 29 6 451 12159 406
13 4 −222 − 211 − 210 − 29 − 28 − 26 6 439 11838 395
14 4 −222 − 211 − 210 − 29 − 26 − 24 6 439 11838 395
15 4 −222 − 221 − 217 − 212 − 210 − 28 6 451 12170 406
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the cases k = 9 and 27 can provide the correct twist in Table 4.7. The author evaluates the

seeds for the pairings on BLS curves by an implementation. The implementation adopts

the ate pairing e′aT (Q
′, ϕ−1

3 (P )) on E ′ with efficient formulas for computing Miller’s algo-

rithm given by Costello et al. in [CLN10]. The projective and affine formulas are adopted

for the pairings at the 128- and 192-bit security levels, respectively. For the case of the

curves with k = 9 and 27, the revised version of Miller’s algorithm in App. C is adopted as

appropriate according to z of the loop parameter. For the final exponentiation algorithm,

it is adopted the state-of-the-art algorithm given by Hayashida et al. in [HHT20]. For the

curves with k = 12 and 24, it is also adopted the compressed squaring in the cyclotomic

subgroup in the full extension field given by Karabina in [Kar13], which is available during

the computation of the hard part of the final exponentiation. Unfortunately, the curves

with k = 9 and 27 cannot have such efficient squaring in the final exponentiation.

With the above optimizations, the author implements the software for executing the

pairings by C language. The big integer arithmetics are implemented by using mp limb t

data type of the GMP library [tea15]. The software is compiled with GCC 8.3.0 with the

option -O2 -march=native and is executed by 3.50GHz Intel(R) Core(TM) i7-7567U CPU

running macOS Big Sur version 11.2.3. To evaluate the parameters, the average execution

times of 100,000 trials of Miller’s algorithm and final exponentiation are measured. Note

that the measurement is performed by repeating the functions for 1,000 random inputs

100 times.

Tables 4.13, 4.14, 4.15, and 4.16 show the results of the average execution time of

Miller’s algorithm and final exponentiation for the pairings on the BLS curves with k = 9,

12, 24, and 27, respectively. The results are analyzed as follows:

• Comparing the results between the same curves, the execution times of the pairings

on the curves with small HW(z) are typically faster than that of the curves with

large HW(z) since the performance of the pairing depends on the signed binary

representation of z. Although some results do not follow this trend, the author

considers that it might come from the effects of cache and parallel processing. Rather

than that, the execution times more strongly depend on the word size of p(z). For

example, for the curves with k = 24, the parameters of No. 18 could not result in

the best performing pairing due to the word size of p(z) even though that has the

smallest Hamming weight. As for the curves with k = 12 and 24, although there is

a difference in the untwisting isomorphisms between the congruence classes of z as

in Table 4.8, the author could not find the difference between the congruence classes

of z. Note that it is theoretically better to choose z satisfying z ≡ 16, 31 (mod 72)

under this assumption. The author considers that this effect might be small enough

to ignore in this environment.

• Comparing the results between the same security levels, it is clear that the curves
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with k = 12 and k = 24 result in higher performance of the pairings at the 128 and

192-bit security levels compared with the curves with k = 9 and 27, respectively.

This cause of that the curves with k = 9 and 27 have low degree twists which can

have disadvantages for computing Miller’s algorithm. Besides, these curves cannot

result in an efficient squaring in the cyclotomic multiplicative subgroup of the full

extension field for computing the final exponentiation.

As a result, among the candidates shown in this paper, the author suggests the curves

with k = 12 with the parameters of No. 1, 6, 7, 11, and 17 for the pairing at the 128-bit

security level. The author also suggests the curves with k = 24 with the parameters of

No. 16 for the pairing at the 192-bit security level.

4.5 Summary of contributions

In this chapter, the author proposes specific restrictions of integer parameter z for gener-

ating curves in the BN and BLS subfamilies that have the advantage for the pairings-based

cryptography by extending Costello et al.’s work [CLN11]. The proposed subfamilies give

rise to the fixed field and curve constructions, which allow us to reduce the initial settings

of the pairings. In addition to this, since all z in the certain restriction have the common

field and curve constructions, the results can also support to change of z smoothly. For

example, if there exists an implementation of the pairing with a certain z satisfying the

restriction, z can be updated without changing the implementation of the field and curve

arithmetics as long as z is chosen from the same restriction. Thus, if there is progress

in the security analyses, the results also allow us to flexibly respond to the update of

z without changing implementations as far as possible. Moreover, since the results are

available for the BLS curves with k = 2m · 3 and 3n with any integers m,n > 0, the

proposed method will be useful for the researcher and implementer of the pairings for a

long time.
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Table 4.13: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with k = 9 at the 128-bit security
level.

No.
z

Seed z HW
Word ML FE Total

(mod 6) size [ms] [ms] [ms]
1 4 −277 − 262 + 220 3 10 2.38 3.41 5.79
2 4 −277 − 219 + 29 3 10 2.37 3.39 5.76
3 4 −277 − 275 − 232 3 10 2.33 3.38 5.71
4 4 +277 + 262 + 235 + 225 4 10 2.35 3.36 5.71
5 4 +276 + 274 + 246 + 222 4 10 2.34 3.34 5.69
6 4 −276 − 275 − 270 − 225 − 21 5 10 2.38 3.46 5.84
7 4 −276 − 274 − 265 − 263 − 219 5 10 2.41 3.51 5.92
8 4 −276 − 275 − 257 − 251 − 218 5 10 2.38 3.48 5.86
9 4 −276 − 274 − 254 − 234 − 228 5 10 2.39 3.49 5.89
10 4 +276 + 274 + 242 + 231 + 227 5 10 2.37 3.40 5.77
11 4 +276 + 275 + 274 + 260 + 219 5 10 2.34 3.35 5.69
12 4 +276 + 274 + 265 + 254 + 211 5 10 2.37 3.41 5.77

Table 4.14: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with k = 12 at the 128-bit security
level.

No.
z

Seed z HW
Word ML FE Total

(mod 72) size [ms] [ms] [ms]
1 7 −276 − 228 − 223 − 20 4 8 1.54 1.54 3.08
2 7 +275 − 261 + 231 − 20 4 8 1.59 1.60 3.20
3 7 −275 + 252 + 240 + 27 − 20 5 8 1.62 1.69 3.31
4 7 −275 + 254 − 236 + 24 − 20 5 8 1.62 1.69 3.30
5 7 −275 + 270 + 250 − 244 − 20 5 8 1.57 1.64 3.21
6 16 −277 − 259 + 29 [BD19] 3 8 1.53 1.52 3.05
7 16 −277 + 250 + 233 [BD19] 3 8 1.54 1.52 3.06
8 16 +275 + 265 − 245 − 210 4 8 1.59 1.66 3.25
9 16 −275 − 226 + 221 − 210 4 8 1.59 1.66 3.25
10 16 +275 − 260 + 245 + 224 4 8 1.59 1.66 3.25
11 31 +276 − 272 − 212 − 20 4 8 1.51 1.52 3.03
12 31 +275 + 240 − 236 − 20 4 8 1.59 1.61 3.20
13 31 +275 − 270 − 25 − 20 4 8 1.54 1.57 3.11
14 31 −275 − 255 − 242 + 240 − 20 5 8 1.61 1.70 3.30
15 31 −275 − 251 + 240 − 214 − 20 5 8 1.61 1.70 3.30
16 64 +275 + 254 − 227 3 8 1.59 1.58 3.17
17 64 +276 − 270 + 266 3 8 1.52 1.51 3.03
18 64 +275 + 269 + 264 + 235 4 8 1.62 1.67 3.28
19 64 +275 + 255 − 254 − 227 4 8 1.60 1.66 3.27
20 64 −275 + 245 + 243 − 26 4 8 1.60 1.65 3.25
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Table 4.15: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with k = 24 at the 192-bit security
level.

No.
z

Seed z HW
Word ML FE Total

(mod 72) size [ms] [ms] [ms]
1 7 −251 − 228 + 211 − 20 [CLN11] 4 8 2.82 5.38 8.20
2 7 +251 − 232 − 220 + 23 − 20 5 8 2.84 5.77 8.62
3 7 −251 − 234 + 224 + 214 − 20 5 8 2.84 5.77 8.60
4 7 −251 + 230 − 224 − 213 − 20 5 8 2.85 5.81 8.66
5 7 −251 − 248 − 221 − 213 − 20 5 8 2.84 5.77 8.61
6 16 +251 + 241 + 234 + 211 4 8 2.79 5.49 8.28
7 16 −251 − 248 + 245 + 239 [CLN11] 4 8 2.81 5.54 8.35
8 16 +251 + 241 − 236 − 25 4 8 2.78 5.48 8.27
9 16 +252 − 249 + 220 + 210 4 9 3.31 6.49 9.80
10 16 +252 − 248 − 246 + 215 4 9 3.32 6.52 9.84
11 31 +251 − 215 − 28 − 20 [CLN11] 4 8 2.81 5.36 8.17
12 31 −252 − 228 + 218 − 20 [CLN11] 4 9 3.36 6.37 9.73
13 31 −251 + 230 − 219 + 211 − 20 5 8 2.83 5.77 8.60
14 31 +251 + 227 − 212 + 23 − 20 5 8 2.84 5.77 8.61
15 31 −251 + 238 − 210 + 24 − 20 5 8 2.85 5.81 8.66
16 64 −251 + 234 − 24 3 8 2.79 5.12 7.91
17 64 −252 − 239 + 216 [BD19] 3 9 3.30 6.03 9.34
18 64 −251 + 235 − 234 − 24 4 8 2.82 5.55 8.37
19 64 +251 + 227 + 217 + 24 4 8 2.81 5.55 8.36
20 64 +251 − 239 + 233 − 210 4 8 2.82 5.57 8.39

Table 4.16: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with k = 27 at the 192-bit security
level.

No.
z

Seed z HW
Word ML FE Total

(mod 6) size [ms] [ms] [ms]
1 4 −222 − 212 + 28 − 26 4 7 2.41 13.1 15.5
2 4 +223 − 218 + 214 − 210 4 8 2.80 15.3 18.1
3 4 −223 − 217 + 28 − 21 4 8 2.84 15.3 18.2
4 4 +222 + 218 + 213 + 24 + 21 5 7 2.31 12.7 15.1
5 4 −222 − 221 − 219 − 26 − 21 5 8 2.70 15.6 18.3
6 4 −223 − 217 − 211 − 210 − 28 5 8 2.80 16.1 18.9
7 4 −223 − 218 − 28 − 27 − 23 5 8 2.78 16.0 18.8
8 4 +222 + 221 + 219 + 214 + 29 + 27 6 8 2.72 15.3 18.0
9 4 +222 + 220 + 214 + 29 + 24 + 22 6 7 2.36 13.3 15.7
10 4 +222 + 214 + 211 + 28 + 24 + 22 6 7 2.35 13.2 15.6
11 4 +222 + 217 + 29 + 27 + 25 + 24 6 7 2.35 13.3 15.6
12 4 −222 − 221 − 215 − 213 − 211 − 29 6 8 2.82 16.6 19.4
13 4 −222 − 211 − 210 − 29 − 28 − 26 6 7 2.44 14.3 16.7
14 4 −222 − 211 − 210 − 29 − 26 − 24 6 7 2.43 14.2 16.6
15 4 −222 − 221 − 217 − 212 − 210 − 28 6 8 2.81 16.6 19.4



Chapter 5

Performance Analyses of SIDH with

Several Constructions of Quadratic

Extension Fields

The supersingular isogeny Diffie-Hellman (SIDH) is one of the isogeny-based key exchange

protocols, which is considered it can not be broken even though the post-quantum com-

puters are realized. Since it is an important tool for constructing the supersingular isogeny

key encapsulation (SIKE) which is submitted in the NIST post-quantum standardization,

there are many works of the optimizations, efficient implementations, and security anal-

yses of the SIDH in recent years. This chapter also provides one of such works for the

SIDH, which is introduced as the third work in Sect. 1.3. In the following, the background

and motivation are provided.

5.1 Background and motivation

In [JDF11], Jao and De Feo, who were introduced the SIDH, presented that the large-

degree isogenies can be efficiently computed by decomposing into low-degree isogenies

involving point multiplications on supersingular elliptic curves defined over quadratic

extension field. Besides this, there are many works [CLN16; CH17; FH+17; Ren18] for

optimizing the SIDH. Particularly, in [CLN16], Costello et al. proposed efficient formulas

for computing the low-degree isogenies, i.e., 2, 3, and 4-isogenies, with a projective point

associated with fast arithmetic on curves of special form, which are called the Montgomery

curves, and updated that in [CH17]. To achieve more optimization, the author focuses

on the construction of Fp2 for the following reasons: (i) Since SIDH requires arithmetic

operations in Fp2 , the performance of the arithmetic operations in Fp2 might affect the

performance of SIDH. (ii) Moreover, since the range of the supersingular elliptic curves

depends on Fp2 that restricts conditions of field characteristics, there is a possibility that

148
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the range can expand by changing the construction of Fp2 .

In this context, the author focuses on the following construction methods of Fp2 with

efficient performing arithmetics:

• Optimal extension fields (OEFs) [BP01] in which polynomial multiplication is im-

plemented by using Karatsuba multiplication [KO62].

• All-one polynomial extension fields (AOPFs) [NSM03] with an efficient multiplica-

tion algorithm named a cyclic vector multiplication algorithm (CVMA).

• Extension fields with normal basis representation (EFNs) of which multiplication is

efficiently implemented by the NTT method [KAH00].

Since the OEFs are the most well-known constructions with efficient performing arith-

metics, the typical SIDH employed Fp2 which is defined by the OEF with the irreducible

polynomial x2 + 1 in Fp[x] Note that this construction results in the best performing

arithmetics among the OEFs. On the other hand, Fp2 can also be constructed by using

the AOPFs and EFNs. Then, the numbers of additions in Fp for the multiplications in Fp2

are smaller than that of OEFs. This means that there is a possibility of the performance

improvement of the SIDH by exploiting Fp2 by the AOPFs and EFNs instead of the OEF.

In this chapter, the author confirms that Fp2 based on the AOPFs and EFNs are

applicable for the SIDH. Since there are several candidates of Fp2 , an isomorphic map

between Fp2 to convert the constructions efficiently and conveniently is also presented.

The author describes the performance analyses of the SIDH with several candidates of

Fp2 . As a result of the experiment, the performances of SIDH with Fp2 based on the

AOPFs and EFNs are comparable to that of the typical Fp2 based on the OEF. Moreover,

one of the candidates of Fp2 based on the EFNs results in a new efficient implementation

of the SIDH by using curves that have not been used at this time.

Notations. The calculation costs of the multiplication, squaring, addition, shift oper-

ations in Fp2 are denoted as m2, s2, a2, and h2, respectively.

Organization. In the rest of this chapter, Sect. 5.2 reviews the SIDH key exchange

protocols. Sect. 5.3 overviews efficient formulas used for the SIDH. Then, Sect. 5.4 de-

scribes the constructions of Fp2 , its applicability for the SIDH, and isomorphisms between

the possible candidates of Fp2 for SIDH. The performance analyses of SIDH are given in

Sect 5.6. Finally, the contributions are summarized in Sect. 5.7.

5.2 Review of SIDH key exchange protocol

This section reviews the SIDH key exchange protocol together with the basic construc-

tions of elliptic curves used for the SIDH. Note that the notations and mathematical

fundamentals used in this section are described in Chapter 2.
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5.2.1 Supersingular elliptic curves of smooth order

The SIDH requires isogeny classes of supersingular elliptic curves with smooth orders. To

achieve that, it is exploited the elliptic curves defined over a finite field with a special

characteristic p, such that

p = leAA leBB f ± 1, (5.1)

where lA and lB are two small distinct primes, eA and eB are two positive integers, and f

is a cofactor. A prime of the above form is called SIDH-friendly prime.

Then, one can find a supersinglar elliptic curve E defined over Fp2 such that #E(Fp2) =

(p∓1)2 = leAA leBB f . For l ∈ {lA, lB} and e ∈ {eA, eB}, there is le-torsion subgroup in E(Fp2),

i.e., E[le] ⊆ E(Fp2). Since l is coprime to p, E[le] ∼= Z/leZ × Z/leZ, which means that

E[le] consists of (le + 1) subgroups of order le. Let P and Q be points on E[le] such that

〈P,Q〉 ∼= E[le]. For an integer m, if and only if l does not divide m, there is a point

R = P + [m]Q of order le. Such points can generate a unique subgroup 〈R〉 of order le,
such that 〈R〉 ⊂ E[le]. The SIDH uses a le-isogeny of the base curve E where the kernel

is 〈R〉. As described in Sect. 2.5.3, le-isogeny can be decomposed into e-times low degree

l-isogenies and can be efficiently computed.

5.2.2 SIDH key exchange

This section recalls the SIDH key exchange protocol introduced in [JDF11]. In what

follows, the steps of key exchange between the two-person, Alice and Bob, and its security

are summarized. Note that the author refers to the construction of SIDH given in [CLN16]

for fast implementation.

• Setup: The public parameters are the supersingular curve E0/Fp2 of which group

order is (leAA leBB f)2 as in Sect. 5.2.1, two independent points PA and QA that generate

E0[l
eA
A ], and two independent points PB and QB that generate E0[l

eB
B ]. Alice and

Bob agree to use these public parameters.

• Key generation: Alice chooses her secret integer as sA ∈ Z/leAA Z such that a point

RA = PA + [sA]QA has order leAA . Her secret key is computed as the degree leAA -

isogeny φA : E0 → EA where the kernel is RA, i.e., EA
∼= E0/〈RA〉 and her public

key is the isogenous curve EA together with the image points φA(PB) and φA(QB).

Similarly, Bob chooses his secret integer sB ∈ Z/leBB Z such that a point RB =

PB + [sB]QB has order leBB . His secret key is computed as the degree leBB -isogeny

φB : E0 → EB where the kernel is RB, i.e., EB
∼= E0/〈RB〉 and his public key is EB

together with the image points φB(PA) and φB(QA).

Finally, they send their public key to each other.
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• Shared secret: To compute the shared secret, Alice uses her secret integers and

received Bob’s public key and computes a point R′
A = φB(PA) + [sA]φB(QA) =

φB(PA + [sA](QA)) = φB(RA). Then, Alice computes the degree leAA -isogeny φ′
A :

EB → EBA where the kernel is R′
A, i.e., EBA

∼= EB/〈R′
A〉.

Similarly, Bob computes a point R′
B = φA(PB)+ [sB]φA(QB) = φA(PB +[sB]QB) =

φA(RB) from his secret integer sB and Alice’s public key. Bob also computes the

degree leBB -isogeny φ′
B : EA → EAB where the kernel is R′

B, i.e., EAB
∼= EA/〈R′

B〉

Then, EBA and EAB are isomorphic since EBA
∼= E/〈RA, RB〉 ∼= EAB, they can

share the same j-invariant j(EBA) = j(EAB).

In the following, the operations for computing the le-isogeny with images of some

points in the key generation phase and le-isogeny in the shared secret phase are denoted as

keygen iso and keyshare iso, respectively. The operation for computing the generator

point of kernel subgroups of order le, i.e., R = P +[m]Q with P,Q ∈ E[le] and m ∈ Z/leZ
is denoted as kernel gen. As seen in the steps of SIDH, these operations occupy almost

all the computational complexity of the SIDH.

5.2.3 Security of the SIDH

In [DFJP14], De Feo, Jao, and Plut gave computational problems related to the SIDH

and discuss their complexity. The security of the SIDH is based on the assumptions that

the following problems are difficult for solving.

Definition 5.1. (Supersingular computational Diffie-Hellman problem (SSCDHP)) Given

EA, EB and the points φA(PB), φA(QA), φB(PA), φB(QA), find the j-invariant of E0/〈PA+

[sA]QA, PB + [sB]QB〉.

Definition 5.2. (Supersingular decision Diffie-Hellman problem (SSDDHP)) Given a

tuple sampled with probability 1/2 from one of the following two distributions:

• (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EAB), where

EAB
∼= E0/〈PA + [sA]QA, PB + [sB]QB〉;

• (EA, EB, φA(PB), φA(QB), φB(PA), φB(QA), EC), where

EC
∼= E0/〈PA + [sA]QA, PB + [sB]QB〉.

Definition 5.3. (Computational supersingular isogeny problem (CSSIP)) Given EA and

the values φA(PB) and φA(QB), find a kernel R = P + [m]Q of the isogeny φ : E → Ẽ.

According to [DFJP14], given a CSSIP (resp., SSCDHP) solver, it is trivial to solve

SSCDHP (resp., SSDDHP).
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5.3 Review of Efficient operations for SIDH

As described in [CLN16], supersingular elliptic curves in the Montgomery form are sug-

gested using for fast SIDH. In this section, the formulas of efficient Montgomery operations

for the SIDH are summarized.

5.3.1 Montgomery curves

An elliptic curve E over Fq of the Weierstrass equation y2 = x3+ax+b can be transformed

into a special equation if 4 divides #E(Fq), which is found by Montgomery in [Mon87].

Indeed, let α and β be elements in Fq such that α3 + aα+ b = 0 and β2 = 3α2 + a. Then,

the substitution of x 7→ (x− α)/β results in

E : By2 = x3 + Ax2 + x, (5.2)

where A and B are coefficients in Fq satisfying B 6= 0 and A2 6= 4. The elliptic curve

of the above equation is called the Montgomery curve. The Montgomery curve has the

j-invariant given by j(E) = 256(A2 − 3)3/(A2 − 4).

All the rational points on the Montgomery curve can be represented in homogenized

coordinates in P2 over Fq such that (X : Y : Z) with x = X/Z, y = Y/Z with Z 6= 0,

which a point at infinity becomes O = (0 : 1 : 0). There are more efficient formulas in

projective coordinates without Y -coordinate by using a 2-to-1 mapping as shown below.

x :E → E/〈−〉,

P 7→

{
(X : Z) if Z 6= 0,

(1 : 0) if Z = 0,
(5.3)

where − is a negation automorphism given as − : (x, y) 7→ (x,−y). Then, E/〈−〉 is a

projective 1-space P1 over Fq.

Since − is commutative with [s], a point multiplication x(P ) 7→ x([s]P ) can also be

available in P1. An isogeny φ : E → Ẽ between Montgomery curves E and Ẽ can also

be computed in P1, i.e. x(P ) 7→ x(φ(P )), since the x-coordinate of φ(P ) is determined

without the y-coordinate of a point P . The above operations on E typically depend on

only the coefficient A, which is typically taken as (A ± 2)/4 for efficient formulas. More

details of the facts of the Montgomery curves are described in [CS18].

5.3.2 Projective Montgomery operations for SIDH

The author refers to [CLN16; CH17] and presents the formulas of projective Montgomery

operations for the SIDH. In this subsection, the SIDH with p = leAA leBB f ± 1 where lA = 2,
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lB = 3, and 2 | eA is considered.

Projective point operations

The author uses the projective coordinates not only the points of the curve but also

the curve coefficients since they are not fixed but moved in isogeny graphs. Thus, the

constant term (A−2)/4 in the projective coordinates is denoted as (A24 : C24). Assuming

x(P ) = (XP : ZP ), x(Q) = (XQ : ZQ), and x(Q− P ) = (XQ−P : ZQ−P ), a point doubling

operation xDBL : (x(P ), (A − 2)/4) 7→ x([2]P ), a tripling operation xTPL : (x(P ), (A −
2)/4) 7→ x([3]P ), and a point addition xADD : (x(P ), x(Q), x(Q − P )) 7→ x(Q + P ) are

given as follows:

• Doubling operation (xDBL)

[2](XP : ZP ) = (C24(XP + ZP )
2(XP − ZP )

2 :

4XPZP (C24(XP + ZP )
2 + 4A24XPZP ). (5.4)

• Tripling operation (xTPL)

[3](XP : ZP ) = (XP (16A24XPZ
3
P − C24(XP − 3ZP )(XP + ZP )

3)2 :

ZP (16A24X
3
PZP + C24(3XP − ZP )(XP + ZP )

3)2). (5.5)

• Addition operation (xADD)

(XQ : ZQ) + (XP : ZP ) = (ZQ−P ((XQ − ZQ)(XP + ZP ) + (XQ + ZQ)(XP − ZP ))
2 :

XQ−P ((XQ − ZQ)(XP + ZP )− (XQ + ZQ)(XP − ZP ))
2).

(5.6)

According to [CH17], xTPL can be computed by taking a coefficient as (A24, K24 = A24 +

C24). The operations xDBL and xTPL are used for the computations of the points of order

2 and 3 required for 2- or 4-isogeny and 3-isogeny computations, respectively. Although

xADD is typically does not exploited for SIDH, an operation to compute xDBL and xADD

simultaneously, i.e., xDBLADD : (x(P ), x(Q), x(Q − P ), (A + 2)/4) 7→ (x([2]P ), x(Q − P ))
is used for the SIDH operation kernel gen as described in [DFJP14; FH+17].

Projective isogenies computation

As for the computation of the 2eA-isogeny with 2 | eA, 4-isogenies are typically adopted

for the SIDH. Let (X ′
P : Z ′

P ) and (A′
24 : C ′

24) be an image of (XP : ZP ) and coefficient

of an elliptic curve given by ϕ, respectively. Assuming (X3 : Z3) and (X4 : Z4) denote

rational points of order 3 and 4, the isogenies of degrees 3 and 4 are computed as follows:
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Table 5.1: The calculation costs of the projective operations for SIDH.

Operation/ Input(s) Output(s) Operations
from type(s) type(s) m2 s2 a2 h2
xDBL x(P ), A24, C24 x([2]P )

4 2 4 0
[Mon87] P1 × Fp2 × Fp2 P1

xTPL x(P ), A24, K24 x([3]P )
7 5 10 0

App. A in [CH17] P1 × Fp2 × Fp2 P1

xDBLADD x(P ), x(Q), x(Q− P ), A+2
4

x([2]P ), x(Q− P )
7 4 8 0

[CLN16] P1 × P1 × P1 × Fp2 P1

3 iso curve x(P3) c2, A
′
24, C

′
24 2 3 14 0

App. A in [CH17] P1 (Fp2)
2 × Fp2 × Fp2

3 iso curve* x(P3) c2, A
′
24, K

′
24 2 3 13 0

This work P1 (Fp2)
2 × Fp2 × Fp2

3 iso point (c2, x(P )) x(ϕ(P ))
4 2 4 0

App. A in [CH17] (Fp2)
2 × P1 P1

4 iso curve x(P4) c3, A
′
24, C

′
24 - 4 3 1

App. A in [CH17] P1 (Fp2)
3 × Fp2 × Fp2

4 iso point (c3, x(P )) x(ϕ(P ))
6 2 6 0

App. A in [CH17] (Fp2)
3 × P1 P1

• 3-isogeny operations (3 iso curve, 3 iso point)

(A′
24 : C

′
24) = ((X3 + Z3)(Z3 − 3X3)

3 : 16X3Z
3
3), (5.7)

(X ′
P : Z ′

P ) = (XP (X3XP − Z3ZP )
2 : ZP (Z3XP −X3ZP )

2). (5.8)

• 4-isogeny operations (4 iso curve, 4 iso point)

(A′
24 : C

′
24) = (X4

4 − Z4
4 : Z4

4), (5.9)

(X ′
P : Z ′

P ) = (XP (2X4Z4ZP −XP (X
2
4 + Z2

4))(X4XP − Z4ZP )
2 :

ZP (2X4Z4XP − ZP (X
2
4 + Z2

4))(Z4XP −X4ZP )). (5.10)

The author modifies 3 iso curve by using K24 = A24 + C24 and defines an operation

3 iso curve* which compute (A′
24, K

′
24 = A′

24 + C ′
24) as follows:

(A′
24 : K

′
24) = ((X3 + Z3)(Z3 − 3X3)

3 : (Z3 −X3)(Z3 + 3X3)
3), (5.11)

which results in a reduction of single addition in Fp2 .

The calculation costs and I/O specifications of xDBL, xTPL, xDBLADD, 3 iso curve,

3 iso point, 3 iso curve*, 4 iso curve, and 4 iso point are summarized in Table 5.1,

where c2 and c3 are common variables for the curve determination and point evaluation.
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5.4 Constructions of quadratic extension fields for

fast SIDH

In this section, several attractive constructions of Fp2 with efficient performing arithmetics

are described. This section also presents the applicability of these constructions of Fp2 for

the SIDH with p = 2eA3eBf ± 1.

5.4.1 Construction methods

A quadratic extension field applied for the SIDH has to be particularly efficient since the

efficiency of the SIDH strongly depends on the efficiency of arithmetics in Fp2 . Thus,

the author constructs implementation-friendly Fp2 by exploiting the existing construction

methods of extension fields with efficient performing arithmetics, which are introduced

below.

(i) Optimal extension field

In [BP01], Bailey and Paar proposed the OEFs which are defined by using irreducible

binomials. An OEF of degree m of Fp is defined as Fpm
∼= Fp[x]/(x

m − c0) ∼= Fp(α),

where f(x) = xm − c0 is an irreducible binomial in Fp[x] and α is an element in Fpm

such that f(α) = 0. Any element a ∈ Fpm is represented as a = a0 + a1α + · · · +
am−1α

m−1 where ai for 0 ≤ i ≤ m − 1 are elements in Fp. A set {1, α, . . . , αm−1} is a

basis of a which is classified into a polynomial basis. In Fpm , there are several efficient

multiplication algorithms such that Karatsuba multiplication [KO62] and Toom-Cook

multiplication [Too63; CA69]. Although the field characteristics of the original OEF are

pseudo-Mersenne primes, it is possible to extend for the general characteristics including

the SIDH-friendly primes. Thus, the author considers the following definition of Fp2 .

Fp2
∼= Fp[x]/(x

2 − c0) ∼= Fp(α), (5.12)

where x2 − c0 is an irreducible polynomial in Fp[x] and α is an element in Fp2 such that

α2 = c0. The small value of c0 leads to efficient performing arithmetics. Indeed, the choice

of c0 = −1 results in the best performing arithmetics among the OEFs and is used for

the typical SIDH.

(ii) All one polynomial field

In [NSM03], Nogami et al. proposed other attractive extension fields, i.e., AOPFs. An

AOPF of degree m of Fp is defined as Fpm
∼= Fp[x]/(x

m + xm−1 + · · · + 1) ∼= Fp(β),

where f(x) = xm + xm−1 + · · · + 1 is an irreducible all-one polynomial in Fp[x] and
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β is an element in Fpm such that f(β) = 0. Any element a ∈ Fpm is represented as

a = a1β + a1β
2 + · · · + amβ

m where ai for 1 ≤ i ≤ m are elements in Fp. A set

{β, β2, . . . , βm} is a basis of a classified into an optimal normal basis [Mul+88]. In Fpm ,

an efficient multiplication algorithm which is named the CVMA in [NSM03] is available.

Since the AOPF can also be extended for the fields with SIDH-friendly primes, the author

considers the following definition of Fp2 .

Fp2
∼= Fp[x]/(x

2 + x+ 1) ∼= Fp(β), (5.13)

where x2 + x + 1 is an irreducible polynomial in Fp[x] and β is an element in Fp2 such

that such that β2 = −β − 1.

(iii) Extension field with a normal basis

There exist extension fields such that any elements are represented by using a basis

classified into a normal basis. Such fields are called the EFNs in this thesis. An EFN

of degree m of Fp is defined as Fpm
∼= Fp[x]/(x

m + cm−1x
m−1 + · · · + c0) ∼= Fp(γ), where

f(x) = xm+ cm−1x
m−1+ · · ·+ c0 is an irreducible polynomial with non-zero trace in Fp[x]

and γ is an element in Fpm such that f(γ) = 0. Any element a ∈ Fpm is represented as

a = a0γ+a1γ
p+ · · ·+am−1γ

pm−1
where ai for 0 ≤ i ≤ m−1 are elements in Fp. Note that

a set {γ, γp, . . . , γpm−1} is a basis of a which is called the normal basis. The EFNs are

efficiently implemented by using the NTT method [KAH00]. From the above, the author

also considers the following definition of Fp2 .

Fp2
∼= Fp[x]/(x

2 + c1x+ c0) ∼= Fp(γ), (5.14)

where x2 + c1x + c0 with non-zero c1 is an irreducible polynomial in Fp[x] and γ is an

element in Fp2 such that γ2 = −c1γ − c0.

5.4.2 Attractive candidates of Fp2

According to the constructions of Fp2 described in the previous subsection, the author

considers the following candidates of Fp2 .

OEF x2+1 : Fp[x]/(x
2 + 1), OEF x2+2 : Fp[x]/(x

2 + 2),

OEF x2-2 : Fp[x]/(x
2 − 2), OEF x2+3 : Fp[x]/(x

2 + 3),

OEF x2-3 : Fp[x]/(x
2 − 3), OEF x2+4 : Fp[x]/(x

2 + 4),

OEF x2+5 : Fp[x]/(x
2 + 5), OEF x2-5 : Fp[x]/(x

2 − 5),

AOPF x2+x+1 : Fp[x]/(x
2 + x+ 1),

EFN x2-x+1 : Fp[x]/(x
2 − x+ 1), EFN x2-x-1 : Fp[x]/(x

2 − x− 1),



5.4. Constructions of quadratic extension fields for fast SIDH 157

Table 5.2: The calculation costs of arithmetic operations in Fp2 .

Constructions
Multiplication Squaring
m1 s1 a1 h1 m1 s1 a1 h1

OEF x2+1 3 0 5 0 2 0 3 0
OEF x2+2 3 0 6 0 2 0 5 0
OEF x2-2 3 0 5 0 2 0 5 0
OEF x2+3 3 0 5 1 2 0 3 2
OEF x2-3 3 0 6 0 2 0 5 0
OEF x2+4 3 0 5 1 2 0 5 1
OEF x2+5 3 0 6 1 2 0 4 2
OEF x2-5 3 0 5 1 2 0 4 2

AOPF x2+x+1 3 0 4 0 2 0 4 0
EFN x2-x+1 3 0 4 0 2 0 4 0
EFN x2-x-1 3 0 4 0 0 3 3 0

where Fp2 defined by a certain polynomial is denoted as [field name] [polynomial],

e.g., Fp2 based on OEFs given by a polynomial x2 + 1 is denoted as OEF x2+1. Note that

OEF x2+1 is employed for the typical SIDH. The details of the operation algorithms for

OEF x2+1, OEF x2-5, AOPF x2+x+1, EFN x2-x+1, and EFN x2-x-1 are especially presented

in App. D.

The calculation costs of multiplication and squaring in Fp2 based on the OEF, AOPF,

and EFN are summarized in Table 5.2. According to Table 5.2, it is found that OEF x2+1

is the best performing arithmetic among Fp2 based on the OEFs. In contrast, 1 addition

in Fp for the multiplications in AOPF x2+x+1, EFN x2-x+1, and EFN x2-x-1 is reduced

from that of OEF x2+1. However, 1 addition in Fp for squarings in AOPF x2+x+1 and

EFN x2-x+1 is increased from that of OEF x2+1, which is a degradation. As for the squar-

ing in EFN x2-x-1, 2 multiplications in Fp are replaced with 3 squarings in Fp from that of

OEF x2+1. According to Table 5.1, multiplications in Fp2 are more often required for the

SIDH operations than squarings in Fp2 . If it is possible to apply AOPF x2+x+1, EFN x2-x+1,

and EFN x2-x-1 for the SIDH, the performance of the SIDH might be competitive to or

rather better than that of OEF x2+1.

5.4.3 Applicability of the candidates of Fp2 for SIDH

The author confirms the applicability of the candidates of Fp2 described in Sect. 5.4.2 for

the SIDH. Note that not all SIDH-friendly primes results in Fp2 based on any constructions

since there exist restrictions of field characteristics from the irreducibility of a polynomial.

In the following, the author especially describes the applicability of Fp2 based on the target

constructions for the SIDH with p = 2eA3eBf ± 1.
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Theorem 5.4. The field characteristic p has to satisfy the following conditions for con-

structing Fp2 .

OEF x2+1 : p ≡ 3 (mod 4), OEF x2+2 : p ≡ 5, 7 (mod 8),

OEF x2-2 : p ≡ 3, 5 (mod 8), OEF x2+3 : p ≡ 2 (mod 3),

OEF x2-3 : p ≡ 5, 7 (mod 12), OEF x2+4 : p ≡ 3 (mod 4),

OEF x2+5 : p ≡ 11, 13, 17, 19 (mod 20), OEF x2-5 : p ≡ 2, 3 (mod 5),

AOPF x2+x+1 : p ≡ 2 (mod 3),

EFN x2-x+1 : p ≡ 2 (mod 3), EFN x2-x-1 : p ≡ 2, 3 (mod 5).

Proof of Theorem 5.4. To construct Fp2 , a polynomial f(x) = x2 + c1x + c0 in F[x] has
to be irreducible over Fp. The irreducibility of f(x) depends on the quadratic residue

properties of the discriminant D = c21−4c0 since a root of f(x) is given as (−c1±
√
D)/2.

If D is a quadratic non-residue in F∗
p, the polynomial is irreducible in F[x]. For OEF x2+1,

OEF x2+2, OEF x2-2, OEF x2+3, OEF x2-3, OEF x2+4, OEF x2+5, OEF x2-5, AOPF x2+x+1,

EFN x2-x+1, and EFN x2-x-1, the discriminants are given asD = −4, −8, 8, −12, 12, −16,
−20, 20, −3, −3, and 5, respectively. Applying the properties of the Legendre symbol

described in [Kob94], the restriction of the characteristic for the certain discriminant can

be uniquely obtained as follows: (−4
p
) = (−16

p
) = −1 ⇔ p ≡ 3 (mod 4), (−8

p
) = −1 ⇔

p ≡ 5, 7 (mod 12), (8
p
) = −1 ⇔ p ≡ 3, 5 (mod 8), (−12

p
) = (−3

p
) = −1 ⇔ p ≡ 2 (mod 3),

(12
p
) = −1 ⇔ p ≡ 5, 7 (mod 12), (−20

p
) = −1 ⇔ p ≡ 11, 13, 17, 19 (mod 20), and (20

p
) =

(5
p
) = −1⇔ p ≡ 2, 3 (mod 5). Thus, the restrictions to apply Fp2 are obtained as shown

in the theorem. □

The SIDH-friendly prime given by p = 2eA3eBf±1 are clearly satisfy the condition p ≡
±1 (mod 2eA) and p ≡ ±1 (mod 3eB), respectively. When comparing to the restrictions

to exploit Fp2 given in Lemma 5.4, the applicability of Fp2 for the SIDH with p = 2eA3eBf±
1 is obtained as shown in Table 5.3 where ✓ and X denote applicable and inapplicable,

respectively.

From Table 5.3, the new candidates of Fp2 such that AOPF x2+x+1 and EFN x2-x+1

can be available for the SIDH with p = 2eA3eBf − 1. Moreover, if the primes satisfy

p ≡ 2, 3 (mod 5), EFN x2-x-1 can also be applied not only for p = 2eA3eBf − 1 but also

for p = 2eA3eBf + 1 which have not so many choices of Fp2 based on the OEFs. Thus,

there is a possibility that the SIDH with p = 2eA3eBf + 1 also results in an efficient

implementation, however, the previous SIDH implementation does not focus on that.

Note that the sign of the constant term of the SIDH-friendly prime might not affect

the performance of the modular reduction described in [CLN16], which is based on Mont-

gomery reduction [Mon85]. Assuming p = 2eA3eBf ± 1 and R is slightly larger than the

size of p given as R = 2m with an integer m, one can compute the Montgomery residue
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Table 5.3: Applicability of the constructions of Fp2 for the typical SIDH.

Constructions
Applicability

p = 2eA3eBf − 1 p = 2eA3eBf + 1
OEF x2+1 ✓ X
OEF x2+2 ✓ X
OEF x2-2 X X
OEF x2+3 X X
OEF x2-3 ✓ X
OEF x2+4 ✓ X
OEF x2+5 ✓∗∗ ✓∗

OEF x2-5 ✓∗ ✓∗

AOPF x2+x+1 ✓ X
EFN x2-x+1 ✓ X
EFN x2-x-1 ✓∗ ✓∗

∗If only a SIDH-friendly prime satisfies p ≡ 2, 3 (mod 5)
∗∗If only a SIDH-friendly prime satisfies p ≡ 1, 4 (mod 5)

c = aR−1(mod p) for an input a < pR as c = (a+ (aM ′(mod R))p)/R = (a± aM ′(mod

R))/R+((p∓1)(aM ′( modR))) = (a±aM ′( modR))/R+(2eA3eBf(aM ′( modR))) where

M ′ = −p−1(modR).

5.5 Isomorphisms between the candidates of Fp2
Since there are several candidates of Fp2 which are applicable for the SIDH, the author

provides an isomorphic map between Fp2 to convert the constructions efficiently and

conveniently. Indeed, the author presents a construction method of an isomorphic map

from Fp2 of the typical construction OEF x2+1 for the SIDH with the typical prime p =

2eA3eBf−1 to Fp2 of any constructions. Before describing the proposed map, the following

lemma is required.

Lemma 5.5. If a field characteristic is p = 2eA3eBf − 1, there exists a primitive cube

root of identity in F∗
p.

Proof of Lemma 5.5. Since the primitive cube root of identity is written as 3
√
1 = (−1±√

−3)/2, it is defined over Fp2 if
√
−3 ∈ Fp2 . According to [Lem13], if 3 ∤ (p − 1) is

satisfied, 3 and −1 are quadratic residue and non-residue in F∗
p which leads to −3 is

quadratic non-residue in F∗
p, which mans that

√
−3 ∈ F∗

p2 . Since p = 2eA3eBf − 1 is

satisfied the condition, 3
√
1 ∈ Fp2 . □

In the following, let us define Fp2 as Fp[x]/(x
2+1) ∼= Fp(α) and Fp2 [x]/(x

2+c1x+c0) ∼=
Fp(ω) where α and ω are elements in Fp2 such that α2 = −1 and ω2 = −c1ω − x0,
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respectively. From Lemma 5.5, there exists a primitive cube root of identity in Fp(α)

and Fp(ω) with a SIDH-friendly prime given by p = 2eA3eBf − 1. In the following, let

δ = δ0 + δ1α ∈ Fp(α) and ζ = ζ0 + ζ1ω ∈ Fp(ω) be primitive cube roots of the identity

in Fp(α) and Fp(ω) where δ0, δ1, ζ0, ζ1 ∈ Fp, respectively. Indeed, δ and ζ can be written

by using δ0 = −1/2, δ1 = ±
√
3/2, ζ0 = (−1 ± c1

√
−3/D)/2, and ζ1 = ±

√
−3/D where

D = c21− 4c0 ∈ F∗
p, respectively. Note that we have

√
3,
√
−3/D ∈ F∗

p from the quadratic

residue property of 3 and quadratic non-residue property of −3 and D in F∗
p.

Theorem 5.6. If a field characteristic is p = 2eA3eBf − 1, an isomorphic map from Fp(α)

to any Fp(ω) is defined as follows:

M :Fp(α)→ Fp(ω),

a0 + a1α 7→ (a0 +ma1) + na1ω, (5.16)

where m = (ζ0 − δ0)/δ1, n = ζ1/δ1 ∈ Fp.

Proof of Theorem 5.6. Let a and b be elements in Fp(α) represented by a = a0+a1α with

a0, a1 ∈ Fp and b = b0 + b1α with b0, b1 ∈ Fp, respectively.

(i) Additive homomorphism. It is clearly satisfied that M(a+ b) = ((a0 + b0)+m(a1 +

b1)) + n(a1 + b1)ω =M(a) +M(b).

(ii) Multiplicative homomorphism. It is obtained thatM(a·b) = (a0b0+m(a0b1+a1b0)−
a1b1)+n(a0b0+a1b0)ω andM(a) ·M(b) = (a0b0+m(a0b1+a1b0)+d0a1b1)+n(a0b1+

a0b1−d1a1b1)ω where d0 = m2−c0n2 and d1 = n(c1n−2m). Since m = ±c1
√
−1/D

and n = ±2
√
−1/D with D = c21 − 4c0 ∈ F∗

p, we have d0 = −1 and d1 = 0 which

leads to M(a · b) =M(a) ·M(b).

(iii) Monomorphism. Since n 6= 0, it is satisfied that M(a) 6=M(b) if a 6= b ∈ Fp(α).

From the above (i)–(iii), M is an isomorphism. □

From the above, the isomorphic map M : Fp(α) → Fp(ω) is easily constructed once

the primitive cube root of identity δ ∈ Fp(α) and ζ ∈ Fp(ω) are obtained. The elements

δ and ζ are obtained without square root computation by computing a cubic non-residue

element to the power of (p2− 1)/3 in Fp(α) and Fp(ω), respectively. The calculation cost

to compute an image of a ∈ Fp(α) is enough low since it requires only 2 multiplications

and 1 addition in Fp. Note that M(x) ∈ Fp(ω) with the polynomial basis representation

can also be deformed to the optimal normal basis and normal basis representations as

M(a) = (a0 +ma1) + na1ω

= ((−c1a0 + (c0n− c1m)a1)/c0)ω − ((a0 +ma1)/c0)ω
2
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= ((−a0 + (c1n−m)a1)/c1)ω − ((a0 +ma1)/c1)ω
p, (5.17)

where c0 and c1 are non-zero coefficients.

The proposed isomorphic map supports the generation of the public parameters of

SIDH with Fp2 based on several constructions from the existing parameters defied over

OEF x2+1, e.g., SIKEp434 given in [Cam+19]. The details of the application of the iso-

morphism are described in App. E.

5.6 Performance analyses of SIDH

The author picks up the four implementation-friendly Fp2 , i.e., OEF x2+1, OEF x2-5,

AOPF x2+x+1, and EFN x2-x-1 and compares the performance of the operations keygen iso,

keyshare iso and ker gen which occupy almost all computational complexity of SIDH.

The author also confirms the performance of the SIDH with p = 2eA3eBf − 1 and

p = 2eA3eBf + 1.

5.6.1 Assumptions

In the following, the author presents the details of the experimental assumptions such as

the parameter setting, environment, optimization, and evaluation methods.

Parameters setup

The author chooses the SIDH-friendly primes satisfying p ≡ 2, 3 (mod 5) to use various

constructions of Fp2 . The SIDH-friendly primes which can ensure quantum security at

the 128-bit levels are given as follows:

p434− = 22163137 − 1, (5.18)

p441+ = 22163137139 + 1, (5.19)

where the sizes of the primes are given by 434-bit and 441-bit, respectively. Note that

p434− is presented in [Cam+19] where the parameter set is called SIKEp434 and p441+ is

found by this work. It is considered that the proposed parameter p441+ can also ensure

the same security level since eA and eB which are parameterized the size of the kernel of

isogenies are the same size as p434− ones.

The author uses supersingular elliptic curves of Montgomery form defined over Fp2 of

which orders are (p + 1)2 and (p − 1)2 for the prime p434− and p441+, respectively. For

p434−, the supersingular elliptic curve is given as E/Fp : y
2 = x3 +6x2 + x. For p441+, the

curve can be found by using a quadratic twist as described in App. F.
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Experimental environment.

To evaluate the performance of the SIDH with several candidates of Fp2 , the protocol

is implemented by C language. In the implementation, the big integer arithmetics are

implemented by using mpz t data type of GMP library [tea15]. The software is compiled

with GCC 8.3.0 with the option -O2 -march=native, and is executed on 3.50GHz Intel(R)

Core(TM) i7-7567U CPU running macOS High Sierra version 10.13.6.

The four categories of arithmetic functions of GMP which are mpz mul, mpz add/

mpz sub, mpz mul 2exp/ mpz tdiv q 2exp, mpz invert, mpz mod, and mpz set are em-

ployed in the software. The categories are referred as mul, add, shift, mod, and set

respectively. If mpz mul has the same operands, it is denoted as the sixth category sqr.

To minimize the number of function calls of mod which has one of the highest computa-

tional complexity among the categories, the author allows the operands with the twice

size of characteristic for add. The size of the operand(s) is denoted as a subscript of the

category’s name, e.g., mpz mul with s-bit operands is denoted as muls.

The weight of these operation categories with the specific size of the operand(s) used

for the implementation is given in Table 5.4. The weight is derived from one hundred

million trials of execution time excluding the overhead on this environment. Unlike mul,

sqr, and mod, the differences of the weights of add, shift, and set between p434− and

p441+ are invisible since these operations are low computational complexity.

Optimization

All arithmetics are performed on Montgomery curves and applied the optimization pro-

posed in [DFJP14; CLN16] as described in Sect. 5.3.2. The author refers to Sect. 4.2.2

in [DFJP14] and finds the optimal paths of computing 4108- and 3137-isogenies from the

ratio of a single point multiplication and isogeny evaluation. The ratio is derived from

the computational complexities of these operations which are calculated by the sum of

the number of operation categories multiplied by the weight given in Table 5.4. From

the optimal paths, it is found that the numbers of operations xDBL and 4 iso point

for computing 4108-isogeny are specifically given by 666 and 405 for all candidates of

Fp2 in this implementation, respectively. Similarly, the numbers of operations xTPL and

3 iso point required for computing 4108-isogeny are also specifically given as 407 and

597, respectively. Note that this implementation does not adopt the Montgomery reduc-

tion described in Sect. 5.4.3 since the performance of that of p434− and p441− are might

be competitive.
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Table 5.4: Weight of the operation categories employed in the implementation of SIDH.

log2bsc muls sqrs adds add2s shifts mod2s sets
434 5.12 3.46 1.00 1.14 1.04 16.4 0.63
441 5.13 3.47 1.00 1.14 1.04 16.8 0.63

Evaluation

The author measures the number of function calls required for the SIDH operations, i.e.,

keygen iso, keyshare iso, and kernel gen, which occupy almost all the computational

complexity of SIDH. Since the number of function calls of kernel gen typically depends

on the secret key, the average of the result of 1,000 random secret keys are calculated.

The computational complexity of the SIDH operations is computed by the sum of the

numbers of the function calls multiplied by the weight of the operation categories. Besides,

average execution times of 100,000 trials of the operations are measured. Note that the

measurement is performed by repeating the operations for 1,000 random secret keys 100

times.

5.6.2 Results and analyses

Tables 5.5 and 5.6 show the numbers of the function call of the operations (a) Alice’s

keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s keyshare iso.

(e) Alice’s kernel gen, and (f) Bob’s kernel gen for the primes p434− and p441+, respec-

tively. The tables also involve computational complexity and average execution time.

Figs. 5.1 and 5.2 also provide the results of the computational complexity and execution

time for p434− and p441+. The details of the results and their analyses are described below.

From Table 5.5 and Fig. 5.1, the performance of the SIDH operations with p434−

applied AOPF x2+x+1 and EFN x2-x-1 are competitive to that of OEF x2+1 which is ex-

ploited for the previous implementations. The results are caused by the complexities of

the multiplication and squaring in Fp2 as described in Sect. 5.4.2. Moreover, EFN x2-x-1

can achieve more 1% improvement than that of OEF x2+1 since the computational com-

plexity of 3 squarings in Fp is lower than that of 2 multiplications in Fp which results in

more efficient performing squaring in EFN x2-x-1 than that of OEF x2+1. Therefore, the

performance improvement for the entire SIDH can be expected by using AOPF x2+x+1 or

EFN x2-x-1 as a replacement for OEF x2+1. Since the calculation costs of arithmetic op-

erations in EFN x2+x-1 are exactly the same as AOPF x2+x+1, EFN x2+x-1 is yet another

candidate for the replacement. However, the results of the execution time with OEF x2+1

are slightly better than that of AOPF x2+x+1 despite the reduction of the complexity. The

author confirms the software by GNU profiler and finds that the number of function calls

of the operations applied OEF x2+1 and AOPF x2+x+1 is exactly correct, however, the exe-
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Table 5.5: The number of function calls, computational complexity and execution
time of the SIDH operations (a) Alice’s keygen iso, (b) Bob’s keygen iso, (c) Al-
ice’s keyshare iso, (d) Bob’s keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s
kernel gen with p434−.

Const- Ope- Function calls
Complexity

Time
ruction- ration mul434 sqr434 add434 add868 shift434 mod868 set434 [ms]

OEF

(a) 27,557 0 35,759 23,820 216 20,520 1,284 541,567.20 5.04

x2+1

(b) 30,389 0 43,473 25,453 0 23,234 1,632 610,146.86 5.66
(c) 20,429 0 27,186 16,841 216 15,336 1,284 403,525.18 3.70
(d) 23,813 0 35,146 19,806 0 18,302 1,632 480,828.36 4.47
(e) 6,231 2 8,291 5,251 0 4,729 16 123,752.46 1.15
(f) 6,271 0 8,331 5,292 0 4,757 16 124,496.28 1.15

OEF

(a) 27,557 0 35,709 27,092 13,698 20,520 1,284 559,268.56 5.24

x2-5

(b) 30,389 0 43,403 29,985 16,079 23,234 1,632 631,965.50 5.88
(c) 20,429 0 27,145 19,456 10,458 15,336 1,284 417,116.96 3.86
(d) 23,813 0 35,091 23,501 12,791 18,302 1,632 498,288.30 4.64
(e) 6,231 2 8,278 6,124 3,224 4,729 16 128,087.64 1.19
(f) 6,271 0 8,318 6,170 3,243 4,757 16 128,856.92 1.20

AOPF

(a) 27,557 0 42,711 13,052 216 20,520 1,284 536,243.68 5.08

x2+x+1

(b) 30,389 0 53,085 13,148 0 23,234 1,632 605,731.16 5.73
(c) 20,429 0 32,462 9,045 216 15,336 1,284 399,913.74 3.78
(d) 23,813 0 42,925 10,156 0 18,302 1,632 477,606.36 4.52
(e) 6,231 2 10,142 2,755 0 4,729 16 122,758.02 1.16
(f) 6,271 0 10,199 2,776 0 4,757 16 123,496.04 1.17

EFN

(a) 21,113 9,666 33,771 18,770 216 20,520 1,284 534,273.28 4.97

x2-x-1

(b) 21,465 13,386 40,582 21,189 0 23,234 1,632 603,019.58 5.59
(c) 15,281 7,722 25,329 13,604 216 15,336 1,284 398,338.36 3.64
(d) 16,533 10,920 32,723 16,718 0 18,302 1,632 475,394.64 4.41
(e) 4,512 2,581 7,749 4,289 0 4,729 16 122,235.84 1.14
(f) 4,541 2,595 7,787 4,322 0 4,757 16 122,967.58 1.15

cution time of single add434 of AOPF x2+x+1 is strangely slower than that of OEF x2+1. At

this time, the author considers that it might come from the effects of cache and parallel

processing.

The results Table 5.5 and Fig. 5.1 also show that the performance of the SIDH op-

erations applied OEF x2-5 compares unfavorably to OEF x2+1. Thus, such constructions

of Fp2 should be kept away from practical implementations. However, as described in

Sect. 5.4.3, there do not exist good choices of Fp2 based on the OEFs for the SIDH with

p = 2eA3eBf +1. In contrast, the author finds the new candidate of Fp2 , i.e., EFN x2-x-1,

for such the SIDH. According to Table 5.6 and Fig. 5.2, EFN x2-x-1 contributes to im-

prove the performance of the SIDH operations around 4% compared with the previous

best choice of Fp2 based on OEFs, i.e., OEF x2-5. Moreover, the performance of the SIDH
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Table 5.6: The number of function calls, computational complexity and execution
time of the SIDH operations (a) Alice’s keygen iso, (b) Bob’s keygen iso, (c) Al-
ice’s keyshare iso, (d) Bob’s keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s
kernel gen with p441+.

Const- Ope- Function calls
Complexity

Time
ruction ration mul441 sqr441 add441 add882 shift441 mod882 set441 [ms]

OEF

(a) 27,557 0 35,244 27,557 13,698 20,520 1,284 567,817.23 5.23

x2-5

(b) 30,389 0 43,000 30,388 16,079 23,234 1,632 641,619.41 5.88
(c) 20,429 0 26,814 19,787 10,458 15,336 1,284 423,501.99 3.84
(d) 23,813 0 34,780 23,812 12,791 18,302 1,632 505,890.77 4.64
(e) 6,232 1 8,181 6,221 3,224 4,729 16 130,056.81 1.20
(f) 6,271 0 8,223 6,265 3,243 4,757 16 130,835.73 1.21

EFN

(a) 21,113 9,666 32,028 20,513 216 20,520 1,284 543,033.09 5.01

x2-x-1

(b) 21,465 13,386 38,544 23,227 0 23,234 1,632 612,947.01 5.66
(c) 15,281 7,722 24,030 14,903 216 15,336 1,284 404,884.65 3.68
(d) 16,533 10,920 31,145 18,296 0 18,302 1,632 483,210.89 4.46
(e) 4,512 2,581 7,321 4,716 0 4,729 16 124,257.15 1.16
(f) 4,541 2,595 7,357 4,752 0 4,757 16 125,001.94 1.16

with p441+ applied EFN x2-x-1 is competitive to that of p434− applied OEF x2+1. Thus,

the author concludes that the efficient implementation of the SIDH with p = 2eA3eBf +1

can exist.

5.7 Summary of contributions

In this chapter, the author considers the SIDH using elliptic curves defined over Fp2 that

are specified by several constructions such as OEFs, AOPFs, and EFNs. It is found

that not only the OEFs but also AOPFs and EFNs can be applied for the SIDH with

p = 2eA3eBf − 1. Moreover, the EFN is also available for the SIDH with p = 2eA3eBf +1,

which leads to expanding the range of the elliptic curves used for the SIDH. With the

possible candidates of Fp2 , the author implements the SIDH and analyzes the performance

of the SIDH. The results of the experiment show that the performance of the SIDH with

p = 2eA3eBf − 1 is competitive between the possible candidates of Fp2 . Besides, the

SIDH with p = 2eA3eBf + 1 applied the EFNs are almost competitive to the SIDH with

p = 2eA3eBf − 1 applied the typical OEFs. Thus, there are many candidates of Fp2 for

fast SIDH, which involves the constructions of Fp2 that have not been considered in the

previous works. Note that changing the constructions of Fp2 requires not so much effort

by using isomorphisms between Fp2 .
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Figure 5.1: Computational complexity and execution time of the SIDH operations
(a) Alice’s keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s
keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s kernel gen with p434−.
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Figure 5.2: Computational complexity and execution time of the SIDH operations
(a) Alice’s keygen iso, (b) Bob’s keygen iso, (c) Alice’s keyshare iso, (d) Bob’s
keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s kernel gen with p441+.



Chapter 6

Conclusion and Future Works

The mathematical fundamentals of cryptography using elliptic curves are introduced from

the description of algebraic systems in Chapter 2. The author presented efficient algo-

rithms for computing the final exponentiation for several candidates of curves suggested

for the pairings at the 128-bit security level in Chapter 3. The author also provided the

formulas for generating fixed final exponentiation algorithms that are applicable for a

certain family of curves with any generalized embedding degrees. In Chapter 4, the au-

thor described methods for obtaining attractive subfamilies of pairing-friendly curves with

many embedding degrees, which are one of the extended works of [CLN11] by Costello

et al. The author presented concrete parameters suggested for the pairings at the 128-

and 192-bit security levels. In Chapter 5, the author discussed the SIDH by using several

constructions of quadratic extension fields. The performance of SIDH was analyzed by

an implementation.

The results of Chapters 3 and 4 contribute to optimizing the pairings and determining

the attractive curves and algorithms for computing pairings efficiently. Besides, the result

of Chapter 5 contributes to finding new constructions of SIDH which have the competitive

performance of the previous ones. The author considers that the results involve important

achievements for the practical applications of pairing and SIDH.

Finally, the author briefly shows the future works and outlook. As seen in Chapters

3 and 4, the author is interested in completely operating the settings and algorithms

for computing the pairings by the curves and their parameters. To achieve that for much

more curves, the author considers that a deeper understanding of the structures of pairing

computations specified by the families of curves is required. The author is also interested

in an alternative method [Sta07] for computing the Tate pairing via the elliptic nets,

however, it is slower than the typical Miller’s algorithm. There is a possibility that an

efficient pairing computation is provided by improving the elliptic nets. The author also

hopes to find such new alternative methods for computing the isogenies and curves for

the SIDH.

167



Bibliography

[AD97] Miklós Ajtai and Cynthia Dwork. “A public-key cryptosystem with worst-

case/average-case equivalence”. In: Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing. 1997, pp. 284–293.

[Adj+18] Gora Adj et al. “On the cost of computing isogenies between supersingular

elliptic curves”. In: International Conference on Selected Areas in Cryptog-

raphy. Springer. 2018, pp. 322–343.

[AM93] A Oliver L Atkin and François Morain. “Elliptic curves and primality prov-

ing”. In: Mathematics of computation 61.203 (1993), pp. 29–68.

[Aok+00] Kazumaro Aoki et al. “Camellia: A 128-bit block cipher suitable for multi-

ple platforms―design andanalysis”. In: International workshop on selected

areas in cryptography. Springer. 2000, pp. 39–56.

[Ara+11] Diego F Aranha et al. “Faster explicit formulas for computing pairings over

ordinary curves”. In: Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer. 2011, pp. 48–68.

[Ara13] Diego F Aranha. RELIC is an efficient library for cryptography. https:

//github.com/relic-toolkit/relic. 2013.

[Aza+17] Reza Azarderakhsh et al. “Supersingular isogeny key encapsulation”. In:

Submission to the NIST Post-Quantum Standardization project 152 (2017),

pp. 154–155.

[Bar+02] Paulo SLM Barreto et al. “Efficient algorithms for pairing-based cryp-

tosystems”. In: Annual international cryptology conference. Springer. 2002,

pp. 354–369.

[BD19] Razvan Barbulescu and Sylvain Duquesne. “Updating key size estimations

for pairings”. In: Journal of Cryptology 32.4 (2019), pp. 1298–1336.

[BEMG19] Razvan Barbulescu, Nadia El Mrabet, and Loubna Ghammam. A taxon-

omy of pairings, their security, their complexity. Cryptology ePrint Archive,

Report 2019/485. https://eprint.iacr.org/2019/485. 2019.

168

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2019/485


Bibliography 169

[Ber08] Daniel J Bernstein. “The Salsa20 family of stream ciphers”. In: New stream

cipher designs. Springer, 2008, pp. 84–97.

[Ber+08] Daniel J Bernstein et al. “ChaCha, a variant of Salsa20”. In: Workshop

record of SASC. Vol. 8. 2008, pp. 3–5.

[Beu+10] Jean-Luc Beuchat et al. “High-speed software implementation of the opti-

mal ate pairing over Barreto–Naehrig curves”. In: International Conference

on Pairing-Based Cryptography. Springer. 2010, pp. 21–39.

[BF01] Dan Boneh and Matt Franklin. “Identity-based encryption from the Weil

pairing”. In: Annual international cryptology conference. Springer. 2001,

pp. 213–229.

[BGK15] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. “The tower

number field sieve”. In: International Conference on the Theory and Ap-

plication of Cryptology and Information Security. Springer. 2015, pp. 31–

55.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh:

Efficient isogeny based signatures through class group computations”. In:

International Conference on the Theory and Application of Cryptology and

Information Security. Springer. 2019, pp. 227–247.

[BLS02] Paulo SLM Barreto, Ben Lynn, and Michael Scott. “Constructing elliptic

curves with prescribed embedding degrees”. In: International Conference

on Security in Communication Networks. Springer. 2002, pp. 257–267.

[BN05] Paulo SLM Barreto and Michael Naehrig. “Pairing-friendly elliptic curves

of prime order”. In: International Workshop on Selected Areas in Cryptog-

raphy. Springer. 2005, pp. 319–331.

[Bon+04] Dan Boneh et al. “Public key encryption with keyword search”. In: Interna-

tional conference on the theory and applications of cryptographic techniques.

Springer. 2004, pp. 506–522.

[BP01] Daniel V Bailey and Christof Paar. “Efficient arithmetic in finite field ex-

tensions with application in elliptic curve cryptography”. In: Journal of

cryptology 14.3 (2001), pp. 153–176.

[BS10] Naomi Benger and Michael Scott. “Constructing tower extensions of finite

fields for implementation of pairing-based cryptography”. In: International

Workshop on the Arithmetic of Finite Fields. Springer. 2010, pp. 180–195.

[BW05] Friederike Brezing and Annegret Weng. “Elliptic curves suitable for pairing

based cryptography”. In: Designs, Codes and Cryptography 37.1 (2005),

pp. 133–141.



Bibliography 170

[CA69] Stephen A Cook and St̊al O Aanderaa. “On the minimum computation

time of functions”. In: Transactions of the American Mathematical Society

142 (1969), pp. 291–314.

[Cam+19] Matthew Campagna et al. Supersingular isogeny key encapsulation. https:

//sike.org/files/SIDH-spec.pdf. 2019.

[Cas+18] Wouter Castryck et al. “CSIDH: an efficient post-quantum commutative

group action”. In: International Conference on the Theory and Application

of Cryptology and Information Security. Springer. 2018, pp. 395–427.

[CH17] Craig Costello and Huseyin Hisil. “A simple and compact algorithm for

SIDH with arbitrary degree isogenies”. In: International Conference on the

Theory and Application of Cryptology and Information Security. Springer.

2017, pp. 303–329.

[CLN10] Craig Costello, Tanja Lange, and Michael Naehrig. “Faster pairing compu-

tations on curves with high-degree twists”. In: International Workshop on

Public Key Cryptography. Springer. 2010, pp. 224–242.

[CLN11] Craig Costello, Kristin Lauter, and Michael Naehrig. “Attractive subfam-

ilies of BLS curves for implementing high-security pairings”. In: Interna-

tional conference on cryptology in India. Springer. 2011, pp. 320–342.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient algorithms

for supersingular isogeny Diffie-Hellman”. In: Annual International Cryp-

tology Conference. Springer. 2016, pp. 572–601.

[CM11] Sanjit Chatterjee and Alfred Menezes. “On cryptographic protocols em-

ploying asymmetric pairings―the role of Ψ revisited”. In: Discrete Applied

Mathematics 159.13 (2011), pp. 1311–1322.

[Cos12] Craig Costello. Particularly friendly members of family trees. Cryptology

ePrint Archive, Report 2012/072. https://eprint.iacr.org/2012/072.

2012.

[Cos20] Craig Costello. “B-SIDH: supersingular isogeny Diffie-Hellman using twisted

torsion”. In: International Conference on the Theory and Application of

Cryptology and Information Security. Springer. 2020, pp. 440–463.

[Cou06] Jean Marc Couveignes.Hard homogeneous spaces. Cryptology ePrint Archive,

Report 2006/291. https://eprint.iacr.org/2006/291. 2006.

[CP01] Clifford Cocks and Richard G.E. Pinch. Identity-based cryptosystems based

on the Weil pairing. Unpublished manuscript. 2001.

[CS18] Craig Costello and Benjamin Smith. “Montgomery curves and their arith-

metic”. In: Journal of Cryptographic Engineering 8.3 (2018), pp. 227–240.

https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf
https://eprint.iacr.org/2012/072
https://eprint.iacr.org/2006/291


Bibliography 171

[DCC05] Pu Duan, Shi Cui, and Choong Wah Chan. Special polynomial families

for generating more suitable elliptic curves for pairing-based cryptosystems.

https://eprint.iacr.org/2005/342. 2005.

[DF+20] Luca De Feo et al. “SQISign: Compact post-quantum signatures from quater-

nions and isogenies”. In: International Conference on the Theory and Ap-

plication of Cryptology and Information Security. Springer. 2020, pp. 64–

93.

[DFJP14] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant
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Appendix A

Formulas of Cubings in Cyclotomic

Subgroup

The author describes cubings in the cyclotomic subgroup GΦk(p) of F∗
pk
. In the following,

let k | (p− 1), 3 | k, and q = pk/3. Let Fq3 is defined by Fq[x]/(x
3− ζ) ∼= Fq(ω) where ω is

an element in Fq3 such that ω3 = ζ. Then, there is a cyclotomic subgroup of F∗
q3 of order

Φ3(q), which is denoted by GΦ3(q). Since GΦ3(q) involves a cyclotomic subgroup GΦk(p),

arithmetic operations in GΦ3(q) is also available in GΦk(p). In the following, the author

describes the cubing in Fq3 and derives efficient cubing in GΦ3(q) based on [GS10] which

shows efficient squarings.

A.1 Typical cubing

Let a be an element in F∗
q3 represented as a = a0+a1ω+a2ω

2 where a0, a1, a2 ∈ Fq. Then,

the formula of typical cubing is given as follows:

a3 =(a0 + a1ω + a2ω
2)3

=a30 + (6a0a1a2 + a31)ζ + a32ζ
2

+ 3
(
a20a1 + a2(a0a2 + a21)ζ

)
ω

+ 3
(
a0(a0a2 + a21) + a1a

2
2ζ
)
ω2. (A.1)

Assuming a3 = b0 + b1ω + b2ω
2 ∈ Fq3 , the elements b0, b1, b2 ∈ Fq are obtained as follows:

t0 =
(
(a0 + a2)

2 − (a20 + a22)
)
/2 + a21,

t1 = a0t0, t2 = a2t0, t3 = a20a1, t4 = a1a
2
2,

t5 = (a0 + a1 + a2)
3 − (a30 + a32 + t1 + t2 + t3 + t4),

b0 = a30 + t5ζ + a32ζ
2, b1 = 3(t3 + t2ζ), b2 = 3(t1ζ + t4), (A.2)
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which leads to the following sequence of operations.

t0 = a20, t1 = a21, t2 = a22, t3 = t0a0, t4 = t2a2,

t5 = a0 + a2, t6 = t5 + a1, t7 = t26, t6 = t6t7, t5 = t25,

t5 = t5 − t0, t5 = t5 − t2, t5 = t5/2, t1 = t1 + t5,

t5 = t1a2, t1 = t1a0, t0 = t0a1, t2 = t2a1, t7 = t5ζ,

t7 = t0 + t7, t8 = 2t7, b1 = t7 + t8, t7 = t2ζ,

t7 = t1 + t7, t8 = 2t7, b2 = t7 + t8, t0 = t0 + t1,

t0 = t0 + t2, t0 = t0 + t5, t1 = 2t0, t0 = t0 + t1,

t0 = t0 + t3, t0 = t0 + t4, t0 = t6 − t0, t0 = t0ζ,

t4 = t4ζ
2, t0 = t0 + t4, b0 = t0 + t3. (A.3)

Thus, the typical cubing takes 7 multiplications, 5 squarings, 18 additions, 4 shift opera-

tions, and 4 multiplication by ζ in Fq.

A.2 Cyclotomic cubing

Let α = α0 + α1ω + α2ω
2 with α0, α1, α2 ∈ Fq be an element in GΦ3(q). Since α has a

specific order, there is a relation associated with αi for 0 ≤ i ≤ 2 as shown in the following

lemma.

Lemma A.1. For α ∈ GΦ3(q), the following is satisfied.

αΦ3(q) = α3
0 + (−3α0α1α2 + α3

1)ζ + α3
2α

2 = 1. (A.4)

Proof of Lemma A.1. It is clearly satisfied the equation αΦ3(q) = α ·αq ·αq2 = 1 where αq is

given as follows: αq = (α0+α1ω+α2ω)
q = α0+α1ω

q−1ω+α2(ω
q−1)2ω2 = α0+α1ζ

q−1
3 ω+

α2(ζ
q−1
3 )2ω2. Note that ζ

q−1
3 is a primitive cube root of unity since ζ is cubic non-residue in

F∗
q. As the same manner, it is obtained that αq2 = α0+α1(ζ

q−1
3 )2ω+α2ζ

q−1
3 ω2. Assuming

ϵ = ζ
q−1
3 , ϵ3 = 1 and ϵ2 + ϵ+ 1 = 0. Then, the equation can be deformed as follows:

αΦ3(q) = α · αq · αq2

= α3
0 + α3

0α
2
0α1(ϵ

2 + ϵ+ 1)ω

+ α0

(
(α0α2 + α2

1)(ϵ
2 + ϵ) + (α0α2 + α2

1ϵ
3)
)
ω2

+
(
α0α1α2(ϵ

4 + 3ϵ2 + 2ϵ) + α3
1ϵ

3
)
ω3

+ α2

(
(α0α2 + α2

1)(ϵ
3 + ϵ2) + (α0α2 + α2

1ϵ
3)ϵ
)
ω4

+ a1a
2
2ϵ

2(ϵ2 + ϵ+ 1)ω5 + a32ϵ
3ω6
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= α3
0 + (−3α0α1α2 + α3

1)ζ + α3
2ζ

2 = 1. (A.5)

Thus, Lemma 1 is obtained. □

When applying Lemma A.1 for the typical cubing given in Eq. (A.1), the formula of

cyclotomic cubing is obtained as follows:

α3 =(α0 + α1ω + α2ω
2)3

=1 + 9α0α1α2ζ

+ 3
(
α2
0α1 + α2(α0α2 + α2

1)ζ
)
ω

+ 3
(
α0(α0α2 + α2

1) + α1α
2
2ζ
)
ω2. (A.6)

Assuming α3 = β0+β1ω+β2ω
2 ∈ Fq3 , the elements β0, β1, β2 ∈ Fq are obtained as follows:

t0 =
(
(α0 + α2)

2 − (α2
0 + α2

2)
)
/2, t1 = t0 + α2

1,

t2 = t0α1, t3 = α0t1, t4 = α2t1, t5 = α2
0α1, t6 = α1α

2
2,

β0 = 1 + 9t2ζ, β1 = 3(t5 + t4ζ), β2 = 3(t3ζ + t6), (A.7)

which leads to the following sequence of operations.

t0 = α2
0, t1 = α2

1, t2 = α2
2, t3 = α0 + α2, t3 = t23,

t3 = t3 − t0, t3 = t3 − t2, t3 = t3/2, t4 = t3α1,

t5 = 23t4, t4 = t4 + t5, t4 = t4ζ, β0 = t4 + 1,

t1 = t1 + t3, t0 = t0α1, t3 = t1α2, t3 = t3ζ,

t3 = t0 + t3, t4 = 2t3, β1 = t3 + t4, t2 = t2α1,

t2 = t2ζ, t1 = t1α0, t1 = t1 + t2, t2 = 2t1, β2 = t2 + t2. (A.8)

This takes 5 multiplications, 4 squarings, 9 additions, 4 shift operations, and 3 multipli-

cation by ζ in Fq, and 1 addition in Fp. When comparing the operation counts of the

cubings, it is found that the cyclotomic cubing can reduce 2 multiplications, 1 squaring,

9 additions, and 1 multiplication by ζ in Fq from the calculation cost of the typical one.



Appendix B

Reproduced Calculation Costs of

Final Exponentiations

We reproduce the calculation costs for the final exponentiation for curves with k = 6 and

12 by using state-of-the-art algorithms. In the following, the author refers to [GMT20]

and assumes the calculation costs of the arithmetics in Fpk as Table B.1.

B.1 Cocks-Pinch curve with k = 6

According to [GMT20], the Cocks-Pinch curve has the parameterizations of p(x), r(x),

and t(x) as follows:
p(x) = 1

12
((9h2y + 6hy + 4)x4 − (18h2y + 6hy + 12)x3

+(27h2y+18hy+16)x2 − (18h2y+12hy)x+ 9h2y+12hy+4),

r(x) = Φ6(x) = x2 − x+ 1,

t(x) = x+ 1− r(x),

(B.1)

where hy is an integer. In the following, let z be an integer making p(z) and r(z) being

primes. Then, the exponent of the final exponentiation is given by (p(z)6 − 1)/r(z) =

(p(z)3 − 1) · (p(z) + 1) · (p(z)2 − p(z) + 1)/r(x) where (p(z)3 − 1) · (p(z) + 1) and d(x) =

(p(z)2−p(z)+1)/r(z) are easy and hard parts, respectively. Although [GMT20] provided

the hard part representation, it does not work. In [SSM21], Song et al. corrected that

and proposed a multiple d′(z) = 3d(z) of d(z) that is denoted by

d′(z) = 3(z2 + 3(−z + 1)) + 3c(z) · (p(z)− (z2 + 2(−z + 1))), (B.2)

3c(z) = ((9w2 + 3w + 1) · (z − 1) + (9w2 + 6w)) · (z − 1) + 9w2 + 9w + 3, (B.3)
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Table B.1: The calculation costs of the arithmetics in Fpk of k = 1, 2, 6 and 12.

k mk sck ik ick f i
k

1 m1 m1 25m1 - -
2 3m1 2m1 29m1 - -
6 18m1 6m1 59m1 4m1 4m1

12 54m1 18m1 119m1 10m1 10m1

where w = hy/2 and which results in the following computations.

t0 = f z, t1 = tz0, t0 = t−1
0 , t0 = t0 · f,

t2 = t20, t0 = t0 · t2, t0 = t0 · t1, t3 = t20, t0 = t3 · t0,
t1 = t1 · t2, t1 = t−1

1 , t2 = fp, t1 = t1 · t2,
t2 = t21, t2 = t2 · t1, t3 = tw2 , t4 = t23, t5 = t4 · t3, t5 = tw5 , t4 = t5 · t4,
t5 = t−1

3 , t5 = t5 · t4, t5 = t5 · t1, t3 = t4 · t3, t3 = t3 · t2,
t5 = tz−1

5 , t5 = t5 · t4, t5 = tz−1
5 , t5 = t5 · t3, µ = t5 · t0. (B.4)

This requires the calculation cost 2uz6 + 2uz−1
6 + 2uw6 + 16m6 + 4sc6 + 3ic6 + f 1

6 . Adding

the cost of the easy part 2m6 + i6 + f 1
6 + f 3

6 , we obtain the calculation cost of the final

exponentiation as 2uz6 + 2uz−1
6 + 2uw6 + 18m6 + 4sc6 + i6 + 3ic6 + 2f 1

6 + f 3
6 .

In contrast, we propose to use the simpler decomposition of d′(z) such that

d′(z) = 3c′(z) · (p(z) + z − 1) + 3, (B.5)

3c′(z) = ((9w2 + 3w + 1)z − (9w2 + 2))z + (9w2 + 3w + 1). (B.6)

Assuming f is an element after computing the easy part, µ = fd′(z) is computed by the

following sequence of the operations.

t0 = f 2, t1 = t0 · f, t2 = tw1 , t3 = t22, t4 = t3 · t2, t4 = tw4 ,

t0 = t0 · t4, t0 = t−1
0 , t4 = t4 · f, t3 = t3 · t4, t2 = t2 · t4,

t2 = tz2, t0 = t2 · t0, t0 = tz0, t0 = t0 · t3,
t2 = tp0, t0 = tz−1

0 , t0 = t0 · t2, µ = t0 · t1. (B.7)

The above requires the calculation costs 2uz6+u
z−1
6 +2uw6 +10m6+2sc6+ ic6+f

1
6 . Adding

the cost of the easy part, we obtain the calculation cost of the final exponentiation as

2uz6+u
z−1
6 +2uw6 +12m6+2sc6+ i6+ ic6+2f 1

6 +f
3
6 . Since the proposal results in reducing

uz−1
6 +6m6+2sc6+2ic6 from the previous one, here we adopt the proposed decomposition

for the calculation cost estimation of the final exponentiation.
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For the pairing at the 128-bit security level, in [GMT20], Guillevic suggested using z

and hy such that

z = 2128 − 2124 − 269, (B.8)

hy = 280 − 270 − 266 − 214 + 25. (B.9)

Then, the calculation costs of the exponents by z and w are given by uz6 = 4(128 −
1)m1 + (12 − 3)m1 + 2m6 + 6s1 + i1 + ic6 = 588m1, u

z−1
6 = uz6 + m6 = 606m1, and

uw6 = 4(79−1)m1+(24−3)m1+4m6+12s1+ i1+ ic6 = 446m1, respectively (see Corollary

4.1 in [Kar13]). Thus, the calculation cost of the final exponentiation is estimated as

2(588m1)+(606m1)+2(446m1)+12(18m1)+2(6m1)+(59m1)+(4m1)+2(4m1)+(4m1) =

2977m1.

B.2 BLS curve with k = 12

We recall that the BLS family of pairing-friendly curves with k = 12 has the parameters

p(x) = 1
3
(x − 1)2 · r(x) + x, r(x) = Φ12(x) = x4 − x2 + 1, and t(x) = x + 1. For an

integer z making p(z) and r(z) being primes, the exponent of the final exponentiation

is given as (p(z)12 − 1)/r(z) = (p(z)6 − 1) · (p(z)2 + 1) · (p(z)4 − p(z)2 + 1)/r(z) where

(p(z)6 − 1) · (p(z)2 + 1) and d(z) = (p(z)4 − p(z)2 + 1)/r(z) is easy and hard parts,

respectively. In [HHT20], Hayashida et al. proposed to use a multiple d′(z) = 3d(z) =

(z − 1)2 · (z + p(z)) · (z2 + p(z)2 − 1) + 3. If 2 | z, the calculation cost of the hard part is

given by 4uz12 + uw12 + 7m12 + sc12 + 2ic12 + f 1
12 + f 2

12 (see Example 3.7). Adding the cost

of the easy part given by 2m12 + i12 + f 2
12 + f 6

12, the cost of the final exponentiation is

4uz12 + uw12 + 9m12 + sc12 + i12 + 2ic12 + 2f 1
12 + f 2

12 + f 6
12.

For the pairing at the 128-bit security level, it is suggested using z = −277 + 250 + 233

in [BD19], which leads to uz12 = 4(77−1)m2+(12−3)m2+2m12+6s2+ i2+ ic12 = 1098m1

and uw12 = 4(76−1)m2+(12−3)m2+2m12+6s2+ i2+ ic12 = 1086m1 (see Corollary 4.1 in

[Kar13]). Then, the calculation cost is estimated as 4(1098m1) + (1086m1) + 9(54m1) +

(18m1) + (119m1) + 2(10m1) + 4(10m1) = 6161m1



Appendix C

Miller’s Algorithm for Pairings on

Curves with Embedding Degree of

Multiple of Three

Algorithm C.1 shows Miller’s algorithm for computing the ate variant pairings eaT which

adopt the rational function fT,Q where T is a loop parameter and Q is a point trace-

zero subgroup G2. For the curves with embedding degree k of multiple of 3, Zhang et

al. proposed an alternative function of lQ1,Q2/vQ1+Q2 for points Q1 and Q2 in G2 without

denominator in [ZL12]. This results in avoiding the execution of the inversions in Fpk in

DBL, ADD, and SUB steps. However, unfortunately, there still remain v−1
Q in INIT− and SUB

steps. Thus, for fast Miller’s algorithm, it is advantageous to use not only T with low

Hamming weight but also T such that it does not contain ti = −1 for 0 ≤ i < n as much

as possible to avoid SUB step. However, since there are not many elliptic curves that fulfill

the above requirements, the range of the practical choices of elliptic curves is limited

especially for odd embedding degrees. To ease this restriction, the author proposes to

compute the ate pairing by using a rational function f−T,Q instead of fT,Q which results

in swapping the ADD and SUB steps by using a technique given by Hess et al. in [HSV06].

Theorem C.1. The value eaT (Q,P ) can also be computed as follows (see Sect. 2 of

[HSV06]):

eaT (Q,P ) =
(
(f−T,Q(P ) · v−TQ(P ))

−1
) pk−1

r . (C.1)

Proof of Theorem C.1. A map with the above image also ensures an ate pairing since

div((f−T,Q · v−TQ)
−1) = −(−T (Q)− (−TQ) + (T + 1)(O))− ((−TQ) + (TQ)− 2(O)) =

T (Q)− (TQ)− (T − 1)(O) = div(fT,Q). □

From Theorem C.1, it is found that the ate pairing can be computed by using f−T,Q
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Algorithm C.1: Miller’s algorithm for computing the ate variant pairings.

Input: T = tl2
l + · · ·+ t12

1 + t02
0 ∈ Z where ti ∈ {−1, 0, 1}, P ∈ G1, and Q ∈ G2

Output: fT,Q(P )
1 If tl = 1 then
2 f ← 1, R← Q; //INIT+
3 else if tl = −1 then
4 f ← v−1

Q (P ), R← −Q; //INIT−

5 endif
6 For i from l − 1 downto 0 do

7 f ← f 2 · lR,R(P )

vR+R(P )
, R← R +R; //DBL

8 If ti = 1 then

9 f ← f · lR,Q(P )

vR+Q(P )
, R← R +Q; //ADD

10 else if ti = −1 then

11 f ← f · lR,−Q(P )

vR−Q(P )
· v−1

Q (P ), R← R−Q; //SUB

12 endif
13 endfor

return f ;

with some adjustments instead of fT,Q, however, it involves an additional inversion in

F∗
pk
. Fortunately, for the target ate pairings which are defined on the elliptic curves with

3 | k, this inversion can be removed by extending the Aranha et al.’s work [Ara+11] for

an optimal ate pairing on BN curves (see Lemma 1 of [Ara+11]). Indeed, the inversion is

replaced with inexpensive exponentiations according to the following corollary.

Corollary C.2. If 3 | k, the value eaT (Q,P ) is deformed as follows:

eaT (Q,P ) =
(
(f−T,Q(P ) · v−TQ(P ))

q2+q
) pk−1

r
, (C.2)

where q = pk/3.

Proof of Corollary C.2. The corollary is true since the exponent is represented as −(pk −
1)/r = (1− q) · (q2+ q+1)/r ≡ (q3− q) · (q2+ q+1)/r = (q2+ q) · (q−1) · (q2+ q+1)/r =

(q2 + q) · (pk − 1)/r mod (pk − 1). □
The exponentiation by q and q2 are performed by the Frobenius endomorphism in Fpk .

Although there remains one multiplication by v−TQ(P ) in Fpk , it is less expensive than

the typical multiplication in Fpk since v−TQ(P ) gives a sparse element in Fpk .

As a result, the algorithm for computing the value of the proposed rational function

is given in Algorithm C.1, where ADD and SUB steps are swapped from the previous com-

putation given in Algorithm C.2. INIT+ and INIT− steps are also swapped. Although

the proposed algorithm requires an additional ADJ step, it is suitable for computing the
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Algorithm C.2: An alternation of Miller’s algorithm for computing the ate
variant pairings.

Input: T = tl2
l + · · ·+ t12

1 + t02
0 ∈ Z where ti ∈ {−1, 0, 1}, P ∈ G1, and Q ∈ G2

Output: (f−T,Q(P ) · v−TQ(P ))
q2+q

1 If tl = 1 then
2 f ← v−1

Q (P ), R← −Q; //INIT−

3 else if tl = −1 then
4 f ← 1, R← Q; //INIT+
5 endif
6 For i from l − 1 downto 0 do

7 f ← f 2 · lR,R(P )

vR+R(P )
, R← R +R; //DBL

8 If ti = 1 then

9 f ← f · lR,−Q(P )

vR−Q(P )
· v−1

Q (P ), R← R−Q; //SUB

10 else if ti = −1 then

11 f ← f · lR,Q(P )

vR+Q(P )
, R← R +Q; //ADD

12 endif
13 endfor

14 f ← (f · vR(P ))q
2+q ; //ADJ

return f ;

pairings on curves with T such that it does not contain ti = 1 for 0 ≤ i < n, which

opposite holds for the typical algorithm.



Appendix D

Algorithms for Computing

Arithmetic Operations in Fp2

Let A = (a0, a1) and B = (b0, b1) be any elements in Fp2 , where a0, a1, b0, b1 ∈ Fp. Then,

multiplication of A and B and squaring of A, i.e., A ·B = (u0, u1) and A
2 = (v0, v1) with

u0, u1, v0, v1 ∈ Fp, can be computed by using variable elements t1, t2, t3, t4 ∈ Fp as follows:

• OEF x2+1

Multiplication: t1 = a0b0, t2 = a1b1, t3 = a0 + a1, t4 = b0 + b1, u0 = t1 − t2, u1 =

t3t4, u1 = u1 − t1, u1 = u1 − t2.

Squaring: t1 = a0 + a1, t2 = a0 − a1, v1 = a0a1, v1 = v1 + v1, v0 = t1t2.

• OEF x2-5

Multiplication: t1 = a0 + a1, t2 = b0 + b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, t2 =

t2 + t3, u1 = t1 − t2, t3 = 4t3, u0 = t2 + t3.

Squaring: t1 = a0 + a1, t2 = 4a1, t2 = t2 + a1, t2 = a0 + t2, t1 = t1t2, t2 = a0a1, v1 =

t2 + t2, t3 = 4v1, t3 = t3 − v1, v0 = t1 − t3.

• AOPF x2+x+1:

Multiplication: t1 = a0 − a1, t2 = b0 − b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, u0 =

t1 − t2, u1 = t1 − t3.

Squaring: t1 = a0 + a0, t1 = a1 − t1, t2 = a1 + a1, t2 = a0 − t2, v0 = t1a1, v1 = t2a0.

• EFN x2-x+1

Multiplication: t1 = a0 − a1, t2 = b0 − b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, u0 =

t2 − t1, u1 = t3 − t1.

Squaring: t1 = a0 + a0, t1 = t1 − a1, t2 = a1 + a1, t2 = t2 − a0, v0 = t1a1, v1 = t2a0,
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• EFN x2-x-1

Multiplication: t1 = a0 − a1, t2 = b0 − b1, t1 = t1t2, t2 = a0b0, t3 = a1b1, u0 =

t1 + t2, u1 = t1 + t3.

Squaring: t1 = a0− a1, t1 = t21, t2 = a20, t3 = a21, v0 = t1 + t2, v1 = t1 + t3, v1 = t1 + t3.



Appendix E

Conversion of Public Parameters of

SIDH

The author applies the proposed isomorphism and obtains the public parameter set for

SIDH with Fp2 defined by Fp[x]/(x
2 + x + 1) ∼= Fp(β) where β is an element in Fp2 such

that β2 = −β − 1. It is adopted the existing public parameter set SIKEp434 defined over

Fp[x]/(x
2 +1) ∼= Fp(α) where α is an element in Fp2 such that α2 = −1, which consists of

the following materials (see Chapter 1.6.1 in [Cam+19]):

• p = 22163137 − 1, i.e., lA = 2, lB = 3, eA = 216, and eB = 137;

• E0 : y
2 = x3 + Ax2 + x where A = 6 + 0α ∈ Fp(α);

• x-coordinates of the initial points PA, QA, RA = PA − QA ∈ E[leAA ], PB, QB,

RB = PB −QB ∈ E[leBB ], which are elements in Fp(α). Note that since we work on

the Montgomery curves without y-coordinates, x(RA) and x(RB) are required.

The author constructs an isomorphic map M : Fp(α) → Fp(β) and derives a public

parameter set of SIDH defined over Fp(ω) by computing M(A), M(x(PA)), M(x(QA)),

M(x(RA)), M(x(PB)), M(x(QB)), and M(x(RB)).

According to Theorem 5.6, the isomorphism map Fp(α) → Fp(β) is obtained by M :

Fp(α) → Fp(β), x0 + x1α 7→ (x0 +mx1) + nx1β = (−x0 + (n −m)x1)β − (x0 +mx1)β
2.

where m and n are given as follows:

m =00db6794 b8c6558d e8372711 9cd51000 00000000 00000000 00000000,

n =01b6cf29 718cab1b d06e4e23 39aa2000 00000000 00000000 00000000.

Applying M , a curve coefficient A ∈ Fp(α) is mapped to M(A) = −6β− 6β2 ∈ Fp(β).

For S ∈ {P,Q,R} and X ∈ {A,B}, the x-coordinates of initial point x(SX) in Fp(α) can

be mapped to an element in Fp(β) by computing M(x(SX)) = x(S ′
X) = xS′

X ,0β + xS′
X ,1β

2
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where xS′
X ,0 and xS′

X ,1 are elements consists of as follows:

xP ′
A,0 =0001b7ec 3cb83805 31034815 ffcce3b5 40693f5a fb9bbd81 80395c7b

9cfbb4fb 30ad5bdd 3cba824f 73f213fe e7125ecc 8be39afc 2fcf4c60,

xP ′
A,1 =00000293 5e9b5a9f 35f24ff3 5de41dac a2843950 b9f07d05 b49cbb3b

12d96a45 d64a0409 5dceb9dd ea4aaeaa 0c29fc7a df7a8ab4 a3a31d0f,

xQ′
A,0 =0001bcec 6753b4d5 c8dd8561 a57eeca8 cc29930f a7b9a009 d83cb9b5

a109001f 13c48a6a 2f9ff3c3 c6f7de48 67ad08b5 e671097a 225bc897,

xQ′
A,1 =00011cc5 b86ac995 173a0084 4c1e862d b9733e81 129c3bd1 59924a7c

3ec1ba05 5ed21eb2 55da228c b8565f38 ceee876b 1dd4a10d c1ce1e8f,

xR′
A,0 =0000b936 ddd16a1e 503f960c 9c71a2fc 210958e0 306a79c0 573cb62c

c04a31b8 462b666b acf65cb4 ccc79553 2d9ad510 582b7a6f 55726594,

xR′
A,1 =0001c812 09c63acd 2e8f4126 ae76e1a3 7c4fd316 6921dcf9 d3f29fa4

559a7dac c167f8c0 08dcd073 b6c29408 5cb6fc9a cd8d5b69 1e93503e.

xP ′
B ,0 =0001adba a0b8cb6c 560c24a4 9fa15de9 3b5c300b 6094d83c b7611fcf

faa76a13 c8c97403 ff620503 4c26819c 609a161b a0b9a8c4 f9c84856,

xP ′
B ,1 =0001adba a0b8cb6c 560c24a4 9fa15de9 3b5c300b 6094d83c b7611fcf

faa76a13 c8c97403 ff620503 4c26819c 609a161b a0b9a8c4 f9c84856.

xQ′
B ,0 =0001059a 4fb24deb 8667a051 bfc945a6 e20e2135 ca957fdd a2b130ff

1806b39c 14f9c97e 174e18c6 73f4dbe3 e64699a0 2461ebf9 25c2c7b9,

xQ′
B ,1 =0001059a 4fb24deb 8667a051 bfc945a6 e20e2135 ca957fdd a2b130ff

1806b39c 14f9c97e 174e18c6 73f4dbe3 e64699a0 2461ebf9 25c2c7b9.

xR′
B ,0 =00004a01 53e81db2 b207c2d4 9cc9c890 c660622d 7785390f 637fa6d6

f44e6787 266dbc35 100f2130 c5c6f60b 3351c140 4ce94455 a3517d60,

xR′
B ,1 =000083ec 47621b2c 28213cd2 95cf9731 dc0d41f9 a79332cd 53df0535

e132f50e ddc026b7 66d32c9a 1ba4f05d 732eeed5 7e031f07 480913c6.



Appendix F

Construction of Supersingular

Elliptic Curves of Order (p− 1)2

Let E be a supersingular elliptic curve of which order is #E(Fp2) = (p− 1)2. According

to [Wat69], a twist of E, which is denoted as E ′/Fp : y2 = x3 + ax + b, has an order

#E ′(Fp2) = (p + 1)2. For p = p441+ = 22163137139 + 1, the coefficients of E ′ are easily

found by using ecgen library [Jan18].

a = 00627426 b720ddfa 4e7970c2 25f07717 f583111e 9cba318c 9bba7fcd

d4e49249 24924924 92492492 49249249 24924924 92492492 49249245,

b = 00cfd8c3 829ab82c de8e98b6 501817dd 3f312424 2e6ca17e 2c50d4eb

6c1b6db6 db6db6db 6db6db6d b6db6db6 db6db6db 6db6db6d b6db6dbc.

Since E is a quadratic twist of E ′ defined over Fp2 , the curve E is obtained as E/Fp2 :

y2 = x3 + δ2/3ax+ δb where δ is quadratic non-residue and cubic residue in Fp2 . One can

convert the elliptic curve of the Weierstrass to the Montgomery form. As a result, the

Montgomery curve of #E(Fp2) = (p− 1)2 is obtained.

191


	Declaration of Authorship
	Abstract
	Abstract (Japanese)
	Acknowledgements
	Previously Published Materials
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Cryptography
	Symmetric-key cryptography
	Public-key cryptography
	Cryptography using elliptic curves

	Previous research and remaining problems
	For the pairing on elliptic curve
	For the SIDH

	Major contributions
	Organization

	Fundamentals
	Group, ring, and field
	Groups
	Quotient groups and homomorphisms
	Direct product of groups
	Pairing
	Rings and fields
	Ideals, quotient rings, and homomorphisms

	Finite fields
	Prime field
	Polynomial rings and field extensions
	Frobenius endomorphism and conjugates
	Power residue properties
	Computational problems

	Elliptic curves over finite fields
	Algebraic varieties
	Weierstrass equations
	Group law
	Point multiplication and Frobenius endomorphisms
	Twisting isomorphisms
	n-torsion subgroups
	Supersingular elliptic curves
	The number of rational points
	Computational problems

	Pairings on elliptic curves
	Function fields
	Divisors
	Weil and Tate pairings
	Miller's algorithm
	Base-field and trace-zero subgroups
	Restricting the pairings to the subgroups
	Use of twists
	Types of pairings
	Computational problems
	Pairing-friendly elliptic curves

	Isogenies between elliptic curves
	Isgenies
	A standard form for isogenies
	Vélu's formula
	Isogeny graphs
	Computational problems

	Chapter summary

	Final Exponentiation for Fast Pairings
	Background and motivation
	Review of the final exponentiation
	Cyclotomic polynomial
	Decomposition of the final exponentiation
	Related works for constructing the algorithm

	Improvement of the final exponentiation for the BLS curves with k=15
	BLS family of pairing-friendly curves with k=15
	Previous final exponentiation
	Proposed final exponentiation
	Calculation cost estimations
	Generalization for any k

	Efficient final exponentiation for the curves resistant to STNFS
	Cyclotomic families of pairing-friendly curves with k=10, 11, 13, and 14
	Final exponentiations by the lattice-based method
	Final exponentiations by the generalized method
	Calculation cost estimations
	Performance comparison of the STNFS-secure pairings

	A new construction method of the final exponentiation
	Cyclotomic family of pairing-friendly curves of k of k 1 (-5mumod5mu- 6)
	Proposed final exponentiation
	Application

	Summary of contributions

	Attractive Subfamilies of Pairing-friendly Curves for Fast Pairings
	Background and motivation
	Related works and mathematical materials
	Related works
	Mathematical materials

	Proposed BN subfamilies
	Review of the pairings with the BN family
	Proposed BN subfamilies of curves with k=12
	Sample parameters and evaluation

	Proposed BLS subfamilies of curves with k = 2m 3 and 3n for any m,n>0
	Review of the pairings with the BLS family
	Determination of the number of rational points on the correct twists
	Proposed restriction of integer parameters
	Sample parameters and evaluation

	Summary of contributions

	Performance Analyses of SIDH with Several Constructions of Quadratic Extension Fields
	Background and motivation
	Review of SIDH key exchange protocol
	Supersingular elliptic curves of smooth order
	SIDH key exchange
	Security of the SIDH

	Review of Efficient operations for SIDH
	Montgomery curves
	Projective Montgomery operations for SIDH

	Constructions of quadratic extension fields for fast SIDH
	Construction methods
	Attractive candidates of Fp2
	Applicability of the candidates of Fp2 for SIDH

	Isomorphisms between the candidates of Fp2
	Performance analyses of SIDH
	Assumptions
	Results and analyses

	Summary of contributions

	Conclusion and Future Works
	Bibliography
	Formulas of Cubings in Cyclotomic Subgroup
	Typical cubing
	Cyclotomic cubing

	Reproduced Calculation Costs of Final Exponentiations
	Cocks-Pinch curve with k=6
	BLS curve with k=12

	Miller's Algorithm for Pairings on Curves with Embedding Degree of Multiple of Three
	Algorithms for Computing Arithmetic Operations in Fp2
	Conversion of Public Parameters of SIDH
	Construction of Supersingular Elliptic Curves of Order (p-1)2

