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Abstract

Cryptography is an essential technology for protecting confidential information in various
services via the internet. There are mainly two technologies, i.e., symmetric-key cryptog-
raphy and public-key cryptography, in which the sender and receiver use the same and
different keys, respectively. Currently, public-key cryptographies, such as RSA cryptog-
raphy and elliptic curve cryptography (ECC), are widely used in familiar situations such
as SSL/TLS communication. Since the key size of ECC is much smaller than that of
RSA for similar security levels, it is considered that ECC will be the principal technology
of public-key cryptography in near the future. Besides, there is innovative cryptogra-
phy with various functions which is based on a pairing defined over an elliptic curve
and is so-called pairing-based cryptography (PBC). It is expected for applying PBC for
technologies of secure database systems in cloud services. Furthermore, there is post-
quantum cryptography (PQC) based on isogenies between elliptic curves, which is called
isogeny-based cryptography (IBC). As an example of IBC, there is a supersingular isogeny
Diffie-Hellman (SIDH) key exchange protocol. Currently, an international standardiza-
tion process for PQC is underway, where the candidates involve a cryptosystem based on
the SIDH.

To put the new technologies of the PBC and IBC into practical use, the author works
on three studies on speeding up the calculation procedure for these cryptosystems. The
following is a summary of the background, motivation, and main contribution of each
study.

(i) In PBC, since the calculation amount for computing the pairing is a bottleneck, it
is an important issue to improve the efficiency of pairing. Since the pairings are typically
computed by two steps, which are called the Miller loop and final exponentiation, the
efficiency of the pairing depends on these steps. The optimization of each step is exam-
ined corresponding to the elliptic curve in which pairing is defined. However, for some
elliptic curves suggested for PBC, efficient algorithms for computing the final exponen-
tiations have not been provided. Therefore, the author newly proposes the algorithms
for each curve with explicit calculation costs. The proposal results in the improvement
of the efficiency of the final exponentiations, which also means that it contributes to the

improvement of the efficiency of pairings. The attractive curves which are suggested for
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high-performance PBC are also determined.

(ii) The efficiency of the pairing also depends on the constructions of both elliptic
curve and finite field in which pairing is defined. To use the optimum constructions, it
is necessary to search for appropriate parameters, however, it typically relies on a brute
force method. Indeed, there are several previous works that had clarified conditions
for finding such parameters for the pairings on specific curves, however, they have not
been clarified for various cases. Therefore, the author explicitly provides such conditions
for pairings on various elliptic curves that are expected to be used for a long time by
applying the mathematical theory. As a result, the proposal contributes to easily find
the appropriate parameters that result in efficient pairings without using the brute force
method. Moreover, the results also allow us to update the parameters for PBC more
flexibly.

(iii) It is a bottleneck in the SIDH to perform the processes of key generations with
large computational complexities. In particular, it is desired to improve the efficiency
of the processes for computing the construction of the isogenies and their destination.
The efficiency of these processes depends on not only the algorithms based on the Vélu’s
formula but also the construction of the finite field. Although the algorithms have been
improved by the previous work, it has been focused on the finite field of a specific con-
struction. Therefore, the author considers the construction of SIDH using the finite fields
with various constructions and confirms its performance by an implementation. As a
result, it is clarified the candidates of the constructions of finite fields that can realize
efficient SIDH. Furthermore, the new candidates end up expanding a range of choices of

elliptic curves which can be used for SIDH.
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Abstract (Japanese)

4R —=%v b ECREEINDGZEELHEZY — 22 WT, A - X ESINDHEHE»S
MENGHRZ T 5 72D121%, BEHEMPAARTHS. BEHMIIAESMTT, EEEL
ZAGEDFE Utz 3 2 Hompdns 5 &, B b2 HT 2 MK S22 TN 5.
NHBERS & UT, BETIZRSA BESPHAEMRESPERLTED, 1 X —%v b
EiZHI1F5 SSL/TLS @574, HERGHIZEWTIHFHINWTWS. fEHERRE 51,
RSA BB L AFEOLZ 2N Z2 LV HWRBETHEETE 5720, SHOAMERSDOTE%
HOBBTHDLEZOLNTWVWS., 72, BHIR ETERINEI AT Y VI EIEIENS
BfEINHATSZ 212X 0, BEES{LOBEED A% 53, B2 A INRE & Kf D i ae 22 i
FPRREINTVSE. ZOEFERT Y VIS EMEN, B2 YN ETOT—42%
GEERT 7200 - M LTHEAINTWS., 512, EHllkR ETERI N
5EMEEHRICED N, MEFHEERESIREINTWS. ZORSIXEESGE S
CIEENTE D, SIDH &N AILE TV TV XL ZDOREHTH 5. BIETIE,
SIDH % F:IZRHE S Nz 5 2 I & 8, & T3R5 O EREHE(L 70 & A W3
HH5NTWDS,

AL TIE, Fi-eBiioRigziE> X7 ) v 7S & FAEEA4R SO EMID 2D
2, 2o DS IZHV NS FRETFIED S#E BT 5 = DOMEIcH D flA7Z. TEd
TIENENOMEITE T %GR, B, BLCTELREREEZRT.

(1) R7V Y IHEFIZB VT, MR EORT ) V7 OFERIIR NV RAY 2 TH D
72, X7V I 2#MT 5 ERELELFETH L. X7 VT OFELEIE, Miller
V=T RIERELEND ZODFHEAT Y TOIRIKFT S, ZNSDHERAT v
TIZDWTIE, RT7V U IDEHRSI NBSHEHEIFRIZIG U T, TN NREIDOMET 7R E
N5, UL, }7) VB SITHBEI N TV S ORI U TiX, RmaEk
BREDOT LT ZLBHASDIZINT WA, 207, KK T, THZhoik
XU TR BN EDFHET N T XL 2 HITREL, DELHEIANZHS
MZUTz., TORER, BREDOHET VI XL0MERAERETCEZZ2i12&D, X
TV YT OMEMIEIR U2, £72, HEIXNDBHS MR -2 8T, &ITEE
RART Y VTR BIZHERE X I B MG M kR & BHREIC T & 72

(i) X7V Y7 OFHEHRIE, TV U IBREREINLEMRRE, O EhkRDS
EZRINLARBROMERIZ BT T 2. R eEMHiiR e GRAZFHET 2720121, £
IZBE T 2N T A =R 2R TL2MBEBNDH 50, TOHRITIIHRY 7 0 FEE
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WS ZEWERTH 2D, —HMOREDKEMEHIR LDORT Y V71T DWTIE, ST
L ONRTA=ROPERZMAEDHSDIIZEINT WS, UL, L aEHifR EoXTY v
TIZDOWTIE, FD& D BERFMIIH S PIZE TV, ZDOARMIETIE, [k
IR FHAI NG EFZ S5 NDRRZ IRFEHEIRR LD RT Y V7T U T, BUARR G
IZEEDWTEEREHZH SN U7z, TR, M7 DINFEE2 ML, SRR
TV T RFEBTEBNRTIA—RERGIPERTE L L1 ho7z. £z, Ttk R
TVVITREEDNTA—=RPE D FRIZEHFTEL LS 1T o7,

(iii) FFEEGRT 5D —DTdh 2 SIDH Tix, #EKD 7 £ —XTHEL 5 UE O
BEAR ML A ZhoT Wb, LI, MBS G4LEORBHTRRZ KT 2729
DFHEEDORKEINHETH 5720, NSO ENRAT LI LHETHL. Z
NS DOUMHEORRIE, Vilu DARIZESWZEHR T IV I XL DRhRP A RAAKDRERKIZ
HiFT 5. INETOMEIZLD, FHETILITY ZLDWENTONTWVWAEA, HEDORE
FROERAEDAVREHINTE72. TD7OARMIETIX, BRx RfEKIZ X 5 HRAZ W
TSIDH Z#kd 5 Z L 2T L, ZTDOMREZERIZ K OMR Lz, TORE, 8% R
SIDH % BT Z 2 HRADOHK DM ZHS Mz U7z, 61T, - EmMoaRIA %
HWaZ eizk b, £HMA SIDH 2T & 2 MR ORI 2 K15 Z T E /.



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Yasuyuki Nogami
for his support throughout my bachelor, master, and doctorial courses at Okayama Uni-
versity. Without his extraordinary understanding and cooperation, I could not be able
to finish my doctoral research completely. I also appreciate to co-supervisors, Professor
Yoshitaka Toyota and Associate Professor Minoru Kuribayashi who gave me a lot of effort
to improve this thesis. They also gave me knowledge of electronics and networks through
the classes in my courses.

I sincerely thank Senior Assistant Professor Takuya Kusaka for giving me many pieces
of advice for my research and student life. I also would like to thank Assistant Professor
Yuta Kodera who is my respected senior and gave me a lot of influence from his great
attitude for research. Special thanks also to students members in Information Security
Laboratory for creating a great work atmosphere and their generous support.

I would like to thank Associate Professor Masaaki Shirase in Future University Hako-
date for giving me great support and allowing me to study in his laboratory for 1 year
during my doctoral course. I never forget the precious time of studying in Hakodate and
also the knowledge that he had kindly taught me. All of the co-authored research is my
irreplaceable treasure.

Thanks to JSPS for employing me as a research fellow DC1. I sincerely acknowledge
all the funds that afforded my research activities.

I am grateful to administrative officers, Ms. Yumiko Kurooka, Ms. Midori Onishi,
and Ms. Masako Okamoto, who processed my official documents. I would like to thank
Ms. Miyuki Tachino and everyone who corporated the works related to the payment
processing of JSPS KAKENHI.

Finally, I would like to show my great thanks to my family for allowing me to learn in
the doctorial course. They gave me many encouragements which made me motivated to
carry out research. I would like to repay the favor for them as much as they have been

supporting me for a long time.

vi



Previously Published Materials

The following papers have been published or presented, and contain material based on
the content of this thesis.

Peer-Reviewed Journal Papers:

1.

Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “Efficient Ate-
Based Pairing over the Attractive Classes of BN Curves”. In: Information Security
Applications. WISA 2018. Lecture Notes in Computer Science, vol. 11402, pp. 55—
67, 2019.

. Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “A Perfor-

mance Analysis and Evaluation of SIDH Applied Several Implementation-Friendly
Quadratic Extension Fields”. In: International Journal of Networking and Com-
puting (IJNC), vol. 10, no. 2, pp. 227-241, 2020.

. Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “A Construction

Method of an Isomorphic Map between Quadratic Extension Fields Applicable for
SIDH”. In: IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. E103-A, no. 12, pp.1403-1406, 2020.

Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “Improvement
of Final Exponentiation for Pairings on BLS Curves with Embedding Degree 15”.
In: TIEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. E104-A; no. 1, pp. 315-318, 2021.

. Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “Restrictions of

Integer Parameters for Generating Attractive BLS Subfamilies of Pairing-Friendly
Elliptic Curves with Specific Embedding Degrees”. In: International Journal of
Networking and Computing (IJNC), vol. 11, no. 2, pp. 383-411, 2021.

vil



Peer-Reviewed Conference Papers:

6.

10.

11.

12.

Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “A Perfor-
mance Analysis and Evaluation of SIDH with Implementation-Friendly Classes of
Quadratic Extension Fields”. In: 2019 Seventh International Symposium on Com-
puting and Networking (CANDAR), pp. 178-184, 2019.

Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “A Technique
for Fast Miller’s Algorithm of Ate Pairings on Elliptic Curves with Embedding
Degrees of Multiple of Three”. In: 2020 35th International Technical Conference
on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 283-287,
2020.

. Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “An Explicit

Formula of Cyclotomic Cubing Available for Pairings on Elliptic Curves with Em-
bedding Degrees of Multiple of Three”. In: 2020 35th International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-CSCC),
pp. 288-292. 2020.

. Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “Specific Con-

gruence Classes of Integer Parameters for Generating BLS Curves for Fast Pair-
ings”. In: 2020 Eighth International Symposium on Computing and Networking
Workshops (CANDARW), pp. 348-354, 2020.

Yuki Nanjo, Masaaki Shirase, Yuta Kodera, Takuya Kusaka, Yasuyuki Nogami.
“Calculation Costs Estimations of Final Exponentiation for Pairing-Friendly El-
liptic Curves Resistant to Special TNFS”. In: 2021 36th International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-CSCC),
pp. 220-232, 2021.

Yuki Nanjo, Masaaki Shirase, Yuta Kodera, Takuya Kusaka, Yasuyuki Nogami.
“A Construction Method of Final Exponentiation for a Specific Cyclotomic Family
of Pairing-Friendly Elliptic Curves with Prime Embedding Degrees”. In: 2021 Ninth
International Symposium on Computing and Networking (CANDAR), pp. 148-154,
2021.

Yuki Nanjo, Masaaki Shirase, Yuta Kodera, Takuya Kusaka, Yasuyuki Nogami.
“Efficient Final Exponentiation for Pairings on Several Curves Resistant to Special
TNFS”. In: 2021 Ninth International Symposium on Computing and Networking
(CANDAR), pp. 48-55, 2021.

viil



Domestic Conference Papers:

13.

14.

Yuki Nanjo, Masaaki Shirase, Takuya Kusaka, Yasuyuki Nogami. “A Perfor-
mance Analysis of Supersingular Isogeny Diffie-Hellman with Several Classes of
the Quadratic Extension Fields”. In: IEICE Technical Report, vol. 119, no. 140,
pp. 207-214, 2019.

FIESH, FEEfEE#E. (R D BLS Hi#R OB E D hard part iIZ2WT”. In: IEICE
Technical Report, vol. 120, no. 112, pp. 105-110, 2020.

X



Contents

[Declaration of Authorship i
[Abhstract ii
[Abstract (Japanese) iv
[Acknowledgements vi
IPreviously Published Vlaterialg vii
IList of Figureg XV
[List of Tabled xXViii
[Cist of Symbold Xix
I__Tnfroduction 1
[.T Cryptographyl . . . . . . . . . . 1
[.T.T  Symmetric-key cryptographyl. . . . . . . . . . . . . . . . . .. ... 2

IL.1.2  Public-key cryptographyl . . . . . . . . . . . . . . . . ... ... 2

IL.1.o0  Cryptography using elliptic curve§. . . . . . . . . . . . . . . .. .. 4

.2 Previous research and remaining problemsd . . . . . . . . . . . . . .. ... 7
IL.2.1  For the pawrmng on elliptic curvegd . . . . . . . . . . . . . . ... ... 7

UL22 Forthe SIDH . . . . . . . . . o o e 9

[.3  Major confribufiond . . . . . . . . . . . . .. 10
[[.4 " Organization . . . . . . . . . . . s 11

2 Fundamentals 12
P.IT  Group, ring, and feld . . . . . . . . . .. 12
PTI.T Groupd. . . . . . . . s 12

R.1.2  Quotient groups and homomorphismdg . . . . . . . . . . . . . .. .. 13

P.T.3  Direct product of groupd . . . . . . . . . . . . . ... ... ... 15

PT.4 Pairing . . . . . . . . 15




RB.I.5 Ringsand fieldd . . . . . . . . . .. ..o 16
R.1.6 Ideals. quotient rings. and homomorphismg . . . . . . . .. . . . .. 17
P72 Fmife fieldd . . . . . . .. 19
221 Primeneld. . . . . . . . . . 000 19
R.2.2  Polynomial rings and field extensiond . . . . . . . . . ... .. ... 21
R.2.3 Frobenius endomorphism and conjugated . . . . . . . . .. .. ... 24
R.2.4  Power residue propertied . . . . . . . . ... ..o 25
.25 Compuftational problemd . . . . . . . . .. .. ... ... ... ... 26
R.3 Elliptic curves over finite fieldd . . . . . . . . . .. . ... ... 28
R.3.T Algebraic varietied . . . . . . . . . . . .. .. ... 28
£.0.2 Welerstrass equationg . . . . . . . . . .. ..o e e 28
P33 Grouplaw . . . . . . . . . . 30
£.0.4 Poimnt multiplication and Frobenius endomorphismy . . . . . . . . . 33
R.3.5  Twisting isomorphismg . . . . . . . . . .. .. ... 35
R.3.6  n-ftorsion subgroupd . . . . . . . . . . ... 36
R.3.7 Supersingular ellipfic curved . . . . . . . . .. . ... 37
R.3.8  "The number of rafional pointy . . . . . . . . . .. .. ... .. ... 38
R.3.9  Computational problemdg . . . . . . . . .. .. .. ... .. .... 39
R.4 Pairings on ellipfic curved . . . . . . . . . . . .. .. 40
PA4T Funclion fieldd . . . . . .. ... . 41
DA77 Divasard . . . .o 42
.43 Weil and Tate pairingd . . . . . . . . . . . . ... 46
£2.4.4  Miller’s algorithm| . . . . . . . . . .. oL 48
£.4.0  Dbase-nield and trace-zero subgroupy . . . . . . . . . . ... 49
£.4.6  Restricting the pairings to the subgroupy . . . . . . . . . . . . . .. o1
PA7T Tlseobfwistd. . . . . . . . .. o 52
P48 Typesof pairingd . . . . . . . . . . . 54
R.4.9 Computational problemd . . . . . . . ... .. ... ... ...... 54
P.4.10 Pairing-friendly ellipfic curved . . . . . . . . . . . . . . .. ... .. 55
.5 Tsogenies between ellipticcurved . . . . . . . . .. . . ..., 58
B.o.T Tsgenied . . . . . . . . o e 58
R.5.2 A standard form for isogenied . . . . . . . . . .. ... 59
PR3 Vélnwsformuld. . . . . . ... 60
5.4 Tsogeny graphd . . . . . . . . . .. 62
B.5.5  Computational problemg . . . . . . . . .. . ... ... ... 62
.6 Chapfer summary . . . . . . . . . . . . . 63

x1



B Final Exponentiation for Fast Pairings 65

B.I Background and mofivation . . .. .. .. ... ... ... .. ... ... 65

B.2 Review of the final exponentiation . . . . . . . . . .. ... .. ... .... 67

B.2.T Cyclotomic polynomial . . . . . . . .. ... ... ... ....... 67

b.2.2  Decomposition ot the nnal exponentiation . . . . . . . . . . . . . . 68

B.2.3  Related works for constructing the algorithm . . . . . . . . . . . .. 69

B3 Tmprovement of the final exponentiation for the BLS curves with £k = 19 . 75

pb.o.l  BbL> tamily of pairing-triendly curves with k =19 . . . . . . . . .. 75

p.o.2  Previous final exponentiation . . . . . . . . . .. ... .o 76

B.3.3  Proposed final exponentiation . . . . .. ... ... ... ...... 78

B34 Calcnlafion cost estimafiond . . . . . . . . . . . . . . . .. ... .. 80

B.3.5 Generalization forany /4 . . . . .. .. ... ... ... ... ... 81

b.4 Hmcient nnal exponentiation ror the curves resistant to SINFSy . . . . . . 84
p.4.1  Cvyclotomic ramilies ot pairing-iriendly curves with £ = 10, 11, 15)

Bnd T4 . . . . 84

p.4.2  Final exponentiations by the lattice-based method . . . . . . . . . . 85

B.4.3  Final exponentiations by the generalized method . . . . . . . . . .. 93

B4 4  Calculafion cosf esfimafiond . . . . . . . . .. . ... ... 96

b.4.0  Pertormance comparison or the 51 NF>-secure pairingg . . . . . . . 97

b.0o A new construction method ot the nnal exponentiation . . . . . . . . . . . 99

B.5.1 Cyclotomic family of pairing-friendly curves of kK of k=1 (mod 6] . 99

B.5.2  Proposed final exponentiation . . . . .. ... ... ... ... ... 100

B.5.3 Application . . . . . . . . ... 105

B:6 Summary of confribufiond . . . . . . . . . . . ... ... 109

4 Attractive bubtamilies of Pairing-iriendly Curves tor Fast Pairings 110

B.T Background and mofivation . ... .. .. ... ... ... ......... 110

A7 Relafed works and mathemafical maferiald . . . . . . . . .. .. ... ... 111

B2T Relafedworkd . . . . . . . . . ... ... ... 111

B2 Mafhemafical maferiald . . . . . . . . .. .. ... ... ... ... 113

B3 Proposed BN subfamilied . . . . . . . . . . . . . . . ... ... .. ..... 116

g.3.T  Review of the pairings with the BN familyf . . . . . . . . . . .. .. 116

B.3.2  Proposed BN subfamilies of curves with k=124 . . . ... ... .. 117

Bg.3.3  Sample parameters and evaluation . .. ... ... ... ... ... 121

.4 Proposed BLS subfamilies of curves with £ = 2™ - 3 and 3" for any m,n > (122

E.Z2.T  Review of the pairings with the BLS family] . . . . . . . . . . . .. 123

B 472 Determination of the number of rational points on the correct twistd 124

E.Z2.3 Proposed restriction of integer parameterd . . . . . . . . . . . . .. 132

E.4.4  Sample parameters and evaluation . . . ... .. . ... ... ... 141

x1i



B.0  Summary of contributions . . . . . . . . . . . ..o

p__ Pertformance Analyses of SIDH with Several Constructions ot Quadratid

Exi Fialds

pb.l bBackground and motivation . . . . . . . . . . . . . ..o

b.2 Review of SIDH key exchange protocol . . . . . . . . . .. .. .. ... ..

b.2.1 dupersingular elliptic curves of smooth ordey . . . . . . . . . . . ..
b.2.2 SIDH key exchangd . . . . . . . . . ..o
p.2.0 oecurity of the SIDH . . . . . .o o000 oo oo
p.o Review of BEificient operations tor SIDH . . . . . . .. ..o 000

p.o.l  NMONtgomery CUrves . . . . . . v v v v v v e e e e e e e e

p.o.2 Projective Montgomery operations tor SIDHl . . . . . . . . . .. ..

p.4  Constructions ol quadratic extension fields for fast SIDH . . . . . . . . ..

ndadl Construction methodd

b.4.2 Attractive candidates or I, . . . . . . . ..o
b.4.0  Applicability of the candidates ot It,» tor SIDH . . . . . . . .. ..

p.o lsomorphisms between the candidatesorlf,4 . . . . . . . . .. .. .. ...

p.0  Periormance analysesor SIDH| . . . . . . . . ..o oL

p.0.1  Assumptions. . . . . . . . . ...

p.0.2 Results and analyses . . . . . . . . . . . . ... ..o

b./ Summary of contributions . . . . . . . . . . ...

EC I T Works

Ibibliography]

IA° Formulas of Cubings 1n Cyclotomic Subgroup

IA.1 Iypical cubing . . . . . . . .

A2 Cvclotomic cubing . . . . . . . . . ..

Ib Reproduced Calculation Costs of Final Exponentiations
B 1 Cocks-Pinch curve with £ =

B2 BLS curve with k£ = [

148

167

168

178
178
179

L Miller’s Algorithm for Pairings on Curves with Embedding Degree ol

Multiple of 'I'hree

D Algorithms for Computing Arithmetic Operations i [

xiil

184

187

189



[ Construction of Supersingular Elliptic Curves of Order (p — 1)1 191

Xiv



List of Figures

P.I Three ellipfic curves] . . . . . . . . . . ... 29
.2 Two singular curves] . . . . . . . . . . . . ... 30
R3 y*=x>+bover Fio3) . . . . . . . 30
P.4 The composition Taw] . . . . . . . . . . . . .. ..o 31
R.5 Point addition in £/ :y* =a°+2x+1) . . . . ... ... 33
.6 Point miultiplication in £/ :y* =a° +20+ 1) . . . .. ... ... ... 33
E./ l'he lines Iy, l», v, and elliptic curve £ over IRJ . . . . . . . . . . . ... .. 45
2.8 'lThe tunction ({; - ls)/vand £ over R} . . . . . . . . ... ... ... .... 45
b.l  Computational complexity and execution time of the SIDH operations (a)

[Alice’s keygen_iso, (b) Bob’s keygen_iso, (c) Alice’s keyshare_iso, (d)
[Bob’s keyshare_iso. (e) Alice’s kernel _gen, and (f) Bob’s kernel _gen
DABA—] -+ o e e e e e e 166

52

Computational complexity and execution time of the SIDH operations (a)

[Alice’s keygen_iso, (b) Bob’s keygen_iso, (c) Alice’s keyshare_iso, (d)
[Bob’s keyshare_iso. (e) Alice’s kernel _gen, and (f) Bob's kernel _gen
DAALLd « o o e e e e e e 166

XV



List of Tables

ILL Cryptosystems] . . . . . . . . . . .. e
£.1  Operation tables mn Ifs) . . . . . . . . o o000 oL
R.2  Operation tables in x|/ (z*+x+ 1)) . . . . . . . .. ... ... ..
2.3  Operation tables n Fo(a)) . . . . . . . . . .o
£.4 l'he running time tor solving the computational problems) . . . . . . . ..
p.l  lhe number of operations 1n If),,)1s Tor computing single nal exponentia-
fion of the pairing at the [2s-bit security levell . . . . . . . . . . . .. . ..
p.2  The calculation cost of arithmetic operations m I, yis| . . . . . . . . . ..
p.o  LThe number of operations in I,y for computing single ninal exponentiation
pt the pairing at the 123-bit security level] . . . . . . . . . .. ... ...
p.4 l'he hard part computation 1or the cyclotomic tamily ot curves with £ = 10|
ID=1o,and p=1.70] . . . . . . . . .
b.o I'he hard part computation for the cyclotomic ramily or curves with £ = 11|
[D=3,and p=130] . . . . . . . . . .
p.0  l'he hard part computation 1or the cyclotomic tamily or curves with £ = 11|
ID=11,and p=1.60] . . . . . . . . . .
b.( I'he hard part computation for the cyclotomic ramily of curves with £ = 15/
ID=9o,and p=1.17) . . . . . . . .
b.s l'he hard part computation tor the cyclotomic tamily ot curves with £ = 14|
ID=9o,and p=1.53] . . . . . . . . .
p.Y9  I'he curves tor the S TNF>-secure pairings at the 128-bit security level]
b.10 "The calculation costs ot the exponentiations by z, z — 1, and z+ 1 m It «] .
b.11 "T'he number ot operations i I, for computing the ninal exponentiation oj
the pairings at the [Z23-bit security level] . . . . . . . . .. .. ...
b.12 '1he calculation costs of the arithmetic operations 1n It » with £k = 10, 11)
l d L14d]. . . . e e e e
b.1o I'he calculation costs Tor computing the nnal exponentiation of the pairings

pt the 125-bit secunity level] . . . . . . . . . . . . . . ... ..

Xvi



b.14 'I'he calculation costs and time estimations for computing the pairings of

IMiller’s algorithm (ML) and final exponentiation (FE) with the curved
fresistant to the S 1 NFbS at the 12s-bit security levell . . . . . . . . . . . ..

d.1  'I'he held and curve options tor the proposed BN subtamilies of curves with

d.2  T'he twisting and untwisting 1somorphisms for the proposed BN subiamilied

of curves with k£ = 121

d.o  Sample parameters tor the attractive bIN subtamilies of curves with £k = 1
at the 125-bit security level| . . . . . . . . . . . . ..o

U.4 Average execution times for computing Miller's algorithm (ML) and final

exponentiation (FE) for the pairings on the BN curves with £k = 12 at thq

IL25-b1t security level) . . . . . . . . .o oo

B.o 'lhe neld and curve options for the proposed BbL> subiamilies oI curveg
with £ =2"-Sforanym >0 . . . . . . . . . . . . . .. ... ...,

B.0 ITwisting and untwisting 1somorphisms for the proposed bLp> sublamilied
mith £ =2" .31

B./  'l'he neld and curve options for the proposed bLS subtamily of curves with|

K=o"Torany n >U) . . . . . . . . . ..

B.5  1The twisting and untwisting isomorphisms or the proposed bLS subiamily

of curves with £ = 3™]

K.Y bdample seeds z 1or the attractive bLS subfamily oI curves with £ = Y 101

the pairings at the 128-bit security level) . . . . . . . . . . . . . ... ...

B.10 Sample seeds z 1or the attractive bLS subramilies oI curves with £k = 14

for the pairings at the 125-bit security levels) . . . . . . . . . . . .. .. ..

B.11 Sample seeds z Ior the attractive bL> subfamilies oI curves with k£ = 24|

for the pairings at the 192-bit security levels) . . . . . . . . . . . .. . . ..

d.12 Sample seeds z 1or the attractive bL> subrtamily oI curves with £ = 27 101

the pairings at the 1Y2-bit security level) . . . . . . . . . .. .. .. .. ..

.13 Average execution times for computing Miller’s algorithm (ML) and final

exponentiation (FE) for the pairings on BLS curves with £ = 9 at thq

IL23-b1t security level) . . . . . . . . ..o

.14 Average execution times for computing Miller's algorithm (ML) and final

exponentiation (FE) for the pairings on BLS curves with £ = 12 at thq

IL25-b1t security level) . . . . . . . ..o

.15 Average execution times for computing Miller's algorithm (ML) and final

exponentiation (FE) for the pairings on BLS curves with £ = 24 at thq

LY2-bit security level) . . . . . . . . ..o

XVil



U.16 Average execution times for computing Miller’s algorithm (ML) and final

exponentiation (FE) for the pairings on BLS curves with £ = 27 at thqg

[92-bit security levell . . . . . . . . . . . . 147
p.1 1he calculation costs ot the projective operations ror SIDH| . . . . . . .. 154
b.2 The calculafion costs of arithmetfic operations in F,2] . . .. . . ... ... 157
b.3  Applicability of the consfructions of 2 for The typical SIDH] . . . . . . . 159

b.4 Weight of the operafion categories emploved in the implementation of SIDH]163

b.o 1'he number oI tunction calls, computational complexity and execution timed

pt the SIDH operations (a) Alice’s keygen_iso, (b) Bob’s keygen_iso, (c)

|Alice’s keyshare_iso, (d) Bob’s keyshare_iso. (e) Alice’'s kernel _gen|
bnd (f) Bob's kernel _gen with pg34_ ) . . . . . . . . . . ... ... 164

p.0  I'he number oI tunction calls, computational complexity and execution timed

pt the SIDH operations (a) Alice’s keygen_iso, (b) Bob’s keygen_iso, (c)

|Alice’s keyshare_iso, (d) Bob’s keyshare_iso. (e) Alice’'s kernel _gen|
bnd (f) Bob’s kernel_gen with pgq10 . . . . . . . . . ... 165

B.T The calculation costs of the arithmefics in F» of £ =T1,2, 6 and 12] . . . . 182

xviil



List of Symbols

C set of all complex numbers

R set of all real numbers

Q set of all rational numbers

7 set of all integers

G group

H subgroup of GG

G/H quotient group of G by H

G x Gy product of two groups G; and G5

R ring

1 ideal

R/I quotient ring of R by [

(a) principal ideal of R generated by an element a in R
F field

char(F) characteristic of F

R[x] polynomial ring (or field) of R

(f(x)) principal ideal of R[z]| generated by a polynomial f(z) in R[z]
Rlz]/(f(z)) quotient ring of R[z] by (f(x))

P prime

F, prime field of order p

q prime or power of prime

Xix



o

finite field of order ¢

multiplicative group of F,

algebraic closure of [F,

n-th extension field of I,

norm of a in F, over [,

Legendre symbol

affine n-space

projective n-space

elliptic curve

elliptic curve defined over [,

[F,-rational point group of F

point on E

point on E of P multiplied by n

point at infinity

multiplication endomorphism in £ by n
g-th power Frobenius endomorphism in £ or F,
prime order of a subgroup of E(F,)
embedding degree of E (with respect to ¢ and r)
trace of Frobenius

CM discriminant

p-value that shows ratio between ¢ and r
r-torsion subgroup of F

twist of E

degree of twist

twisting isomorphism from E’ to E of degree d

XX



vp

g1
&

fir

function field of E over F,
divisor of a rational function f in F,(FE)
function with div(f, p) = n(P) + (nP) — (O)

sloped line function with div(lp, p,) = (P1)+ (P) +(—(Pi+FP2)) —
3(0) for two points P and P,

vertical line function with div(vp) = (P) + (—P) — 2(O)
base-field subgroup of E[r]

trace-zero subgroup of E|[r]

subgroup of r-th root of identity in IF:’;k of order r
Euler’s totient function

n-th cyclotomic polynomial

cyclotomic subgroup of F7, of order 4 (q)
pairing

WEeil pairing on £

Tate pairing on F

reduced Tate pairing on FE

ate pairing on £

ate-like pairing on F

ate pairing on £’

isogeny between two elliptic curve
Endomorphism ring of £

degree of isogeny

kernel of isogeny

j-invariant of F

Landau symbol

xx1



ged

ECC
PBC

IBC

DH

DHP
DDHP
DLP
ECDHP
ECDDHP
ECDLP
BDHP
BDDHP
SSCDHP
SSDDHP
CSSIP
MNT
BLS

BN

KSS

complexity symbol for variants of number field sieve
greatest common divisor

elliptic curve cryptography

pairing-based cryptography

isogeny-based cryptography

Diffie-Hellman

Diffie-Hellman problem

decisional Diffie-Hellman problem

discrete logarithm problem

elliptic curve Diffie-Hellman problem

elliptic curve decisional Diffie-Hellman problem
elliptic curve discrete logarithm problem

bilinear Diffie-Hellman problem

bilinear decisional Diffie-Hellman problem
supersingular computational Diffie-Hellman problem
supersingular decision Diffie-Hellman problem
computational supersingular isogeny problem
Miyaji-Nakabayashi-Takano families
Barreto-Lynn-Scott families

Barreto-Naehrig family with £ = 12

Kachisa-Schaefer-Scott families

xXxil






For Mum.






Chapter 1
Introduction

This chapter introduces the related literature review, problems, and contributions of this
work. This thesis starts to describe cryptology and its roles in information security by

referring to the recent textbooks [Shilh; Koj20] written in Japanese.

1.1 Cryptography

In recent years, purchases of goods and services on the internet have been used in everyday
life. When using such systems, personal information is sent via web communication for
reliable destinations. However, there are risks that the information is eavesdropped on
or impersonated by a third party. In order to avoid such risks, it is necessary to discuss
information security. It lies on three principles of confidentiality, integrity, and availability,

ie.,
e Confidentiality measures protect information from unauthorized access and misuse;
e Integrity measures protect information from unauthorized alteration;
e Availability measures protect timely and uninterrupted access to the system.

Cryptography is a general term for technologies that guarantee information security. The
subject which threatens information security is called an attacker. In cryptography, en-
cryption is the process of encoding information. This process converts the original rep-
resentation of the information, known as plaintext, into an alternative form known as
ciphertext. The operation of restoring the ciphertext is decryption. The information
that is used for encryption and decryption is called a key. Historically, various forms of
encryption have been used to aid in cryptography. Modern encryption schemes use the

concepts of symmetric-key and public-key.
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1.1.1 Symmetric-key cryptography

Symmetric-key cryptography, a.k.a, private-key cryptography, uses the same cryptographic
private keys for both encryption and decryption. It has a long history, which has been
existed at the time of the Greek and Roman empire. Julius Caesar used a simple shift and
substitute system, which is known as the Caesar cipher. In modern times, symmetric-key
encryption can use either stream ciphers or block ciphers. The stream ciphers encrypt
the digits or bytes of a message one at a time, e.g., ChaCha20 [Ber+08] by Bernstein in
2008, which is a modification of Salsa20 [Ber(R]. The block ciphers take a certain number
of bits of a message and encrypt them as a single unit, by padding the message to be a
multiple of the size of the block, e.g., the advanced encryption standard (AES) approved
by NIST in 2001, Camellia [Aok+00] developed by Mitsubishi Electric and NTT in 2000,
and CLEFTA [Shi+07] developed by Sony in 2007. The block cipher is broken by brute
force search for all candidates of keys. In other words, the block cipher with the n-bit key
size can be broken in 27! trials on average. The security of block ciphers is based on the
assumption that the amount of calculation required for an attack cannot be solved with

less calculation amount.

1.1.2 Public-key cryptography

Public-key cryptography, or asymmetric cryptography, uses pairs of keys, which was born
out of the problem of how to securely send the key of symmetric-key cryptography in
around 1970. One key is a public key, which anyone can use to encrypt the plaintext. An-
other key is a private key, which a receiver needs to decrypt the ciphertext. The security
of public-key cryptography is typically based on the assumption that it is computationally
difficult to obtain the private key from a given public key and ciphertext. To guarantee
such difficulty, mathematical structures are often used for constructing public-key cryp-
tography. In the following, elementary public-key cryptosystems are introduced with a

description of security categories.

Key exchange

In 1976, Diffie and Hellman published a method of securely exchanging cryptographic keys
over a public channel in [DH76], which is known as the Diffie-Hellman (DH) key exchange.
In the DH key exchange, it is needed to use a set of finite numbers of elements, which
is called a finite field, in which basic arithmetic operations such as addition, subtraction,
multiplication, and division are defined. More strictly, we only use a subset of the finite
field, which is called a group, in which the multiplication and divisions are defined. The
private key is securely shared between the two parties, Alice and Bob, by the following
steps:
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1. Alice and Bob publicly agree to use a finite field F' and an element g € F.

2. Alice chooses a private key a, then sends Bob A = ¢ € F, and Bob chooses a
private key b, then sends Alice B = ¢* € F.

3. Alice computes s4 = B* € F, and Bob computes sz = A € F. Then, Alice and

Bob share the same secret s4 = spg, since sy = B® = ¢** = ¢ = A® = sz € F.

The security of the DH key exchange is based on an assumption that the problem for
computing s from g, A, B € F, which is called the DH problem (DHP), is difficult to
solve. The assumption is called the computational DH assumption. The most efficient
known way to solve the DHP is to solve a problem for computing x such that h = ¢* from
g,h € F, which is called a discrete logarithm problem (DLP). At this time, there are no

known efficient algorithms for solving DLP with a realistic time in a classical computer.

Encryption

In 1977, Rivest, Shamir, and Adleman firstly introduced public-key encryption, which
was published in [RSA7]| and is widely known as RSA encryption. The security of RSA
encryption relies on a factorization problem. In [Elg85], Elgamal modified the DH key
exchange and constructed another public-key encryption. This encryption is known as
the ElGamal encryption, in which a message is securely sent from Bob to Alice by the

following steps.

e Key generation: Alice uses a finite field F' and an element g € F', chooses an integer
a, and computes A = ¢g* € F. Alice sends a public key (F, g, A) and secretly takes

a private key a.

e Encryption: Bob maps a plaintext M to an element m in F', chooses a private key b,

computes B = ¢°,sp = A’ n =m - sp € F, and sends a ciphertext (B,n) to Alice.

e Decryption: Alice computes s4 = B?, obtains m by computing m = n-s,' € F,
and maps m back to the plaintext M. Then, Alice obtain the correct m since
ba)—l

n-s;t=m-sg-s; =m-A" (B) L=m-g® (g = m.

It is considered that anyone cannot decrypt the ElGamal encryption without the private
key under the computational DH assumption. The encryption scheme also needs indistin-
guishability of ciphertexts. Given two messages M and M’ and encryption of either one
of the messages, the scheme has to hold property such that anyone cannot guess whether
the given ciphertext is encryption of M or M’ with better probability than 1/2, which is
also known as semantic security. The semantic security of the encryption is based on an
assumption that the problem for determining xy = 2 or not for given g, X, Y, Z € F such
that Z = ¢*, Y = ¢¥, and Z = ¢*, which is called the decisional Diffie-Hellman problem
(DDHP), is difficult to solve. If DHP is broken, DDHP is also broken.
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Signature

If the public key has been tampered with during communication, the security of the
public-key cryptosystems is not guaranteed. Such kind of attack is known as a man-in-the-
middle attack. Thus, it is necessary to use a digital signature or message authentication
code to confirm whether the public key is the correct one or not. The digital signature
can be easily constructed by modifying the RSA and ElGamal encryption, which are
called the RSA signature and the ElGamal signature, respectively. Currently, a variant
of the ElGamal signature, which is developed at the NSA in [KDT3] and is known as the
digital signature algorithm (DSA), is much more widely used than the original ElGamal
signature. However, since the digital signatures also require a public key, we go back to
the problem of how to send the public key. This problem is solved by issuing a certificate

authority that can trust the certificate for the correctness of the public key.

Security levels

The security of the cryptosystems is typically analyzed by computational complexity or
time complexity for executing algorithms for solving mathematical problems where the
cryptosystems rely on. Then, the complexities are often expressed by using the Landau
symbol O. There are several security levels defined in terms of resources needed for
AES such that an attacker requires computational resources comparable to or greater
than those required for AES with n-bit keys that offer n-bit security levels. Practically,
n is often chosen as n = {128,192,256}. This allows us for meaningful performance
comparisons between different cryptosystems. For example, in order to offer the 128-bit
security level, RSA must be designed to have 3072-bit keys but elliptic curve cryptography

which is introduced in the next subsection requires only 256-bit keys.

1.1.3 Cryptography using elliptic curves

Cryptography can be constructed by using various mathematical structures. Table I
summarizes major cryptosystems with the perspective of their functions and structures.
The cryptosystems introduced in Sect. T2 are based on the problems related to factor-
ization and finite fields. This subsection introduces other cryptosystems which are using

elliptic curves and maps defined by using elliptic curves, i.e., pairings and isogenies.

Elliptic curve cryptography

In the middle of the 1980s, Miller [Mil&5] and Koblitz [Kob&7] independently proposed
cryptosystems using an equation E : y*> = x® + ax + b, which is called an elliptic curve.
In the cryptosystems, we use a set of points on E which forms a group under a geometric
addition such that the third point on E is given by R = P + () from two points P and @)
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Table 1.1: Cryptosystems.

\ Structures H Key exchange \ Encryption \ Signature \ Others
Factorization - RSA RSA sig. -
.. ElGamal sig.
Finite field DH ElGamal DSA -
Elliptic curve ECDH EC ElGamal ECDSA -
Pairing Tripartite DH ID-based Short sig. ég;?fhu;g:aeiecd’
SIDH CSI-FiSh
Isogeny CSIDH SIKE SQISign )

on E. The cryptosystems using the multiplicative group of the finite field can be easily
modified by using the group of the elliptic curve. For example, there are the elliptic curve
DH (ECDH) key exchange, elliptic curve ElGamal (EC ElGamal) encryption, and EC
ElGamal signature/Elliptic curve DSA (ECDSA). The security of these cryptosystems is
based on the difficulty of a problem for computing an integer s such that Q) = sP for given
P and @ of E, which is called the elliptic curve discrete logarithm problem (ECDLP).
The cryptography based on the difficulty of ECDLP is called elliptic curve cryptography
(ECC). The key size of ECC is much smaller than that of cryptography based on the
finite field and factorization for similar security levels since algorithms for solving the
factorization problem and DLP cannot be extended for solving ECDLP. Therefore, when
high security is required for environments of limited resources, e.g., IoT devices, it is
more advantageous to use ECC. Furthermore, ECC will be the principal technology of
public-key cryptography in the future.

Pairing-based cryptography

In 2000, Joux [Jon00] and Sakai et al. [SOK0O0] independently proposed cryptosystems
using a map defined over an elliptic curve, which is called a pairing. The pairing is a map
with two inputs of points on an elliptic curve and one output of an element in a finite field.
The important fact is that the pairing has special properties, which are called bilinear and
non-degenerate. The properties allow us to realize many cryptosystems with convenient
functions involving ones that could not be realized by the previous cryptography. In
[Ton00], Joux introduced an one-round DH key exchange for three parties based on the
pairing, however, DH/ECDH is a key exchange for two parties. Sakai et al. [SOK0O0] and
Boneh et al. [BEQT] introduced ID-based encryption, where use user’s unique 1D, e.g.,
email address, can be used as a public key. In [Bar+02], Barreto et al. introduced a

short signature, which allows shorter signatures than the previous signatures for a similar



1.1.  Cryptography 6

level. The short signature has been adopted in Ethereum®, which is a decentralized, open-
source blockchain with smart contract functionality. In addition to this, there are many
innovative cryptosystems, e.g., searchable encryption [Bon+04] where the encrypted data
public-key encryption in which the secret key of a user and the ciphertext are dependent
upon attributes, and so on, which are expected to be applied for the secure database
systems in cloud technologies. Such convenient cryptosystems are called pairing-based
cryptography (PBC). Note that the security of PBC is typically based on the difficulties
of both DLP and ECDLP.

Post-quantum isogeny-based cryptography

We have seen that many cryptosystems rely on mathematical problems which are con-
sidered to be difficult for solving by using a classical computer. However, in 1994, Shor
described that the problems could be solved in a realistic time by using an algorithm
executed by a quantum computer [Sha94]. Although the large-scale quantum computer
has not been developed at this time, it is required to develop cryptography that cannot
be solved even though the quantum computer is applied. Such cryptography is so-called
post-quantum cryptography (PQC).

There are several candidates of PQC, e.g., code-base cryptography [McE78] introduced
by McEliece in 1978, multivariate cryptography [MISR] by Matsumoto and Imai in 1988,
and lattice-based cryptography [ADY97] by Ajtai and Dwork in 1997. Some candidates
were published with other motivations which are not related to PQC before Shor’s result.
In 2006, Couveigues [Coul6] and Rostovtsev and Stolvunov [RSO6] proposed another
candidate of PQC using maps ¢ : E — E between elliptic curves E and E, which are called
1sogenies. The cryptosystems using the isogenies are called isogeny-based cryptography
(IBC). The security of IBC is based on the difficulty of a problem for computing an isogeny
p: E— E from given two elliptic curves E and E, which is called an isogeny problem.
At this time, there is no known efficient algorithm for solving the problem in practical
time even though the quantum computer is applied. The problem complexities also make
the key sizes of IBC significantly smaller than the other candidates.

In 2011, Jao and De Feo proposed a variant of the DH key exchange based on the
isogeny problem for elliptic curves classified into supersingular in [TDFETI], which is known
as the supersingular isogeny DH (SIDH) key exchange. In 2017, one kind of encryption by
using the SIDH, which is called an isogeny-based key encapsulation (SIKE), is proposed
by [Aza+17]| and is submitted to the NIST standardization process on PQC. The SIKE is
the only candidate of which security is based on the isogeny problem and is selected as an

alternative candidate for the round 3 submissions at this time. Castryck et al. proposed

Thttps://ethereum.org
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another key exchange protocol using the isogenies in [Cas+18], which is a commutative
SIDH (CSIDH) in 2018. The CSIDH is more compatible with the original DH key ex-
change than the SIDH, however, it requires a huge amount of calculation costs. In 2019,
Beullens et al. proposed a signature algorithm CSI-FiSh [BKVTY] with a short key length
and signature length. In 2020, De Feo et al. also presented SQISign [DF=+20] which has

higher performance in signature verification than CSI-FiSh.

1.2 Previous research and remaining problems

According to recent cryptographic trends, the author focuses on PBC and IBC. Since the
pairing on the elliptic curve is the important tool for realizing PBC, it is important to
improve its performance and usability. There is a possibility that several techniques for
elliptic curve or pairing are extended for the operations related to the SIDH of IBC and
contribute to improving its performance. The following summarizes the previous research

and remaining problems related to the pairings and SIDH, which motivate this work.

1.2.1 For the pairing on elliptic curve

After the publication of the innovative protocols based on the pairings, researchers have
been working on constructing elliptic curves, which have the advantage of pairings. Par-
ticularly, the practical pairing should be defined over an elliptic curve with a small embed-
ding degree k, which is one of the parameters for specifying the elliptic curve. Such the
curve is called a pairing-friendly elliptic curve and is typically not easy to find by random
search. One of the construction methods for such curves is the use of the supersingular
elliptic curves or Cocks-Pinch method, which was given in the unpublished manuscript
[CPOT) by Cocks and Pinch. The other remaining constructions of pairing-friendly curves
fall into the category of families of curves described in [MNTOT; BLS02; BNOS; KSS0R],
which produce currently well-used curves, such as MNT, BLS, BN, and KSS curves. The
families of curves have integer parameters for determining unique curves. The research
of pairing-friendly curve constructions is extended and collected by Freeman et al. in
[ESTT0O]. Note that there are several methods [Per+11; CLNTT; CosI?] for generating
pairing-friendly curves for certain families which are advantages for the pairings.

Since the pairing computation can be the bottleneck of the protocols, researchers also
have been working on optimizing the pairings. The pairings on elliptic curves, such as a
reduced Tate pairing and its variants, are typically carried out by two steps, which are
the Miller loop and extra exponentiation in the finite field to bring the output of the
Miller loop to the unique value. The Miller loop is computed by an iterative algorithm,
which is proposed by Miller in [Mil04] and is called Miller’s algorithm. To shorten the
loop length, Hess et al. [HSV0O6G] and Vercauteren [Ver(9] proposed modification of the



1.2.  Previous research and remaining problems 8

pairings. Around 2010, Costello et al. [CLNT0] and related works [ZLT2] presented efficient
formulas for computing the Miller loop using another elliptic curve, which is called twist.
The higher degree twist typically makes the computation of the Miller loop to be faster.
The extra exponentiation is called the final exponentiation and it becomes more of a
computational bottleneck with the curves with large k. Since the final exponentiation
has the specific exponent, Scott et al. [Sco+09] and Fuentes et al. [FCKRHTI] provided
methods for constructing efficient algorithms using the Frobenius map which is a map in
the finite field with the low complexity.

In recent years, the security of the pairings are well-analyzed. In 2016, Kim et al. pro-
vided notable developments of the tower number field sieve (TNFS) algorithm [KBI6;
KCJT7], which is one of the best-known algorithms for solving DLP. Particularly, there
are many results [FKT19; BDTY; GSTY; Gui20] that show that the special variant TNFS
(STNFS) are very efficient in finite fields that are target groups of the pairings on the
curves. Although it was previously considered that the BN curve with £ = 12 is the best
choice for the pairings at the 128-bit security level, the results of the analyses expanded
the range of the choices of curves. In [RNLIY], Barbulescu et al. reported that there are
many elliptic curves with various k, e.g., k = 12, 14, 15, 16, 24, and 27, which have a good
performance of the pairings. Moreover, Fouotsa et al. also suggested using the pairings on
the curves with £ =9, 15, and 27 in [EMP20]. In 2020, Guillevic also provided a shortlist
of the curves with k£ = 6, 8, 10, 11, 13, 14, and 16 that have a resistance to the STNFS
in [Gui20]. Their shortlist involves a curve with & = 12 which is given by Fotiadis and
Konstantinou in [FKTY] and is called FK curve, and curves with k£ = 6,8 found by using
Cocks-Pinch method in [GMT20)].

There are the following two problems, which motivate this work.

e The first problem: The efficient formulas and algorithms for computing the pairings
have to be found corresponding to the curves. However, for several curves that are
newly suggested for the pairings in [FMP20; Gui20], there is no work for providing
efficient algorithms for computing the final exponentiation or there are possibilities
of improvement. It is desired to clarify that and to provide the explicit calculation
costs of the pairings for finding one of the best choices of the curves. As one more
issue related to the final exponentiation, it is also desired to overcome the problem
that the existing methods [Sco+09; FCKRHTI] require complicated works for each

curve.

e The second problem: The pairings with the family of curves require initial settings
such that finding an integer parameter and constructing the curves and finite field.
During the search of the parameter, we need to consider that not only the security

of the pairings but also the efficiency of their computations strongly depends on
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the settings. However, since it is typically complicated to handle the favorite con-
structions of curves and finite fields, it is desired to establish some convenient ways
for the settings which are an advantage for the pairings. There exist the previous
works [Per+11; CLNTI; CosT?] which came from the same motivation, however,

such works treated limited curves.

1.2.2 For the SIDH

Since the SIDH has a short history, research on optimizations and security analyses are
published in very recent years. In 2011, Jao and De Feo introduced the SIDH together with
its practical constructions in [IDFETI]. According to [IDETI], the practical SIDH uses the
supersingular elliptic curves given by the Montgomery form defined over a specific finite
field, which is called an optimal extension field (OEF) given by [BPOI]. Then, one can
enjoy efficient formulas for computing point arithmetics and small-degree isogenies and
are available. The large-degree isogenies required for the SIDH are efficiently computed
by decomposed into low-degree isogenies with point multiplications. Around 2017, when
the SIKE was submitted for the NIST standardization process, Costello et al. [CLNIG;
CHT7], Faz-Hernandez [FH#17], Renes [Renl8| revised the formulas for computing the
small-degree isogenies and point arithmetics. Besides, Adj et al. [Adj+18] and Jaques and
Schanck [ISTY] made the security analyses of the SIDH, which show that the SIKE used
rather conservative security estimates. This means that significantly smaller parameters
can be used than the SIKE developer thought. Currently, there are mainly four parameters
for specifying the curves that are suggested for the SIKE. Note that Matsuo [MafT4] and
Costello [Cos20] independently proposed the modification of the SIDH using twist. Their
modifications provide new candidates of the curves used for the practical SIDH.

There is the following problem, which also motivates this work.

e The third problem: It is needed to optimize the operations of the isogenies and point
arithmetics for the practical SIDH. Although the previous works [CLNT6; CHIT7,
FH+17; RenT& mainly focus on revising the formulas of the operations, there is
a possibility that the performance of the operations can be improved by changing
the construction of the finite field in which curves are defined. There are several
construction methods of the finite fields which have slightly lower computational
complexities of the multiplication than the OEF used for the typical SIDH. Although
there is a problem that the elliptic curves usable for the SIDH are very limited, the
change of the finite field might contribute to expanding the range of the elliptic

curves.
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1.3 Major contributions

The author tries to overcome the problems which are summarized in the previous section.

The summary of major contributions of this thesis is given as follows:

e The first contributions: For the BLS curves with £ = 15, the algorithm for com-
puting the final exponentiation is improved by using the property related to the
family. It is also found that the improvement techniques can be extended for the
BLS curves with any k. This contributes to obtaining efficient final exponentia-
tion algorithms for any BLS curves with a small effort. Note that Hayashida et
al. achieved similar results for any family of curves in [HHT20] at the same time as

this work publication.

Although there are no efficient algorithms for computing the final exponentiations
for the curves with £ = 10,11, 13, and 14, the author provides them by applying the
existing construction methods. The author also provides explicit calculation costs
for executing the algorithms for an estimation of the performance of the pairings
on those curves. Comparing the estimation results between the shortlist curves in
[Gui20], it is found that the BLS curve with k = 12, FK curve with £ = 12, and

Cocks-Pinch curve with £ = 6 are attractive choices for efficient pairings.

The author proposes a new method for constructing the final exponentiation al-
gorithm for the specific cyclotomic family of curves with any prime k given by
k =6n+1 for n > 0. It is found that the proposed method results in one of the
same state-of-the-art algorithms for computing the final exponentiation produced
by the previous method [FCKRHTI] for the cases of k = 7,13, and 19. Unlike the
previous method, the proposed method can immediately produce the algorithms
by using mathematical formulas. Moreover, the proposed method can produce the
algorithm with O(n), however, the latest method [HHT20] generates the algorithm
with O(n?).

e The second contribution: To overcome the second problem, the author proposes a
simple method for generating the BN and BLS curves that have the advantage for
the pairings-based cryptography by finding parameters under specific restrictions.
The proposed method can generate the curves which automatically give rise to the
attractive settings of the curve and finite field for fast pairings. The proposal also
contributes to the smooth update of the parameters of the pairings corresponding
to the improvement of the security analyses. Moreover, since the proposed method
can generate the BLS curves with £ = 2™ -3 and 3" with any m,n > 0, the method
will be useful for the researcher and implementer of the pairings for a long time.
Note that the proposal can result in the same curves as that of the previous method
for the BLS curves with k£ = 24 in [CLNTT)].
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e Third contributions: To overcome the third problem, the author focuses on not
only OEF by [BPOT] but also other construction methods [NSM0O3; KAHOU] which
generate an all-one polynomial extension field (AOPF) and extension fields with
normal basis representation (EFN). The applicability of the finite fields shows that
not only the OEF but also AOPF and EFN can be used for SIDH. Moreover, the
EFN allows us to use new curves which have not been used for the previous SIDH. As
a result of the implementation of the SIDH with the possible finite fields, it is found
that the performances of SIDH with OEF and new candidates are competitive. As
one of the additional contributions, a simple map from the OEF to any finite fields

is provided for simple parameter settings of the SIDH.

1.4 Organization

The rest of this thesis is organized as follows: Chapter B provides the fundamentals of
the finite field, elliptic curves, pairings, and isogenies from the definition of the algebraic
systems. Although the descriptions of the fundamentals are not short, it is necessary
to understand the whole of the contributions. In Chapters B, B, and B, the first, sec-
ond, and third contributions are provided, respectively. The background and motivations
are reviewed and then the previous works are formally described. After that, the pro-
posed contents are described. In Chapter B, the conclusion is drawn with future works.

Additional descriptions of Chapters B are summarized in Apps. O-E.



Chapter 2

Fundamentals

This chapter describes the mathematical fundamentals of finite fields, elliptic curves,
pairings, and isogenies by referring to the textbooks [Sil09; ENLIT7]. To make it easier to

understand, this thesis provides the descriptions together with some examples.

2.1 Group, ring, and field

This section provides a standard background of algebraic systems, which are materials on
sets in which arithmetics are defined. There are descriptions of groups, rings, and fields

that are very fundamental for discussing cryptography.

2.1.1 Groups

The definition of the groups are described in below.

Definition 2.1. (Group) Let G be a set and o be a binary operation such that aob € G
for all a,b € G, i.e., o is defined on G. The pair of G and o, which is denoted by (G, o)

and is called a group if the following conditions are satisfied:
1. Associative: (aob)oc=ao(boc) forall a,b,c € G.
2. Identity: There exists e € G such that aoce =eoa =a for all a € G.
3. Inverse: Given a € G, there exists b € G such that aob=0boa =e.
Then, we say G forms a group under o.

If we drop condition 3 of Definition BT, (G, o) is called a monoid. If we drop conditions
2 and 3, (G,o0) is called a semigroup. Conversely, if we add the condition such that
aob = boa for all a,b € G to Definition P70, (G,0) is called an abelian group or
commutative group. Hereafter a group is written by (G, o) if the operation is needed to

be specified; otherwise, the group is simply referred to by the corresponding set of G.

12
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The number of elements of G, i.e., #G, is called an order of the group G. If #G is
a finite number, G is called a finite group; otherwise, G is an infinite group. For a € G
and positive integer m, let [m|a be an element in G by applying o for m-terms of a,
ie., [mla=aocao---o0a. An order of a is the smallest number n such that [n]a = e.
If G is a set given by (a) = {e,a,[2]a,...,[n — 1]a} for an element a € G, G is called
a cyclic group and a is a generator of G. In this thesis, there appears a set given by
(a,b) = {[mi]a + [my]b} for elements a,b € G and any integers my, ma.

Several examples of infinite groups are provided below. To present finite groups, it is

needed to study quotient groups described in the next subsection.

Example 2.2. (Group of integers) Let Z be a set of integers and let + be a natural
addition defined on Z. Then, (Z,+) is an abelian group. It is an infinite cyclic group of

which 1 or —1 can be generators.

Example 2.3. (Group of real numbers) Let R* be a set of real numbers excluding 0 and
let - be a natural multiplication defined on R. Then, (R*,-) is an abelian group. It is not

a cyclic group since there do not exist generators.

2.1.2 Quotient groups and homomorphisms

Suppose that G is an abelian group since the commutative property gives rise to simpli-
fying discussions. Let H be a subset of G such that H forms a group under the same
binary operation of G. Then, H is called a subgroup of G. Given a single element a € G,

a coset is a subset of G defined by
aoH ={aoh:he H}, (2.1)

which is a subset of G. Note that actually we need to distinguish the direction to apply
a from left and right but it can be ignored as long as we work on the commutative group.
The number of cosets is called the index of H in G, written as [G : H|. Then, it is

obtained #G = [G : H|#H from Lagrange’s theorem if G is a finite group. Let G/H be
a set of all cosets defined by

G/H ={aoH :a € G}. (2.2)

For all ao H/bo H € G/H, a binary operation * can be defined by a o H xbo H =
(aob)o H € G/H. Then, G/H forms a group under x, which is called a quotient group
or factor group. Note that the order of G/H is explicitly given by #(G/H) = #G/#H
with a finite group G.

There is an easier understanding of the quotient groups with the following description.

If two element aq,as; € G produce the same coset, i.e., a; o H = ay 0 H, a; and ay are
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becomes to be equivalence, i.e., a; ~ as. This equivalence relation leads to a set defined
by @ = {x € G : x ~ a} for a € G which is called an equivalence class. The important
fact is that this equivalence class @ is exactly the same as the coset a o H. Thus, the
set of the quotient group G/H is the same as the set of all equivalence classes, i.e.,
G/H ={aoH :a€ G} ={a:aec G}. A binary operation * can be naturally defined by
axb=aobec G/H for alla,b € G/H.

Example 2.4. (Quotient group of integers) Let (Z, +) be an abelian group. Then, nZ =
{n-a:a € Z} is a subgroup of Z. For a given a € Z, a coset is given by a + nZ =
{a +h : h € nZ}, which produce an equivalence relation a ~ a +n ~ a+2n ~ ---

Assuming @ is a equivalence class of @ with this relation, there is a quotient group defined
by Z/nZ = {a +nZ:a € Z} = {0,1,...,n — 1} with a binary operation + defined by
@+b=a+bforall a,b € Z/nZ. The quotient group is a finite abelian group of order n.

Example 2.5. Let Z/nZ be a finite abelian group described in Example 24 and let
n be a composite number. In this example, suppose that n = 12 and G = Z/12Z =
{0,1,...,11}. Then, there exists a subgroup H = {0, 3,6,9} of which the order #H = 4
divides #G = 12. There are only three cosets given by 0 = 0+ H = 3+H = 6+H = 9+ H,
1=14+H=44+H=7T+H=10+H,and2=2+H =5+ H =8+ H = 11+ H, which
is [G': H] = 3 and thus #G = |G : H] - #H = 3 -4 = 12. Then, it is obtained a quotient
group G/H = {5, 1, 5} of order 3 and confirm #G/H = #G/#H = 12/4 = 3.

Much of the importance of quotient groups is derived from their relation to homomor-

phisms, which is a structure-preserving map defined as follows:

Definition 2.6. (Group homomorphism) Let (G,0) and (G’,0") be abelian groups of
which identities e and ¢, respectively. A group homomorphism ¢ : G — G’ be a map
such that for all a,b € G it holds that ¢(a o b) = p(a) o’ p(b) and p(e) = €. A set
ker(p) = {a € G : p(a) = €'} is especially called a kernel of .

The homomorphisms ¢ are classified into several cases corresponding to their proper-
ties. If ¢ is a bijection, i.e.,  is a one-to-one map, we say ¢ is an isomorphism and G and
G’ are isomorphic, which is denoted by G =2 G'. If G = G, ¢ is called an endomorphism.
If ¢ is an isomorphism and G = G’, ¢ is called an automorphism.

In what follows, let us consider a map ¢ from a group G to a quotient group G/H by a
subgroup H of G. Then, ¢ : G — G/H is a homomorphism such that ¢(a) = aH € G/H
for a € G. Its kernel is given by ker(¢) = H. The correctness of the fact can be confirmed
by the following example.

Example 2.7. Let G = {0,1,...,11}, H = {0,3,6,9}, and G/H = {O,T,Q} be abelian
groups defined in Example B3, respectively. A map ¢ : G — G/H is a homomorphism
such that 0 + H = {0,3,6,9} — {0}, 1+ H = {1,4,7,10} — {1}, and 2 + H =
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{2,5,8,T1} — {2}. From the definition, it is found that the kernel of v is ker(y) =

2.1.3 Direct product of groups

This subsection introduces one of the construction methods to create a larger group from
the given plural groups. Let (G; and (G5 be abelian groups under binary operations +;

and 4+, with identities e; and eg, respectively. A direct product of Gy and G, is a set

G1 x Gy ={(91,92) : 1 € G1, 92 € Go}. (2.3)

Then, G; x Gy forms a group under a binary operation * such that (g1, g2) * (91, 95) =
(91 +1 94, 92 +2 ¢5) € Gy X Gy for all (g1, 92), (91, 95) € G1 X Gy with the identity (eq, es).
Such a group is called the direct product group. If G; and G5 are finite groups, the order
of the direct product group is given by #G1#G5. In this thesis, the direct product group
Z|nZ x 7,/nZ is often used to indicate a group structure.

2.1.4 Pairing

In the following, a map from a product of two groups to one group is described.

Definition 2.8. (Pairing) Let G and G5 be abelian groups under binary operations +;
and +, with identities e; and es, respectively, and let G be an abelian group under a
binary operation - with identity er. A pairing is a map from a product of G; and G5 to
Gr defined by

e: G1 X GQ — GT, (24)
which has the following properties:
1. Bilinear: For all g1, ¢; € Gy and g9, g5 € G,

e(g1 +1 91, 92) = e(g1, 92) - e(g}, 92), (2.5)
e(g1, 92 +2 95) = e(g1, g2) - e(g1, 93)- (2.6)

2. Non-degenerate: For all g1 € Gy, e(g1, g2) = er if and only if go = es € Go. For all
g2 € G, e(g1,g2) = er if and only if g; = e € G;.

Note that the bilinear map is not a group homomorphism out of the direct product
group. For some integer m, let [m]g; and [m]g, denote elements G; and G applying m-

term operations for g; € G; and go € G, respectively. Besides, let a/f' denote an element
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in G applying m-term operations for gr € Gr. Then, the property of the bilinear map

gives rise to the following fact for all a,b € Z:

c(lalg, [V]g2) = e([Blgr, [algz) = e(gr, g2)™. (2.7)

In cryptography, the pairing is typically defined on an elliptic curve over a finite field.

The details are introduced in the later sections.

2.1.5 Rings and fields

In the groups, there is only one binary operation. This subsection considers another

operation and studies the structure that results from their interaction.

Definition 2.9. (Ring) Let R be a set and + and - be binary operations defined on R.
The triple of R and two operations, which is denoted by (R, +,-) and is called a ring if

the following conditions are satisfied:
1. Assosiative: (a+b)+c=a+ (b+c)and (a-b)-c=a-(b-c) for all a,b,c € R.
2. Commutative: a +b=0+a for all a,b € R.
3. Distributive: a-(b+c¢)=a-b+a-cand (a+b)-c=a-c+b-cforall a,b,c € R.

4. Identities: There exist Or, 1z € Rsuch that a+0r = 0g+a =aanda-1g = 1g-a=a
for all a € R.

5. Inverse: Given a € R, there exists b € R such that a + b = Op.
Then, we say R forms a ring under + and -.

The conditions of (R,+,-) to be a ring are equivalence to ones that (R,+) is an
abelian group, (R,-) is a monoid, and there is the distributive property. If there is one
more condition of commutative a - b = b - a for all a,b € R to Definition 29, (R, +, )
is called a commutative ring. If there is a unique Og in R, (R, +, ) is called an integral
domain. For the integral domain (R, +,-), a characteristic, which is denoted as char(R),
is the smallest positive number n such that [n]lg = Og if such a number n exists; and 0
otherwise.

If a requirement for the existence of multiplicative inverses to the commutative ring

is joined, a field of the following definition is obtained.

Definition 2.10. (Field) Let I be a set and + and - be binary operations defined on F'.
The triple of F' and two operations, which is denoted by (F,+,-) and is called a field if

the following conditions are satisfied:



2.1. Group, ring, and field 17

1. Assosiative: (a+b)+c=a+ (b+c)and (a-b)-c=a-(b-c) for all a,b,c € F.
2. Commutative: a+b=b+a and a-b=1>b-a for all a,b € F.
3. Distributive: a-(b+¢) =a-b+a-cfor all a,b,c € F.

4. Identities: There exist Og, 1z € R such that a+0r = 0g+a =aanda-1g =a-1g =a
forall a € F.

5. Additive inverse: Given a € R, there exists b € R such that a + b = Og.

6. Multiplicative inverse: Given a € R such that a # Og, there exists b € R such that
a-b= 1R-

Then, we say F' forms a field under 4+ and -.

Let F* be a set of elements of F' excluding Og, which is defined by F* = F\{0g}.
Then, the conditions of (F,+,-) being a field are equivalence to ones that (F,+) and
(F™,-) are abelian groups with the distributive property. Hereafter a ring involving a field
is written by (R, +,-) if the operations are needed to be specified; otherwise, the ring is
simply referred to by the corresponding set of R. The number of the set R is also called
an order of the ring (or field) and is denoted by #R. If #R is a finite number, R is called
a finite ring (or finite field).

The following provides examples of infinite rings and fields. For similar reasons with
the groups, examples of finite rings and fields are provided after describing the quotient

rings.

Example 2.11. (Ring of integers) As defined in Example 222, let Z be a set of integers.
Let + and - be a natural addition and multiplication defined on Z. Then, (Z,+,-) is an

infinite commutative ring.

Example 2.12. (Ring of rational numbers) Let Q be a set of rational numbers and let +
and - be a natural addition and multiplication defined on Q. Then, (Q, +, ) is an infinite
field.

2.1.6 Ideals, quotient rings, and homomorphisms

If a subset S of R forms a ring (or field) under the same laws of R, S is said to be a

subring (or subfield) of R. This subsection describes a special class of subrings.

Definition 2.13. (Ideal) Let (R, +,-) be a commutative ring and let  be a subset of R.

We say [ is an ideal of R if the following conditions are satisfied:

1. (I,+) is a subgroup of (R, +).
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2. r-i€lforallre Randic .

Among the ideals, an ideal I of R is called a principal ideal if there is an element if I
is generated by a single element a € R, i.e., I = aR = {a-r:r € R}. The principal ideal
I generated by a € R is denoted as I = (a). Given a € R and ideal I of R, let a+ I be a
coset of I defined by a+1={a-+1i:i€ I}. Let R/I be a set of the cosets defined by

R/I ={a+1:a€ R} (2.8)

For the set R/I, one can define binary operations * and x such that a+Ixb+1 = (a+b)+1
anda+1xb+ 1= (a-b)+1Iforalla+1,b+ 1€ R/I. Then, R/I forms a ring under x
and %, which is called a quotient ring.

In the same manner as the groups, there appear an equivalence relation a; ~ ay for
a1, as € R which produce the same coset a; + 1 = as + I. Assuminga = {x € G : x ~ a}
is a equivalence class for a € R with the equivalence relation, one can define the quotient
ring by the set of all equivalence classes given by R/I = {a : a € G} with operations x
and x given by axa=a+b= (a+b)+Iandaxb=a-b= (a-b)+ I for alla,b e R/I,

respectively.

Example 2.14. (Quotient ring of integers) As shown in Example EZ10, (Z,+,-) is a
commutative ring. A subring of Z can be easily found by nZ = {n-a : a € Z}, which is a
principal ideal of Z denoted by (n) = nZ. For a given a € G, a coset is given by a+ (n) =
{a+1:1 € (n)} and generates an equivalence relation a ~ a+n ~ a+2n ~ ---. Then, one
can also define the quotient ring by Z/(n) = {a+ (n) : a € R} = {0,1,...,n — 1}, with
operations + and - defined by @+b = a + band @-b = a - bfor all @, b € Z, respectively. The
quotient ring is a finite commutative ring of order n. From the properties of the ring, note
that (Z/(n),+) is a finite abelian group, and (Z/(n)\{0},) is a commutative semigroup.
It is easily confirmed that the group (Z/(n), +) is exactly the same as (Z/nZ, +) given in
Example Z4. To make Z/(n) being a field, (Z/(n)\{0},-) must be an abelian group.

Example 2.15. Let Z/(n) be a commutative ring described in Example T4 and let
n be a composite number. In this example, suppose that n = 12 and R = Z/(12) =
{0,1,...,11}. Then, there exists a subring I = {0,4,8} with the multiplicative identity
4. Note that the identity elements of the subring and original ring do not always the
same. The subring I is a principal ideal denoted by I = (4) = 4R = {4-r : r € R}.
Then, there are only four cosets 0 =0+ =4+ [ =8+, 1=1+1=5+1=0+1,
and2 =241 =6+1=10+1,3=3+1=7+1 =11+ I Then, it is obtained

a quotient ring R/I = {0,1,2,3} under an addition + and multiplication - defined by
Ga+b=a+b=a+b+landa-b=a-b=a-b+1foralla,bec R/I

Similar to the case of quotient groups, the quotient ring is also related to homomor-

phisms.
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Definition 2.16. (Ring homomorphism) Let (R, +,-) and (R',+',) be abelian groups
of which identities Og, 1z and Og/, 1/, respectively. A ring homomorphism ¢ : R — R’
be a map satisfying the following.

1. For all a,b € G, p(a+b) = p(a) +" o(b).
2. For all a,b € G, p(a-b) = ¢(a) " p(b).

3. gO(lR) = 1R/'
A set ker(p) = {a € R: p(a) = 0gr} is a kernel of ¢.

The homomorphisms ¢ are classified into the following cases if ¢ satisfies the specific
conditions. If ¢ is a bijection, ¢ is called an isomorphism, and R and R’ are isomorphic,
which is denoted by R = R'. If R = R’, the isomorphism is called an endomorphism. If
@ is an isomorphism and R = R', ¢ is called an automorphism.

Let us consider a map ¢ from a ring R to a quotient ring R/I by an ideal I of R.
Then, ¢ : R — R/I is a homomorphism such that (a) = a+ I € R/I for a € G. Tts
kernel is given by ker(y)) = 1.

Example 2.17. Let R = Z/(12) = {0,1,...,11}, I = {0,4,8}, and R/I = {0,1,2,3}
be rings defined in Example ECI3, respectively. Then, ¢ : R — R/I is a homomorphism
such that 0+ I = {0,4,8} — {0}, T+ I ={1,5,9} — {1}, 2+ 1 = {2,6,10} — {2}, and
3+1=1{3,7,11} — {3}. The kernel of ¥ is given by ker(¢)) =0+ I = I.

A subring S of a ring R is discussed above. Then, a ring R is called an extension
ring (or extension field) of a subring S. A dimension of R as a vector space on S is said
to be an extension degree and denoted by [R : S|. A ring (or field) extension is a ring
homomorphism such that S — R, which plays an important role to discuss the finite
fields in cryptography. The context of the extension is explained at the same time on

presenting more details about the finite fields in Sect. ZZ2.

2.2 Finite fields

This section provides details about the finite fields that are applied for cryptography.

2.2.1 Prime field

In this section, more details of the operations defined on the ring Z/(n) given in Exam-
ple 214 are described with a definition of a prime field.

We have seen that Z/(n) = {0,1,...,n — 1} forms a ring under the binary operations
+ and - such that a+b=a+banda-b=a-bforallab e Z/(n). We also have studied
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that there is the equivalence relation a ~ a+mn ~ a+2n ~ - - generated by the elements
of Z/(n). This relation can be more formally defined as follows: For a,b € Z, if n divides
a — b, i.e., a can be denoted by a = n -1l + b with [ € Z, we say a and b are congruent
modulo n and denote as follows:

a=0b (mod n). (2.9)

The congruence relation gives rise to an equivalence class of @ modulo n, which is defined
by a ={a € Z:x = a (mod n)}. For example, if a = b = ¢ (mod n) for a,b,c €
Z, then a,b,c € a. Since the congruence relation is compatible with the addition and
multiplication, one can have the operations @+b=a +band @-b=a-b for a,b € Z/(n).
As a result, there is a quotient ring Z/(n) = {@ : a € Z} = {0,1,...,n — 1} under the
above operations.

As mentioned in Example 214, to make Z/(n) being a field, it is required to make
Z/(n)\{0} to be an abelian group under -. However, Z/(n)\{0} do not always form
a group for any n. This is because that - is not always defined on Z/(n)\{0} since
there are possibilities such that @-b = 0 ¢ Z/(n)\{0} for several a,b € Z/nZ\{0}, e.g.,
2:2=0¢€7Z/(4\{0} and 3-5=0¢ Z/(15)\{0}. Fortunately, if n is a prime p, one can
avoid the possibilities and can make Z/(p)\{0} being an abelian group under -. Then,
there is a field Z/(p) of order p and char(Z/(p)) = p. The field Z/(p) is especially called a
prime field. Note that the prime field and its isomorphic fields are the smallest subfields
of finite fields.

Although the elements of Z/(p) are equivalence classes of integers in Z modulo p, it
is preferred to operate Z/(p) by using only the limited elements in an environment with
limited resources. Therefore, we work on a field that is isomorphic to Z/(p). Indeed, let
F, be a set defined by

F,={0,1,....,p—1}. (2.10)

Let us define binary operations a + b = (a + b)%p € F, and a - b = (a - b)%p € F, for all
a,b € F, where % is a reminder operation. It can be confirmed that F,, forms a field under
these operations. The multiplicative group of F, is referred to as the set F; = F,\{0}.
Then, F) is a cyclic group of order p — 1, i.e., there is a generator a € F, such that

¥ = (a). An example of F,, with a concrete p is provided in the following.

Example 2.18. (Prime field of order 5) Let F5 = {0,1,2,3,4} and let + and - be
multiplication and addition operation taking a reminder divided by 5. The operations
table in F5 is given in Table P71. From the table, it is found that F5 and F; form abelian
groups under + and -, respectively. Thus, (F5, 4+, ) is a prime field of order 5.
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| O W N DN
N | O | W w
W N | O || A~
=l Wi = O
W =N O DN
N || W Ol W
=N W | O =~

Table 2.1: Operation tables in Fs.

2.2.2 Polynomial rings and field extensions

This subsection introduces polynomial rings to describe the field extension from a subfield
to a field. Let R be a commutative ring. Let n be a positive integer and let f(x) be a

polynomial defined by

fl@) = @’ = a2 + ap12™ + -+ arz + ag, (2.11)
=0

where a; € R. Then, we say f(x) is defined over R. If a,, # 0, n is called degree of f(x)
and is denoted by n = deg(f). If f(x) has a; = 0 for all 4, i.e., f(z) = 0, let us define
deg(f) = —oo. Let m be a positive integer such that m < n and let g(z) be a polynomial
defined by

g(l‘) = Z bjxj == bmxm + am—lxm_l + - blx + b07 (2]‘2)
7=0

where b; € R. Let us define f(z) = g(x) if a; = b; for 0 <i <m and a; =0 form < i < n.

For f(z),g(x), an addition and multiplication are defined as follows:

flx) +g(x) = Zaixi + Zbﬂj = Z(Gi + bi)x' + Z ;' (2.13)
=0 =0

f(z)-g(x) = <Z ai:ﬁ) : (Z bj:cj) = Z (Z aib]-) z*, (2.14)

which f(z) + g(z) and f(z) - g(z) are also polynomials defined over R. Then, it can be
easily found that a set of polynomials defined over R forms a commutative ring under the
above operations. The ring is called a polynomial ring and is denoted by R[z]. Note that
a set of polynomial defined over R with variables x,zs, ..., x, also forms a polynomial
ring R[xy, 2z, ..., x,], however, here we only focus on R|x].

Let F' be a field and let F'[x| be a polynomial ring over F. Then, for all f(z),g(z) €
Flz] such that g(z) # 0, there exist polynomials ¢(z),r(z) € F[z] such that f(x) =
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(+ [0 [ T [ 7 [zr1] [0 T 7 [5+1]
0 0 1 T |x+1 0 0] 0 0 0
1 1 0 x+1 T 1 0] 1 T |ax+1
T T |x+1 0 1 z 0| =z |z+1 1
c+1z+1 T 1 0 c+1|0]z+1 1 T

Table 2.2: Operation tables in Fyo[z]/(2? + x + 1).

q(z) - g(z) + r(x) where r(x) is 0 or a polynomial of degree such that deg(r) < deg(g).
Moreover, ¢(z) and r(x) are uniquely determined corresponding to f(z) and g(x). The
fact gives rise to an equivalence relation on F'[x] producing an equivalence class of a(z) €
Flz] modulo f(z) # 0 € F[z], which is denoted by a(z). In fact, a(z) is denoted by
a(x) = a(x) + (f(z)) where (f(z)) plays a principal ideal of R[z], there is a quotient ring
Flx]/(f(x)) consists of the set of all equivalence classes modulo f(z) under the addition
and multiplication defined by a(x) + b(z) = a(x) + b(x) and a(zx) - b(x) = a(x) - b(x) for
a(x),b € Flz]/(f(x)), respectively. Considering the fact that the ring Z/(n) can be a field

if n is a prime, a similar discussion can be held in this case. If f(z) is decomposed into

at least two polynomials of degree at least 1, we say f(z) is reducible; otherwise, f(x) is
irreducible. Then, there is a fact that F[z]/(f(x)) is a field if f(z) is irreducible. The

following shows an example.

Example 2.19. (Field of order 4) Let Fy = {0,1} be a prime field of order 2 under
the operations + and - taking a reminder divided by 2. Then, there is an irreducible
polynomial given by 22 + x + 1 in Fy[z]. The principal ideal (z* + z + 1) produce four
costs given by 0 = 0+ (22 + 2+ 1), 1 =1+ (2> +2+1), T =2+ (22 + 2+ 1), and
r+1=1z+1+(22+2x+1). From the above, there is a quotient ring Fo[z]/(2? +z+1) =
{0,1,Z,z + 1} under the addition and multiplication for @,b € Fylz]/(2? + z + 1), e.g.,
I+r+l=2+2=ZandZ-2+1=a2+2=—x—1+x = 1. It is observed that
one can compute a reminder divided by not only 2 but also 22 + x + 1. The operation
tables for Fy[z]/(2? + x + 1) are given in Table Z22. From the table, it can be confirmed
Folz]/(2* + z + 1) forms a field of order 4.

Suppose that f(x) is an irreducible polynomial of degree n > 1 and let o be a root of
the irreducible polynomial f(z). Then, F[z]/(f(z)) is isomorphic to a field F'(«), which
is obtained from F' by adjoining «, i.e., every element of F'(«) can be uniquely expressed

in the form
An_10" L a, 00" 2+ 4 aya + ap, (2.15)

where a; € F for 0 < ¢ < n —1 and which is a m-th dimensional vector space of F' with a
basis {1, «,...a" '}, Notice that F(«) is an extension field of F of degree [F'(a): F] =n
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L+ [ 0 [ 1 [ a [at+1] | 0] 1 | a [a+l]
0 0 1 « a+1 0 0 0 0 0
1 1 0 a—+1 « 1 0 1 « a+1
« o' a+1 0 1 o' 0 «Q a+1 1
a+1| a+1 Qo 1 0 a+1]|0|la+1 1 a+1

Table 2.3: Operation tables in Fy(a).

and thus the number of elements of F'(«) is given by (#F)". Since the smallest subfield
of an extension field is a field isomorphic to [F,, of order p, the extension field must have

an order p or power of p.

Example 2.20. Let Fy and Fy[z]/(2* + x + 1) be fields defined in Example EZT9. The
irreducible polynomial z? + z + 1 has a root a = @ which is an element not in
Fy. Considering the field Fy(«), there are four elements 0, 1, «, and a + 1 of the form
aja + ag € Fo(a) where aj,a; € Fy. Since « is a root of the irreducible polynomial,

2 = o+ 1. The operation tables are given in

there is a relation o® + a + 1 = 0, ie., o
Table Z23. As seen in the table, Fy[x] and Fylz]/(2? + 2 + 1) are isomorphic since there
is an isomorphism Fy[z]/(z* + = + 1) — Fy(a) such that 0 — 0, T — 1, T — «, and

r+ 1 a+1. It is also found [Fy(a) : Fy] = 2 and #Fy(a) = 4 = 22.

A finite field order ¢ = p™ (m > 0) is denoted as [F,. Note that every field of order ¢
is isomorphic to F,. The multiplicative group of F, is referred to as the set F; = F,\{0}.
Similar to the case of I, the multiplicative group F is a cyclic group of order ¢ — 1, i.e.,
there is a generator a € F}, such that F; = (a).

For positive integers m,n, o, ..., let us consider a sequence of finite fields such that
Fy 2 Fyfa]/(n(e)), By 2 Fynla)/(£u(@)), Figmpye = Figmpnlal/(fola)), .. where
fm(x), fu(x), fo(z),... are irreducible polynomials in Fglx], Fgm|x], Fgm[z],.... We
say the sequence is a tower of fields. Assuming ,,, @, @, . .. be a root of f,(z), fu(x),
fo(z), ..., the field F(...(gm)n)e)..) is isomorphic to a field F' adjoining au,, ay, ao, . . ., i.e.,

F(am)(an)(ay) -« -, of which elements can be written by using the following basis.
{Lam, oy x {Lap, .., a7y x {1, ag,...,a2  Fx oo (2.16)

A field adjoining roots of all polynomials over F, is said to be an algebraic closure of F,
and is denoted by F,.

Example 2.21. (Field of order 16) Let Fy and Folz]/(2? + z + 1) = Fy(a) be fields
found in Examples 219 and 220. There is an irreducible polynomial 22 + az + 1 in
Fy()[x]. Then, the principal ideal (z® + az + 1) produce 16 cosets given by the form
ar +ag = a1 + ag + (22 + ax + 1) with ag,a; € Fo(a) and gives rise to a finite field
Fo()[x]/(2? + ax + 1) of order 16. Since the irreducible polynomial 2% + az + 1 has a
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root 3 which is not an element in Fy(a), the field Fo(a)[x]/(2? + ax + 1) is isomorphic to
Fy(a)(B) having 16 elements of the form ay5 + ag € Fo(a)(5) where a1, a1 € Fo(a). Since
there are the representations ag = api + ago € Fo(ar) and a; = ajja + ajp € Fo(a) with
oo, A1, 10, a11 € Fa, every element in Fy(a)(f) is given by a1 + ag = apaff + a10f +
ag1a + agy of which a basis is {1, o, 5, af} = {1, a} x {1, 5}.

2.2.3 Frobenius endomorphism and conjugates

This subsection introduces the properties of the finite fields. The definition of the impor-

tant endomorphism in the finite fields is provided below.

Definition 2.22. (Frobenius endomorphism) Let F, be a finite field and let p = char(F,).

Then, the Frobenius endomorphism is a map defined by
m,: Fy — Fya— aP. (2.17)

The map m, is exactly endomorphism since it holds m,(a - b) = my(a) - m,(b) and
mp(a+b) = mp(a) + m,(b) for all a,b € F,. From Fermat’s little theorem, m,(a) = a® = a
for all a € F, C F,. A similar property is enjoyed on F, by the m-th iterate of the
Frobenius endomorphisms, i.e., 7,"(a) = a?” = a for all a € F,. It is more often used the
g-th power Frobenius endomorphism defined by 7, : Fq — Fq, a — al. Note that it is an
automorphism in certain contexts, however, this is not true in general.

Applying the Frobenius endomorphisms, there are ap,apz, ...,a”" = a, which are
conjugates of a over F,. Note that the explicit definition of the conjugates comes from
a minimal polynomial of a over F,, which is a polynomial f(x) € F,[z] of the smallest
degree m satisfying f(a) = 0. If f(x) is a monic polynomial (a polynomial of which a
coefficient of the highest degree is 1), all of the roots of f(x) involving a are said to be
conjecture of a over [F, and are given by the form @ with an integer 1 < ¢ < m. The

product of all the conjugates of a is called a norm of a and is defined as follows:
Nz,je,(a) = [[ o €F,. (2.18)
i=1

The important fact is that Ny, r, (a) becomes to be an element in the prime field F,.

Example 2.23. Let Fig = Fy(«) (/) be a finite field of order 16 described in Example 2221,
The conjugates of 3 are 2 = Ba+ 1, * = B+ a, 8 = Ba + «, and B¢ = B, which are
computed by using the relations a® = o + 1 and 3% = Ba + 1. Then, the norm of 3 is
computed by Np,,/m,(8) = (Ba+1)-(B+ ) (Ba+a)- =0+ (a® +a®+ ) +
(& + a® 4+ @) + a?B. Since @® + a? + a = 0, it is obtained Ny, /r,(8) = o?8* + o2 =
(a+1D)(B+a)+(a+1)=2a+2)+a*+a=1€cT,.
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2.2.4 Power residue properties

This subsection presents the power residue properties in F,. Let d be a cofactor of
#F* = p— 1 such that d | (p — 1)". Then, there exists a d-th root of the identity 1 in .
If there exists g € Fy, such that a = g? for a € 7, we say that a is d-th residue in F;
otherwise, a is d-th non-residue in F,.

Particularly, quadratic residue properties of d = 2 are well-studied. There is a conve-
nience symbol that indicates the quadratic residue properties by the values 1, —1, 0, which

was introduced by Legendre and is so-called the Legendre symbol.

Definition 2.24. (Legendre symbol) For a € F, and characteristic p, the Legendre symbol
is defined by

1 if a is quadratic residue in F, and a # 0,
(E) = ¢ —1 if a is quadratic non-residue in F,, (2.19)
0 ifa=0.

Legendre’s original definition is given by using the explicit formula (%) = qP=1/2,

There is the following theorem

Theorem 2.25. For an odd prime p, the following is true.

-1\ ] 1 ifp=1(mod 4),
<_) B { —1 if p=3 (mod 4). (220

(g):{ 1 ?fpzjzl (mod 8), (221)
—1 if p =43 (mod 8).

-3\ _ ) 1 ifp=1(mod 3),
(_) - { —1 if p=2 (mod 3). (2.22)

Proof. Please refer to [Koh94]. O

Example 2.26. Let F; be a field of order 7. Since p = 7 satisfies p = 3 (mod 4),
. o . . -1\ _ /6\ __ 2\

p = —1 (mod 8), and p =1 (mod 3), it is determined (57) = (}) = =1, (5) = 1, and

(3}) = () = 1. The correctness is found from the facts 1* = 6° = 1, 2* = 5% = 4,

3% = 42 = 2, which indicates 1, 2,4 are quadratic residue in F-, but 3, 5,6 are quadratic

non-residue in F.

In addition to the above, cubic residue properties of d = 3 are also important in
this thesis. Following the definition of the Legendre symbol, let us define a symbol that

indicates the cubic residue properties as follows:

1For integers a, b, note that a | b means that a divides b.
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Definition 2.27. Let p be a prime such that 3 | (p —1). Let € be a cube root of 1 in ;.
Then, let us define the symbol

1 if a is cubic residue in F, and a # 0,
a
(Z_7> =4 €€ if ais cubic non-residue in [, (2.23)
’ 0 ifa=0.
The symbol is explicitly given by (%)3 = aP~Y/3_ The properties of the cubic residue
properties are firstly studied by Euler who provided the following conjecture, which has

already been proven today.

Theorem 2.28. (Euler’s conjecture) Let p be a prime p = 1 (mod 3). Then, p is written
by p = a® + 3b* with integers a and b, and the following is true.

(2) =1 if3|b, (2.24)
p)s | #1 otherwise. |
(§> =1 ifeither 9[b, 9| (a+b),0r 9| (a—b), (2.25)
p)s | #1 otherwise. |
(9) =1 ifeither 9| b, 9| (a+2b), or 9| (a— 2b), (2.26)
p)s | #1 otherwise. |
Proof. Please refer to [LemT3]. -

Example 2.29. Let F; be a field of order 7. Since p = 7 is decomposed into p = a? + 3b*
with a = 2 and b = 1, it is determined (%)3 # 1, (%)3 # 1, and (g)g = 1. The correctness
is found from the facts 13 = 22 = 43 = 1 and 3% = 5% = 6 = 6, which indicates 1,6 are

cubic residue in F7, but 2, 3,4,5 are cubic non-residue in 5.

The power residue properties can also be extended for an extension field I, of I,,. For
a positive integer d such that d | (p — 1), the d-th power residue properties of a € F, can
be regarded as d-th residue properties of the norm Ny, /¢, (a) € F) of a (see Eq. (E18)).
This is because that there is a relation

qla—1/d — (NFq/Fp<a))(p_1)/d. (2.27)
The power residue properties in [F, can help for the extensions of F,.

2.2.5 Computational problems

This subsection introduces computational problems in the finite field F,, which are two

of them are related to the DH key exchange protocol, which is introduced in Sect. CI2.
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Definition 2.30. (Diffie-Hellman problem (DHP)) Given g, g%, g¥ € F; with 2,y € Z/n’Z,

compute g*¥.

Definition 2.31. (Decisional Diffie-Hellman problem (DDHP)) Given g, g%, ¢¥,g* € F;
with z,y, 2 € Z/nZ, determine if ¢g"¥ = g* or not.

Definition 2.32. (Discrete logarithm problem (DLP)) Given g, h € F}, compute x such
that h = ¢g*.

It is believed that if DLP is difficult, both problems are difficult. If there is an efficient
algorithm for solving DHP, it is trivial to solve DDHP by computing ¢*¥ from g, g%, ¢¥
and taking comparison with g*. If there is an efficient algorithm for solving DLP, it is
possible to solve DHP by computing x from g and ¢* and then computing (¢g¥)* = ¢g*v.
The algorithm for solving the DLP and its complexity are described in the following.

As one of the methods for solving the DLP, there are the number field sieve (NFS) and
its variants. Indeed, the NFS is firstly proposed as an algorithm for solving a factoring
problem of a special form by Lenstra in [Len+93] based on an idea by Pollard in [Pal93].
The original NF'S is generalized for factoring any composite number. To classify the form
of the factorized number, the former and latter methods are called special NFS (SNFS)
and generalized NFS (GNF'S), respectively.

As the first variant of GNFS, in [Sch93], Schirokauer provided the tower number field
sieve (TNFS) for computing DLP in fields F,. The TNFS is classified into an algorithm
called an index calculus method introduced by Kraitchi and is the most efficient classical
algorithm for computing the DLP. Its complexity, i.e., the number of steps, for computing
the DLP in F, is given by the form

Ly(a,c) = exp(c(Ing)*(Inlng)' %), (2.28)

where « and c are positive real numbers. For a finite field F,, the complexity is typically
given by L,(1/3, ¢/64/9) ~ L,(1/3,1.923). On the other hand, if F, with a characteristic
p with a very sparse representation, the complexity is reduced to L,(1/3, \?’/m) ~
Ly(1/3,1.526).

In recent years, it turned out that prime fields and extension fields of the same size
of ¢ and p™ with a prime p and integer n > 1 do not offer the same security. Indeed,
in [BGKTH; KBI6; KJI17], Barbulescu and Kim et al. revised the TNFS by applying a
new setting to finite fields of composite extension degree n, which is called the extended
TNFS (exTNFS). Then, the complexity with this new algorithm decreased significantly to
L,(1/3,3/32/9) ~ L,(1/3,1.526). There are many analyses of the special variant of TNFS
(STNFS) of which p is restricted by a special form for PBC [FK19; MSST6; BDTY; BDTY;
EMTY; GMT20; Gui20]. Although there is some variation in the complexity corresponding

to the improvement of the variant of NF'S, the running time is sub-exponential. Currently,
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to achieve security comparable to AES-128, which is so-called the 128-bit security level, it
is required to use around 5,000-bit sizes of ¢ for the finite field used for pairings [Gui20].

2.3 Elliptic curves over finite fields

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on
which there is a specified point. Although not all terms in the definition are explained,
this section describes necessary and basic facts of the elliptic curves over finite fields,
which are used for cryptography. This section is written by referring to the textbook
[Sil09] by Silverman.

2.3.1 Algebraic varieties

The basic objects that arise in the study of algebraic geometry is briefly described. The

following shows the definitions of the affine and projective n-spaces over a finite field F,.

Definition 2.33. (Affine n-space over F,) Affine n-space over F, is the set of n-tuples
A" = A"(F,) = {(z1,72,...,7,) : z; € F ). (2.29)

Definition 2.34. (Projective n-space over F,) Projective n-space over F,, which is de-

noted by P or P*(F,), is the set of all (n + 1)-tuples

(w0, 71,...,1,) € A" (2.30)

such that at least one x; is nonzero and (zg,z1,...,x,) is equivalence to (z,x},...,z})

rrn
if there exists a A € FZ such that z; = Az} for all 1.

The tuples, which are elements in A™ and P", are called rational points or points. In
this thesis, an equivalence class of a rational point (zg,Zs,...,x,) in P? is denoted as
(xo:21:...:xy,). Then, the individual zg, z1,. .., x, are called homogeneous coordinates
for the corresponding points in P". One can embed A" into P" by sending the coordinate
(x1,Z2,...,xn) +— (z1 : X2 : ... : x, : 1). Notice that there are additional homogenous

points (1 : x5 :...: 2, :0) in P", which are called points at infinity in A™.

2.3.2 Weierstrass equations

Every elliptic curve over a finite field F, can be written by a cubic equation of the homo-
geneous coordinate in the 2-space P? over F,, where are written by the form (X : Y : Z)

with X,Y, Z € Fq. In this context, the equation is given by

Y2Z + a1 XY Z +asYZ? = X? + ayX*Z + ay X 7% + ag Z°. (2.31)
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x . (.
\

(a) y?> = 2® — x over R (b) y? = 23 + z over R (c)y> =23~z +1over R
Figure 2.1: Three elliptic curves.
where a1, as, . .., a6 € F,. Then, a point at infinity satisfying the above equation is written

as O =(0:1:0).
To ease notation, the equation is generally written by non-homogeneous coordinates

r=X/Zandy=Y/Z,
E:y* +aizy + azy = 2° + asx® + ayx + ag, (2.32)

which lies in the affine 2-space A% over F,. Aside from all the solutions of Eq. (2232),
there is one extra point O out at infinity. As usual, if the coefficients of £ are in F,, E is
said to be defined over F, and is denoted as E/F,,.

If the field characteristic char(F,) is not 2 and 3, one can simplify Eq. (2232). The
restriction permits the substitution y — (y — a1z — a3)/2 that gives rise to an equation of
the form E : y? = 423 + byx? + 2042 + bg where by, by, bg € F,. Then, one more substitution
(x,y) — ((z — 3b2)/36,y/108) results in

E:y*=12°+azx+b, (2.33)

where a,b € F,. Eq. (2233) is called the short Weierstrass equation.

Let C be a curve defined by f(z,y) = y* — (2 + ax + b) = 0. Not all a and b gives
rise to a curve C' being an elliptic curve. If there exists a point P on C' such that it is
not differentiable at P, the point P is called a singular point, and C' is also said to be
singular. If C' does not admit such points, we say C' is non-singular or smooth and is an
elliptic curve. If and only if the discriminant defined by A = —16(4a®+27b?) is not 0, C'is
non-singular and elliptic curve. As the quantity related to A, we say j = —1728 - (4a)®/A
is the j-invariant of an elliptic curve.

To support the understanding, Figures 2701 and P22 illustrate the singular and non-

singular elliptic curves over a set R of real numbers, respectively. Note that the elliptic
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(a) y? = 23 over R (b) y? = 2% — 32+ 2 over R

Figure 2.2: Two singular curves.
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Figure 2.3: y? = 23 + 5 over [Fyg3.

curves over R will appear in the following descriptions. Figure 223 shows rational points
on the elliptic curve over a prime field [F,, excluding O, which are actually used for cryp-

tography.

2.3.3 Group law

Let E be an elliptic curve given by the short Weierstrass equation. Let E(F,) be a set of
rational points of E over F, defined by

EF,) ={(z,y) e F, x F, : (z,y) satisfies Eq. (£233)} U {O}. (2.34)

Note that sometimes the set E(F,) is referred to E. There is a law @ making the set to be
an abelian group, which is called a F,-rational point group. The law comes from the fact

that a line [ intersects F at exactly three points which are not necessary to be distinct.
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(a) Elliptic curve addition. (b) Elliptic curve doubling.

Figure 2.4: The composition law.

The fact is a special case of Bazout’s theorem [Har+75]. Let us define a composition law

@ by the following rule:

Definition 2.35. (Group law) Let [ be a line passing through P and Q on E. If P = Q),
let [ be a tangent line to £ at P. Then, one can find the third point of intersection of [

with F, which is denoted as &R. Let us take a point R of xz-axis symmetry of &R and
define that as P & Q.

The instances of the law @ are illustrated in Figure Z4. The group law has the

following properties.
e The law @& has the properties of the associative and commutative.
e The point O at infinity plays a role of the identity, i.e., P ® O = P for any P.

e For any P, there exists a point on E defined as &P such that P& (6P) = O. In

fact, ©P is P’s reflected image over the z-axis.

The properties indicate that & makes E(F,) into an abelian group with the identity
0. The properties also show that the result of the addition of all three points of the
intersections of a line and E becomes to be the identity O. Thus, the intersections are
given by points P, @), and ©(P ® Q). Even though the line is vertical, one can regard
that there are three intersections which consist of P, ©P, and O. For these reasons, the
notation &R is used in Definition P=33 and Figure 24.

From the definition, one can obtain point addition and doubling formulas as follows:

Lemma 2.36. (Doubling and addition formulas) Let P = (zp,yp) and Q = (zg,yq)
be affine points on E. If () # ©P, point addition and doubling formulas for computing
R=P&Q = (zg,yr) are given as follows:
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e Addition formula (P # Q):

(ZER,yR):()\2—JIP—IQ,)\<JZP—JZR)—yp),)\zw. (235)
T —Tp

e Doubling formula (P = Q):

2
(zr,yr) = (A = 2xp, Nap — Tr) —yp), A = Sx;yl—: -

(2.36)

IfQ=0P,itisclearly R=P®dQ = O.

In the following, the derivation of the formulas is briefly described. Let [ be a line
passing through P and () defined by [ : y = Az + v where \,v € [F,. Then, the gradient
A of Lis given by A = (yo —yp)/(xzg — xp) if P # Q; A = (32% + a)/2yp if P = Q. Note
that the denominator of A cannot be 0 since we work on the assumption ) # ©P, i.e.,
(xg,yq) # (rp, —yp), which gives rise to zg — yp # 0 and yg + yp # 0. The y-intercept
v of [ is also given as v = —Azp + yp. Assuming R = (zg,yr), the third point of the
intersections of [ and E is written as ©R = (xg, —yg). Since P, @, and R (or ©R) are on
E, one can represent z° +ax+b—y? = (r —xp)(z—2xg)(x—2r). When substituting [ into
the left side and expanding the right side, it is obtained x3 — A2z + (a — 2\v)x +b—1v? =
B+ (—xp—19—1R)1*+ (xpro+r9rR+TRTP)T —TpPpToTR. Looking the coefficient of z2,
we have —zp — 19 —xr = —\?, which leads to g = A\ —xp —xg. Since OR = (zgr, —yr)
isonl, yr = AM(xp — xg) — yp. As a result, the above formulas are derived.

The following example confirms how & does work on the curves on a finite field.

Example 2.37. (Point addition) Let E be an elliptic curve defined by E/Fy; : y? =
23 4+ 22 + 1. Then, there are points P = (1,9) and Q = (3,10) in E(Fy;). A line passing
through P and @ is easily obtained as [ : y = (1/2)x + 17/2, which is equivalence to
[ :y =6z + 3 over Fy;. Applying the addition formula given in Eq. (2235), it is obtained
R=P&Q = (vg,yr) where zgp =62 — 1 —3 =10 (mod 11) and ygr = 6(1 — 10) — 9 =
3 (mod 11), i.e.,, R = (10, 3). Figure P33 illustrates that the points on F(Fy;) excluding
O and process of the addition (1,9) & (3,10) = (10, 3).

Repeating to use @ for P € E leads to the definition of a point mP which is P
multiplied by m € Z. For m > 0, let

mP=P&P®- - P. (2.37)

m-terms

For m < 0, set mP = —m(©P) and define 0P = O. The point multiplication can be

performed as shown in the following example.
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Figure 2.5: Point addition in F/Fy; : Figure 2.6: Point miultiplication in
y? =234+ 22 + 1. EJFy i y? = 2% + 2z + 1.

Example 2.38. (Point multiplication) Let E be an elliptic curve defined by E/Fi; :
y> =2° +2r+ 1. For P = (1,9) € E, one can compute 2P = (1,9) & (1,9) = (3, 10),
3P =(3,10)®(1,9) = (10, 3), 4P = (10,3) ® (1,9) = (9,0), 5P = (9,0) & (1,9) = (10, 8),
6P = (10,8) @& (1,9) = (3,1), 7P = (3,1) ® (1,9) = (1,2), and 8P = (1,2) & (1,9) = O.
Thus, G = (P) forms a cyclic group of order 8. Figure E@ illustrates that these points
excluding O.

From here on, we drop the special symbols & and &, and simply write + and — for

the group operations on an elliptic curve E.

2.3.4 Point multiplication and Frobenius endomorphisms

Since the rational point group of an elliptic curve £ over [F, is defined, this subsection
discusses the endomorphisms from F to E. This subsection provides very elementary
endomorphisms that play an important role in £. Note that the endomorphisms are one
kind of map which is called an isogeny and is defined in Sect. 2.

In this context, the group law on E leads to a map from a point P € E to a multiplied

point mP € E with certain integer m, which results in the following endomorphism.

Definition 2.39. (Point multiplication endomorphism) Let F : y* = 2® + ax + b be an
elliptic curve over I, and let m be an integer. The point multiplication endomorphism is
defined by

[m]: E— E,P+— mP. (2.38)

For m > 0, the explicit descriptions of the point multiplication endomorphism are
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usually given in terms of division polynomials V; € Zlx,y| defined by

U, =1, (2.39)
Uy = 2y, (2.40)
Uy = 32 + 6az? + 12bx — a?, (2.41)
WU, = 4y(z® + bax® + 20b2® — 5a*x* — dabxr — 8b* — a*), (2.42)
and then inductively by the formulas
o1 = W0, — W, 02, i >2, (2.43)
2:1./\1}21 = \Ifi(\IjiJrQ\D?_l - \111*2\11224-1)7 1 Z 3. (244)
In addition to this, let us define polynomials ®; and €2;:
(I)i = iL'\I/ZQ - \IliJrl\I]ifla 4sz = ‘PZ’JFQ\IJ?_l - \Iji*Q\Il?—i-l' (245)
Then, the image of (z,y) € E under [m] is given as follows:
(@, y) Qm(z,y)
= _ 2.46
e = (G oy w0 (240

There is the Frobenius endomorphism in F, such that 7, : F, — F,,a — a?. Applying
the endomorphism for the both side of E in short Weierstrass equation, we have (y?)? =
(23 + ax + b)? which can be written as (y?)? = (z9)® + a%2? + b? = (29)% 4+ az? + b and
thus (z9,y?) € E. This leads to the following endomorphism.

Definition 2.40. (Frobenius endomorphism on E) Let E : y* = 2® +ax +b be an elliptic

curve over F,. The Frobenius endomorphism on E is defined by
B — E (x,y) — (2, y7). (2.47)

Similar to the Frobenius endomorphism in F,, there is a property such that m,(P) = P
for a point P = (z,y) with z,y € F,. This leads to the following representation of F-
rational point group.

E(F,)={P € E:n,(P)=P}CE. (2.48)

In the following, m-th iterate of the Frobenius endomorphism in E' is denoted by 7"
Besides the above, one can also define various endomorphisms from E to E. Let

End(FE) be a set of all endomorphisms, End(E) forms a ring under the following addition

and multiplication. For ¢, ¢ € End(F), the addition ¢ 4+ ¢ € End(E) and multiplication
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- ¢ € End(E) are defined by (¢ + ¢)(P) = ¢(P) + ¢(P) and (¢ - ¢)(P) = ¢(o(P)),
respectively. Similarly, there is a subtraction ¢ — ¢ € End(E) by (p — ¢)(P) = ¢(P) +
(—¢(P)). As we used the notation of the m-th iterate of Frobenius endomorphism, a

power ¢ to m is defined by ¢"(P)=¢-¢@----- 0.

2.3.5 Twisting isomorphisms

This subsection describes the isomorphisms between two elliptic curves. In the following,

let E'and E' be elliptic curves defined over F,.

Definition 2.41. (Twist) If there exists such isomorphism ¢4 : E' — E defined over F
with the minimal integer d, then E’ is called a twist of degree d of E.

In this thesis, ¢4 : B’ — FE is called a twisting isomorphism. It is naturally found that
there is an inverse isomorphism qﬁ;l : E — E’, which is called an untwisting isomorphism.
The important fact is that there are only possibilities d = 1, 2, 3, 4, and 6 which depend
on the j-invariant of E. If d = 1, E’ is typically not called the twist, £’ is also considered
as a twist in this thesis. If d = 2, 3, 4, and 6, E’ is called a quadratic twist, cubic twist,
quartic twist, and sextic twist, respectively. The explicit formulas of the twist E’ of degree

d of F and twisting isomorphism ¢4 : F' — F are summarized below.

e d =1,2: The twist can be occur for every value of j(E). For E : y*> = 23 + ax + b,
the twist E' of E is given by y* = ® + a/6*x + b/ where ¢ is quadratic-residue if
d = 1; quadratic non-residue in [} if d = 2. The twisting isomorphism is written as

follows:

¢q: E — E, (x,y) — (5x,5%y). (2.49)

e d = 4: The twist occur only the case of j(F) = 1728, i.e., E is given by 3* = 23 +ax.
The twist E’ of E is given by y? = 2® + a/dx where § is quartic non-residue (4-th

non-residue) in 7. The twisting isomorphism is given by

¢a: E' — E,(z,y) — (622,81y). (2.50)

e d = 3,6: The twist occur only the case of j(E) = 0, i.e., E is given by y? = 23 + b.
The twist £’ of F is given by y*> = 23 4+ b/§ where § is quadratic residue but cubic
non-residue in F} if d = 3; quadratic and cubic non-residue in F} if d = 6. The

twisting isomorphism is given as follows:

¢a: E' = E,(z,y) — (632, 82y). (2.51)
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The twisting and untwisting isomorphisms are often used for computing the pairings

on elliptic curves efficiently. The high degree twists result in speeding up the pairings.

2.3.6 n-torsion subgroups

Since the point multiplication endomorphism is defined, a subset of an elliptic curve can

be defined as follows:

Definition 2.42. Let E be an elliptic curve defined over F, and let n be a positive
integer. An n-torsion subgroup is a subgroup of F which consists of rational points of

order n defined by
E[n]={P € E: [n|P = 0}. (2.52)

Let p = char(F,) and ¢ > 0 be an integer. Then, the structure of E[n| is determined

as follows:

e { Z/nZ x ZJnZ if n # p', (2.53)

Z/nZ or {0} ifn=rp"

From the above, there are two possibilities for the case of n = p’. The difference of the
structure leads to the definition of exceptional elliptic curves described in Sect. P2Z374.
Our main concern is in the n-torsion subgroup of the structure given by Z/nZ x Z/nZ.
The details of the structure are described below. The structure Z/nZ x 7Z/nZ indicates
that the number of points in E[n] is given by #E[n| = n?. This implies that E[n] consists
of (n 4+ 1) subgroups of order n. This is because that the identity O overlaps into all
subgroups of order n, i.e., #F[n] is decomposed into #E[n] =n? = (n+ 1)n — n.

Example 2.43. (2-torsion subgroup) Let E be an elliptic curve over F, given by y* =
22 + ax + b. It is easily found that the y-coordinate of the point of order 2 is zero. Since
E is nonsingular, 23 + ax 4+ b = 0 has three distinct solutions, there are three points of
order 2 of the form (a,0) over F,. Thus, E[2] consists of the three points of order 2 and
O. Since a subgroup of order 2 is generated per one point of order 2, it is found that E[2]
consists of three subgroups of order 2, which leads to E[2| = Z/27Z x Z/2Z.

Let picking up two distinct subgroups G; and Gy from E[n] and let P, and P, be
points in G and G, respectively. Then, any point P € E[n| can be represented by the

Z/nZ-linear combination of P; and P; as follows:
P=miPr+maohs, (2.54)

where my, mg € Z/nZ. Thus, we have E[n] = (P;, P,) by using generators P; and P;.
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Let restrict the endomorphisms ¢ : E — F to ¢, : F[n] — E[n]. Since P € Eln] is
given by vector of the basis (P;, P»), one can represent the endomorphism ¢, as a 2 x 2

matrix ¢, = [¢4] where a,b,¢,d € Z/nZ that are determined by

en(P1) = aPy + bP, (2.55)
on(P) = cPr + dPs. (2.56)

The trace and determinant of ¢,, are computed by tr(¢,) = a+d and det(p,) = ad—bc and
are the values in Z. Unlike the matrix representation, tr(y,) and det(y, ) are independent
of the choice of basis. Assuming E = [}9] is the identity matrix, the characteristic
polynomial of ¢, is defined by det(A\E — ¢,,) = A\? — tr(p,)\ + det(p,) where \ € Z.
According to the Cayley-Hamilton theorem, ¢, satisfies the following.

90127, — [tr(@n)ln - on + [det(on)]n = [0]n, (2.57)

where [m],, is the restricted point multiplication endomorphism defined by [m/, : En] —
Eln], P — mP. It is also possible to eliminate the subscript n from Eq. (257) since tr(y;,)
and det(p,) are independent on n and U2 F[n] = E. Particularly, the characteristic
polynomial of the Frobenius endomorphism is explicitly determined by Hasse. This is
also related to the estimation of the number of points on a certain rational point group.
The details are described in the next subsection.

In the rest of this subsection, the belonging of the n-torsion subgroup is discussed.

Theorem 2.44. Let E be an elliptic curve over Fy, let n > 0 be an integer satisfying
ged(g—1,n) =12, and let k > 0 be the smallest integer such that there is a multiplicative
subgroup ,, of sz of order n. If there exists a point P of order n in the [ -rational point
group E(F,), then En] C E(F ).

The quantity k is called the embedding degree with respect to n. Since the multiplicative
group ]F;k is a cyclic group of order ¢¥ — 1, it can be said that k is the smallest integer
satisfying n | (¢* — 1).

2.3.7 Supersingular elliptic curves

As seen in the previous subsection, there are two possibilities of the structure of the

p-torsion subgroup E|p| of a prime p. This leads to the exceptional elliptic curves:

Definition 2.45. (Supersingularity) Let E be an elliptic curve over F, with p = char(F,).
If E[p] has the structure E[p] = {0}, E is said to be supersingular; otherwise, E is non-

supersingular or ordinary.

2gcd is a function that returns the greatest common divisor of integers.
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Note that the term “supersingular” has nothing to do with “singular” curves, and
all supersingular elliptic curves are non-singular. Elliptic curves over such fields which
are not supersingular are called ordinary and these two classes of elliptic curves behave
fundamentally differently in many aspects.

There is a convenient theorem that can determine the supersingularity from the curve

equation.

Theorem 2.46. Let F be an elliptic curve over F, given by y* = 2® + ax + b. Then, E

is supersingular if and only if the coefficient of 2P~! in (2% + ax + b)P~Y/2 is zero.
The following shows the application of the above theorem.

Example 2.47. (Supersingular elliptic curve) Let E be an elliptic curve given by y? =
2 4+ 2. We need to compute the coefficient of 27! in the polynomial (2 + z)®~1/2,
Since zP~V/2(32 4- 1)P=1/2 and zP~! = 2P~D/2+@=1/2 this is equivalence to compute
the coefficient of z®~1/2 in the polynomial (22 + 1)®=1/2_ If p = 1 (mod 4), the target
coefficient can exist in the (p — 1)/2-th row and (p — 1)/4-th column of Pascal’s triangle,
which is computed by (,-1)/2Cp-1)/4. If p =3 (mod 4), the coefficient cannot be exist in
the triangle, and thus it is zero. Hence, E is supersingular if p = 3 (mod 4) and ordinary
if p=1 (mod 4).

2.3.8 The number of rational points

This section wishes to estimate the number of points in the subset of an elliptic curve E
over F,. The border of the number of F -rational point E(F,) is conjectured by E. Artin

in his thesis, which is proven by Hasse, and is given as follows [Sil09]:

Theorem 2.48. (Hasse) Let E be an elliptic curve defined over F,.

HEF,) =q+1—t, |t <2/a (2.58)

The quantity ¢ is called the Frobenius trace since that plays the trace tr(m,) of the Frobe-
nius endomorphism 7, in the n-torsion subgroups for 1 < n < oo that is given by the

2 x 2 matrix as described in Sect. 2234. Indeed, Hasse also proved the following theorem.

Theorem 2.49. Let E be an elliptic curve over I, and let 7, be the Frobenius endo-
morphism 7, : £ — E,(x,y) — (29 y?). Then, the characteristic polynomial of 7, is
A —tX\ + ¢ and 7, satisfies

72 —[t] -7+ [q] = [0]. (2.59)

q

For an integer m > 1, the number of F,m-rational point group E(F;m) can also be

estimated from the knowledge of ¢ and ¢.
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Theorem 2.50. (Weil) Let E be an elliptic curve and let ¢t = ¢+ 1 — #E(F,). Let o, 8
be roots of the polynomial 2% — tx + g € C[z]. Then, a and § are complex conjectures

satisfying aff = ¢ and a4+ § = t, and for any m > 0,
HEF ) =q" +1—ty, tn,=a™+ " (2.60)

If E' is supersingular, there is a special number of the points as shown below.

Corollary 2.51. Let E be a supersingular elliptic curve over I, with a prime p such that
p> 3. Form > 0,

p"+1 if m is odd,

2.61
(p™/? — (=1)™2)% if m is even. (261)

HLE(Fpm) = {

Besides, the change of the number of rational points by the twisting isomorphisms are
described below. Given elliptic curve £, the number of rational points of a twist £’ of E

is specifically determined as follows [HSVO6]:

Theorem 2.52. Let E be an elliptic curve defined over F, such that #E(F,) = ¢+1—t.
Let E' be a twist of degree d of E. Then, the number of points on E'(F,) is given by

(

qg+1—t ifd=1,
qg+1+1 if d =2,
#E'(F) =4 q+1—- 2 ifd=3, (2.62)

g+1+f if d = 4,
| ¢+1—- = ifd=6,

where f is an integer satisfying f2 =4q —t? if d = 4; 3f?> = 4q — t? if d = 3, 6.

Let D be an integer satisfying D f? = 4q — t2. Since D is often used for the complex
multiplication (CM) method [AMY3] for constructing an elliptic curve with the desirable
number of rational points, D is called the CM discriminant. Note that the value of D is
corresponding to the j-invariant j(F), e.g., D =3 if j(F) =0; D = 1if j(E) = 1728.

2.3.9 Computational problems

This subsection presents computational problems related to elliptic curves E over F,.
Similar to the finite field, there are problems related to the ECDH key exchange.

Definition 2.53. (Elliptic curve Diffie-Hellman problem (ECDHP)) Given P,xzP,yP €
E(F,) with z,y € Z, compute zyP € E(F,).

Definition 2.54. (Elliptic curve decisional Diffie-Hellman problem (ECDDHP)) Given
P, xP,yP, zP € E(F,) with integers x,y, z € Z, determine if zyP = 2P or not.
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Definition 2.55. (Elliptic curve discrete logarithm problem (ECDLP)) Given P,Q €
E(F,), an integer x such that Q) = xP.

If there is an efficient algorithm for solving ECDHP, it is trivial to solve ECDDHP
since xy P can be computed from P,zP,yP. If there is an efficient algorithm for solving
ECDLP, it is also possible to solve ECDHP by computing x from P and xP and then
computing z(yP) = xzyP. The algorithm for solving ECDLP and its complexity are
summarized below.

In [Pal78], Pollard introduced an algorithm for solving ECDLP, which is known as
Pollard’s rho algorithm. An original idea of the algorithm comes from the analogous to
Pollard’s rho algorithm for factoring a composite number. The algorithm is known as
the most efficient solution to ECDLP except for special curves such that supersingular
elliptic curves, and it require O(,/q) steps. There are several revisions of Pollard’s rho
algorithm, however, there is no dramatic improvement at this time. Thus, the running
time is exponential. Unlike the DLP in F,, since there is no sub-exponential algorithm
for solving ECDLP, the size of ¢ can be fixed smaller than that of DLP. Thus, it is
expected that the cryptographic systems based on ECDLP are faster and more compact
cryptographic systems than that are based on the DLP or factorization problem at the
same security level. To achieve the 128-bit security level, it is needed to use 256-bit size
of order of P € E.

2.4 Pairings on elliptic curves

Recall that the pairing is a bilinear and non-degenerate map defined by e : Gy x Gy —
Gr where Gy, Gy, and G are abelian groups of common order (see Sect. Z13). In
cryptography, for practical reasons, it is used the pairings defined on elliptic curves F
over IF,. Let fix Gy and G2 as two rational point groups of E of prime order r, which are
subgroups in r-torsion subgroup E[r] generated by points Py, P, € E[r], and let define

the pairing as follows:
e: (P) x (P2) = iy, (2.63)

where i, is a multiplicative subgroup of F, of order 7. This section provides the necessary
fundamentals of the pairings on elliptic curves and defines the Weil and Tate pairings,
which are the most well-known and are often applied for cryptography based on the
pairings. Note that the descriptions are written by referring to the textbook [ENLITZ] by
El Mrabet and Joye.
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2.4.1 Function fields

This subsection describes the field built from an elliptic curve E. For easy understanding,
we work on the affine space A2, however, we actually have to work on the projective
space P2. Let F [z,y] be a set of all polynomials defined over F, with two variables x
and y, which forms a polynomial ring. The important fact is that a polynomial f(z,y)
in F [z, y] is absolutely irreducible over F, if f(z,y) is non-singular. Thus, the elliptic
curve equation E(x,y) is irreducible in F [z, y|. This leads to the following definition of

a function field.

Definition 2.56. (Function field) Let £ be an elliptic curve defined over F, given by
the Weierstrass equation y? = z* + azx + b and let E(z,y) = y* — 2% —ax — b € F,[z, y].
Let F,[E] be a polynomial ring defined by F,[E] = F,[z,y]|/(E(z,y)), which is an integral
domain. A function field of E is a quotient field of F,[E] defined by

Fo(E) ={f =g/h: g € F,[E],0 # h € F,[E]}. (2.64)

The set of F,[E] consists of equivalence classes of polynomials f(z,y) modulo E(z,y).
Every element in F,[E] can be denoted by the form f(x,y) = u(x) + v(z)y where u(z)
and v(z) are polynomials in F,[x]. Therefore, an element in F (E) can be considered as
a rational function.

Let f be a rational function in F (E) given by f = g/h where g and h are elements
in [F,[E] that have no common factors. When evaluating f at a point on E, there are
the points that are roots of g and h, and which are called zeros and poles, respectively.
For example, suppose that g = (u(z) + v(z)y)™ and h = (s(z) + t(x)y)" and P and Q
are points on E such that g(P) = 0 and h(Q) = 0. Then, we say f has zeros at P
with multiplicity m and poles at ) with multiplicity n. It can also be considered the
poles of multiplicity n to be the zeros of negative multiplicity —n. Notice that the zeros
are intersection points of f(x,y) = g(z,y)/h(x,y) = 0 and FE(z,y) = 0. The following

examples provide the zeros and poles of sloped and vertical line functions in F,(E).

Example 2.57. (Zeros and poles of a sloped line) Let E be an elliptic curve over F,
given by y*> = 2% +ax + b and let [ = y — Az — v be a sloped line function in F (E). As
described in Sect. B233, when substituting [(x, y) = 0 into E(x,y) = 0, there is an equation
23— N22?+ (a— 2 \v)z —v?+b = 0, which indicates that there are three intersection points

P, Q, and —(P+@Q) of l and E. Thus, [ has zeros at P, @), and —(P+ Q) with multiplicity

X3-N2X2Z+(a—2X )X Z%—(v2 D)
73

confirmed that [ has a pole at O = (0 : 1 : 0) with multiplicity 3. Specifically, if Q = P,

it is confirmed that [ has a zero at P with multiplicity 2, zero at —2P with multiplicity

1. Moving the function into P2, since we have Z. 0, it is also

1, and pole at O with multiplicity 3.
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Example 2.58. (Zeros and poles of a vertical line) Let £ be an elliptic curve over F,
given by y> = 2® + ax + b and let v = z — pu be a vertical line function in F,(E). When
substituting v(z,y) = 0 into E(z,y) = 0, there are y*> — u> — ap — b = 0, which indicates
there are two intersection points R and —R of v and E. Therefore, v has zeros at R
and —R with multiplicity 1. Besides, v also has a pole at O with multiplicity 2 since

y? — p® — ax — b = 0 is represented by YLMZQES“ZQ*I’ZQ =0 in P2

2.4.2 Divisors

This subsection describes divisors which are necessary materials to define pairings on

elliptic curves E over F,.

Definition 2.59. (Divisor) A divisor D on E is a way to denote a multi-set of all rational

points on E and is denoted by
D =Y ni(P), (2.65)

where P; is a point on F, n; € Z, and n; = 0 for all but finitely many points P, € E.

Given divisor D, the set of all points P such that n; # 0 is said to be a support of
D and is defined by supp(D) = {P, € E : n; # 0}. Given two divisors D; and Ds, if
supp(D;) Nsupp(Ds) is empty set, we say Dy and D have disjoint supports. Let us define
the degree of D by deg(D) = >, n;. The set of all divisors on E is denoted by Div(E).
Then, Div(£) forms an abelian group under the following addition. For D; = . n;(F)
and Dy =Y. m;(P;) in Div(E), an addition is defined by

i

In the same manner, the subtraction in Div(E) can be naturally defined by D; — Dy =
>-:(n; —m;)(P;). The identity of Div(E) is the divisor of n;, = 0 for all P, € E. An

examples of divisors are given in the following.

Example 2.60. Let P, @, R be points on E. Let D; and Dy are divisors given by D; =
3(P)+(Q)—2(R) and Dy = (P) — (Q) +3(R). Then, the degrees of D, and D, are given
by deg(D;) = 2 and deg(Ds) = 3. Since Dy, Dy € Div(FE), the other divisor is obtained
by computing Dy + Dy = 3(P) + (Q) — 2(R) + (P) — (Q) + 3(R) = 4(P) + (R) € Div(E).
The supports of Dy and Dy are given by supp(D;) = supp(Ds) = {P, Q, R}, respectively.
On the other hand, the support of D; + D, is given by supp(D; + Ds) = {P, R}. The
divisors Dy, Dy, and Dy + Dy are not disjoint supports.

Associating divisors with a function f in F,(£) is a convenient way to write down the

intersection points and their multiplicities of f and E defined as follows:
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Definition 2.61. (Divisor of function) Let f be a rational function in F,(F) such that
f has zeros at Py, P, ... € F with multiplicity nq,ne,... € Z, respectively. Note that if
n; < 0, then f has a pole at P,. A divisor of f is a way to denote a multi-set of the zeros

and is defined as follows:
div(f) = ni(P). (2.67)

A divisor D is said to be principal if there exists a function f such that D = div(f).
Two divisors Dy and Dy are said to be linearly equivalent if there exists a function f such

that D; — Dy = div(f). The divisor of function has the following properties:

e Given f,g € F,(F), if and only if f is a non-zero constant multiplication by g, then

div(f) = div(g).
e For all f € F (E), the degree of div(f) is zero.

o Given f € F,(F) with a divisor div(f) = >_.n,(F;), >_,n,P = O € E, and vice

versa.

The properties lead to the fact that the set of all divisors of functions forms a subgroup of
Div(E). Moreover, the multiplication and inversion in F,(£) naturally translates across
to the addition and subtraction in Div(E), i.e., for f,g € F,(E), it is obtained div(f-g) =
div(f) + div(g) and div(f/g) = div(f) — div(g). Several examples of the divisor of some

functions are provided below.

Example 2.62. (Divisor of lines) Let E be an elliptic curve and [ and v be rational
functions in F,(E) as defined in Examples P57 and ZZ58. Since [ has zeros at three points
P, @, and —(P + @) with multiplicities 1 and pole at O with multiplicity 3, the divisor

of [ is given as follows:
div(l) = (P) +(Q) + (=(P + Q) — 3(0). (2.68)

If @ = P, it is computed div(l) = (P)+ (P)+ (—(P+P))—3(0) = 2(P)+(—2P) - 3(0).
Since v has zeros at two points R and —R with multiplicities 1 and pole at O with

multiplicity 2,
div(v) = (R) + (—R) — 2(0). (2.69)

If v is regarded as [ with P = R and ) = —P, the divisor of v can also be estimated by
div(l) = (R)+(=R)+(=(R—-R))=3(0) = (R)+(=R)+(0)-3(0) = (R)+(-R)-2(0) =
div(v). As seen in the above, the degree of div(l) and div(v) are exactly zero. It is also
found that P+ Q — (P+ Q) —30 =0 and R— R —-2(0) = 0.
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Example 2.63. (Divisor of a function) Let [ and v be rational functions in F,(F) as
defined in Examples 2207 and of which divisors are div(l) = (P) + (Q) + (—(P +
Q))—3(0) and div(v) = (R)+(—R)—2(0O), respectively. Then, the divisor of the function
l-v=(y—Ax—v)-(x—p)is computed as follows:

div(l - v) = div(l) + div(v)
=(P)+ @)+ (-(P+Q
= (P)+(Q) + (=(P+ Q)+ (R) + (-=R) = 5(0). (2.70)

On the other hand, the divisor of the function [/v = %’“I” is computed as follows:

div(f/v) = div(l) — div(v)
= (P)+ (@) + (=(P+Q)) = 3(0) = (R) + (-R) + 2(0)
= (P)+(Q) + (=(P+ Q) = (R) = (=R) — (0). (2.71)

Particularly, if R = P + @, it is found div(f) = (P) + (Q) + (=(P+ Q)) — (P + Q) —
(—(P+Q))—(0)=(P)+(Q) — (P+Q)—(O). The function /v plays an important
role of pairing computations which are described in the later.

Example 2.64. (Divisor of a function) Let [y, [, and v be line functions in F,(E) with
divisors div(l;) = (P)+ (Q)+ (—R) — 3(0), div(ly) = (P)+ (R)+ (—(P+R)) — 3(0), and
div(v) = (R) + (—R) — 2(O) where P,QQ € E and R = P+ Q) € E, respectively. Then,

the divisor of the function [; - 5 is computed by

diV(ll . lg) = le(ll) + le(lg)
=2(P)+(Q)+ (R)+ (—R)+ (—(P+ R)) — 6(0). (2.72)

The divisor of the function [ - Iy/v is also computed by

div((ly - Io) /v) = div(ly) + div(ly) — div(v)
=2(P) +(Q) + (R) + (=R) + (=(P + R)) = 6(0) — (R) — (- R) +2(0)
=2(P)+(Q)+ (—=(P+ R)) — 4(0). (2.73)

Fortunately, one can illustrate the functions Iy, Iy, v, and (l; - l3)/v over R together
with intersections of these functions and E over R in Figures P74 and 28, respectively.
Figure IR indicates that the function (I - ls)/v is a parabola. It is also possible to find

the correctness of the computed divisor.

The rest of this subsection describes the Weil reciprocity given by André Weil, which

is a heat of the pairings. The theorem comes from a requirement of an evaluation of an
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_RLh
Q Q
P P
—(P+R)
—(P+R)
R\
y - (I -12) /v

Figure 2.7: The lines [y, Iy, v, and elliptic ~ Figure 2.8: The function (I; - [3)/v and E
curve E over R. over R.

element f € F, at a divisor D = ), n;(P;), where the divisors div(f) and D have disjoint

support. Indeed, there is the following definition of the evaluation.
f(0) =T rEye. (2.74)

Then, Weil provided the following theorem.

Theorem 2.65. (Weil reciprocity) Let f,g € F,(E) having disjoint supports. Then,

f(div(g)) = g(div(f)). (2.75)

The following example confirms the correctness of the Weil theorem with the concrete
E and functions in F (£).

Example 2.66. Let E be an elliptic curve E/Fig3 : y*> = 23 + 5. Let f and g be an
element in F,(E) given by f = y — 822 4+ 19 and g = z:g?ﬁgz, respectively. Then,
the divisors of f and ¢ are given by div(f) = (28,11) + (102,2) + (2,42) — 3(O) and
div(g) = (36,38) + (95,76) + (70,18) — 3(O) — (95,27) — (82,80) — (70,18) + 3(O) =

(36,38) + (95,76) — (95,27) — (82,80), respectively. Computing f(div(g)) results in

(38 —82-36+19)-(76 —82-95+19) 82

dila)) — _ %23 2.76
JAV9) = (57 =52 05+ 19) (30 —82. 82+ 19) 9 (2.76)
On the other hand, computing g(div(f)) results in
11-60-28462 | 2-60102462  42-602462 41 21 8T o
g(le(f)) — 11-91-28469 2-91-102+69 42—91-2+69 — 4 59 32 — - 32 (277)

(1760~0+62-0)3 1 33
1-91-0+69-0
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Note that O = (0 : 1 : 0) is substituted in the projective formula of g. As a result, it is
confirmed that f(div(g)) = g(div(f)).

2.4.3 Weil and Tate pairings

This subsection provides basic definitions of the Weil and Tate pairing. Let us assume
that E is an elliptic curve over F,, r is a prime such that r # char(F,) and divides
#E(F,), and k > 1 is the embedding degree with respect to r, which lead to p, C Fu
and Er] C E(F).

Definition 2.67. (The Weil pairing) Let P, Q) € E[r] and let Dp and D be divisors that
have disjoint supports and are linearly equivalent to (P)—(O) and (Q)—(O), respectively.
Then, there exist functions f.p, and f,p, in Fu(E) such that div(f,p,) = rDp and
div(fyp,) = rDq. The Weil pairing is a pairing defined as follows:

ew, : Elr] x E[r] = u, (2.78)
_ fTDP(DQ)
ew, (P, Q) = oo Dr)’ (2.79)

For constructing the Weil pairing, it is needed to find suitable divisors Dp and Dy,.
When taking a point R € E(F,) such that R # P, P — Q,—Q), the desired divisors are
given by Dp = (P)—(O) and Dg = (Q+ R) — (R). Then, the Weil pairing can be defined

as follows:

_ fT’DP<Q + R)
ew,(P,Q) = Toow () - oo (P)

(2.80)

Note that f,p,(O) = 1. Since there are several candidates of Dp and D¢, note that there
exist other constructions of the Weil pairings.

The Weil pairing has the following properties.
e Bilinear: For all P,Q € E[r], ew, (aP,bQ) = ew, (P, Q)% for all a,b € Z.
e Alternating: For all P,Q € E[r], ew, (P, Q) = ew, (Q, P)™".

e Non-degenerate: For all P € E[r], ey, (P,Q) = 1 if and only if @ = O. For all
Q € En], ew,(P,Q) = 1 if and only if P = O.

e Endomorphisms: For all P,Q € E[r], ew.(o(P),p(Q)) = ew. (P, Q)% for any
non-zero endomorphism . (The definition of the degree of ¢ is found in Sect. ZZ52.)

The proof of the fact that the pairing is well-defined and many facts of the properties are
based on the Weil reciprocity.
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For the definition of the Tate pairing, we need to define several quotient groups. Let
rE(F;) be a subgroup of E(F ) defined by rE(F) = {[r|P : P € E(F,;)} and let
E(F)/rE(Fx) be a quotient group which consists of equivalence classes of points in
E(F,) with the equivalence relation P, ~ P, if P, — P, € rE(F,). Let (sz)r be a
subgroup of F;, such that (F7,)" = {a" : a € F},} and let F;/(FF,.)" be a quotient group

which consists of equivalence classes of elements in IF;,C with a; ~ ag if a1 /as € (F;k)”.

Definition 2.68. (The Tate pairing) Let P € E[r] and Q € E(F,) be in any equivalence
class in E(F,)/rE(F). Let Dp and Dg be divisors that have disjoint supports and are
linearly equivalent to (P)— (O) and (Q) — (O), respectively. Then, there exist a functions
frpp € Fu(E) such that div(fyp,) = rDp. The Tate pairing is a pairing defined as

follows:

er,  Blr] x B(F) /rE(Fy) — B /() (2.81)
eT’r(P7 Q) = fer (DQ) (282)

When taking a point R € E(F ) such that R # P, P —Q, —Q, the desired divisors are
given by Dp = (P) — (O) and Dg = (Q + R) — (R), the Tate pairing is given as follows:
. fT‘DP (Q + R)

er,(P,Q) = T o (R) (2.83)

The Tate pairing has the following properties.

e Bilinear: For all P € E[r] and Q € E(F,)/rE(Fu), er,(aP,bQ) = er, (P, Q)™ for
all a,b € Z.

e Non-degenerate: For all P € E[r], er,(P,Q) = 1 if and only if @ = O. For all
Q € E(F,)/rEF ), er,(P,Q) = 1if and only if P = O.

e Endomorphisms: For all P € Efr] and Q € E(F,)/rE(F ), er(p(P),¢(Q)) =
er (P, Q)48 for any non-zero endomorphism ¢. (The definition of the degree of
¢ is found in Sect. ZZa2.)

Unlike the Weil pairing, the Tate pairing does not have the alternating property but it is
not needed in cryptography. However, the Tate pairing has an undesirable property such
that the output value lies on an equivalence class in I} / (sz)r. To be suitable in practice,

the following modified Tate pairing is typically used.

Definition 2.69. (The reduced Tate pairing) Let P,Q, Dp, Dg, and f,p, be as in Defi-

nition Z68. The reduced Tate pairing is a pairing defined as follows:

ér, : E[r] x E(Fp)/rEFx) — iy, (2.84)
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-1

éTr(P’ Q) = fTDP(DQ) o

(2.85)

Exponentiating elements in F; /(F ;‘k)r to the power of (¢* — 1)/r kills r-th powers
and sends the elements to r-th roots of identity in sz. The additional exponentiation is
called the final exponentiation. In PBC, the above definition of the reduced Tate pairing

is typically adopted for efficiency reasons.

2.4.4 Miller’s algorithm

To compute the Weil and Tate pairings, it is required to build functions with the specific
divisors, e.g., frp, € Fu (&) with the divisor div(f,p,) = r(P) — r(O). For constructing
the function, let us define a function f,, p € F,(E) with a point P € E and integer m of

which divisor is given as follows:
div(fn.p) = m(P) — (mP) — (m — 1)(O). (2.86)

If m =r and P € E[r|, since div(f,p) =r(P)— (rP) — (r — 1)(O) =r(P) — (O) — (r —
1)(O) = r(P) —r(O) = div(f.p,), one can define f,p, = f.p. In [Mil04], Miller gave
an algorithm for constructing f,,, p with any m, which is called Miller’s algorithm. The
original Miller’s algorithm is proposed for computing the Weil pairing and is a double-
and-add algorithm governed by a binary representation of m. Currently, an extended
algorithm that is managed by a signed binary representation of m is often employed
[Beu+10; [Ler+13]. The heart of the algorithms is based on the fact that f,, p is possible
to build via lines functions as described below.

For P,Q € Elr], let lpg be a line function in F (£) passing through P and @ and let
vp4q be a vertical line function in F x (£) passing through the point P+ Q. Let us recall
Example 262 that shows the line functions have specific divisors given by div(lpg) =
(P)+(Q)+ (—(P+Q)) = 3(0) and div(vpg) = (P+Q) +(~(P+Q)) —2(O). Then, one
can build a function lpg/vpig of which divisor is given as follows (see Example Z63):

div ( lpq ) =div(lpg) — div(vpig) = (P) + (Q) — (P + Q) — (0). (2.87)

UP+Q

For any integers 14, j, considering a function f; p - f;p - lipjp/ViP+ip,

. lip;
div (fi,P “fip- el )

ViP+jpP

—div(f;.p) + div(f; p) + div (ZP—JP)

Vip+jipP

=i(P) = (iP) = (i = 1)(0) + j(P) = (jP) = (7 — 1)(O)
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+(P)+(GP) = (i +5)P) = (0)
=i+ )(P) = (i +J)P) =+ —1)(0). (2.88)

This leads to the following definition of the function f;4; p.

lipjp

fivjp = fip- fip- (2.89)

Vip+jpP

According to Eq. (288), since div(f; p) = 0, one can set fip = 1 and f_; p = vp'.
Then, fo p, fit1,p, and f;_1 p can be built from the knowledge of f; p and R = iP:

faip = fip- ZR—R7 fivi,p = fip- lR—’Pa ficip = fip- ‘rop vp (2.90)
UR+R UR+P VUR-P
Thus, it is possible to advance from f; p to either f5 p, fit1,p, Or fi—1 p, which is corre-
sponding to the doubling, addition, or subtraction operation of ¢, respectively. This gives
rise to a double-and-add/sub algorithm to reach f,, p in O(log, m) steps governed by a
signed binary representation of m as shown in Algorithm E71. In the algorithm, we look
i-th bit m; of m from the highest bit. After the initializations, we execute the doubling
operation with the addition operation if m; = 1; subtraction operation if m; = —1 for
each bit.
Note that there are several cases that Miller’s algorithm does not correctly work,
however, it does not happen in most cases of F used for practical pairings. The details
are described in [Ogu+12].

2.4.5 Base-field and trace-zero subgroups

In the Tate and Weil pairings, we always work on an elliptic curve E over F, such that
there is an r-torsion subgroup E[r] C E(F,) with a prime r # char(F,;) and embedding
degree k. This subsection introduces two interest subgroups in E[r] for the Tate and Weil

pairings.

Definition 2.70. (Base-field subgroup) Let m, be the Frobenius endomorphism in .
A base-field subgroup is a unique subgroup of E[r| defined over F,, which is defined as

follows:
Gi={P € E[r] : m,(P) = P}. (2.91)

Definition 2.71. (Trace-zero subgroup) Let m, be as in Definition 2Z7. A trace-zero
subgroup is a unique subgroup of E[n] defined over [, which is defined by

Gy ={P € Elr]: my(P) = [¢] P}. (2.92)
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Algorithm 2.1: Miller’s algorithm (extended version).
Input: P,Q € E, m=m2" +my_1271 + - + my2° where [ + 1 is a bit length
of m and m; € {—1,0,1} for 0 < <.

Output: f,, p(Q)
1 If m; =1 then

2 f+« 1,R+ P;

3 else if m; = —1 then

4 [+ up(Q), R+ —P;

5 endif

6 For i from [ — 1 downto 0 do
l

7 f%fQ‘L(@,R%B%R; //DBL
UR+R(Q)

8 If m; =1 then
lr.p(Q) .

9 f«f —— R+ R+ P; //ADD
vpyp(Q)

10 else if m; = —1 then

11 f(—f-w-vgl(Q),ReR—P; //SUB
UR—P(Q)

12 endif

13 endfor

return f;

The subgroups are more often denoted by G; = E|[r] Nker(r, — [1]) and G, = E[r| N
ker(m, — [¢]). In fact, G; and G, are 1- and g-eigenspaces of 7. It has been described that
7, can be denoted by a 2 x 2 matrix with the specific trace tr(m,) =t =q+ 1 — #E(F,)
and determinant det(m,) = ¢. This leads to the characteristic polynomial of 7, is given by
A2 —tA\+¢, which can be written by A?—tA+q = \?—(¢+1)A+¢ = (z—1)(z—¢q) (mod 7).
Then, the eigenvalues of 7, restrict to E[r| are determined by ¢ and 1. From the definition,
it is obvious that G; and G, are corresponding to 1- and g-eigenspaces of 7, respectively.
The above fact also indicates G; X Gy = E|r].

We need to investigate maps between G;, G, and any subgroup G of E[r] such that
G # G1,Gsy. There are two endomorphisms that play important roles in E|r].

Definition 2.72. (Trace map) Let 7, be the Frobenius endomorphism in E. A trace map

is an endomorphism defined as follows:
Tr:E— E,P+m,(P)+ -+ 7 P). (2.93)

Definition 2.73. (Anti-trace map) Let Tr be as in Definition Z72. An anti-trace map is

an endomorphism defined by

alr: E — E, P — [k]P — Tr(P). (2.94)
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When restricting the above maps to E[r] C E(F,), one can see that the trace map
acts as Tr : G — G1, G — G1, and Gy — {O}. The fact that the trace map sends all
points in Gy into O leads to the name of the trace-zero subgroup Gs. In contrast to this,
the anti-trace map acts as aTr : G — Go, G — {O}, and Gy — Go.

As for the existence of the practical computable map between G; and G, it is cor-
responding to the supersingularity of E. If E is supersingular, there is an isomorphism
¢ : Go — Gy which is called a distortion map. Since ¢ is an isomorphism, there is an inverse
map ¢! : G, — G,. However, if F is ordinary, there is no known efficient isomorphism
out of G; or Gs.

2.4.6 Restricting the pairings to the subgroups

For practical applications, it is more convenient to restrict the pairings to the subgroups,
rather than full r-torsion subgroup E[r]. In the following, let G; and G, be the base-field
and trace-zero subgroups of E[r] described in the previous section. Let G be a subgroup
of Elr| such that G # Gy, Gs.

According to Proposition 3.4 in [ENM.JT7], the Weil and reduced Tate pairings can be
generally restricted to G, X G, G x Gy, Go x G, and G X G, are non-degenerate. Besides, it is
trivial that the Weil pairing restricted to G; x Gy or Gy x G; is non-degenerate. Although
the Tate pairing is not as simple as the Weil pairing, if there are no points r2-torsion
subgroup in E(F), which means that & > 1, the Tate pairing restricted to G; x G, or
G> X G is non-degenerate. Particularly, the reduced Tate pairing restricted to G; x G
leads to remove the conditions of the divisors having disjoint supports and allows us the

following definition:

er, - G1 X Ga = iy, (2.95)

-1

er.(P,Q) = frp(Q) 7, (2.96)

where f,.p is a function in F,(F) with the divisor div(f, p) = r(P) — r(O). Since the
original definition of the Tate pairings involves evaluation of f, p at two points in E,
it is expected that the restriction results in reducing the computational complexity of
the pairing. In order to reduce the more computational complexity, Hess et al. provided
a variant of the above reduced Tate pairings in [HSVO6G]. They observed that ¢t — 1 =
¢ (mod r) where t is the Frobenius trace results in 7,(Q) = [¢]Q = [t — 1]Q for Q € G
and found that it leads to the following definition of the pairing, which is called the ate

pairing.

Definition 2.74. (Ate pairing) Let ¢ be the Frobenius trace and let T'=1¢ — 1. The ate
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pairing is a pairing defined as follows:

€ar 1 G2 X G1 — Uy, (2.97)

1

ear(Q, P) = fro(P)" ", (2.98)

where frq is a function in Fx (E) with the divisor div(frq) = T(Q) — (TQ) — (T —1)(O).

The important fact is that the ate pairing requires log, 1" steps of Miller’s algorithm for
computing fro(P), instead of log, r for f,. p(Q)). From Hasse’s theorem, log, T' < log, r
is typically satisfied for the practical pairings. The ate pairing corresponding to T' =
g (mod r) is one of the special cases of ate-like pairings which are obtained by taking
any power 7" = ¢' (mod r). More generally, in [Wer(9], Vercauteren proposed an ate-like

pairing constructed by any linear combination of >, ¢;¢" = 0 (mod r) as follows:

Definition 2.75. (Ate-like pairing) Let &' = ¢(k) with Euler’s totient function ¢ and let
A= Vet with ¢; € Z such that A\ = mr and mkgF! # qkT—_l S Vi (mod )

with some integer m. Then, an ate-like pairing is defined as follows:

€a., : G2 X G1 = [y, (2.99)

= g - lSi 1Q,¢iq" (P) "
6aci(Q7P) = (H?:()l fcz'7Q(P)q . Hf:()? ﬁTPQ)?) , (2.100)

where s; = Zf;l c;q? and Iy, 0 ciq@ and vg,q(P) are line function in Fy«(F) with the

divisors div(ly,, 0 cigiq) = (5i1Q) + (ciq' Q) + (= (si31 +¢i¢")Q) — 3(0) and div(vy,q(P)) =
(5:Q) + (—5:Q) — 2(0O), respectively.

Then, one can find A = Zf;)l ¢;q* which generates the ate-like pairings with one of the
smallest numbers of the steps of Miller’s algorithm. Indeed, the number of steps can be

fixed at least log, r/¢(k). Such ate-like pairing is especially called the optimal-ate pairing.

2.4.7 Use of twists

Let E be an elliptic curve over F, such that G; x G, = Er] C E(F). Since G, is defined
over [F;, it admits an efficient representation. This subsection describes G, which is defined
over [F» also admits an efficient representation on a twist £’ of I.

Let d be a factor of k such that d = 1, 2, 3, 4, or 6. One can find a twist £’ of degree d
of £ defined over FF i/« with an isomorphism ¢q : £’ — E over Fx. The more important
fact is that one can also find a unique twist £’ such that r | #E(FF /a), which is called
the correct twist in this thesis. Then, since £’ and E are isomorphic over F ., there is an
r-torsion subgroup E'[r] C E'(F ). Furthermore, there are subgroups G| and G; of E'[r]
which are preimages of G; and Gy, i.e., G| = ¢;1(g1) and G = gb;l(gg), respectively. In
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fact, Gy is a unique subgroup of £'[r] such that Gy = E'[r]N E(FF x/a) which is defined over
a subfield F r/a of Fyx,
G1 — G; and G — G are group isomorphisms, G and G} have the similar properties of
Gy and Gy described in Sect. P43,

The above gives rise to the ate pairing moved entirely on E’ given as follows:

however, G is a unique subgroup of E'[r] defined over F .. Since

Car + Gy X GI = iy, (2.101)
k_
€;T<Q/7 P,) = f},Q’(P/)pTl7 (2102)

where f7. o, is a function in F g« (E') with the divisor div(f7. o) = T(Q")—(TQ")—(T-1)(O")
where ' is the point on E’ at infinity. Although the ate pairings on E and E’ are typically
not distinguished, note that e,,.(Q, P) and €],_(Q', P') do not always take the same value
even though there are relations P’ = ¢;'(P) and Q' = ¢;'(Q). Indeed, Costello et
al. provided the following theorem [CLNTQ].

Theorem 2.76. Let E be an elliptic curve over F, given by y? = 2° + ax + b, let £’ be a
correct twist of degree d of E, and let ¢y : E' — E. For P € Gy, Q € Gy, P' = ¢7'(P) € Gj,

and Q' = ¢;'(Q) € Gb,

eaT<Q7 P)gcd(dﬁ) = ¢

ar

(Q', P'yged(ds), (2.103)

Since the fields in which the groups G; and G} are defined are smaller than these of G
and G}, respectively, the ate pairings are often regarded as G5 x G; — pu, which is defined
by either of the following.

ar (64(Q), P) = Froman(P)' 7 (2.104)

¢ (@671 (P) = fho (67 (P)" (2.105)

To make the movement of the curves easily and enable efficient arithmetics, it is often
used a tower of extension fields constructed by quotient rings by binomial ideals as follows
[BSTO]:

IZ

IIZ

]FP(Z)d = [x]/<xd - C) = Fp(Z)(a)a
{ F o)/ (@ — @) =T (B), (2.106)

p(2)*

where « and 3 are elements in F,,y« and IF,,,)x such that a® = cand f¥/? = a, respectively.

Note that there are many optlmlzatlons related to the twist corresponding to its degree,
e.g., the twist enables the smooth application of the denominator elimination techniques
[Bar+02; Lin+08; CLNT0; ZIL12]. Particularly, if the curve admits the quadratic twist, all

values of vertical line functions that appeared in Miller’s algorithm can be ignored since
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the final exponentiation by (¢* — 1)/r brings these values for the identity in F.

2.4.8 Types of pairings

The differences in the restrictions give rise to three types of pairings, which are introduced
by Galbraith et al. in [GPS08]. Actually, there are four types in the literature; Galbraith et
al. originally presented three, but a fourth type was added soon after by Shacham [Sha(6],

however, the fourth type is not discussed. The details of the types are summarized below.

e Type 1: The pairings G; x Gy — G with G; = Go, i.e., there are G; — G5 and
Gy — Gq; Suppose that E is a supersingular curve such that there is a distortion
map ¢ : Go — Gy. Then, the Weil and Tate pairings given by ey, (P, ¢(P)) and
er. (P, ¢(P)) give rise to the pairings restricted to G; x Gy, which are classified into
this type.

e Type 2: The pairings G; X Gy — Gr with G| # G4 but an efficiently computable
isomorphism G5 — G is known, while none is known in the other direction; If
is an ordinary elliptic curve, the Weil and Tate pairings restricted to G; x G (or
G2 X G) in this type since there is Tr : G — G; (or aTr : G — Gy) but there is no
known efficient map G; — G (or Gy — G).

e Type 3: The pairings G; x Gy — Gp with G; # G5 and no efficiently computable
isomorphism is known between G; and G, in either direction; If E is an ordinary
elliptic curve, the Weil and Tate pairings restricted to G; x Gy or G, x G classified
into this type since there are known efficient map out of G; and G, in E[r]. The
ate pairings restricted to Gy x Gy or G5 x G, which is often regarded G x Gy, also
classified into this type.

It is known that the properties of the different types of pairings provide subtle dif-
ferences to protocols and their proofs. The type 1 pairings were used in the early age of
pairing-based protocols, they have gradually been discarded in favor of type 3 pairings.
In fact, the state-of-the-art implementations of pairings take place on the ordinary curves
that assume the type 3 pairings. Moreover, Chatterjee and Menezes [CMT1] argued that
there are no known protocols and proofs of security that cannot be translated into the
type 3 setting. Thus, it is currently recommended to design the protocols with the type

3 pairings.

2.4.9 Computational problems

This subsection provides computational difficult problems related to the pairings. Al-

though the problems related to the pairings are still often discussed with type 1 settings,



2.4. Pairings on elliptic curves 5%)

let us focus on type 2 or 3 settings. Many pairing-based protocols are based on the

difficulty of one or both of the following problems.

Definition 2.77. (Bilinear Diffie-Hellman problem (BDHP)) Given P,zP,yP € G; and
Q,xQ, 2Q € Gy with z,y, z € Z, compute e(P, Q)"* € Gr.

Definition 2.78. (Bilinear decisional Diffie-Hellman problem (BDDHP)) Given P, 2P, yP €
Gy, Q,z2Q,2Q) € Gy with z,y,2 € Z, and g € Gr, determine whether or not g =
e(P,Q)™* € Gr.

If the BDHP is solved, the BDDHP can be broken. Moreover, the BDHP is no harder
than either the ECDHP in G; and G2 or DHP in Gyp; If the ECDHP in G (or Gs) is
solved, one can solve the BDHP by computing zyP (or zz@Q)) and thus e(zyP, 2Q) (or
e(yP,xzQ)) is obtained; If the DHP in Gr is solved, one can also solve the BDHP by
computing g = e(P,Q), ¢*¥ = e(yP,zQ), and ¢* = e(P,2Q) and thus ¢g*¥* is obtained.
Since the ECDHP and DHP are solved if the ECDLP and DLP are solved, respectively,
the security of the pairings depends on the difficulty of solving both the ECDLP in G,
and (G5, and the DLP in Gr.

Besides, there is a basic calculation problem peculiar to the pairing operations.

Definition 2.79. (Pairing inverse problem) Let e : G; X Go — G be a pairing. There

are the following problems related to the pairing inversion problems.

1. (The fixed argument pairing inversion 1 problem (FAPI-1P)) Given @ € G5 and
g € Gp, compute P € Gy such that e(P,Q) = g.

2. (The fixed argument pairing inversion 2 problem (FAPI-2P)) Given P € G; and
g € Gr, compute ) € G, such that e(P,Q) = g.

3. (The generalized pairing inversion problem (GPIP)) Given g € G, compute P € G
and @ € Gy such that e(P,Q) = g.

If the FAPI-1 and FAPI-2 problems are solved, one can solve all the ECDHP on G,
and Gy and DLP on Gp. Conversely, assuming the difficulties of the ECDHP and DHP
problems, the difficulty of the FAPI-1 and FAPI-2 problems are guaranteed. At this time,
there are no known special curves that give rise to efficient computation of the GPIP
which is typically easier than FAPI-1 and FAPI-2 problems.

2.4.10 Pairing-friendly elliptic curves

For secure and efficient pairings, it is needed to carefully choose an elliptic curve in which
the pairing is defined. To guarantee the security of the pairings, the DLPs should be
infeasible in both Gy,Gy C Elr| and Gy C F» having the common order r. Thus, it is
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necessary to set the appropriate sizes of the r and ¢* that can achieve the certain security
level; for the 128-bit security level, it is suggested to fix log, 7 > 256 and log, ¢* > 5000
around [Gumi20]. As discussed in Sects. 223 and 2239, GG; and G5 currently obtain much
greater security per bit than G since the best-known attacks for the ECDLP in G and
G5 have exponential complexity, however, that of the DLP in G have sub-exponential
complexity. Moreover, since the attacks for the DLP in G are improved in recent years,
we have to pay much more attention to the settings of Gr than that of G; and G,.

In addition to this, to guarantee the efficiency of the pairings, it is important that the
order r is a large factor of #FE(F,) = ¢ +1 —t. To discuss this idea conveniently, let us

define a quantity that indicates the ratio of the sizes of ¢ and r.

B log, q

- 2.1
o, (2.107)

which is called the p-value. Since it is preferred that #E(F,) = g+ 1 —t involves the large
factor r, the ideal case is considered to be p =~ 1. Note that the size of the embedding
degree k with respect to r is entirely determined by p and the choice of the bit sizes of r
and ¢*, since log, ¢*/log, 7 = pk.

Based on the above facts, Freeman et al. gave the following definition of the elliptic

curves suitable for the pairings [FSTT0]:

Definition 2.80. (Pairing-friendly elliptic curve) An elliptic curve E is pairing-friendly

if the following conditions are satisfied:
1. The p-value satisfies 1 < p < 2.
2. The embedding degree k with respect to r satisfies k < log, /8.

Notice that the pairing-friendly elliptic curves are very special since randomly found
E typically have k ~ q.

One can heuristically find the pairing-friendly curves with p =~ 2 by the Cocks-Pinch
method of which algorithm is presented in [ESTT0]. The pairing-friendly curves with p < 2
can also be found by the Brezing-Weng methods [BW05]. Rather than this method,
it is more often used construction methods of the pairing-friendly curves based on the
parameterization of ¢, r, and ¢ by the polynomials making the curves with the favorite

properties which are defined as follows [FSTT0]:

Definition 2.81. (Family of pairing-friendly elliptic curves) Let ¢(z), r(z), and t(x) be
non-zero polynomials in Q[z], k£ be a positive integer, and D be a square-free integers.
The triple (q(z),r(x),t(x)) is referred to as family of pairing-friendly elliptic curve with

embedding degree k and CM discriminant D if the following conditions are satisfied:
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1. q(x) = p(x)® for some i > 1 and p(x) that represent primes. (It is typically chosen
< i

2. r(z) is non-constant, irreducible, integer-valued, i.e., r(x¢) € Z for all zy € Z, and

has positive-leading coefficients.
3. r(z) divides ®y(t(z) — 1) where ®y, is the k-th cyclotomic polynomial.
4. r(z) divides ¢(z) + 1 — t(z)
5. The equation Dy* = 4q(x) — t(z)? in (z,y) has infinitely many integer solutions.

The family is ordinary if ged(t(z),q(z)) = 1 and is also complete if y is denoted by
y(z) € Q[z]. In the case of family, the p-value of the family is defined by

_ degq(x)

p= degr(2)’ (2.108)

instead of the typical definition in Eq. (2204). There are families of pairing-friendly
curves, such that Miyaji-Nakabayashi-Takano (MNT) family [MNTOT], Barreto-Lynn-
Scott (BLS) family [BLS0?], Barreto-Naehrig (BN) family [BN05|, Kachisa-Schaefer-Scott
(KSS) family [KSSO08], and many others [FSTT0].

Note that it is required to find an integer seed z making p = p(z) and r = r(z) being

primes for specifying the curves. Then, there is an elliptic curve E/Fy.) such that

e The group order is given by n(z) = #E(Fy)) = q(2) + 1 — t(z), which is divisible
by r(z).

e The embedding degree with respect to r(z) is k, i.e., k is the minimal integer satis-
fying 7(2) | (¢(2)* — 1).

Then, there exist the correct twist E'/F,,)r/a of degree d of E such that r(z) | n'(2) =
#E'(F,yr/a) and twisting isomorphism ¢q : £ — E defined over Fy.yx. It is typically
exploited the pairings defined over such E or E’ for practical protocol implementation.

The following example presents the curve E/Fy.) which is generated by the BN family.

Example 2.82. (BN curve) Let p(z), r(x), t(x) be the polynomials in Q[x] defined as

follows:

p(x) = 36z* + 362° + 242? + 62 + 1,
r(r) = 36x*+ 362+ 182% + 6z + 1, (2.109)
t(x) = 6x*+1.

Then, (p(x),r(x),t(x)) parametrizes a family of pairing-friendly elliptic curves with k =
12, D = 3, and p = 1. A curve in the BN family is called the BN curve. As a
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toy example, the seed zo = 1 generates p(zg) = 103, r(zo) = 97, t(zo) = 7, which
leads to the BN curve given by E/F,,,) : y* = 2* 4+ 5 such that r(z¢) = 97 divides
#E (Fp(wo)) = p(wo) +1—t(wg) =103+ 1—7 =97 and #F . = plrg)f—1=972-1=
1425760886846178945447840 = 2°-32.5-7-13-17-19-37-79-97 - 1061 - 3571 - 31357.

Actually, we already have seen this curve in Figure IZ3.

2.5 Isogenies between elliptic curves

This section provides the mathematical preliminaries of the isogenies which leads to the
isogeny problems which are hard to compute even though the quantum computers are

applied. The definition of the isogenies is referred to [Sil09].

2.5.1 Isgenies

This subsection describes maps between elliptic curves, which are called isogenies.

Definition 2.83. (Isogeny) Let E and E be elliptic curves. Let us define that an isogeny

from E to E is a morphism given as follows:

¢ : E — E satisfying ¢(O) = O. (2.110)

Note that this thesis considers a zero morphism such that ¢(E) = {O} as an isogeny.
This zero morphism is called the zero isogeny; otherwise, non-zero isogeny. If there exists
a non-zero isogeny from E to E, we say F and E are isogenous. If there exist non-zero
isogenies ¢ : F — E and ¢ : E — E such that $(p(P)) = P for any P € E, then F and
E are isomorphic, i.e., j(E) = j(E). The isogenies ¢ and ¢ are endomorphisms if £ = E.
Furthermore, if ¢ is an isomorphism and E = E, ¢ is called an automorphism.

The set of all isogenies from E and E are denoted as follows:
Hom(E, E) = {isogenies E — E}. (2.111)

Then, Hom(E, E) form an abelian group under an additive law, i.e., for ¢, ¢ € Hom(E, E),
¢+ € Hom(E, E) is defined by (¢ + )P = @(P) + 1 (P), where the right side of +
is the point addition. Note that the zero isogeny [0] : E — E, P +— 0P plays a role
of the identity. Besides, if E = E, End(E) = Hom(E, E) also forms a monoid under a
multiplicative law - defined by (¢ - ¢)(P) = ¢(¢(P)) with the identity [1] : £ — E, P —
1P. This means that End(F) form a ring under the above addition and multiplication.
The ring is called the endomorphism ring of E. A set of invertible elements of End(E)
forms the automorphism group of F, which is denoted by Aut(FE).
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2.5.2 A standard form for isogenies

For easily understanding, this subsection considers the isogenies from E and E in the
affine space. Note that we actually have to work on the projective space for the point
O that cannot express in the affine space. If E and E are defined over F ¢» & NON-Zero

isogeny can be defined by an affine rational map

p(z,y) = (r(e,y),ra(2,9)) (2.112)

where 71 (z,y), 72(z,y) are rational functions defined over F,. If E and E are elliptic
curves over [F, given by short Weierstrass equations, a non-zero isogeny from E to E is
defined by an affine map

ez, y) = (W) —x)y) , (2.113)

where u(z),v(z), s(z),t(x) € F,[z] such that u(z) and v(x) have no common factor over

~

[F,, and s(z) and t(x) are too. The form of the isogeny given by Eq. (E113) is a standard
form. Let us define two important invariants of the non-zero isogeny that can be easily
determined when it is in this form. For the isogeny from F; to E5 given by the standard
form, let us define the degree of ¢ as deg ¢ = max(degu,degv). An isogeny of degree
[ is said to be l-isogeny. If there exists an l-isogeny from E to E, we say E and E are
[-isogenous. Besides, ¢ is called separable if the derivative of % is non-zero; otherwise,
it is called wnseparable. If the isogeny ¢ is separable, then deg ¢ = #kerp.

There are examples of isogenies, which we already have seen in Sects. 2234 and 2233,

respectively.

Example 2.84. (Point multiplication endomorphism) Let E : y* = 2% + ax + b be
an elliptic curve over F,. Then, the point multiplication endomorphism [m] : E —
E,(z,y) — m(z,y) is an isogeny. If m # 0 and m # char(F,), the isogeny [m] is
separable and deg[m] = m? (see Corollary 6.4. in [Sil(9]), which is related to the fact that
#FE[m] = m?. For some small m, the standard form, separability, and degree of isogenies

are obtained as follows:

e m = —1: The image of (x,y) under [—1] is given by [—1](z,y) = (2, —y) in the
standard form. It is separable and has degree deg[—1] = 1.

e m = 2: The image of (x,y) under [2] is given by [2](z,y) = (ri(z,y),m2(x,y))

= (\? =2z, \(z —r1(z,y)) —y) where A\ = 3””22;“ (see Eq. (2238)). Then, r(z,y) and

ro(z,y) can be modified as follows:

(32% 4+ a)? 9z + 6az® + a? z* — 2az? — 8bx + a?

=N =" " 2= —2r =
ri(z,y) v e v 4(z3 4+ ax + b) v 4(z3 4 ax + b)

?
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322 +a)y (3x* + 6ax?® + 12bx — a?
i) = Ao = (o) -y = 22 )=

292 A(23 + ax +b)
2%+ bax! +20b2® — 5a*x? — dabx — 8b° — a?
B 8(x3 + ax +b)

Y.

Thus, the standard form of [2] is given by

x*—2ax%—8bx+a® z8+5ax*+20bx®—5a?x?—4abr—8b%—a?
4(z3+ax+b) 8(z3+ax+b) v

2 = (

It is separable since = (r1(z,y)) # 0 in F, and has deg[2] = 4.

Example 2.85. (Frobenius endomorphism) Let E : y? = 2® 4+ ax + b be an elliptic curve
over F,. The Frobenius endomorphism 7, : £ — E, (x,y) — (2%,y?) is an isogeny. Since
gl = yily = ()5 y = (23 + ax + b)%ly, the standard form is given by 7(x,y) =
(29, (2® + ax + b)%ly). According to the form, it is found degm, = ¢. Besides, m, is

inseparable since - (27) = gz~' = 0 in F,.

Example 2.86. (Twisting isomorphism) Let E : y* = 2 4+ b be an elliptic curve over F,.
Let E’ be a twist of degree 2 of E given by y* = 23 + a/§? + b/§> where § is quadratic
non-residue in F;. Then, a twisting isomorphism ¢, : B/ — E, (z,y) — (6z,0"?y) over
[F,2 is an isogeny which already has a standard form. According to the form, it is found

deg ¢ = 1. Besides, 7, is inseparable since - (dz) =6 in F.

2.5.3 Vélu’s formula

For a given curve E and subgroup G, there is a unique separable isogeny ¢ : E — E
such that E is isomorphic to a quotient group F /G. Then, ¢ is an #G-isogeny since
ker(¢) = G. In [VeI7T], Vélu describes how to explicitly write down equations for the
curve E such that £ =~ F /G and isogeny ¢ : E — E. In the context, an explicit formula

for 2-isogenies is given as follows:

Theorem 2.87. (2-isogeny) Let E be an elliptic curve over F, given by y* = 2%+ ax +b.
Let G be a group of E of order 2 defined by G = {(z¢,0)) where z, € F, be a root of

23 + axr +b. Assuming t = 322 + a and w = zt, the following rational map

olz,y) = < (2.114)

22 —xor +t (v —10)% — 1
Y 2 y )
T — (x — )

is a separable isogeny from E to E : y? = 2% + ax + b where @ = a — 5t and b = b — Tw
such that £ = F/G.

Example 2.88. (2-isogeny) Let F : y* = 23—z be an elliptic curve over F, where a = —1
and b = 0. Then, roots of 2> — x are 0, 1, and —1. When taking =y = 1, it is obtained
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t=3i2+a=2, w= 1zt =2, and 2-isogeny ¢ given by

> —x+2 22 -2 -1
_ _ 2.115
e(z,y) ( T ,x2_2x+1y) (2.115)
It is also found @ = a — 5t = —11 and b = b — Tw = —14 and thus the curve equation is

E:y?=2%— 11z — 14.
Besides, an explicit formula for [-isogenies with odd [ is given as follows:

Theorem 2.89. (l-isogeny with odd number [) Let E be an elliptic curve given by y? =
2% + ax + b defined over F,. Let G be a subgroup of F of odd order. For a generator

Q = (:L‘Q7yQ) 7é O of G, let

to = 3x2Q +a,ug = Zyé,wQ = ug + tgrq, (2.116)
t= > tguw= >  wg, (2.117)
QeG,Q#0 QEG,Q#0
tg uQ
= ) 2.118
=t 3 ($—$Q+($—$Q)2> (2118)
QeG,Q#0
Then, the rational map
d
o) = (rlo). ooy, (2.119)

is a separable isogeny from E to E : y? = 23 + ax + b where @ = a — 5t and b = b — Tw
such that £ = F/G.

If I = #G is odd, any point () # O in G end up to a negation point —Q = (zg, —yg)
in G. Since the formulas of ¢, w, and r(z) only depend on z-coordinates z, it is enough

to sum over the half of the points in G and double the result.

Example 2.90. (3-isogeny) Let F : y?> = 23 + 1 be an elliptic curve over F, where a = 0
and b = 1. Let G be a subgroup of E of order 3 which consists by O, (0, 1), and (0, —1).
When taking Q = (0,1),tg =0, ug = 2, wg =2, t =0, w =4 and r(z) = x+4/2* which
leads to ZLr(z) =1 —8/2%. Thus, the formula of 3-isogeny ¢ is given by

p(z,y) = (w + %,y - 8—y> : (2.120)

Since @ = a—5t = 0 and b = b—Tw = —27 and thus the curve equation is F : y? = 23 —27.

An isogeny of composite degrees can always be decomposed into a sequence of isogenies

of prime degrees. This means that if an isogeny has degree 17*(5? - - - {* with primes [; and
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positive integers e; for 1 < i < n, the isogeny is decomposed into e; [1-isogenies, ey [o-
isogenies, ..., and e, l,-isogenies. Particularly, let us consider the case of [*-isogeny where
[ and e are positive integers with small [. Let G be a subgroup of F of order [ and R be
a generator of G, i.e., G = (R). Then, [*-isogeny ¢ : E — E = E/G is decomposed into e
isogenies of degree [ and is computed by initializing Fy = FE and Ry = R and constructing

the curve E;,; and isogeny ¢; for 0 < i < e as follows [IDETI]:
B = Ei/<[le_i_l]Rz'>a @i+ By — Eip1, Riyr = i(R). (2.121)

This results in ¢ = ¢,_10---0p; 0@y where o is a symbol of composite mapping and ¢; for
0 <17 < e—1 are l-isogenies. Note that the large-degree isogenies can be accelerated by
finding an optimal path of a directed acyclic graph as described in Sect. 4.2.2 of [TDFETII).
The optimal path is determined by the relative costs of point multiplication by [ and

[-isogeny evaluation.

2.5.4 Isogeny graphs

An isogeny graph is often used to discuss the security of the protocols based on the
isogeny. The isogeny graph has nodes of the j-invariant of isogenous elliptic curves of an
elliptic curve E over [F;, which are elements in F,. If £/ and E are isogenous over Fy,
i.e., if there exists an isogeny ¢ : E — E, the nodes j(E) and j(E) are connected by an
edge. Since isogenous elliptic curves of E is supersingular if and only if F is supersingular,
there appear ordinary and supersingular isogeny graphs. For the [-isogeny graph which
is considered the I-isogenous curves of E with a small prime [ such that [ # p = char(F,),
there are structural differences between the graphs; the supersingular [-isogeny graph is

one of Ramanujan graphs which have attractive properties in cryptography.

2.5.5 Computational problems

This subsection presents basic computational problems of the isogenies. Since the su-
persingular isogeny DH (SIDH) key exchange is not so simpler than DH/ECDH, this
subsection does not provide the problems related to SIDH. Note that the details of the
problems are described in Sect. b22Z3 after the description of the details of the steps of
SIDH. The following is a problem that is the template for the whole subject.

Definition 2.91. (General isogeny problem) Given z,y € F,, find an isogeny ¢ : E — F

such that j(E) = x and j(E) = y.

This is equivalent to finding an isogeny ¢ : E — E for given E and E over F,. A

variant of this problem is when the degree of ¢ is given.
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Table 2.4: The running time for solving the computational problems.

’ Problems H Classical \ Quantum \
DLP Sub-exponential Polynomial
ECDLP Exponential Polynomial
Isogeny Ordinary Exponential Sub-exponential
problem | Supersingular Exponential Exponential

Definition 2.92. ([°-isogeny problem) Given z,y € F, and positive integer /¢, compute
an [°-isogeny ¢ : E — E such that j(E) = z and j(E) = y.

The isogeny problems are classified into supersingular and ordinary cases, which are
corresponding to the differences of the isogeny graphs. Currently, the best generic algo-
rithm for finding a path between two vertices in the isogeny graph is given by Galbraith
[Gal99], which is a meet-in-the-middle strategy. In the supersingular case, Delfs and
Galbraith improved the algorithm to only use a constant amount of memory in [DGI6].

In general, the complexity for executing the algorithms for solving the isogeny problems
would be exponential in the input size. In certain special cases that are used for practical
applications such as SIDH key exchange, there is a compact description of the path.
For such cases of the problems, the algorithm typically requires the number of steps
O(y/q) and O(y/q) for solving the supersingular and ordinary isogeny problems with a
classical computer, respectively. Furthermore, even though the algorithm is executed with
a quantum computer, it requires the number of steps O(y/q) for the supersingular isogeny
problems having the exponential running time, however, it is sub-exponential time for the
ordinary case. Indeed, using the form of Eq. (Z28), the algorithm takes L,(1/2,v/3/2)

for solving the ordinary case.

2.6 Chapter summary

This chapter described the fundamentals of the materials of the finite fields, elliptic curves,
pairings, and isogenies used for cryptography. The important facts of the materials are
summarized in the following descriptions. Table 24 also summarizes the computational

problems and running time for solving the problems.

e A finite field is a set that consists of finite elements in which addition + and mul-
tiplication are defined. A prime field IF, is the smallest subgroups of a field F,. If
g =p™ (m > 1), F, is an extension field of I, and is isomorphic to a quotient
ring F,[x]/(f(x)) with an irreducible polynomial f(x) of degree m in a polynomial
ring IF,[xz]. There is a computational problem called the discrete logarithm problem
(DLP) in a multiplicative group of F,. For solving the problem, it is required the

sub-exponential running time by using the variant of the number field sieve (NFS).
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e An elliptic curve defined over F, with a characteristic p > 3 is given by the short
Weierstrass affine equation y? = 2% + ax + b. Note that the equation drop out a
point O = (0 : 1 :0) in projective space into infinity. For the set E of all rational
points on the elliptic curve, there is a law & based on the chord-and-tangent rule.
Then, E forms a group under &. There is a computational problem called the
elliptic curve discrete logarithm problem (ECDLP) in an F,-rational point group
E(F,). Unlike the DLP in F,, the most efficient algorithm for solving ECDLP, i.e.,
Pollard’s rho algorithm, requires the exponential running time. This means that
there is an advantage to using the elliptic curves for cryptography in terms of the

size of the security parameter q.

e A pairing on elliptic curve E is a map e : G; X Gy — G where G and G4 are sub-
groups of r-torsion subgroup of E and G is a multiplicative subgroup of sz of order
r. For P € G1 and @ € G, the ate pairing is defined by e(Q, P) = fT’Q(P)(qk’l)/T €
G where fr.o(P) is a rational function with the divisor div(frg) =70 — (T'Q) —
(I'—1)(O) and T =t — 1 with the Frobenius trace t. The value frg(P) is com-
puted by Miller’s algorithm and then the final exponentiation by (¢* — 1)/r in F
is applied. The security of the pairing-based protocols is based on the difficulties of
the ECDLP in G; and G5, and DLP in Gr. To balance the security and efficiency,
the families of pairing-friendly elliptic curves, e.g., the BLS, BN, and KSS families,
are typically adopted.

e For two elliptic curves E and E over F,, an isogeny is a morphism ¢ : & — E such
that ¢(©) = O. If the curves are Weierstrass form, the isogeny is written by the
standard form which gives rise to easy determination of the degree and separability.
For E and cyclic subgroup G € E of order [, there exists an isogeny ¢ : £ — E
of degree [ such that £ = E/G and ker(¢) = G. Then, the equations of E and ¢
are determined by Vélu’s formula. It is difficult to find an isogeny F — F from
E and E, which is also known as the isogeny problem. Although solving the DLP
and ECDLP only require the polynomial time with the quantum computer, solving
the ordinary and supersingular isogeny problems requires the sub-exponential and
exponential running times by the meet-in-middle attack, respectively. Thus, it is

expected that the isogenies are used for post-quantum cryptography.



Chapter 3

Final Exponentiation for Fast

Pairings

Pairings on elliptic curves are important tools for realizing innovative protocols such as
searchable encryption and attribute-based encryption for secure database systems in cloud
service. This chapter presents research for optimizing a computation of pairing, especially,
a step of the final exponentiation, which is introduced in Sect. I=3. In the following, the

background and motivation of this research are described.

3.1 Background and motivation

Pairings are typically carried out by two steps, which are the Miller loop and final ex-
ponentiation for practical reasons. The final exponentiation is a powering an output of
the Miller loop to the specific exponent in a finite field of order ¢* to bring the output
in an equivalence class to be the unique value. However, there is a problem that the
final exponentiation becomes more of a computational bottleneck with a large embedding
degree k. To achieve fact final exponentiation, the author tries to optimize that.

Before describing the details, the previous optimizations techniques are briefly de-
scribed. The techniques are typically based on the p-adic expansion of d or its multiple d’
of d that allows us to use the Frobenius endomorphism with low computational complex-
ity. In [ScoF09], Scott et al. gave a systematic method to find short vectorial addition
chains to compute the final exponentiation. In [FCKRHTI], Fuentes et al. presented a
lattice-based method for determining d’ which results in an efficient final exponentiation.
It is considered that the lattice-based method provides one of the most efficient final
exponentiation algorithms for many curves.

The author works on the following topic.

e The author focuses on the BLS family of pairing-friendly elliptic curves with £ = 15

which is suggested for the pairings at the 128-bit security level in the recent works

65



3.1. Background and motivation 66

[EMP20; BEMGTY]. In [EMP20], Fouotsa et al. found one of the best multiple d’
by using the lattice-based method and provided the steps for computing the final
exponentiation. Thus, the author presents another computation method with a
new multiple of the exponent which results in more efficient final exponentiation
than the previous method [FMP20]. Indeed, it is obtained by using the property
of the polynomial parameterization of ¢ for the BLS family, which is also used for

expanding the exponent for the BLS curves with k& = 27 in [ZLI12] by Zhang et al.

After the publication of the first work, in [HHT20], Hayashida et al. showed the
generalization of Zhang et al.’s method [ZLI2] for any family of curves. Their method
exactly gives rise to the same decomposition as the proposed method for the BLS family
of the method for the BLS curves with any k is published by the author, which is also

described together with the first work. The author also works on the following two topics.

e For the pairing at the 128-bit security level, in [Gii20], Guillevic provided a shortlist
of the curves with k£ = 10, 11,12, 13, 14, and 16 that have a resistance to the STNF'S.
Since it had been considered that the pairings on curves with k& of multiple of 4 or
6 are the best choices of the pairings, there is not enough research of the pairings
on curves with a prime k£ or k of multiple of 2 or 3. Particularly, for the curves
with k£ = 10, 11, 13, and 14, the algorithms for computing the final exponentiations
have not been provided. Thus, the author provides them by using the lattice-
based method [FCKRHTI]. The author also applies the latest work [HHT20] for the
curves and compares the calculation costs of the final exponentiations between the

two methods.

e Although the lattice-based method [FCKRHII] might produce one of the most effi-
cient algorithms for computing the final exponentiation, it involves several heuristic
can generate the algorithm without not so much effort, however, it is not effective
for the majority of the families of curves having the property degt¢ > 1. Thus, the
author establishes similar methods that are especially effective for such families of
curves. Since the importance of curves with a prime k£ has been notably increased
for STNFS-secure pairing, the author focuses on the specific family of curves with
any prime k of £ = 1 (mod 6) and proposes the decomposition of the multiple d’
for that family.

Notation. The calculation costs of the exponentiation by s, multiplication, squaring,
cubing, inversion, and p’-th power Frobenius endomorphism in sz are denoted as uj,

Mg, Sk, Ck, ik, and f}, respectively. The calculation costs of the inversion, squaring, and
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cubing in a subgroup of F7, of order O (p) where @ is the cyclotomic polynomial are
denoted as iy, Sci, and c., respectively.

Organization. Sect. B2 reviews the basic facts of the final exponentiation. Sects. B33,
B4, and B3 describe the first, second, and third works of the final exponentiation, respec-

tively. Finally, the contributions are summarized in Sect. 8.

3.2 Review of the final exponentiation

This section describes the cyclotomic polynomial and reviews the basic structure of the fi-

nal exponentiation. Particularly, this section reviews two related methods for constructing

3.2.1 Cyclotomic polynomial

This subsection introduces cyclotomic polynomials which play an important role in the
final exponentiation. Before providing the description, Fuler’s totient function is defined

as follows:

Definition 3.1. (Euler’s totient function) For any positive integer n, Euler’s totient

function ¢ is given as follows:
d(n)=#{ie€1,2,...,n—1:ged(i,n) = 1}. (3.1)

Definition 3.2. (Cyclotomic polynomial) For any positive integer n, the n-th cyclotomic

polynomial is defined by

O ()= [[ (x—emm). (3.2)

1<i<n
ged(i,n)=1

When enumerating the cyclotomic polynomials from the smallest order n, we have the

following.
(I)l(‘x):x_17 @2($):$+17
O3(x) =2 + 2 +1, y(r) = 22 + 1,
Os(z) =2t +2* + 2 + 2 +1, P(z) =2 —x+1,...

As seen above, the cyclotomic polynomial can be defined by a polynomial with one
variable and integer coefficients that is the minimal polynomial over the field of the ra-

tional numbers of a primitive n-th root of unity. The degree of ®,, is given by ¢(n). A
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fundamental relation involving cyclotomic polynomials is

[[oi@) =" -1 (3.3)

The following shows a new concept of homogeneous cyclotomic polynomial built from

exponentiation technique.

Definition 3.3. (Homogeneous cyclotomic polynomial) For any positive integer n, the

n-th homogeneous cyclotomic polynomial is defined as follows:

@, (x/y)y®™ ifn > 1,

3.4
1 ifn=1. (3.4)

\Iln(a:,y) = {

When enumerating the homogeneous cyclotomic polynomials from the smallest order

n, we have the following.

‘1’1(%9) = 17 \PQ(x)y) =z +y,
Us(z,y) =2 + yz + v, Uy(z,y) = 2° + 3,
Us(x,y) = 2* + 23y + 2%y + 29° + o7, Ue(x,y) = 2° —ay +9°,...

The homogeneous cyclotomic polynomial can also be defined by a polynomial with two
variables and integer coefficients. For n > 2, a fundamental relation involving cyclotomic

polynomials is given as follows:

n

[[witzy) =) a7y (3.5)

in j=0

3.2.2 Decomposition of the final exponentiation

The pairings such that the reduced Tate pairing and its variants are typically computed
by two steps, i.e., the Miller loop and final exponentiation. The final exponentiation step
is given as a powering (¢® — 1) /r in the finite field of order ¢*. For easy description, let us
assume that ¢ is not a power of a prime p but p, which is adopted for many cases of the
settings of the pairings. To achieve fast computation, the exponent is typically broken

into two parts as follows [KNMOA]:

£t () ()
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Then, the final exponentiation is performed as follows:

F;k — GCPk(p) — Wy,

k
p—1 2 (p)

Jo— f1= oc}k(p) =T (3.7)

where Gg, () and p, is a multiplicative subgroup of F;k of order ®(p) and r, respectively.
Note that G, (p) is especially called a cyclotomic subgroup. The first part can be denoted
as (pF —1)/®x(p) = >, c;ipi with a small integer ¢;. Since the computation is clearly
inexpensive by using the Frobenius endomorphisms, the first part is called the easy part.
However, the second part, i.e, d = ®4(p)/r, is more difficult to compute than the easy
part and is called the hard part. The usual continuation is to express d to the base p;
This is because the p-th powering in [F,» is computed by the Frobenius endomorphism.
Indeed, let us denote d as d = dy + dip + - - + dp_1p* ! where k&' = ¢(k) and d; for
0 < i < k'—1 are integers such that 0 < d; < p. Assuming f is an element after raising to
the power of the easy part, the hard part f? of the final exponentiation can be computed
as fd = fdo. (phyp . ... (fdw-a)p"!

algorithm for computing f, fd ... fow-1,

. Then, one can construct a multi-exponentiation

Since we can work on Gg, () after raising to the easy part, several efficient operations,
which are called cyclotomic operations, can be used during the hard part computation.
It is trivial that there is an efficient inversion for any case of k. For curves with even
k, several efficient arithmetic operations are also available Gg, () as described in [SLOZ;
GS10; KarT3]. It is also mentioned that there is an efficient cubing for curves with k
of multiple of 3 in [GSTO]. Since there is no explicit formula of this cubing, the author

provides that in App. AL

3.2.3 Related works for constructing the algorithm

For families of pairing-friendly elliptic curves that have polynomial parameters p(x), r(x),
and t(z) in Q[z], there are several construction methods of the algorithms for computing
in a family is specified by finding an integer z making p(z) and r(z) being primes and
t(z) being an integer. Thus, it is possible to consider the polynomials p(z), r(2), and ¢(z)
with the integer variable z. Then, the hard part can be expressed by a polynomial d(z) =
Or(p(2))/r(2) = do(2) + di(2)p(2) + - + dp—1(2)p(2)¥ ~! where d;(z) for 0 <i < k' —1
are polynomials of degree 0 < degd; < degp. This subsection describes the two state-of-
the-art methods given by Fuentes et al. in [FCKRHTI)] and Hayashida et al. in [HHT20],

which are referred to as the lattice-based method and generalized method, respectively.
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The lattice-based method

In [ScoF09], Scott et al. proposed to construct the algorithm by using an addition-
chain method for the integer coefficients of dy(2),d1(2),...,dw—1(z). Although Scott
et al. straightforwardly decompose d(z), it is also possible to use a multiple d'(z) of d(z)
such that r(2) 1 d'(2) instead of d(z) for the hard part since this change does not affect to
the non-degenerate and bilinear of the pairings. In [FCKRHTI|, Fuentes et al. focused on
this fact and presented a lattice-based method for determining d’(z) such that f s f4()
can be computed at least as efficiently as f +— f%*) applied [Sco+09].

In this context, an efficient d'(z) can be found by constructing a rational matrix M’
with dimensions k' x (k' degp(z)) with k' = ¢(k) given as follows:

d(z) 1 1
xd(z) o p(2) 5 z (3.8)
xk’fld(z) p(z)k’fl odegp—1

where ® is a Kronecker product. Note that a i-th row and j-th column of M’ consists
of integer coefficients of z'p(2)7 with the basis {1, z, ..., 29871} x {1,p(2),...,p(2)* '}.
Then, let us consider the integer matrix M constructed from M’ as the unique matrix
whose rows are multiples of the rows of M’ such that the entries of M are integers, and the
greatest common divisor of the set of entries is 1. Applying the LLL algorithm [LLL8?] to
M, a matrix with small entries can be obtained. Then, small integer linear combinations
of the basis elements of the matrix are examined with the hope of finding attractive d'(2).

As an example, the author refers to the application of the lattice-based method to the
BN family of pairing-friendly elliptic curves with k£ = 12 in [FCKRHTI] and describes the

details of the derivation.

Example 3.4. (The hard part of the BN curves with £ = 12) The BN family of curves

has the following parameters.

p(x) = 36z + 362° + 242° + 62 + 1,
362* + 3623 + 1822 + 6 + 1, (3.9)
t(x) = 6x*+1.

=<

—~
8

~—
Il

For an integer z making p(z) and r(z) being primes and t(z) be an integer, the exponent

of the final exponentiation is expressed as follows:

p(2)? -1 p(2)t —p(z)? +1
r(z) r(z) ’

where d(z) = (p(2)* — p(2)? + 1)/r(z) is the hard part. In order to derive one of the best

= ((p(2)° = 1) - (p(2)* + 1)) - (3.10)
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multiple d’(z) of d(z), let us construct a matrix M such that

d(z) 1 1

vz | || ]
622d(z)| M p(2)? ® 22 (3:11)
623d(z) (2)3 23

Note that one can choose 62%d(z) and 623d(z) which are the smallest multiples of z2d(z)
and z3d(z) that do not involve the denominators, respectively. Indeed, M is represented

as follows:

-2-18-30-36 1 -12-18-36 1 0 6 0 1 000
1 4 6 6 0 7 12 18 -1 1 0 6 0100
-1 0 0 0 -2-18-30-36 2 —-12-18-36 1 060
0o -1 0 0 1 4 6 6 0 8 12 18 -1106

M =

Applying the LLL algorithm to M, we have

1-3-6-120 2 6 6 -1 0 0 615 6 6
0-2-6 -6 0 3 6 6 -1-5-6-61-3-6-12
100 -6 -1-5-6-60 -3-6-617 12 12
1712 12 -1 0 0 6 0 -2-6-60 3 6 6

LLL(M) =

When considering the linear combinations of the i-th row of LLL(M ), there is one of the

simplest sequences given as follows:

(1—3—6—120266—10061566)
0-2-6-60366-1-5-6-61—3 6—12)
100—6—-1-5-6—-60-—3—6 6171212)

n 171212—10060—2—6—60366>

M N7 N7 NN

1612120461206612—14612).

This corresponds to the multiple d'(z) = (1223 + 62% + 22) - d(2) = dy(z) + d}(2)p(z) +
dy(2)p(2)? + dy(2)p(2)? where di(z) for 0 < i < 3 are the following polynomials.

dy(z) = 122° + 122 + 62 + 1, (3.12a)
dy(2) = 122° + 62% + 4z, (3.12b)
dy(2) = 122° + 62* + 62, (3.12¢)
dy(z) = 122° 4 622 + 42 — 1. (3.12d)
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Then, the polynomials verify the relation such that

dy(z) = 122° + 62* + 62, dy(2) =
dy(z) = dy(2) — 1, dy(z) =

Let f be an element in Gg,,(y(-)) after computing the easy part. Then, the hard part
can be computed by ¢ = pg - 2. MZ’(Z’Q : ,ug(z)3 where 11, = f%®) for 0 < i < 3 are

computed by the following sequence of operations.

to:fz7t1 :t37t2:t?7t3:t§7t4:t§7t5 :tfh

fig =5 - t3 by, i = po -ty s = pn - [ o = pa - ts - f. (3.13)

where t; for 0 < ¢ < 5 are variables. Then, the hard part requires 3 exponentiations
by z, 9 multiplications, 2 cyclotomic squarings, 1 p(z), p(2)?, p(z)3-th power Frobenius
endomorphisms in [F,.yi2, 1 cyclotomic cubing, and 2 cyclotomic inversion in G, p(2)),
L.e., 3uiy + Imia + 28010 + Cerg + 2ic1 + fila + fio + fia-

It is considered that the lattice-based method can produce one of the most efficient
algorithms for the majority of families of curves. However, as seen in the example, the
method involves several heuristic processes and requires complicated works for each family
of curves.

The generalized method

The hard part can also be decomposed by using the relation between p(z) and r(x) as
Zhang et al. used for the BLS curves with £ = 27 in [ZL12]. As the latest work, in [HHT20],
Hayashida et al. generalized Zhang et al.’s method and provided a fixed expansion of the
hard part for any families of curves. The heart of their method is the fact that one can
express p(x), r(z), and t(r) in Q[x] parameterizing a family of pairing-friendly elliptic

curves by the following form of the polynomials:
)
/ha(2), (3.14)

where T'(x), hq(z), and hy(x) are certain polynomials in Q[z]. When taking an integer
z making p(z) and r(z) being primes, the hard part d(z) = ®x(p(2))/r(z) of the final
exponentiation can be automatically written by a polynomial in base p(z) by using T'(z),
hi(z), and hsy(z) as follows:
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Theorem 3.5. Let k' = ¢(k) and let ¢; for 0 < ¢ < £’ be integers such that ®,(X) =
Zi‘io ¢; X" Then,

aazmw<2ywmwﬁ+mwx .15
where \y_1(2) = ¢ and \i(2) = T(2)Ai1(2) + ¢ for 0 <i < k' — 1.

Although the hard part is typically decomposed by using a one-variable polynomial,
they also proposed to factorize the hard part as a two-variable polynomial. The factor-

ization can be obtained by using homogeneous cyclotomic polynomials.

Theorem 3.6. For any positive integers m and n, the following is true.

1. If k= 2m,
d(z) = hy(2) H\IIi(T(z), p(2)) | + ha(2). (3.16)
2. If k= 3", |
d(2) = In(2) QWﬂwmwm (T(2)5 +p(2)5 + 1) + ha(2) (3.17)
3. If k=2m.3", |
d(z) = (=) [ [T W(T().p(2)) | (T()6 +p(2)8 + 1)+ hal2).  (3.18)

ik

As an example, we refer to the application of Theorems B3 and B8 to the BLS family
of pairing-friendly elliptic curves with k& = 12 in [HHT20)].

Example 3.7. (The hard part of the BLS curves with £ = 12) The BLS family of curves

with £ = 12 has the parameterization

pa) = Yo—17-r@)+a,
r(x) = ®p(z)=2"—22+1, (3.19)
t(r) = z+1.

Then, we have hy(z) = 5(z — 1)%, ho(z) = 1, and T'(z) = z. For an integer z making
p(z) and r(z) being primes, the exponent of the final exponentiation is given by the same
equation as Eq. (B0), where d(z) = (p(z)* — p(2)? + 1)/r(z) is the hard part.
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Applying Theorem B, it is obtained that d(z) = §(z — 1)2(322, Mi(2)p(2)") +1 where
A3(2) = 1, Aa(2) = 2A3(2), Ai(2) = 2h2(2) — A3(2), and A\o(2) = 2zA1(2) + 1. When taking
the smallest multiple d'(z) = 3d(z) and assuming d'(z) = d})(z) + d}(2)p(z) + dy(2)p(2)* +
dy(2)p(z)3, there are following relations between the coefficients.

dy(z) = (= — 1), dy(z) = zdy(2),
di(z) = zdy(z) — dy(2), dy(z) = zdy(2) + 3.
Assuming f is an element in Gg,,(p(-)) after computing the easy part, the hard part can be

computed by f4 =y - 127 up(z)2 -ug(z) where p; = f%® for 0 < i < 3 are computed

by the following sequence of operations.

= (Y e =5 =y st o = 15 fP (3.20)

Then, the hard part requires 2 exponentiations by (z — 1), 3 exponentiation by z, 5 multi-
plications, 1 p(z), p(z)?, p(z)3-th power Frobenius endomorphism in F,:z, 1 cyclotomic
cubing, and 1 cyclotomic inversion in G, (p(2)), i-e., 2uiyt + 3ui, + 5m12 + Cerg + Tera +
Fia + [ + fia-

On the other hand, applying Theorem BB, it is obtained that d(z) = %(z 1)? (2 +
p(2)) - (22 +p(2)? — 1) + 1. When taking the smallest multiple d’'(2) = 3d(z), the hard
part g = f¥® can be computed by

z zZ\ 2 z 2 —
to=(f) "t =15 657 = (1) B =ty (3.21)

where t; for 0 < ¢ < 2 are variables. Then, the hard part takes 2 exponentiations
by (2 — 1), 3 exponentiation by z, 4 multiplications, 1 p(z), p(z)*th power Frobenius
endomorphism in [y, 1 cyclotomic cubing, and 1 cyclotomic inversion in G, (p(2)) i-e.,
205yt 4+ 3uiy +A4mag + Cop +icia + [l + f4. If 2| 2, the following modification is available.

to=ft =t ta=t5,th =t2- 17" - f,
=128 1y = ()7 2 4T =ty 1o . (3.22)

where w = z/2. This hard part takes 4 exponentiations by z, 1 exponentiation by w, 7
multiplications, 1 p(z), p(z)*-th power Frobenius endomorphism in Fp(,y2, 1 cyclotomic

squaring, and 2 cyclotomic inversions in Gg ., (p(z)), 1i-€., 4ujy + uis + T + Sc1o + 2icis +

f12+f12'

Unlike the lattice-based method, the generalized method does not require complicated
works for constructing an algorithm. In fact, assuming s is the smallest integer making

shi(z) and shy(z) to be integers, an algorithm for computing the hard part f — f5%)
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Input: hy(2), he(2), T(2), k', ¢; for 0 <i <K, and s, f € Gao,(p(2))
Output: f*4*) ¢ Hr(2)

11« f5h2(z),u — fsh1(z); //INIT
2 Up_1 = U, //EVAL_INIT
3 for i = k' — 2 downto 0 do

4 Vi = v e //EVAL
5 endfor

6 W< vy - t; //PROD_INIT
7fori=1tok'—1do

8 w4 w- " //PROD
9 endfor

return w = 54,

is constructed for any family of curves as seen in Algorithm BTl. Moreover, especially
for the families of curves with degt = 1, e.g., the BLS family, the generalized method
might provide more efficient algorithms for computing the hard part than the lattice-
based method. However, for the families of curves with degt > 1, it is considered that the

lattice-based method still provides an efficient algorithm than the generalized method.

3.3 Improvement of the final exponentiation for the
BLS curves with £ =15

This section proposes a new decomposition of the hard part of the final exponentiation
for the BLS curves with £ = 15. This section also compares the operation counts of the
final exponentiation for the pairing at the 128-bit security level with the previous work.

The proposed decomposition is also generalized for the BLS curves with any k.

3.3.1 BLS family of pairing-friendly curves with £ = 15

Let us recall the parameterizations p(z), r(x), and ¢(x) in Q[z] of the BLS family of
pairing-friendly elliptic curves with the CM discriminant D = 3 and embedding degree
k of a composite number generated by 2", 3", and [° where m,n, o are positive integers
[ > 3 is a prime [BLS02]:

e kL=2".3

p(r) = 3(&—1)?% r(x)+a,
r(r) = @), (3.23)
z + 1.

~

—
8

N—
|
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o k=23"
plx) = (z-1)7%r(x)+2,
r(z) = 3®(x), (3.24)
t(xr) = xz+1.

o k=3"-1°

p(x) = %(ZE —1)% @30 (:Elo_l) cr(r) + x,

r(z) = Op(x), (3.25)
t(x) = z+1.
o k=2m.3".[°
pE) = o= 1) puy@ ) () + o
r(r) = ®(z), (3.26)
t(r) = z+1.

This section mainly focuses on the BLS family of curves with £ = 15, D = 3, and

p = 1.5 having the following parameters.

p(z) = %(az‘ — 1?2 (2 +2+1) P5(x) + 1,
ri@) = Q@) =2—a"+2° -2t +2° 2 +1, (3.27)
t(r) = z+1.

The above parameterization is also found by Duan et al. in [DCCO5]. For constructing
the curve, we need to find an integer z making p(z) and r(z) being primes. One can find

z by applying the restriction z = 1 (mod 3).

3.3.2 Previous final exponentiation

In [EMP20], Fouotsa et al. proposed to decompose the exponent as follows:

P =1 (Rs(e))
r(z) —(p() 1) ( r(z) ) (32%)

Note that they dared to use the above decomposition, however, the exponent is typically
decomposed as shown in Eq. (88). The first and second parts are referred to as the easy
and hard parts, respectively.

For the hard part d(z) = ®5(p(2)°)/r(2), they found one of the best multiple d'(z) of

d(z) by the lattice-based method [FCKRHTI]. In the context, they found d'(z) = 323-d(z)
which is represented as a polynomial in base p(z) given as d'(z) = djj(z) + d}(2)p(z) +
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-+ dj(2)p(2)? where di(z) for 0 < i < 9 are polynomials given as follows:

(

Ih(z) = —2842542%—22

di(z) = =424 +2%— 2

dy(z) = —A4+242-1,

dy(z) = 27 =220 429425 — 25 424 — B4 224242

czﬁl(z) = 2 210 29 8 420 25— 23 22+ 2242, (3.29)
di(z) = 2M =210 2842743 .
di(z) = 20— 2% — 27 4 25,

di(z) = 22— 28— 25425,

di(z2) = 28—2T— 25424,

I(2) = 27—28 -2+ 28

\

These polynomials verify the following relations.

bz) = (= 1) (* +2+1), I(2) = 2dy(2),

Io(2) = 2d; (2), Io(z) = —2dy(2),

Is(2) = zdy(2), 17 (2) = zdy(2),

lo(z) = 2d;(2), 15(2) = zdg(2) + 3,

i(2) = v(2) — (dy(2) + d(2)), I3(2) = v(2) — (do(2) + dg(2) + dy(2)),

where v(z) = dj(2) + d5(2) + dy(2).

For an element f in G, (p()5) after raising to the power of the easy part (p(z)® — 1),

the exponentiation by the hard part f — f~d~/(z) is given by f‘i/(z) = lp- M’f(z) -;ﬂ;(z)Q -,ug(z)g .

z 4 z 5 z 6 z 7 z 8 z
A T AR AT AT
the following sequence of operations.

’ where p; = f‘%(z) for 0 <1 <9 are computed by

to=(f"1) "t =15t = 15, ua = (to -t - 1) ",

= 15, po = 15, o = (15) ™ s = g,

Jr = B3 e = Mo s = pg - foots = o - s - s,

pa =ts - (pa - pir) ™" ps =ty - (o - e - o)~ (3.30)

where ¢; for 0 <4 < 3 are variables.

Applying the above method, the calculation cost of powering the easy part is 1 p(z)°-
Frobenius endomorphism, 1 inversion, and 1 multiplication in F),y15. Besides, the calcula-
tion cost of powering the hard part is 2 exponentiations by (z—1), 9 exponentiations by z,
19 multiplications, 1 p(2), p(2)%, p(2)3, p(2)%, p(2)°, p(2)8, p(2)7, p(2)%, p(2)°-Frobenius en-
domorphisms in F,,y1s, 1 cubing and 4 inversions in Gg,(y(-)5). Thus, the calculation cost
of the final exponentiation is given by 2u}z ' +9uZ5+20my5-+co15+4icis +2’15+Z?:0 fis+/frs
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3.3.3 Proposed final exponentiation

Unlike Fouotsa et al.’s method [FMP20], the author decomposes the exponent according
to Eq. (B8) as follows:

p(2)? —1
.

(B = 1) (p(2)? 4 p(2) + 1)) - (w) RN

where the first and second parts are easy and hard parts of the final exponentiation,
respectively. With the above decomposition, the author proposes to represent a multiple
of d(z) = ®15(p(2))/r(2) as a polynomial in base p(z) which are derived by the following
process.

Let us define an extra parameter m(z) such that

m(z) = 2z — 1) (22 + 2z +1). (3.32)

L=

Then, p(z) is denoted by p(z) = m(z) - r(z) + z and the hard part d(z) is represented as
a polynomial in base 7(z) such that d(z) = ®15(m(z) - r(z) + z)/r(z). Since the constant
term of numerator of d(z) in base r(z) is ®15(2) = r(2), the denominator of d(z) is easily
canceled. Then, the polynomial d(z) in base r(z) can be converted to a polynomial in
base p(z) by replacing r with (p(z) — z)/m(z) in a straightforward way. Note that in
[ZL12], Zhang et al. also expanded the polynomial of the hard part for the BLS curves
with k& = 27 by using the property of p(z) = m(z) - r(z) + z which leads to a recursion
relation p(2)™! = m(z) - r(2) - p(2)" + zp(z)" where i is a positive integer.

As a result, it is found that d(z) = do(2) +di1(2)p(z) + - - - + d7(2)p(z)" where d;(z) for

0 <17 < 7 are polynomials given as follows:

(do(z) = m(2) (T —20+ 24 =22+ 22— 1) +1,
di(z) = m(z) (2% =27+ 23— 22+ 2),
do(2) = m(z) (2> =2t +22—2+1),
ds(z) = m(2)- (' =22 +2-1),
di(z) = m(2) (23 —22+1), (3:33)
d(z) = m(2)- (- 2),
do(z) = m(z)- (=~ 1),
d:(z) = m(2).

\

Then, it is observed that the above polynomials already have the following simple relations
before applying the lattice-based method [FCKRHTI].

d7(z) = m(z), de(z) = (z — 1) - d7(2),
ds(2) = zdg(2), dy(2) = zds(z) + dq(2),
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which implies that the relations can provide one of the efficient computations for the
final exponentiation. Indeed, since there exists a denominator 3 of d;(z) = m(z) =
$(2 —1)*- (2 + z + 1) which leads to a cube root computation, the author proposes to
use a minimum multiple d’(z) = 3d(z) for a practical final exponentiation. Assuming
d'(z) = dj(z) + dy(2)p(z) + -+ + do(2)p(2)" where di(z) = 3d;(z) for 0 < i < 7, the
polynomials clearly verify the following simpler relations than that of the previous method
[EMP20].

dr(2) = (z = 1)* (z" + 2 + 1), dg(z) = (z = 1) - d7(2),
ds(2) = 2dg(2), dy(z) = zds(2) + d7(2),
dy(2) = 2dj(2) — dy(2), dy(2) = zdy(2) + d7(2),
dy(z) = 2dy(2), dy(z) = 2dy(2) — dr(2) +3

Note that above decomposition is the exactly same as the current state-of-the-art given
by Theorem BH by [HHT20].

For an element f in G, (- after raising to the power of the easy part given as
(p(2)°> =1)- (p(2)*+p(2) 2+ 1), tgle expcinentiation by the hard part f — f%® is computed

as f¥) =y, Vf(z) . yg(z) 'Vg(z) 'fo(z) -yg(z)s -yg(z)s . yé’(zy where v; = f%®) for 0 < i <7

are computed by the following sequence of operations.

z—1\z—1 z z
to=(f"") =15 ta =1, vr =1t 1 ta,

z—1 z z —1 z
Vg = Vg ,Us = Vg, Vs = Vs V7,13 =17 V3 =1y -3

Vo = Vi -vp, v = Vi, vy = U -ty 7 (3.34)

where t; for 0 <3 < 3 are variables.

As a result, the calculation cost of powering the easy part is 1 p(z), p(2)?, p(z)°-
Frobenius endomorphisms, 1 inversion, and 3 multiplications in [F,.yis. The calculation
cost of powering the hard part is 3 exponentiations by (z — 1), 8 exponentiations by z, 14
2 p(=, p()", p(=), pl2)°
in Fp;y5, and 1 cubing and 1 inversion in Gg,;(p(z)) C Gayp(z)s)- Thus, the calculation

multiplications, 1 p(z), p(z) , p(z)"-Frobenius endomorphisms
cost of the final exponentiation is given by 3u‘fg1 + 8uis + 1Tmas + cers + ters + 915 +
ZLO fis + fis + f& + f75. Comparing the previous and proposed methods, the proposed

method results in reducing uiz " + 3mys + 3icis + fis + fi5 and increasing uis + fls + f5.
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Table 3.1: The number of operations in [F,.y1s for computing single final exponentiation
of the pairing at the 128-bit security level.

} . Frobenius end.
Method Mis5| S15 (215 |Ce15|le1s 3T A 56780

plp”|\p"|p”|p"|p"|p" PP
Fouotsa et al. [FMP20]| 55 (341| 1| 1 | 6 [1|1|1|1]|2[1]1]|1

This work 53 (341|114 2/2|/1|1(2|1]1({0]0

—_

Table 3.2: The calculation cost of arithmetic operations in Fp(,)s.

mis 515 115 Ce1s le1s fis
78m1 78m1 2297711 117m1 78m1 14m1

Table 3.3: The number of operations in ) for computing single final exponentiation of
the pairing at the 128-bit security level.

Methods Calculation costs
Fouotsa et al. [ENP20] 31842m,
This work 31530m,

3.3.4 Calculation cost estimations

The author estimates the calculation costs of the previous and proposed final exponenti-
ations of the pairings on the BLS with k£ = 15 at the 128-bit security level. In [FMP20],
Fouotsa et al. provided an integer seed z for the pairings on the BLS curves with & = 15

at the 128-bit security level given as follows:
z =2 4219 4 25 4 9% (3.35)

The above parameter can generate primes p(z) and r(z) with 383-bit and 249-bit lengths,
which is closed to the 256-bit as required to have 128-bit security on elliptic curves.
With the square-and-multiply algorithm, the exponentiation by z in [F,.yis takes ui; =
3m15+31s15. The exponentiation by (2 —1) in [Fp(,)1s also takes uis ! = dmys+31s15+icys.

Substituting the calculation costs of u}; and uj; ", the number of operations in F s
for the previous and proposed final exponentiations are obtained as in Table BXl. Com-
paring the costs, the proposed method results in reducing 2m5 + 2i.5 + [ + fis from the
previous cost of the final exponentiation. Although the proposal also results in increasing
fis + fZ, the reduced calculation costs are still larger than the increased ones.

The calculation costs for the arithmetic operations in F,1s are denoted by the calcu-
lation cost m; of multiplication in I,y as in Table B3, which is derived by referring to
[GMT20]. Replacing the costs of operations in F,)» with that of F.), the costs of the
proposed and previous final exponentiations are denoted as in Table BZ3. This indicates

that the proposed method results in reducing 312m; from the previous ones. Thus, it is
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concluded that the proposed method is clearly more effective than the previous method
by Fouotsa et al. in [ENP20)].

3.3.5 Generalization for any £

The author briefly describes the generalization of the proposed method of the BLS curve
with & = 15 for the BLS curves with any k. It is observed that one can find a polynomial
m(z) such that p(z) by p(z) = m(z) - r(z) + z for the case of any k. Indeed, m(z) and

r(z) are given as follows:

o k=273
m(z) = 3(z—1)%
{ r(z) = Px(2). (3.36)
o k=3"
m(z) = (z—1)%
{ rz) = 1a4(2). (3.37)
o k=3"-10°

{m(z) = =12 By, (3.38)

o k=2m.3".1°

(3.39)

{m(z) = 3z =12 Dy (),
r(z) = Px(2).

Thus, the derivation of the decomposition of the hard part d(z) = ®r(p(z))/r(z) of the
final exponentiation for the case of k = 15 described in Sect. B33 can be extended for

the case of any k.

Theorem 3.8. Let k' = ¢(k) and let ¢; for 0 < ¢ < &’ be integers such that ®,(X) =
Zi‘io ¢; X", Then, the polynomials d;(z) for 0 < i < k'—1 such that d(z) = Ziif)l di(2)p(z)°
are generated by Algorithm 2.

Before providing proof of Theorem BR, the following lemma is provided.

Lemma 3.9. Let m/(z) be any polynomial and let p(z) be a polynomial such that p(z) =
m/'(z) - Pp(z) + z. Let p;(z) for 0 <i < k" — 1 be polynomials defined as follows:

pur—1(2) = cpm’(2),
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Algorithm 3.2: Generation of the coefficients of the hard part in base p for the
BLS curves with any &.
Input: k, k', ¢; for 0 <i <k, m(2)
Output: d;(z) for 0 <i <k —1
dpr—1(2) = cym(2);
For i from k&' — 2 downto 0 do

di(2) < zdit1(2) + cipim(z);
endfor
If £ = 3" then

do(2) + do(2) + 3co;
else

do(Z) — do(Z) + Co;
endif
return d;(z) for 0 <1 <k —1

© 00 N o Uk W N

pr—2(2) = zpp—1(2) + cp_1m/(2),
pw—3(2) = zpw—2(2) + cw—2m’(2),

Then, the following is true.

(Dk z ol i
2er > Ity (3.40)

Proof of Lemma Q. Let a be one of roots of ®y(z). Then, since ®x(a) = 0, we have
O (p(a)) = Pp(m(a) - Pp(a) + ) = Pg(a) = 0. (3.41)

This means that @, (p(z)) has a factor ®4(2) and thus there exits a polynomial @5 (p(2))/Pr(2).
Since deg(Px(p(2))/Pr(2)) = deg(Pr(p(2)))—deg(Pr(2)) = k'(deg p—1), one can find v;(2)
for 0 <i < k'—1 of degree deg v; = deg p—1 such that @ (p(2))/Pr(z) = Zf/:f)l vi(2)p(2)".
From the definition of p(2), we have ®x(2) = (p(z) — z)/m’(z), the above equation can be

modified as follows:

m'(z) - ®r(p(2)) = (p(2) — 2) - Z vi(2)p(2)". (3.42)
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Expanding the left and right sides of the equation, we have

m/(2) - (ewp(2)* 4+ cw_1p(2)F T+ 4 ep(2) + )
s ()
+ (oa(z) — (2

+ (v—3(2) — 20w —2(2))p(2)

)k’—l

k'—2

— z1p(2). (3.43)

The equation is regarded as a polynomial in base p(z) and the coefficients of p(z)* are
compared for 2 < ¢ < k’. Then, one can determine the polynomials v;(z) for 0 <7 < k' — 1

as follows:

v_1(z) = cpm!/(2),

Ui —9(2) = zvp_1 + cpr_1m/(2) from vy _o(2) — zvp_1(2) = cp_1m/(2),
Vi—3(2) = 2 _g + cpr_am/(2) from vy _3(2) — 2vp_2(2) = cp_am/(2),
v1(2) = 1(z) + com/(2) from v1(2) — zv5 = com/(2).

The construction results in the relation vy (2) = m’(2)- (cp 2" 2+ cp_12¥ 2+ Fegztcy).
The remaining v (2) needs to satisfy m/(2) - (c1p(2) + ¢o) = (vo — v1)p(2) — 1oz which leads

to vo(2) = cvn(z) + ¢o. Since v; = p; for 0 < i < k' — 1, the lemma is true. O

Proof of Theorem E8. If k # 3", r(z) = ®(2) and p(z) = m(z) - Pr(z) + z. Applica-
tion of Lemma B straightforwardly leads to d(z) = ®x(p(2))/Pr(z) = Ziigl wi(2)p(2)",
which indicates d;(z) = pi(z) for 0 < i < k' — 1. On the other hand, if k& = 3",
r(z) = $Pk(z) and p(z) = sm(z) - P(2) + 2. Application of Lemma B also indicates
d(z) = 3Pk(p(2))/Pk(z) =3 Zf;f)l pi(2)p(z)". Since the multiple 3 is canceled by m/(z) =
m(z)/3, this indicates d;(z) = p;(z) for 1 <i < k' —1 and do(2) = zu1(2) + cam(z) + 3co.
It can be easy confirmed that Algorithm B= generates such d;(z) for 0 <i <k’ —1. O

Note that Theorem B exactly provides the same of the hard part d(z) = ®x(2)/7(2)
as Theorem BH by Hayashida et al. in [HHT20]. For the case of k = 2™ - 3" with any

positive integers m and n, Theorem B8 might give rise to a slightly simpler decomposition
than Theorem BR.
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3.4 Efficient final exponentiation for the curves re-
sistant to STNFS

This section provides the final exponentiation computations for the families of pairing-
friendly elliptic curves with &£ = 10, 11, 13, and 14 that are suggested for the STNFS-secure
pairings at the 128-bit security level. Both the lattice-based and generalized methods are

applied for estimations of the calculation costs of the final exponentiation.

3.4.1 Cyclotomic families of pairing-friendly curves with k = 10,
11, 13, and 14

There are five families of pairing-friendly elliptic curves with £ = 10, 11, 13, and 14
and which are the cyclotomic families introduced in [ESTTO] and its variants and are
suggested for the STNFS-secure pairings in [Gui20]. To distinguish the families, the CM
discriminant D and p-value are also presented. The following shows the polynomials p(x),

r(z), and t(z) in Q[x] parameterizing the families of curves.

(i) k=10, D =15, and p = 1.75

pla) = (4o’ 4421 + 212 — 1221 — 12210 — 729 + 1128
+1727 + 152° — 32° — 112* + 23 — 222 + 32 + 6), (3.44)
r(z) = ®g(x)=a+a2" -5 -2t —2P+2+1, '
t(r) = 2*+1.
(ii) k=11, D =3, and p = 1.30
r(r) = ®g(x) =22 — 219 4 217 — 216 4 214 (3.45)
—rB e — 042 — T b — 2t 2 — 41, '
t(z) = —z® -2+ 1.
(iii) k=11, D =11, and p = 1.60
plz) = F@0+22P + oM — 22 -3zt — 2% + 92 — 2® + 1+ 3),
r(z) = ®p(r) =z +a% +2%+a7 (3.46)

+20 42 +at a2t o+ 1,
t(x) = '+ 1.
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(iv) k=13, D =3, and p = 1.17

pl) = @@+ + 2%+ — 22" + ¥ 422 — 22 +1),
r(z) = Bag(z) = a2 — 2% + 22 — 220 4 218 — 217 4 415 347
s R L R v g U '
tlx) = —aM—z+1.
(v) k=14, D =3, and p = 1.33
pla) = (@ +aP+aM -2+ 22° — 2" + 2 — 20+ 1),
r(r) = Op(r)=z2+2" -2 -2 +20 -2t — 2P+ 2+ 1, (3.48)

tlx) = a®—z+1.

In the following, for corresponding parameterizations, let z be an integer making p(z) and

r(z) being primes.

3.4.2 Final exponentiations by the lattice-based method

The author provides the algorithm for computing the hard part by applying the lattice-
based method [FCKRHTI] for the families of curves with & = 10,11, 13, and 14 described

in the previous section.

(i) The cyclotomic family of curves with k£ =10, D = 15, and p = 1.75

The exponent of the final exponentiation is expressed by

p(2)"" -1 5 P10(p(2))
S 1) 1)) - [ 2= 4
L = (06 1) ) + 1) (PO, (3.49)
where d(z) = ®19(p(2))/r(z) = (p(2)* —p(2)* +p(2)? —p(2) +1)/r(z) is the hard part. Let
us refer to the lattice-based method and derive a multiple d’(z) of d(z) by constructing
the matrix M such that

15d(z) 1 1
15zd(z) | p(2) z
sea| =M el @] (3.50)
1523d(z2) (2)3 213

As a result of the application the LLL algorithm to M, one of the rows of M indicates
the multiple d'(2) = 152(z + 1) - d(2) = 3.0, d\(2)p(z)" where di(z) for 0 < i < 3 are
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Table 3.4: The hard part computation for the cyclotomic family of curves with k£ = 10,
D =15, and p = 1.75.

Steps Computed | Cost

Input: f € G‘i’lo(p(Z))

Output: f¥ ¢ Lor(2)

to < (((f2)?)?)*- /1 e mig + 45010 + te1o
vo + fF7L v vé_l, 2ufal

1] Ug, to < ti, Vo < (tg . ’Uo)z -1, QUTO + 2mqo + Sc10
t1 <—’U§, to (—ti, t1 < 11 - Vo, 2u’f0—|—m10

by < 1y - ta, Vg <ty - 13, fme) 2mio + Seig

U1 4= g, V2 <= VT, g3 <= V1 - V2 fBE) 2u3, + mio

g1 < g§ ' UO—17 fdll(z) Uijo + mqg + iclO

ti vt g2 < gF -t to, FB) Uy + 2mio + derg
9o < g5 - t1, flol®) uio + mag

g g0 g7 - g fee 3mu + X0 fio
Returen g;

polynomials given as follows:

(

dy(z) = 422+ 421 4 210 — 1229 — 1228 — 757
+1125 4+ 132° + 112* — 423 — 322 + 9z,
di(z) = 42° +428 + 27 — 1220 — 82° — 32 +122% + 522 + 32 — 6,
dy(z) = 42" +4210 4+ 29 — 1228 — 1227 — 326
+112° + 142* + 223 — 322 — 62 + 15,
dy(2) = 428 +427 4 20 —82° — 821 — 223 + 322 +62.

(3.51)

\

Assuming m(z) = (2 —1)?- (222 4+ 2 + 2) - (22* + 32 + 3), there are the following relations:

&) = (=) + mz), &(2) = =di(z) — m(z),
dy(2) = 22d,(2) — z2m + 15, dy(z) = zdy(z) — zm(2),

which leads to the computation of the hard part given in Table 8.

As a result, the hard part computations requires 2u’f51 +10ujy+14mi0+65c10 +3icio+
Z?Zl fio- Since the calculation cost of the easy part is given by i19 + 2mi0 + fiy + fio,
the cost of the final exponentiation is 2uf51 +10uy + 110 + 16m1g + 68c19 + 3ic1o + 21y +
fio+ fio + fio-
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(ii) The cyclotomic family of curves with £ =11, D =3, and p = 1.30

The exponent of the final exponentiation is expressed as follows:

p(2)'' =1 A-1). P11(p(2))
e () (392

where d(2) = ®11(p(2))/r(2) = S0 p(2)!/r(2) is the hard part. Following the lattice-

based method, let us construct the matrix M such that

3d(z) 1 1
A [ 1P ] 7] ] (3.53)
32%d(2) p(2)? 22

Application of the LLL algorithm to M leads to a multiple of the hard part given by
d'(2) =3(z—1)- (5 + 22+ 1) - d(2) = X, di(2)p(2)" where dj(2) for 0 < i < 9 are
polynomials defined as follows:

(

=8

— —2’22—220—218+213+211+429—3,

I\

lA
0(2)
d/l(z) — 220 +Zl8 —|—Z16 + 213 +le _|_229 _ 227+Z5 _ 3’
dy(z) = 2B 4214292725233,
dy(z2) = —210 -1 418 12 Il 59 4 358 3,
dy(z) = —2% % 2 4 183,02 11, 9 3
3.54
di(z) = 218421 21049 28 _26_3
di(z) = —219 =217 — 215 4 218 4 2104 59 4 3,6 3
diy(2) = 2V 4210 42218 4 21 4 29 4 26— 220 4 52 3
[ do(2) 2B 4% 2t -2 4
Assuming m(z) = (22 + 2 + 1) - (2 + 2% + 1), we have the following.
dg(2) = (27 = 2%)m(z) - 3, dy(2) = dg(2) + (2" = 2%)m(2),
&(2) = difz) + (= — ym(2), &(2) = —dy(2) + di(2),
dy(z) = 2(dy(z) — dy(2)) + dy(z) + 2°m(z), di(z) = 2°(dy(2) — di(2)) + di(2) + z*m(2),
0y(2) = 2dy(2) — (=) + dy(2) + 'm(z), dy(z) = 2(dy(=) — di(2)) + di(=) + m(2),
dy(2) = 2(dg(2) — dy(2)) + dg(2) + 2°m(z), dj(z) = —2°(dg(2) — doy(2)) — 3

The above formulas lead to the hard part computation given in Table BA.
The algorithm requires the calculation cost 25uj; + 35m11 + s11 + 10411 + Z?:l fi.

Since the calculation cost of the easy part is given by 411 +my; + fi;, the cost of the final
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Table 3.5: The hard part computation for the cyclotomic family of curves with k£ = 11,
D =3, and p = 1.30.

Steps Computed | Cost

Input: f € Go,,(p(2)

Output: f¥® ¢ o (2)

to < f*- 1, f? mi1 + S11

ty <[5 ta < 1], vo < [ -1 - 1o, 2ui, + 2myy

t1 U§2, to < tiz, Vg <— Vg + t1 - Lo fm(z) 4ufl + 2mqy

V1 = Vf, U2 < U, U3 < V3, Uy < V5, 4dui,

Us 4= VU, Vg < Vg, U7 < Vg, 3u?,

g6 < V6 - to, g6 < G5 ' 96 < 6 * U7, [ 2maq + teqg

g2 V3" - V4, G2 4 G2 Ge, f2) 2may + e

9o < Ual U1, 99 < 99+ 92, fo(®) 2mi1 + tenn

gs < 9537 g3 < 951 * Je, fdf’r(z) 3uiy +mar 4ty
gs < g3 - G2, g8 < G5, gs < gs - g2 - U2, fs(2) ufy 4 3mar + teqq
g7 < 95" 92, 97 G | 2z, + My + dery
t1 < g6 - V4, g7 < g7 - 11, fdr(2) 2mi1

g1 < 9?1 g2, 91 < 91, 91 < g1 - L1, fdll(z) uiy 4 2mag + tepy
90 91" 9o, Go — G5 » U, + My + deny
t1 < g6 - Vs, Jo < Jo - L1, fdo(2) 2mqq

ty < Gyt - s, to 15, g5 < t1 - o, fd5(2) uiy + 2myy + iy
94 < t§27 94 < 94 lo, 943F 94_14 S 2ufy + mar +leng
ggo- g7 - b g gl dma + i iy
geg - g g g g g | p e S+ Y5 iy
Returen g;

exponentiation is 25u?; + 11 + 36myy + 1811 + 10ie1q + 27, + Z?:Q fir-

(iii) The cyclotomic family of curves with £ =11, D =11, and p = 1.60

The exponent of the final exponentiation is represented by the same equation as Eq. (B52)
where d(z) = ®11(p(2))/r(2) = 312, p(2)'/r(2) is the hard part. Then, let us construct
the matrix M such that

11d(z) 1 1
11zd(z) _ p(2) o z (3.55)
112%d(z) p(2)? 21

As a result, one of the best multiples of the hard part is given by d'(z) = 112° - (z + 1) -
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Table 3.6: The hard part computation for the cyclotomic family of curves with k£ = 11,
D =11, and p = 1.60.

Steps Computed Cost

Input: f € Gq’u(p(Z))

Output: fd/(z) € fyp(z)

o fPoto—ti- [ty (to-t1)* f 2o 3ma1 + 2513

vy < f7, to <—U§, Vg <= U5 - ta, 2ui; + ma1 + s
ty « V3, t3 < v, vy 13, 2ui; + s

Vg ¢ tg - T3 to, 2m11

Vg vg_l, vy vg_l, vy vo_l, ) 2uiT i

V1 < Uf, U2 < V], Vg < U3, 3ui,

G2 < V3, g5 < g2 - U3 fR@ @ w4+ myy

g8 < g5 V2, go < gs - U1 fEE ] fh@ | 2my,

93 < go " Vo, g7 < G5 ° 97_1, fdg(z)a fdé(z) uiy + 2may +teqy
g4 g?ﬂ 13, g1 < 91 * 97, fdil(z)a fdll(z) Uﬁrl +ufy +2mn
9o < G5 - g1, 96 < 95 gr, fHE, fBE 1 2uz, + 2my

z 2)? 2)3 2)% i
g go- g 5) gy )6 g )7 gy )8, ) Ay + 300 iy
g g- gl g ) g gp el pd () Smat + s fi
Returen g;

(22 +1)-d(z) =320, d\(2)p(2)" where d}(z) for 0 < i < 9 are polynomials defined by

p

=0 "1

—210 229 — 28 4226 £ 525 4 24 — 22 — 3z,

(3.56)

do(2)
di(z) = 28342212421 — 210 329 428 4 26 4 325 + 112,
dy(z) =210 — 29 4 28 4 2T 4+ 26 4225 — 324
dy(2) —210 229 — 28 4 20 4425 + 220 + 23 — 2 - 3,
di(z) = 21242211 —229 — 228 — 327 + 26 4 325 + 11,
di(z) = —2'0—229 4227+ 220 4+ 32° — 24 — 323,
dg(2) = 2154221 4 218 — 21 4210 9,9 28 4 264 325 4 1123,
di(z) = 2M 4210 — 29 — 28 27 226 4 325,
di(z) = —210—229 — 28 4 274 320 + 42° — 2% — 322,
[ do(z) = 2" #2210 4212 = 2210 — 529 — 28 4+ 20 4327 - 1122

—(z—1)%- (2* + 323 + 422 + 42 + 3), there are the following relations.

dy(2) = 2'm(2), di(2) = dy(2) + 2°m(2),
dy(2) = d5(2) + 2"m(2), dy(z) = dy(2) + zm(2),
dy(z) = do(2) + m(2), dr(2) = —zdy(2),

dy(z) = (2 + 1)dz(2) + 11, dy(2) = 2dy(2) + d7(2),
dy(z) = 2dy(2) + d7(2), dg(2) = 2dy(2) + d7(2)
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The above formulas lead to the hard part computation given in Table B.

The calculation cost of the hard part is given by 12u?, +u? ] +2ui ]t +24my, +4s1; +
2le11 +Z?:1 fi,. Adding the cost of computing the easy part iy;+my1 + f{;, the cost of the
hard part are obtained by 12u3, +uif ™ +2uiy 4-iyy +25my +4s11+2iery + 205 + 300, fib

(iv) The cyclotomic family of curves with £ =13, D =3, and p = 1.17

The exponent of the final exponentiation is given by

PP =1y . <M) ’ (3.57)

r(z) r(z

where d(z) = ®13(p(2))/r(z) is the pard part. Let us refer to the lattice-based method

and construct the matrix M such that

3d(z) 1 1
A | [P e | 7 ] (3.58)
3211d(2) p(2)! 527

Applying the LLL algorithm to M, one can obtain one of the best multiples of d(z) by
d(2)=3(z=1) (2 +1) (Z®+1) (2" =2 +1)- (2" =22 +1) - d(z) = 1,1, di(2) - p(2)',
where d;(z) for 0 <4 <11 are polynomials in Q[z] is defined as follows:

(

dy(z) = —2% % 24 M 18 g2 g
di(z) = 22242 M 18 912 9l 103
dy(z) = My 31210 9 g
dy(z) = —22 224 M 184 1230 3
dy(z) = 22422404 M 18 12 0 98 T3
di(z) = 2" +28 42122827203 (3.59)
dg(z) = =220 =219 184 M4 2184 2124 3,03 '
di(z) = 2909428 42T 4 2 18 212 6925 4 21 3
dé(z) Zl4+213+212—z5—z4—23—3,
dy(z) = =211 =210 21504 14 2184 21243233
dig(z) = 290+ 25 4221 4+ 213 4 2124 23 922423,
\ di(z) = 24 +2B8 42122224

Assuming m(z) = (2% + 2z + 1)?, there are the following relations:

dy(z) = (=" = 2")m(2) - 3, dy(2) = dy(2) + (2 = 2")m(2),
dy(2) = ds(2) + (2" = 2")m(2), dy, (2) = dg(2) + (= = Dm(2),
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Table 3.7: The hard part computation for the cyclotomic family of curves with k£ = 13,

D =3, and p = 1.17.

Steps Computed | Cost
Input: f € Gayyp(2))
Output: f¢ () ¢ Hor(2)
to < f*- f, K my3 + $13
tl <— fz, tg <— tf, Vo < f . tl . tQ, 2U§3 + 2m13
11 U(Z], to < tf, Vo < Vg -+ t1 - o, fm(z) 2UT3 + 2m13
V] < Vg, U2 < VF, U3 & V3, Vg < V5, 4usi,
Us < UJ, Vg < VE, U7 <= 0§, Ug < V3, 4usi,
Vg 4= Vg, V19 < Vg, 2uf,
g2 < Vg - to, ga G5 "+ V1o, [ 2maz + te13
g5 < Vg U7, g5 4 G5+ Go, fdf’(z) 2mas +ie13
gs < V3 V4, gg < Js * G, fdf(z) 2maz + te13
g1 < vyt U1, g1 < Gin - s fin® 2ma3 + 13
¢ ) 22 1 dio(2) QuZa 4 92
1 € g11 " Vo, J10 < 911, 910 < Y10 - U1, f Uj3 + 2mq3
9o < Gro * Gi1, 9o < G&y Go < Go - t1, fdo®) ufs + 2maz + teys
t1 4 g5 V1, g7 < G ' - s, 2maz + te13
22 . dr(z) Qu?
g7 < 97 5 g7 < gr - tu, f/ Uz + Mmas
g6 < 97"+ g8, o < Gg» o < Go - T, fs) Uiy + 2ma3 + ici3
ty 4 g5 - V6, 91 < G5 G, 2my3 + ic13
2 : a4() o
94 4= 95 5 a4 ga - 1, ;o ufs + mas
g3 < 91" g5, 93 < G35 03 < g3 - t, f5B Uiy + 2mig + te1s
ty 4 g2 - Vo, g1 <= g5 ' - G2, 2mag +ici3
22 X dy(2) z
g1, G gt f4 2ufs 4 1ma3
90 < 91 - 92, Go < s Go < Go - L, Jfot?) ufs + 2mag + ici3
z 2)? 2)3 2)4 2)° 5 4
g <—go-g‘f(6) b )7 i )8 g )9 A )10 Smas + Yoy fis
g g gt g g T B T @) Gmus + 31 fis
Returen g;
dyo(z) = 22dy, (2) + diy (2) + m(z), dy(2) = —2(dyp(2) — dy1(2)) + dyy(2) +
di(z) = 22(dy(z) — dy(2)) + dy(2) + 2'm(2), dg(z) = 2(dy(2) — di(2)) + dy(2) + 2'm(2),
dy(z) = 22(dy(2) — dg(2)) + dy(2) + 2°m(2), dy(z) = 2(d(z) — dy(2)) + diy(z) + 2°m(
dy(z) = 22(dy(2) — di(2)) + dy(2) + 2"m(z), dy(z) = 2(dy(z) — d1(2)) + dj(2) + 2°m(z

The above formulas lead to the hard part computation given in Table B72.

(
)
),
)-

m(z),

As a result, the calculation costs of the easy and hard parts given by i13 + miz + fi3
and 26uis +43mqs + 513+ 11i.3+ 2111 L [15, respectively. The calculation cost of the final
exponentiation is 26ujs + 413 + 44mys + s13 + 11lic3 + 2f13 + Zl 9 1ig
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Table 3.8: The hard part computation for the cyclotomic family of curves with k£ = 14,
D =3, and p = 1.33.

Steps Computed | Cost

Input: f € Go,,0p(2))

Output: f¥ ¢ Hr(2)

tO < f2 : f7 f3 mi + SG‘I)14(P)
t f7 byt gty -ty f, fm) duz, + 2myy
V1 = Vf, U2 < U, U3 < V3, Vg < V3, 4ui,

g2 V1 V3, G2 & Go Lo, G2 < G5 ', f&® 2mig + lea
g5 < U12' Vo, g5 < g5 * G2, G5 < 95_17 fé) 2mig + leqa
g1 G5, ga g1, 2u%, + ie1a

U1 =92 V1, g4 < ga - 1y, fla® 2myy

g3 < 91+ gs, 93 < 93, Uiy + My
g3+ g3 t1, g3 < g5 fdal?) Mg + lc1a

g1 4 g3 G2, 1 < G5, 2ui, + M

ti 4 g3, g1 g1ty g1 < 91 fa 2mig + lera
9o <= g1 G2; Jo < 9 Uiy + Mg

9o < 955 90 < 9o - t, [l Mg + te1q
g+ go- i) g BT g g p ) S+ Y fla
Returen g;

(v) The cyclotomic family of curves with k£ =14, D = 3, and p = 1.33

The exponent of the final exponentiation is expressed as

p(z)* =1

r(2)

where d(z) = ®14(p(z))/r(z) is the hard part. Let us refer to the lattice-based method
and construct the matrix M such that

(3.60)

= ((p(2)" = 1) - (p(2) + 1)) - (M) 7

r(z)

3d(z) 1 1
3zd(2) Y p(2) o z (3.61)
32°d(z) p(2)° 215

As a result, one of the best multiples of d(z) is given by d'(z) =3(2 — 1) - (2 + 1) - (2% +
241)-d(z) = 320, di(2)p(2)!, where di(2) for 0 < i < 5 is defined as follows:
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0(2) 221 212 8 2T 4226 3,

di(z) = =28 =212 21 428 427+ 2206 - 2254+ 24 +3,

dy(2) = —28—2T—20 20— 233 (3.62)

dy(2) = 2N 4210429 4 28 4 2T 4+ 26 4 323 + 3,

di(z) = —210—29—-228 27T — 26423222423,

[ di(z) = 28+2T+20-22—z2+2

Assuming m(z) = z* + 2% + 1, there are the following relations:
dy(2) = (—2" = 2*)m(z) - 3, ds(z) = —dy(z) = (z + 1)m(2),
dy(2) = —2d5(2) + dy(2) + 2m(2), dy = —2(dy(z) + d5(2)) — dy(z) — 2m(2),
di(2) = =2(d3(2) + dy(2)) — dy(2) — 2°m(z), dy = —2(d1(2) + dy(2)) + dy(2) + 2°m(2).

The above formulas lead to the hard part computation given in Table BS.

As aresult, the calculation costs of the easy and hard parts given by i14+2mys+ fi+f1,
and 14ui, +21muy + Seiq +60c14 + Z?Zl fi,, respectively. Thus, the calculation cost of the
final exponentiation is given by 14uZ, + i1y 4 23mug + Se1q + Giers + 2f1 + S0, fia + 14

3.4.3 Final exponentiations by the generalized method

The final exponentiation by applying the generalized method is also considered. The
author provides the input of hy(z), he(2),T(2), k', ¢; for 0 < ¢ < K/, and s of Algorithm B
for the families of curves with k£ = 10, 11, 13, and 14. Note that one can obtain T'(x) =

t(x) = 1, hi(z) = (p(x) = T(x))/r(x), and hy(z) = O(T(x))/r(x) in Qlz].

(i) The cyclotomic family of curves with £ =10, D = 15, and p = 1.75

The polynomials hq(z), ha(x), and T'(x) are given as follows:

hi(z) = 1z(22° —|—3x+3) (222 +x+2) (x —1)%
ho(x) = at—a3+2% —x+1, (3.63)
T(x) =

For hy(z), he(z), and T'(z) with an integer seed z, it is found that s = 15 makes shy(z)
and shy(z) being integers. Since ®19(X) = X* — X? + X? — X + 1, it is obtained k' = 4,
cs=1,c3=—-1,c0=1,¢,=—1,and ¢y = 1.

According to Algorithm B, the calculation cost of the INIT step is approximately
given by ~ 6uj,. Besides, the calculation costs of the EVAL_INIT, EVAL, and PROD_INIT,
PROD steps are given by 3(3uj, + mig) + ic19 and 4mqo + Z?Zl fio, respectively. Thus,
the hard part requires 15u, + 7mio + te10 + Z?:l fio- When adding the calculation cost
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of the easy part ij9 + 2myg + fiy + fio, it is found that the final exponentiation requires
15ufy + 9mig + iro + dero + 2fip + fio + fio + fio-

(ii) The cyclotomic family of curves with £ =11, D =3, and p = 1.30

The polynomials hy(z), ho(x), and T'(z) in Q[z], are given by

(h(z) = La?—a+1) (2P +2+1)%

ho(z) = 2110 4 109 4 5108 4 .99 | 98 | 8,97 _ ;96 _ ;5
+35288 + 35287 + 27286 — 8285 — T84 + 283 + 282
+76277 + 7627 + 4927 — 2727 — 2027 + T2
+62™ — 2™ — 209 + 9925 + 99255 4 50254 — 49263
—29252 4 2025 4 14250 — 6259 — 5258 4 257 4- 56
+7725 + 77254 + 27253 — 50252 — 21251 + 2920 (3.64)
+1521 — 14248 — 9247 + 5210 + 424 + 332 4 33243
+72%2 — 2728 — 6240 + 2123 + 623 — 15237 — 6236
+9235 + 5234 + 5233 + 6232 + 323! — 6230 — ¥
+6228 — 6220 4 622 4 22 — 3222 4 3220 — 2218 4 216
—x2 22 4 2% — 2T 42— a1,

T(x) = —2B—2%

For hy(z), ha(2), and T'(z) with an integer z, it is found that s = 3 makes shy(z) and shy(z)
being integers. Since ®;(X) = X0+ X%+ X84+ X7+ X0+ X5+ X4+ X3+ X2+ X +1,
KK=10and ¢ =1for 0 <i<E.

Then, the calculation cost of the INIT step, EVAL_INIT and EVAL steps, and PROD_INIT
and PROD steps in Algorithm BT for computing the hard part are given by ~ 110uj,,
9(13ufy + 2ma1 +ic1q), and 10my; + Z?:l f1,, respectively. Thus, the calculation cost of
the hard part is given by 15uj, + Tmig + tc10 + Zf’zl fio- Since the easy part requires

my1+i11+ flll, the calculation cost of the final exponentiation is given by 227uf, +29mq; +
i1+ e + 21 + D00 fii-

(iii) The cyclotomic family of curves with k£ =11, D = 11, and p = 1.60
The polynomials hi(x), ha(x), and T(x) in Q[x] are given as follows:

h(z) = &(x—1)?- (2* + 32 + 42? + 4z + 3),

ho(z) = (0 =24+ a8 —a" +2° -2+ 2t =23+ 22—+ 1)

(220 — 18 g6 g1 12 10 4 g8 g6 g2y ),
T(zx) = at

(3.65)
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For hi(z), he(z), and T'(z) with an integer seed z, it is found that s = 11 makes sh;(z)
and shy(z) being integers. It is also found that &’ = 10 and ¢; = 1 for 0 < i < k.

As a result, the calculation cost of the INIT step, EVAL_INIT and EVAL steps, and
PROD_INIT, PROD steps in Algorithm BT for computing the hard part are given by =
30uiy, 9(4uf, 4+ 1mqy), and 10myy + 2?21 fi,, respectively. Therefore, the calculation cost
of the final exponentiation is given by 66uj; + 19mq; + Z?:1 fi,. Since the easy part
requires mq; + 411 + fi;, the calculation cost of the final exponentiation can be obtained
as 66uz, +20myy + iy + 2f5 + 300, fih

(iv) The cyclotomic family of curves with k£ =13, D =3, and p = 1.17

The polynomials hq(z), ha(x), and T'(x) are given by

4

h(r) = La® 4410,

ho(z) = oM 4™ 4 212 4 115131 4 102130 4 102129 — 2128
_’_541,118 + 441,117 + 45[[‘116 . 9[[‘115 + CL‘114 + 1551,105
+1112104 4 1202103 — 362102 4 82101 — 1100 4 286292
+17529 + 21029 — 84289 + 2828 — 7287 4 286 4 35127
+1762™ 4 252277 — 1262 + 5627 — 212™ + 62 — 2™
+287256 4+ 11125% 4 210254 — 126253 + 70252 — 35281
+152% — 5259 4 278 4 154253 + 43252 + 1202°1 — 842°° (3.66)
+5624 — 35248 + 20247 — 10240 + 424 — 2 4 54210
1123 + 45238 — 36237 + 28236 — 2123 + 1523 — 10233
16232 — 3231 4 230 4 12227 4 226 4 10225 — Qx4 4 823
_71,22 + 61‘21 _ 5I20 + 41,19 _ 3ZE18 + 21.17 _ 1'16 _ 1'13
+2t2 — gt 4210 — 2 — 2" 4 ab — 2t 23
+2? + 1,

T(x) = —a'—uz.

\

For hq(z), ho(z), and T'(z) with an integer seed z, one can find the smallest integer s = 3
such that shy(z) and shy(z) being integers. Since ®13(X) = X124+ X1+ X104 X9 X8 4
X"+ X0+ X5+ X4+ X34+ X2+ X +1, it is found that ¥’ =12 and ¢; = 1 for 0 < i < k'.

From the above, the calculation costs of the INIT step, EVAL_INIT and EVAL steps, and
PROD_INIT, PROD steps in Algorithm BT for computing the hard part are estimated by
~ 1440ty 11(14us 54 2mys + ieys)), and 12mys+ 3010 fis. Since the costs of the easy part
and hard part are mi3+i13+ fi3 and 298uf; + 34mq3 + 11i 3+ Z'}il fi5, respectively, it is
found that the final exponentiation requires 298uz; +35my3 +i13 4+ 1ligs + 25 + 3000 i
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Table 3.9: The curves for the STNFS-secure pairings at the 128-bit security level.

Bit sizes

Families (k, D, Seeds z

(k. D.p) () [ [ 1)
(i) (10,15,1.75) | 2% —2% 217 1 210 446 | 4460 | 256
(ii) (11,3,1.30) | =213 421028 — 2523 2 | 333 | 3663 | 258
(iii) (11,11,1.60) | —226 4221 4219 211 99 1 | 412 | 4522 | 256
(iv) (13,3,1.17) | 21 428 — 26 — 24 310 | 4027 | 267
(v) (14,3,1.33) | 221 4219 4 210 96 340 | 4755 | 256

(v) The cyclotomic family of curves with k£ =14, D =3, and p = 1.33
The polynomials hy(z), ho(x), and T'(z) in Q[z] given as follows:

(

h(z) = 2(@*—z+1)-(2®+x+1),
x

ho(z) = 236 — 2% + 23 — 5% 4 4% — 4277 — 226 + 9222 — 5%
+62%°0 4+ 3219 4+ 218 — 6215 4+ 21 — 4213 — 3212 — 221 (3.67)
— x0T S a4t 2 2?1

T(x) = 2®—uz.

\

Then, s = 3 is the smallest integer such that shi(x) and sho(x) being integers. Since
Py(X) =X — X4+ X4 — X34+ X2 - X +1, it is found that &' =6, ¢ = 1, c5 = —1,
cs=1,c3=—-1,c0=1,¢,=—1, and ¢y = 1.

Since the calculation costs of the INIT step, EVAL_INIT and EVAL steps, and PROD_INIT,
PROD steps in Algorithm B for computing the hard part are given by ~ 36u5,, 5(8uj, +
2myg + licy) + Lio,,(p), and 6myy + Z?Zl fi,4, respectively, It is found that the hard part
requires 76uiy + 16my4 + 6ig,,p) + Zle fi,- In addition, since the calculation cost of the

easy part is given by 2my4 + 114 + fi4 + f{,, the final exponentiation takes 76u, + 18mqy +
. . 5 i
i1 + Gl ) + 2f1y + D00 fia + fli-

3.4.4 Calculation cost estimations

In this subsection, the author estimates the calculation costs of the final exponentiations
for the STNFS-secure pairings at the 128-bit security level. Indeed, in [Gui20], Guillevic
suggested using the integer seeds z for the families of curves with £ = 10, 11, 13, and 14
in Table B9. Then, the calculation costs uj, ui_l, and ui“ of the exponentiation by z,
z — 1, and z + 1 performed by the square-and-multiply algorithm are specifically given
as Table BT0. Substituting the calculation costs uj, uZ’l, and uz“ to the costs of the
final exponentiations for the families of curves with k£ = 10, 11, 13, and 14, it is obtained
the operation counts given in Table B-I1. For k = 10,11, 13, and 14, the calculation costs

of the arithmetic operations in [F,» can be replaced with the cost m; as in Table B2,
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Table 3.10: The calculation costs of the exponentiations by z, z — 1, and 2z + 1 in F .

Families (k, D, p) u? uy ! up

(1) (10, 15, 175) 4m10 + 328010 + iclO 4m10 + 325010 + iclO -
(11) (11, 3, 130) 5m11 + 13811 + icll - -
(111) (11, 11, 160) 5TTL11 + 26811 + icll 5m11 + 26811 + icll 477111 + 26811 + icll
(
(

iv) (13,3,1.17) 3mys + 11813 + ic13 - )
v) (14, 3,1.33) 3miy + 218c14 + te1a ; -

Table 3.11: The number of operations in F,x for computing the final exponentiation of
the pairings at the 128-bit security level.

Familes (i, D, o) Methods | ma| /il i 12 5272 12 e[ 2 g2 2 12
9 0015.179) |t | oo 50111 161 21101 110000/ 0
0 131 Bt ot sl 2 ] o
i o oo Bttese8 soli 7 2 4 o
o 5 1) [t 2o o 2 A
) 043159 | et [ 21509 11 21 211 1110100 0 ¢

which is derived from [Gui20; GMT20]. Replacing the costs in Table B0 with m4, the
calculation costs of the final exponentiations are finally estimated as in Table BT3.

According to Table B3, it is found that the lattice-based method [FCKRHTI] is a
computing the final exponentiation for the target family of curves. In fact, the final
exponentiations given by lattice-based method successfully reduce 16.4%, 87.2%, 75.5%,
89.3%, and 80.0% calculation costs from that of the generalized method for the families of
curves with (k, D, p) such that (10, 15,1.75), (11, 3,1.30), (11,11,1.60), (13,3,1.17), and
(14, 3,1.33), respectively. This is because not only the high degree T'(x) but also the com-
plicated polynomial representations of hq(z) and hy(z) result in increasing the calculation
costs for computing Algorithm BT, For such families of curves, it is considered that the
INIT step in Algorithm B should be optimized by exploiting p(z)-adic representations
of hi(z) and ha(2).

3.4.5 Performance comparison of the STNFS-secure pairings

The author compares the performance of the STNFS-secure pairings on the candidate

curves at the 128-bit security level in [Gui20]. Table B4 shows the calculation costs of
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Table 3.12: The calculation costs of the arithmetic operations in F,x with & = 10, 11, 13,
and 14.

k My | Sk/Seck Uk lek fi
10 | 39my | 26my | 125my &my 8my
11 | 45my | 45my | 332my | 285my | 10my
13 | 59my | 59my | 489my | 438my | 12my
14 | 66my | 44mq | 217my 12mq | 12my

Table 3.13: The calculation costs for computing the final exponentiation of the pairings
at the 128-bit security level.

Families (k, D, p) | Methods Costs

. Lattice-based 12921my
() (10,15, 1.75) Generalized ~ 15464m,
Lattice-based 32322m,
Generalized ~ 252867m;
Lattice-based 27462m,
Generalized ~ 112212m,
Lattice-based 40970m,
Generalized ~ 384188m
Lattice-based 17811m4
Generalized ~ 87745m,

(i) (11,3, 1.30)

(iii) (11,11, 1.60)

(iv) (13,3,1.17)

(v) (14,3,1.33)

the Miller loop, final exponentiation, and total pairing with the time estimation. The

BN curves with k& = 12 [BNO5], BLS curves with £ = 12 [BNOA], FK curves with k£ = 12
(FK12) [ENMTY], and KSS curves with k& = 16 [KSSOR| are given by [GMT20; FMTY].
For the curves with £ = 10,11,13, and 14, the calculation costs of the Miller loop are
given by [Gui20] and these of the final exponentiations are given by this work. Note
that the inversions involved in the costs of the Miller loop are replaced with m; by
this work. For the Cocks-Pinch curve with & = 6 and BLS curve with £ = 12, the
calculation costs of the final exponentiation are also reproduced in App. B. The timing is
estimated from the F,-multiplication timing for RELIC [AraT3] on a Intel Core i7-8700
CPU, 3.20GHz with TurboBoost disabled, i.e., IF,-multiplication can be performed in 65ns
for 320 < log, p < 384, 85ns for 384 < log,p < 448, 129ns for 512 < log, p < 576, and
181ns for 640 < log,p < 704 (see Table 9 in [GMT20]). Although there is no data for
log, p = 310, the author assumes that the timing is 65ns.

According to Table B4, it is found that the BLS curve with £ = 12 might be the
best choice for the pairings at the 128-bit security level. The second-best candidates are
the Cocks-Pinch curve with & = 6 and the FK12 curve with £ = 12. Although the author
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Table 3.14: The calculation costs and time estimations for computing the pairings of
Miller’s algorithm (ML) and final exponentiation (FE) with the curves resistant to the
STNFS at the 128-bit security level.

Curves, (k, D, p) log, p ML FE Total | Time est.
Cocks-Pinch, (6, 3,2.63) 672 | 4601my | 297Tmy | 7578m; | ~ 1.37Tms
Cocks-Pinch, (8,4,2.13) 544 | 4502m, | 7056m; | 11558m; | ~ 1.49ms
(i) Cyclo, (10,15,1.75) | 446 | 15982m; | 12921m; | 28903m; | ~ 2.46ms
(ii) Cyclo, (11,3, 1.30) 333 | 20851m, | 32322m, | 62173m; | A 4.04ms
(iii) Cyclo, (11,11,1.60) 412 | 25485my | 27462my | 52947Tm, | =~ 4.50ms
BN, (12,3, 1.00) 446 | 11620my | 5349m, | 16969m, | ~ 1.44ms
BLS, (12, 3,1.50) 446 | 7805my | 6161m; | 13966m, | =~ 1.19ms
FK, (12,3, 1.50) 446 | 7853m, | 8002m, | 15855m, | ~ 1.35ms
(iv) Cyclo, (13,3,1.17) | 310 | 30897m, | 40970m, | 71867m, | ~ 4.67ms
(v) Cyclo, (14, 3,1.33) 340 | 16546my | 17811m; | 34357my | ~ 2.23ms
KSS, (16,1,1.25) 339 | 7691m; | 18235m4 | 25926m; | ~ 1.69ms

improves the final exponentiation for the curves with £ = 10,11, 13, and 14, these curves
can not give rise to efficient pairings compared with the other curves. This is because
these curves do not have high-degree twists for the efficient Miller loop and also do not
have efficient squaring in the cyclotomic subgroups of F,« that contribute to speeding up
the final exponentiation. To prepare further improvements of the STNFS, it is considered

that more optimization techniques for these curves are required.

3.5 A new construction method of the final exponen-
tiation
This section provides a new construction method of the algorithm for computing the hard

part of the final exponentiation for the cyclotomic family of pairing-friendly elliptic curves

with prime embedding degree k of k =1 (mod 6).

3.5.1 Cyclotomic family of pairing-friendly curves of k£ of £ =
1 (mod 6)

In [ESTT0], Freeman et al. introduced the cyclotomic families of pairing-friendly elliptic

curves with any embedding degree k except for 18 { k. For & =1 (mod 6), there is the
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following parameterization of p(x), r(z), and t(z) in Q|x].

pr) = b DR - ok 4 1) -
r@) = Pal), (3.68)
tlx) = —a" o+l

The above allows us to construct pairing-friendly curves with a prime k& that have the
advantage in terms of the resistance of the STNFS. In the following, let z be an integer

making p(z) and r(z) being primes.

3.5.2 Proposed final exponentiation

For the curves in the cyclotomic family with a prime & of £ = 1 (mod 6), the exponent

of the final exponentiation is given as follows:

p(z)* -1 _ (p(z) — 1) - (%j;”) , (3.69)

where d(z) = ®(p(2))/r(2) = Z?:_()l p(2)i/r(z) the hard part. The author proposes to

decompose the hard part d(z) as shown below.

Theorem 3.10. Let n be an integer defined by n = (k — 1)/6 and ¢(z) be a polynomial

defined as follows:

c(z) = 301 (2)Py(2)P3(2) i 2%, (3.70)
Then, d'(z) = ¢(z) - d(z) is represented as follows:
d(z) = Z_ (27"®6(2) — 3 + pgn-1-i(2)) - p(2)’, (3.71)

where p5(z) with an integer s such that 0 < s < 6n is a polynomial defined as follows:

¢ —28@6(2) ifs=0 (mod 6),
215D (2) — 2°Bg(2) — 32°F if s =1 (mod 6),
SO B () — 35t if s =2 (mod 6),

ps(z) = 2P (2) ) if s=3 Emod 6;, (3.72)
=20 ISP (2) + 2°Dg(2) + 325t if s =4 (mod 6),
| 20t (2) + 325+ if s =5 (mod 6)

Proof of Theorem BI0. Let us start to modify d'(z) = ¢(z)d(z) by using the expansion of
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d(z) = ®x(p(z))/r(2) by Theorem BH in [HHT20]. In this case of the cyclotomic family
for a prime k = 6n + 1, since ¢(k) = 6n and ®,(X) is the all one polynomial of degree
6n, d'(z) can be denoted as

d'(2) = c(2)h(2) ( - _Z_ T(z) ~p(z)i> +c(2)ha(2), (3.73)
=0_=0 5
_A(2)

where hi(z) = 106(2)%, ho(2) = 307, T(2)'/r(2), and T(z) = —25"+2 4. In the following,

1=

the first and second terms of d'(z) are referred to A(z) and B(z), respectively.

Modification of A(z)

Firstly, the polynomial A(z) of d'(z) are modified as follows: The coefficient of p(z)* of
A(2) is denoted as c(2)h1(2) >27_( T(2)’ where s = 6n —1 —i. If s = 0, the coefficient
can be easily obtained by c(2)hy(z) = (2" — 1)®g(2). If s > 0, the coefficients can be

denoted as

e(2)hi(2) Z T(z) = -3 z_: T(2)'p(2) + (25" — T(2)*)Dg(2) + 3 Z T(z),  (3.74)

which can be proven by the injection of s.
Applying the equations to the polynomial A(z),

6n—16n—1—1

A(2) = e(2)h(2) Y T(2)p(2)’

i=0  j=0

+ 2" ®g(2) + 3T (2))p(2)"
+ (=3(T(2) + Dp(z) — @6(2)T(2)? + 2 ®g(2) + 3(T(2)* + T(2)))p(2)*" > + - -

¥ (—3 D" TEp() — BT () +3 Y T<z>i> p()’

= (2%"Pg(2) — 3 — Pg(2))p(2)"
+ (7 g(2) = 3 = @6(2)T(2))p(2)"
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+ (£57D(2) — 3 — B (2)T(2)})p(2)5" 3 + - - -

6n—1
+ (27 ®g(2) — 3 — Bg(2)T ()" p(2)° + 3 Z T(z
6n—1 6n—1 6n—1
- (Z(zﬁncpﬁ(z) —3)p(2)i> ( ZT )o i ) (3ZT )
=0
—AL(2) —As(2) —A5(2)

(3.75)

The first, second, and third terms of A(z) are referred to as A;(z), A2(2), and As(2),

respectively.

Modification of As(z)

Then, let us modify As(z). The coefficient of p(z)" of Ay(z) is denoted as —Pg(2)T'(2)*
where s = 6n — 1 —i. For s > 0, ®g(2)7(2)°® can be denoted as follows:

D6(2)T(2)" = as(2)(p(2) = T(2)) + Bs(2), (3.76)

where a,(2) and S,(z) are polynomials in Q[z] defined with ~,(2) € Q[z] as follows:

a1(z) = 0,a4(2) = as_1(2)T(2) + 7s(2), (3.77)
[ 25Dg(2) if s =0 (mod 6),
— 20T P (2) + 25Dg(2) if s =1 (mod 6),
B.(2) = _Z§"+1+5®6(2> %f s f 2 (mod 6), (3.78)
—2°Pg(2) if s =3 (mod 6),
ISP (2) — 2°Dg(2)  if s =4 (mod 6),
| 20 g (2) if s =5 (mod 6),
(0 if s=1,4 (mod 6),
75(2) =< 3z%  if s=2,3 (mod 6), (3.79)
—3z° if s =0,5 (mod 6).

\

The correctness of the above equation can be proven by induction on s’ > 0 such that
s =065 +1i>0forie{1,2,3,4,5,6}, however, the details are omitted in this thesis.
Applying the above to As(z), there is the following modification.

6n—1

A :_(I)G ZT 6n 1- z )'L

e
- Bi(p(=)"
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— (2(2)(p(2) = T(2)) + Ba(2))p(2)"
— (a3(2)(p(2) = T(2)) + Bs(2))p(2)"~* =
— (@6n-1(2)(p(2) = T(2)) + Bon1(2))p(2)"

= —®4(2)p(2)"" "

— (B1(2) + aa(2))p(2)"" 2

— (—2(2)T(2) + Ba(z) + a3(2))p(2

— (—a3(2)T(2) + B3(2) + au(2))p(2)* ™ =
— (=aen-1(2)T(2) + Bon1(2))p(2)°

= —®(2)p(2)"" "

— (Bu(z

>6n—3

(
= —Pg(2)p(2)*" "

))p(2)
— (Ba(2) +73(2))p(2)*"
— (B3(2) +(2))p(2)"
— (Bon—1(2) + 6n(2))p(2)°
+ (agn-1(2)T'(2) + v6n(2))
= ( —(Ben—1-i(z )+76ni(2))p(2)i> + (aen-1(2)T(2) + ¥6n(2)),  (3.80)
Q=0 , —Aon(2)
:A21(Z)

where the first and second terms of As(z) are referred to Asy(z) and Asy(z), respectively.
From the definition, it is easily found —(8s(z) +vs+1(2)) = ps(z) for s = 6n — 1 —i. Thus,

Ay (%) can be denoted as follows:

6n—1

A21 Z Hen—1— z . (3-81)

Besides, Ags(2) can also be denoted as follows:

6n—1

Ago(2) =0n—1(2)T(2) + Yen(z Z Yon—i

n—1
—3 Z (_ZGn—GiT(Z)(Si _ ZGn—(6i+1)T(z)6i+1

=0
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20O ()T (2) 548 4 RSP (2)6044) | (3.82)

Modification of B(x).

The polynomial B(z) can be modified as follows:

_ )T (2) Y T(2) + e(2)
r(z)
_ (3r(2) +22e(z) +3) 31 T(2) + o)
r(z)

=3 T()+ (Telz) +3) 272(?; T +elz) (3.83)
:Bl(z) ) —Ba(2) ’

The first and second terms are referred to as Bj(z) and Bs(z), respectively. From the
modifications, it is found B;(z) + As(z) = 0.

In the following, proof of By(z) + Ass(2) = 0 is provided. Since By(z) involves de-
nominator r(z) = ®g(2%""1)/Pg(2), it is enough to show t1(2) = Pg(2)r(z)Ba(z) and
to(2) = —Dg(2%"1) Agp(2) are the same as shown in the below.

t1(z) = Pg(2) ((220(2) +3) Z_ T(z)" + c(z))

6n—1
=30z — 24+ 1) Y T(2) +3(z" - 1)
=0

6n—1

=3(=T(2) +1) Z T(2) 4 3(2% —1)

=3(=T%" +1) +;>(26" —1)

3
= 3(=T°% 4 2%). (3.84)
n—1
tz(z) — 3(1)6(26n+1) Z (Zﬁn—ﬁz’T(z)Gi + Zﬁn—(ﬁi—&-l)T(Z)ﬁi_;.l
=0

_Z6n7(61+3)T(2)6i+3 _ Z6n7(6i+4)T<Z)6i+4)

=3(T(2)? — 2T(2) + 2?)
n—1
(2082 ()61 4 pBn—(Bi+1) =216+

-
Il
=)

_ZGn—(6i+3)—2(z)T(2)6i+3 - Z6n—(6i+4)—2T(Z)6i+4)
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n—1 n—1
-3 (Z Z6n76i72T(z>6i+2 + Z 26n76i73T(z)6i+3

=0 =0

n—1 n—1
_ § Z6n76175( 6z+5 E /‘ZGn 6i— 6T 61+6
] i=0

1=
n—1

o E Z6n 61— 1T 61+1 E Zﬁn 6i— 2T 6z+2
=0

n—1
+ Z ZGn—Gi—4(Z)T(Z)6i+4 + Z ZGn—Gi—5T(z)6i+5
i=0 1=0

n—1 n—1
+ Z Zﬁn—GiT(z)Gi + Z ZGn—Gi—lT(Z)Gi-i-l
i=0 1=0
n—1 n—1
. Z Z6n—6i—3(z)T(2)6i+3 o Z ZGn—Gi—4T(Z)6i+4>

1=0

(Z 6n— 62T Z 6n—6i— GT 6z+6>

= 3(=T°%" 4 2%). (3.85)

Since t1(z) = ta(2), it is obtained that By(z) 4+ Asa(z) = 0.

As a result of the modifications, it is obtained d'(z) = A(2)+ B(z) = A1(2)+ (A1 (2) +
Ago(2))+As(2)+B1(2)+Ba(z) with the relations By (2)+As(2) = 0 and Ba(2)+Asa(z) =0,
e, d(2) = Ai(z) + An(2) = 2070 (27 P(2) = 3+ paon-1-4(2))p(2)" O

3.5.3 Application

In this subsection, the author applies Theorem B0 and presents the representation of

the hard part for the curves with several embedding degrees, e.g., k = 7,13, and 19.

Example 3.11. (k = 7) The cyclotomic family of curves with £ = 7 has the following

parameters.

p(z) = e+ 12" -2 +1) -
r(z) = ®gpx), (3.86)
tx) = —a®+z+1

For an integer seed z making p(z) and r(z) being primes, the hard part of the final
exponentiation is d(z) = ®7(p(2))/r(z). Applying Theorem 1, it is obtained n = 1,
o(2) = 30, (2)Py(2)P3(2), and d'(2) = 320_, di(2)p(2) where d}(2) = 25®g(2) — 3+ tn_1_i
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are given as follows:

d5(z) = 2°0g(z) — 3 — g(2),
dj(z) = 2804(2) — 3+ 28Dg(2) — 2Pg(2) — 322,
dy(z) = 28®g(2) — 3+ 2%®g(2) — 323,
dy(z) = 28®4(2) — 3+ 23®¢(2), (3.87)
di(z) = 2%Pg(2) — 3 — 21 Pg(2) + 21 Pg(2) + 327,
L dp(2) = 2°Pg(2) — 3 — 212Dg(2) + 32°.

Example 3.12. (k = 13) The cyclotomic family of curves with & = 13 has the following

parameters.
plx) = 3(x+1)%*@* -2 +1) -2,
r(z) = Pg(x), (3.88)
t(x) = - +ax+1.

Then, for an integer seed z making p(z) and r(z) being primes, the exponent of the
hard part is d(z) = ®13(p(2))/r(2). Applying Theorem 1, it is obtained n = 2, ¢(z) =
30, (2)@y(2)Py(2)(2841), and d'(2) = Y12, di(2)p(2)" where d}(2) = 2"2®g(2) =3+ pt6n_1i

are given as follows:

7

diy(2) = 27®4(2) — 3 — P(2),
dip(z) = 22®6(2) — 3+ 2MPg(2) — 2P4(2) — 327,
dy(z) 21206(2) — 3 + 25Pg(2) — 323,
diy(z) = 22®g(2) — 3+ 23P¢(2),
di(z) = 22®4(2) — 3 — 21Tdg(2) + 22 Pg(2) + 327,
dg(2) = 22®g(2) — 3 — 218Pg(2) + 325, (3.80)
di(z) = 22®g(2) — 3 — 250¢(2), '
di(2) = 22®4(2) — 3 + 220P4(2) — 2TDg(2) — 328,
dy(z) = 22®g(2) — 3+ 221 Pg(2) — 327,
dy(z) = 22®g(2) — 3+ 29Pg(2),
di(z) = 22®g(2) — 3 — 22®¢(2) + 2190¢(2) + 321,
[ do(2) = 2P®6(2) — 3 — 2% Ps(2) + 322

Example 3.13. (k = 19) The cyclotomic family of curves with & = 19 has the following

parameters.

plx) = 3(x+1)%*@* -2 +1) — 2%,
r(z) = ®ua(z), (3.90)
tlx) = -2 +a+1
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In this case, for an integer seed z making p(z) and r(z) being primes, the exponent of
the hard part is d(z) = ®19(p(2))/r(z). Applying Theorem 1, it is obtained n = 3,
c(w) = 3P (2)0y(2)Py(x) (2" + 29 + 1), and d'(z) = 32,2 ("6 (x) — 3 + pgn—1-4)p()’
where pg,—1-; are given as follows: Applying Theorem 1, it is obtained n = 3, ¢(z) =
30, (2)Po(2)D3(2)(2'% 4 28 + 1), and d'(2) = 3202, (2"¥®6(2) — 3 + ign_1-4)p(2)" where

len—1—; are given as follows:

(d(s) = Baz)— 3 - B(2),
dig(z) = 2"%g(2) — 34 2%%g(2) — 2@6( ) — 327,
di5(z) = 28®g(2) — 3+ 221 Pg(2) —
u(z) = 25y(z) 3+ 20(2).
diz(z) = 2%®6(2) — 3 — 2%Pg(2) + 2 Ps(2) + 327,
dip(z) = 2"%g(2) =3 — 2%®g(2) + 32,
diy(z) = 2"%(2) — 3 — 2°04(2),
dio(z) = 28®g(2) — 3+ 220Pg(2) — 27Pg(2) — 328,
(9 2 st i s o
dg(z) = 2°®(2) —3+Z ®6(2),
di(z) = 2Bdg(2) — 3 — 22Pg(2) + 219¢(2) + 3211
dg(2) = 28®g(2) — 3 — 230P4(2) + 3212,
di(z) = 2B®g(2) — 3 — 212P4(2),
d(z) = 2B8dg(2) — 3+ 232Pg(2) — 213@g(2) — 32
diy(z) = 2Bdg(2) — 3+ 233dg(2) — 3217,
dy(z) = 21%0(z) — 3+ 21°0g(2),
di(z) = 28dg(2) — 3 — 23%Pg(2) + 2150¢(2) + 3217
[ dy(2) = 28Pg(2) — 3 — 230D4(2) + 3218,

For the curves with £ = 7, 13, and 19, the multiple d’(z) and its decomposition are
exactly one of the same representations given by the lattice-based method [FCKRHTI].
For curves with arbitrary prime k of £ = 1 (mod 6), there is a possibility that the
proposed method gives rise to one of the same results as [FCKRHTI]. Besides, since
the decomposition of d'(z) has systematic relations between the coefficients d}(z) which
consists of fzi for 0 < ¢ < 6n and fzi%("‘) for 0 < ¢ < 12n, one can construct an
efficient algorithm for computing f — f¢*) in Algorithm B33. The details of the steps in

Algorithm B=3 are summarized below.

Steps 1-3 compute f; = f* for 1 < i < 6n, which take 6nuj.

[

e Steps 4-8 compute ¢g; = f* '26(2) for 0 < i < 6n — 2 from fi, which require n(6my, +
4ick

e Steps 9-11 also compute g; = f2' () for 6n — 1 < i < 12n, which take (6n + 2)uj.

Steps 12-19 compute vg;4; = fz6%6(z) 3thon—1-@i+)(?) for 0 < i < n—land0< j <5
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from the knowledge of the f; and g;, which take igék(p) + ¢ + n(18my, + 4eg + Gigy,.

e Steps 20-22 compute w = Y 0" ") which require (6n — V)my, + 30" fL.

2

Algorithm 3.3: Proposed hard part computation for the family of curves with
prime k of £k =1 (mod 6).
Input: f € /GCPk(p(Z))
Output: f¢ (2) ¢ Hr ()
fo< f;
for i =1 to 6n do
fi < fiqs
endfor
Fori=0ton—1do
ty = foirs - Soipar t2 ¢ 11
G6i+3 < 1 feirs, Goira < t2 - feive;
t1 4 foira foipns to < 15
96i < t1 - feir Goir1 < ta - foirs;
endfor
1 Gon ¢ Gon_o;
12 for i =1 to 6n do
13 G6n+i <= Jonri-1
14 endfor
15ty <+ [ by« t3
16 fori=0ton—1do

© 00 N OO ok~ W N =

=
o

1 i
17 V6i+5 <~ Jon * 96n717(6i+5) <t
—1 -3.
18 V6i+4 < G6n * J12n—(6i+4) “9on—1-(6i+4) (fﬁn—(6i+4) : f) )
-3.
19 V6i+3 < Jon * J12n—(6i+3) (fﬁn—(6i+3) )7
20 Ugi+2 <= 96n * Jon—1—(6i+2) * L2}
- 3.
21 V6i+1 < Jén J12n—(6i+1) ~ Jon—1—(6i+1) * (f6n7(6i+1) 'tl) )
-1 3.
22 V6i <= Gon * Gran—ei * (fon—6i * t1)”;
23 endfor
24 W < Vg;

25 fori=1to6n—1

i
26 w<—w-vf(z);

27 endfor
return w;

Thus, the total of the calculation costs for executing the algorithm is given by (12n+2)uj+
(30n—1)my+(4n+1)cp+(10n+1)ig+3 0" " fi in this case. In the target family of curves,
the proposed algorithm is considered to be more efficient than that of the generalized
method [HHT20]; This is because Algorithm BT requires at least (k' — 1)degTuj =
(6n — 1)(6n + 2)uj = (36n* 4+ 6n — 2)uj in the EVAL step.
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3.6 Summary of contributions

This section presents the works related to optimization of the final exponentiation of the

pairings. The major contributions are summarized as follows:

e The author improves the final exponentiation for the pairing on the BLS curves
with k£ = 15 by using the property of the characteristic of the BLS family, which is
also used by Zhang et al. in [ZLIZ]. For the pairing at the 128-bit security level,
the proposed method contributes to reducing the calculation cost 312m; from the
previous final exponentiation given by Fouotsa et al. in [FMP20]. It is also found
that the decomposition method can be extended for the BLS curves with any k. At
the same time as this publication, Hayashida et al. generalized Zhang et al.’s method
for any family of curves in [HHT20], however, the result is still in the state-of-the-art
for the BLS curves with k£ = 15.

e For the families of curves with £ = 10,11,13, and 14 resistant to the STNF'S,
the author presents the final exponentiation computations that are constructed by
Comparing the calculation costs of the final exponentiations between two methods,
it is found that the lattice-based method results in notable reducing the calculation
costs. However, comparing the calculation costs of the STNFS-secure pairings be-
tween the shortlist curves in [Gm20], it is found that the curves with k£ = 10,11, 13,
and 14 are not efficient choices for the pairings at the 128-bit security level. As one
of the future works, the author would like to achieve more optimizations for these
curves, e.g., optimizations of the arithmetic operations in the cyclotomic subgroup

of the full extension field for these curves.

e The author proposes a new decomposition method of the hard part for the cyclo-
tomic family of pairing-friendly curves with any prime k of £ = 1 (mod 6). It is
found that the proposed method results in one of the same state-of-the-art algo-
rithms for computing the hard part given by the lattice-based method for the cases
of k =7, 13, and 19. Unlike the lattice-based method, the proposed method can
easily reach the same result. Moreover, the proposed hard part takes approximately
(36n% 4+ 6n — 2)ui. As one of the future works, the author would like to obtain

similar results for the other families of curves.



Chapter 4

Attractive Subfamilies of
Pairing-friendly Curves for Fast

Pairings

The algorithms for computing the final exponentiation of the pairings are optimized in
Chapter B. To achieve more efficient pairings, it is necessary to consider the efficiency of
elliptic curves and finite fields in which the pairings are defined. This chapter describes
research for generating curves and finite fields that have advantages for the pairings,
which is introduced as the second work in Sect. [Z3. This chapter starts to review the

background and motivation.

4.1 Background and motivation

The family of pairing-friendly curves with fixed embedding degree k are parameterized
by polynomials p(z), r(x), and t(x) in Q[z]. The pairings with the family require several
initial settings such that finding an integer parameter z and constructing a field, curve,
and its correct twist corresponding to z. In the settings, it is needed to consider not
only the security of pairing but also the efficiency of pairing computation since it strongly
depends on the field construction, curve equation, and twisting or untwisting isomorphism.
However, since it is typically complicated to handle the favorite constructions, it is desired
to establish some convenient ways for the settings which have advantages for the pairings.
The author would like to overcome this problem.

There are several related works that focused on the specific families of curves which
offer advantages with respect to some aspects of a pairing computation [Shil(; Per+1T,;
CLNTT; CosT2; YTSTH]. Particularly, in [Per£11], Pereira et al. firstly consider the
problem for the BN family. In [CLNTI], Costello et al. were motivated by [Per+11]
and provided attractive subfamilies of the BLS family with k& = 24 which guarantee

110
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the implementation-friendly field and curve equations. The important fact is that the
subfamilies are simply generated by finding z satisfying certain restrictions. In short,
once finding z, we can automatically have favorite constructions of field and curve. After
this publication, Costello treated the other eight stand-out candidates’ families of curves
with 8 < k < 50 and point out attractive subfamilies of each in [CosT?].

This work is summarized below.

e Although there are previous works for the BN family [Shil0; Per411; N'T'ST3], it is
still ambiguous about the generation of the BN subfamilies. Thus, the author refers
to [CLNTI] and explicitly provides restrictions of z for generating the attractive
subfamilies of the BN family. The author shows sample seeds z for generating
concrete curves and confirms the performance of the pairings by an implementation.

The efficiency of the untwist isomorphisms for the pairings is also observed.

e According to recent works, the BLS family is often used for the pairings at the
various security levels rather than the BN family. Since the BLS family has high
flexibility of k£ and can strongly support optimizing the pairings, it will be regularly
adopted for the pairings even if there is progress in the security analyses in the
future. Thus, the author extends [CLNTI] and provides restrictions for finding =z
that can generate the specific BLS subfamilies with more generalized embedding
degrees k = 2™ - 3 and 3" for any integers m,n > 0. For the BLS family of curves
with k = 9,12,24, and 27, the author provides sample seeds z for generating concrete
curves for the pairings at the 128- and 192-bit security levels. The pairings with the

proposed curves are also evaluated by an implementation.

Organization. Sect. B2 reviews the previous work and provides mathematical descrip-
tions. The main results of the attractive subfamilies of the BN and BLS families with
k= 2" .3 and 3" are proposed in Sects. I3 and B4, respectively. Sect. A summarizes

the major contributions in this chapter.

4.2 Related works and mathematical materials

This section reviews the related works for the BLS family of curves with k& = 24 given by
Costello et al. in [CLNTI]. This section also provides the mathematical preliminaries for

generating attractive subfamilies of curves which are referred to in [CLNTT].

4.2.1 Related works

There are several related works for the determination of the construction of the tower

of extension fields and curve equations in [Shil(; Per+11; CLNTI; CosT2; N'TST5]. In
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[CLNTT], Costello et al. proposed the restrictions of z for generating specific subfamilies
of the BLS family of curves with £k = 24, D = 3, and p = 1.25, which facilitate efficient
instantiations of the pairings. In this context, the BLS family of curves with & = 24 has

the following parameterizations.

pa) = Yo—17r@)+a,
r(r) = ®y(z)=12%—-a21+1, (4.1)
t(r) = =+ 1.

Let us find an integer seed z making p(z) and r(z) being primes and #(z) being an integer

satisfying the condition given as follows:
z=17,16,31,64 (mod 72). (4.2)

Then, we have the specific subfamilies of the BLS family with attractive options, i.e.,

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;
(ii) The BLS curve E/F,.) is immediately determined;
(iii) The correct twist £'/IF,.)s of degree 6 of E is also immediately determined.
The details of the options are found in the following theorems.

Theorem 4.1. If z satisfies Eq. (E2), the following tower of extension fields is always

available.
FP(Z)2 p(z [‘T]/(Iz + 1) = IF1)(2)(05)7
IE‘19(2’)4 p(Z 2[1’]/(1‘2 + ( + 1)) = IFp(z)2 (6)7 (43)
FP(Z)24 P(Z 4[x]/(x6 + 6) = Fp(z)4 (’7)7

where a, 3, and v are elements in Fp,)2, Fp)e, and [Fp;)24 such that a? = —1, % =

—(a+ 1), and v = — 3, respectively.
Theorem 4.2. If z satisfies Eq. (B), the BLS curve E/F,.) is determined by
vy =x3+1, if 2=7,31 (mod 72),

E/Fpi i {4 y*=a%+4, if 2=16 (mod 72), (4.4)
y? =12% —2, if 2 =64 (mod 72).

Theorem 4.3. Suppose that the tower of extension fields of degree k = 24 and BLS curve
E /I,y are constructed as in Theorems BT and B2 with z satisfying Eq. (B22). Then, the
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correct twist E’/IF,.)s of degree 6 of E is determined by

yP=a23+1/3, if 2=7 (mod 72),
y? =23 +48, if 2=16 (mod 72),

E'JF 4.5
[Eios P2 =28+8, ifz=31 (mod 72), (4:5)
y* =23 +2/8, if 2 =64 (mod 72),
where £ is an element in F,)s such that f* = —(a + 1).
Proof of Theorems -1, §-3, and [-3. Please refer to [CLNTT]. O

The field and curve options can reduce the time-consuming pre-computation of the
curve constructions. Moreover, the fixed constructions give rise to the flexibility of scaling
the size of the parameters without changing any of the implementations for the field and
curve arithmetics. In [Cos1?2], Costello also treated the other eight stand-out candidates
such that the Brezing-Weng family with k£ = 8, the BLS families with £ = 12, 27, and 48,
and the KSS families with k£ = 16, 18, 32, and 36 for pairing implementations and point

out highly attractive subfamilies of each.

4.2.2 Mathematical materials

This subsection briefly describes the construction method of extension fields and the

determination method of curve equations used for proof of the theorems in [CLNTT].

The construction method of the tower of the extension field

Let p be a prime and ¢ = p" with an integer n > 0. To admit an extension field Fym
of degree m of F, defined as Fym = F,[z]/(z™ — () with ( € F,, it is known that the
binomial ™ — ¢ must be irreducible in F,[x]. According to [BSI0], the irreducibility of

the binomial can be verified as follows:

Lemma 4.4. The binomial 2™ — ( is irreducible in F [z] if the following two conditions

are satisfied.

(a) Each prime factor d of m divides (p — 1) and the Norm of ¢, i.e., Ny r, (), is d-th

non-residue in [Fy.
(b) If m =0 (mod 4), then ¢ =1 (mod 4).

Proof of Lemma 4. Please refer to [BST0]. O

In [BST0], Benger and Scott described that a condition of p for constructing a fixed
extension field of degree k£ = 2™ - 3" for n,m > 0 can be easily obtained by applying

Lemma B4 since the quadratic and cubic residue properties of the specific element in F
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can be obtained by Lemmas 223 and E28. As examples, they provided conditions for
constructing some implementation-friendly towers of extension fields for the BN and KSS
families of curves with k& = 12 and 18, respectively. With the same strategy, Costello et
al. reached the condition of the integer parameter z for constructing the tower of extension

fields as shown in Theorem B

Determination method of the curve equations

Let p be a prime such that p = 1 (mod 6) and let ¢ = p" with an integer n > 0. Let E/F,
be an ordinary elliptic curve defined over F,, given by y* = 2*+b. Then, all possible number
#E(F,) of rational points of E(F,) can be obtained by taking b € {1,g,4¢% ¢% ¢* ¢°}
where g is quadratic and cubic non-residue in Fy. In fact, there are only six possibilities
of #E(F,) =n; for 0 <i < 5:

ng =q+1-—t,
=g+ 1-50

ny =q+1— =3

4.6

ng =q+1+t, (4.6)
Ny :q_‘_l_#v
[ ns =q+1—2Y

where t and V are integers satisfying 3V? = 4q — t2. Therefore, the curve £ with the
specific order can be obtained by a randomly chosen b with a probability of 1/6.

Let E'/F, be a twist of degree d of E. Since j(E) = 0, there are only the possibilities
d € {1,2,3,6}. The curve equation of E'/F, is explicitly given as y* = x4+ b/ where §

is an element in F} having the specific properties:

quadratic and cubic residue in F} ifd=1,
quadratic non-residue and cubic residue in Fy it d = 2, (@7

quadratic residue and cubic non-residue in Fy if d = 3,

quadratic and cubic non-residue in F} if d =6.

Thus, once F is determined, the possibilities of finding the twist £ of degree d = {1,2}

and {3,6} of F are 1 and 1/2, respectively. According to Theorem P52 given by [HSV0G],
if #E(F,) = no, the possible group orders #E'(F,) are also determined by

Un ifd= 1,
ns lfd:2,

E'(F,) =
# (q) No, Ny 1fd:3,

(4.8)

N1, N5 if d =06.



4.2. Related works and mathematical materials 115

The curve equations can be determined or narrowed down by checking the small co-
factors of #E(F,) by using the following Lemma BE4. Note that (a) and (b) in Lemma B=3
are found by [CLNTI] (similar lemmas can also be found in [Per+11]), and (c) is found

by the author. The following shows the complete proof of Lemma 3.

Lemma 4.5. Let E be an ordinary elliptic curve with D = 3 defined over F,, where
g = p™ with an integer n > 0 and p is an odd prime such that p = 1 (mod 6). Then, the

following is true.
(a) If and only if 2 | #E(F,), b is cubic residue in F;.

(b) If and only if 3 | #E(F,) and 9 { #FE(F,), b is quadratic residue in F; and 4b is

cubic non-residue in IFZ.

(c) If and only if 9 | #E(IF,), b is quadratic residue in F; and 4b is cubic residue in F.

Proof of Lemma 3. (a): If 2 | #E(F,), E(F,) involves points of order 2 given as
Py = (—+/b,0), which is not equal to @. Thus, b is cubic residue in IFy.

(b): If 3 | #E(F,), E(F,) involves a subgroup or subgroups of E(F,) of order 3, i.e.,
there exists a group structure given as E(F,)[3] = Z/3Z or Z/3Z x Z/3Z, which consists
points of order 3 given as Py = (0,v/0) or both Py and P} = (—v/4b,v/=3 - V/b). Note
that /=3 € F; from (c) in Lemma P23. If 3 | #E(F,) and 9 { #E(F,), then E(F,) has a
group structure of E(F,)[3] = Z/37Z but does not have Z/3Z x Z/37Z. This means P is
in B(F,) but Py is not in E(IF,). Therefore, it is found that b is quadratic residue in F;
and 4b is cubic non-residue in Fy.

(c): If9 | #E(F,), E(F,) involves either E(F,)[9] = Z/9Z or E(F,)[3]| = Z/3Z x Z/3Z.
Indeed, E(F,) does not have E(F,)[9] = Z/9Z but has E(F,)[3] = Z/3Z x Z/3Z for the

following reasons.

(i) In this case of ¢, 9 does not divide the possible group orders except for #E(F,).
This can be easily found by checking the values of the possible group orders modulo
9 with the possible g, t, and V satisfying 3V? = 4q — 2.

(ii) There exists an ordinary elliptic curve given as E JE,  y? = a? + b defined over F,
having a group order of multiple of 9 with the group structure E (F,)[3] = Z/3Z x

7,37 since there exactly exists b in [, which gives rise to points of order 3 denoted

as Py = (0,V/b) and P} = (—V/4b,v=3 - V/b) in E(F,).

The above means that F is isomorphic to E over [F,. Thus, there exist points P; and Pj

in E(F,) and b is quadratic residue in F; and 4b is cubic residue in ;. O
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In [CLNTI], Costello et al. applied (a) and (b) of Lemma B3 for the BLS family of
curves with k& = 24 and completely determined the curve equations as found in Theo-
rems B2 and BZ3. There is a possibility that this strategy is also available for the BLS
family of curves with the other k.

4.3 Proposed BN subfamilies

In this section, the author provides the proposed subfamilies of the BN family of curves
which gives rise to a fixed tower of extension field and curve equation. The mathematical

proof to reach the results are also described.

4.3.1 Review of the pairings with the BN family

The BN family of curves with £ = 12, D = 3, and p = 1 has the specific parameterization
of p(z), r(x), and t(z) in Q[z]. Since the BN family is complete, there is a polynomial
V(x) in Q[z] such that 3V (x)? = 4p(x) —t(x)? The polynomials p(z), r(x), t(x), and V()
are given as follows [BNOA:

p(z) = 362" + 3623 + 242? 4 62 + 1,
r(z) = 36x*+362% + 182% + 6z + 1, (4.9)
t(r) = 62%4+1, '

Viz) = 62°+4x+1.

Let z be an integer seed making p(z) and r(z) being primes and ¢(z) and V(z) being
integers. One can find an elliptic curve E/F,.) : y? = 2% + b such that the group order
is given by n(z) = #E(Fy)) = p(2) + 1 — t(2) = r(2), which we say F is the BN curve.
Besides, one can also find a correct twist E/F,)2 : y* = z*+ V' of degree 6 of E such that
r(z) | n'(2) = #E' (Fp(»)2) which results in a twisting isomorphism ¢ : £ — E defined
over [Fp,;.

Let p,(z) be the multiplicative subgroup of IF,,,y» of order r(z) consisting of the r(z)-th
root of identity. Let G; and Gy be the base-field and trace-zero groups of r(z)-torsion
subgroup E[r(z)], respectively. Since T'(z) = t(z) — 1 = 622, the standard ate pairing on

the BN curve is defined as follows:

€ar * g2 X G — My (z),

p(x)'2-1

eaT(Q7P) = szQ,Q(P> r) (410)

The ate pairing requires log, 62 iterations of Miller’s algorithm for computing fs.2 o(P).

To reduce the number of iterations, it is often adopted an ate-like pairing by taking
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p(2)? = p(2)? + p(2) + 62 +2 =0 (mod r(z)) as follows [Ver(d]:

eoci : g2 X gl — /1’7“7

€o., (Q, P) = <f62+27Q(P) fro(PYPE) - f (PO - f1o(P)PE°

p(z)12-1

Lp(2)3—p()2+p(2)@u6:+2Q(P)  Lip(z)r—p212)@pz10(P) lp<z>3Q,p(z>2Q(P)> i
Up()3—p(2)24p()+6:42(P)  Vp(ep—p24p:)Q(P)  Vp3p—pz1)0(P)

When discarding the elements which disappear in the final exponentiation and modifying

the line functions, we have

0., (Q. P) = (for2.0(P) - lig-12)0.5,0 @ (P)

p(x)!?-1

r(z)
Loz42)Q+myy (@72, (@ (P )> : (4.11)

This pairing requires one of the shortest log,(6z + 2) iterations of Miller’s algorithm for
computing fe.12.0(P) since log, 7(2)/¢(12) = log, 7(z)/4 ~ log, x. In [Nog+08], Nogami
et al. also provided another ate-like pairing defined by

p(2)10+1

0 QP = (1ol PP L ar(P)

p()12-1

r(z)
'le—Hrg(Z)(zQ),ﬂ'},o(zQ—ﬁ—ﬂg(z)(ZQ))(P)> ) (412)

which leads to slightly faster pairing than Eq. (B11). The pairings can be moved entirely
on E', which we denote an optimal ate pairing defined on £’ as €], . Assuming Gj is a
preimage of Gy under ¢¢ and letting P € G; and Q' € G), the ate pai}ing is computed by
cither e, (¢6(Q'), P) or ¢, (Q', b5 (P)).

Not only Miller’s algorithm but also the final exponentiation can be optimized by
using the decomposition of (p(z)* —1)/r(z) in base p(z). The state-of-the-art algorithm
for computing the hard part is given by the lattice-based method [FCKRHTI] where the
calculation step is described in Example B4 in Sect. B=23.

4.3.2 Proposed BN subfamilies of curves with £ = 12

For an integer seed z for specifying the curves in the BN family, the author proposes to

restrict z as follows:
z=7,11 (mod 12). (4.13)

Once finding z satisfies the condition, the specific BN subfamilies with the following

options are obtained.
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Table 4.1: The field and curve options for the proposed BN subfamilies of curves with

k=12
z Tower BN curve E/Fy ) Twist £'/Fp.)
(mod 12) | (see Theorem 1) | (see Theorem [-9) | (see Theorem [-10)
7 Fp(z)2 = ]Fp(z)<0é) y2 = + 20n—1 y2 = 73 + 26n—1c
11 ]Fp(z)lz = Fp(z)2 (B) y2 = g3 4 26n+1 y2 =3+ 26n+1/<

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;
(ii) The BLS curve E/Fy.) is immediately determined,;
(iii) The correct twist E'/F ) is also immediately determined.

These constructions also enable one of the simplest twist isomorphisms. The details of the
field and curve options (i), (ii), and (iii) are summarized in Table B, where n € Z, o and
3 are elements in Fp,)2 and F)2 such that o® = —1 and % = « + 1, respectively, and
¢ =a+1&Fy;)y. The correctness of Table B is found in the following theorems with
proof. Before describing that, the author refers to [Shil0] and presents the knowledge of

the quadratic and cubic residue properties in IF;(Z).

Lemma 4.6. For the symbols (1@) and (m)g, the following is true.

(—_1) _ { L if2=0 (mod 2), (414
2(2) 1 ifz=1 (mod 2).
o) -{ L i (119
o)A Pt 10
Proof of Lemma, 8. Please refer to [SHiT0]. 0

In what follows, the author provides the theorem which shows the construction of the

tower of extension field of degree 12.

Theorem 4.7. If z satisfies z = 7,11 (mod 12), the following tower of extension field is

always available.

(4.17)
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where o and 3 are elements in [F,.)2 and Fp,)2 such that o> = —1land % = a +1,

respectively.

Proof of Theorem 1. To admit the tower of extension field given in Eq. (A1), the
binomial z2 4+ 1 and 2° — (+ 1) must be irreducible in Fy,[z] and F,)2[z], respectively.
According to Theorem A4, z* +1 is irreducible in Fy,,[z] if —1 is quadratic non-residue in
F 2% — (ac+ 1) is irreducible in Fy,y2 [z] if the norm of a +1, i.e., NE_ 2 /Fyc) (a+1) =
(a+1)-(a+1)P?) = (a+1)- (—a+1) = —a®+1 = 2, is quadratic and cubic non-residue
in F7 ). As seen in Lemma B, if z = 7,11 (mod 12), we have (1%) = —1, (1%) = —1,

and (p(z)) # 1. O

The author shows how uniquely the coefficients of the BN curves and its twisted curves

can be determined in E/F,,) and E'/F, .2, respectively. For the reference in the proof,

the lemma given by [Shil(] is presented below.

Lemma 4.8. Let n;(z) for 0 <14 <5 be polynomial defined as follows:

no(z) = 122%(32* + 32 + 1), ni(z) = 362" + 362° + 182% + 1,
ny(z) = 3(122* +122° + 1022 + 22+ 1),  nz(z) = 4(92* +92° + 92 + 32 + 1),
ng(z) = 3(122" +122° +102° + 42 + 1),  ns(z) = 362" + 362> + 182% + 62 + 1.

Then, the group orders of Ey/F,) : y* = 2 + 2 are determined as follows:

(

no(z) if 2=0,9 (mod 12),
ni(z) if z=7,10 (mod 12),
if z = d 12
#Es(Fy(z)) = ral?) =0 (mod 12), (4.18)
ns(z) if 2 =3,6 (mod 12),
ny(z) if z=1,4 (mod 12),
[ n5(2) if 2 =2,11 (mod 12).
Proof of Lemma [-8. Please refer to [Shil(]. O

Theorem 4.9. If z satisfies 2 = 7,11 (mod 12), the BN curve is determined as follows:

y? =23+ 20771 if 2 =7 (mod 12),

4.19
y? =23 + 20T if 2 =11 (mod 12), (4.19)

E/Fp) {

where n is any integer.

Proof of Theorem [I-3. From the definition, an elliptic curve E/F .y such that #E(F,.)) =
p(2)+1—t(z) = r(z) = 362*+3623+1822+62+1 is the BN curve. Accordmg to Lemma I,
if z = 11(mod 12), Ey/Fy) : y* = 2°+2 is the BN curve since #E(F,,)) = ns(2) = r(2).
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Then, it is easily found that an elliptic curve Eg,i1/Fp) 1 y? = 2* + 20 is a twist of
degree 1 of E5. Since isomorphic two curves have the same group order, Fg,.1 is also
being the BN curve.

On the other hand, if z = 7 (mod 12), it is found that #FE5(F,.)) = ni(z) = 362" +
362 +182% + 1. Then, an elliptic curve Egon-1/Fye) : y? = 2 + 2771 is a twist of degree
3 of Eg,y1 since § = 22 of 2671 /§ = 2671 is quadratic residue and cubic non-residue in
F, () under the condition. The author refer to Eq. (E8) and find that Eyen-1 has only two
possible numbers n5(z) = 362 +362°+182%+6z+1 and ng(z) = 4(92*+92°+922+32+1).
According to (a) in Lemma B3, if the group order of elliptic curves can be divisible by
2, coefficients of the curve have to be cubic residue in F? ) Here, # Eoon—1(Fp()) cannot
have 2 as a factor since the curve coefficient of Ey6n—1 has cubic non-residue in IF;(Z). Since
# Eoon-1(Fy)) = n5(2), Een—1 ends up to the BN curve for the respective conditions of z.
O

Theorem 4.10. Suppose that the tower of extension fields is constructed as in Theo-
rem B70 and E/F,) be the BLS curve determined as in Theorem B9. If z satisfies the

condition given in Eq. (B13), the correct twist BN curve is determined as follows:

=23 +20"Ya+1) if2=7 (mod 12),

4.20
Yy =23+ 20" /(a4 1) if 2 =11 (mod 12), (4.20)

IZI/E}KZV . {

where « is an element in F,)2 such that o = —1.

Proof of Theorem [.10. Since there exist two candidates of the twists of £ with the
degree 6, E’ has only two possible group orders given as p(z)? + 1 — (t2(2) — 3V4(2))/2 or
p(2)?+1—(t2(2)+3Va(2))/2 where ty(2) = p* +1—#E(Fp(.)2) and V5(2) is an integer such
that 4p(2)? = t5(2)? + 3Va(2)2. In the context of the BN curve, t5(z) and V5(2) are given
by to(z) = —362% — 7223 — 3622 — 122 — 1 and V5(2) = (6224 1)(62% + 42 + 1), respectively.
Thus, the possible group orders can be denoted by either 4(32428+ 64827475625+ 54025 +
28821410823 +302% +62+1) or (3624362 + 1822 +62+1)(362* +362% + 3022 + 62 +1).
Since the correct twist E'/F,.)2 has a group of order r(z), i.e., r(2) | #E'(Fy.)2), we can
guess #E'(Fy)2) = (362* + 362° + 182 + 62 + 1)(362* + 362 + 302% + 62 + 1). Since it
is found that E'(F,.y) is not divisible by 2, the twisted curve £’ coefficients should be a
cubic non-residue in IF;(Z)Q. Now, in the case of the BN curve denoted by y? = 23 + 2671,
twisted curves can be denoted as y? = x3 + 25" (o + 1) or y? = 23 + 25""! /(o + 1) since
(@ +1) and 1/(a + 1) are quadratic and cubic non-residue in F; .. Then, the cubic
residue properties of each curve coefficients are denoted as follows:

p—1 p—1

_ ((26n+1(a i 1))p+1> 3 _ ((26n+1)2 ) Q)T —1,

p2-1

(27 a+1)) ®
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Table 4.2: The twisting and untwisting isomorphisms for the proposed BN subfamilies of
curves with k = 12.

z Twisting isomorphism Untwisting isomorphism
(mod 12) ¢s: B — E P O

7 (@, y) = (lapt, lyd) | (2,y) = (252, y87)

11 (z,y) = (@B yB%) | (z,y) = (Tlapt, (Tlyp?)

2 p—1

@+ DT = (@) T = (@22 )T £

Since the coefficient of E’ needs to be a cubic non-residue in IF;(Z)2, the twisted curve is
determined as y* = 2% + 271 /(a + 1). In the case of y* = x3 4 2671 its twisted curves

are also derived in the same way. 0

Since the equations of F and E’ are determined, it is easily obtained the twisting
and untwisting isomorphisms as in Table 2. For z = 11 (mod 12), since E and E’ are
given by y? = 23 + 20"t and y? = 23 + 25771 /(| the twisting isomorphism is given by
¢ : B — E,(x,y) — (6Y3z,5%y). Since there is a relation §'/% = 32 and §'/? = 3%,
the image of (z,y) under ¢¢ is modified as (x/3?,y3%). On the other hand, the untwisting
isomorphism is ¢ : B/ — E, (x,y) — (67/3x,67Y/2y), which is the image is simplified
as (07V3x,671%y) = (6716232, 6716 2y) = (6 'xB*, 6 'yB%). For the other case z =
7 (mod 12), the author obtains the result in the same manner. The important fact is
that the twisting and untwisting isomorphisms are low complexity since {1,3,..., 3%} is

a basis of the 6-th dimensional vector space of IF.)2.

4.3.3 Sample parameters and evaluation

Applying the restrictions, the author obtains several seeds for generating the BN curves
for the pairings at the 128-bit security level shown in Table B=3. For the search of z, the
author refers to security analyses [Gui20] and tries to find z which gives rise to r(z) with
log, r(2) > 256 and log, p(z) > 5376 to ensure the pairings at the 128-bit security level.
For the efficiency reason of Miller’s algorithm, the author also finds z with low-Hamming
weight.

The author evaluates the seeds for the pairings on the BN curves given in Table =3 by
an implementation. For the implementation, the author adopts the optimal ate pairing
given in Eq. (B12) and efficient projective formulas for computing Miller’s algorithm given
by Costello et al. in [CLNTO]. Note that the optimal ate pairing €/, (@', ¢5'(P)) on E'
with the untwisting isomorphism ¢z' : £ — E’ is employed. Thezauthor also adopts

the state-of-the-art algorithm for computing the final exponentiation by Fuentes et al. in
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Table 4.3: Sample parameters for the attractive BN subfamilies of curves with £ = 12 at
the 128-bit security level.

z Bit size
No. (mod 12) Seed z HW P T 76
1 7 +2H4 L 2l0L 9ol _ 9V BDTY] | 4 | 462 | 5535 | 462
2 7 —l4 4 088 _ 978 _ 90 4 | 462 | 5535 | 462
3 7 —2U3 942 4 oll 90 4 | 458 | 5487 | 458
4 7 +2M3 263 _ 250 _ 20 4 | 458 | 5487 | 458
5 7 +2113 4 278 4 953 _ 90 4 | 458 | 5487 | 458
6 7 +2113 926 4 94 90 4 | 458 | 5487 | 458
7 7 +2M13 96T _ 258 _ 90 4 | 458 | 5487 | 458
8 7 —2H3 _ 938 4 213 _ 20 4 | 458 | 5487 | 458
9 11 —otid 962 _ 930 _ 90 4 | 462 | 5535 | 462
10 11 +2114 4 984 953 _ 90 4 | 462 | 5535 | 462
11 11 +2113 986 4 963 _ 90 4 | 458 | 5487 | 458
12 11 —2M13 4 962 4 916 _ 90 4 | 458 | 5487 | 458

With the optimizations, the author implements the software for executing the pairings
by C language. The big integer arithmetics are implemented by using mp_limb_t data
type of the GMP library in [fealh]. The software is compiled with GCC 8.3.0 with the
option -02 -march=native and is executed by 3.50GHz Intel(R) Core(TM) i7-7567U CPU
running macOS Big Sur version 11.6. To evaluate the parameters, the average execution
times of 100,000 trials of Miller’s algorithm and final exponentiation are measured. Note
that the measurement is performed by repeating the functions for 1,000 random inputs
100 times.

Table B4 shows the results of the average execution time of Miller’s algorithm and final
exponentiation. The author could not find a significant difference between the timings of
the candidates of the curves, however, there are differences between the equations of ¢g .
As seen in Table B2, since the equation is simpler than that of z = 11 (mod 12), it is
theoretically better to use z satisfying z = 7 (mod 12), however, it is considered that the

effect is very small in this environment.

4.4 Proposed BLS subfamilies of curves with £ =2"-3

and 3" for any m,n > 0

The author extends Costello et al.’s work for the BLS family of curves with k = 24 and
provides the attractive subfamilies of the BLS family of curves with k£ = 2™ -3 and 3" for

any integers m,n > 0.
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Table 4.4: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on the BN curves with k£ = 12 at the 128-bit security
level.

z Word| ML | FE |Total

No. (mod 12) Seed 2 HW size | [ms] | [ms] | [ms]
1 7 2114 4 2101 _ol4 90 [BDTY] | 4 | 8 |[237]1.41]3.78
2 7 —2114 4 288 _ 978 _ 90 4 8 237|141 3.78
3 7 —2l13 942 4 oIl _ 90 4 8 2341401 3.73
4 7 +2M13 963 _ 950 _ 90 4 8 [235] 140 3.75
5 7 +213 4 278 4 953 _ 20 4 8 234139374
6 7 +2113 — 226 4 24 _ 20 4 8 235|140 3.75
7 7 +2113 — 267 _ 258 _ 90 4 8 234140374
8 7 —2113 _ 938 4 913 _ 90 4 8 234140 |3.74
9 11 —2ltd 962 _ 930 _ 90 4 8 237|140 |3.77
10 11 2114 4 984 953 _ 20 4 8 244|144 3.88
11 11 +2113 _ 286 4 963 _ 20 4 8 [240] 141 ] 3.81
12 11 —2H3 4 962 4 916 _ 90 4 8 (239141 | 3.80

4.4.1 Review of the pairings with the BLS family

The BLS family is a family of curves E with the CM discriminant D = 3, i.e., j(E) = 0,
and the embedding degree k£ of multiple of 3 except for k = 18. The parameterizations of
the BLS family are given by triples of p(z), r(z), and ¢(x) in Q[z]. Since the BLS family
is complete, one can find a polynomial V(z) € Q[z] such that 3V (z)* = 4p(z) — t(x)>.
For the case of k = 2™ -3 and 3" with any integers m,n > 0, the polynomial parameters
p(z), r(x), t(z), and V(x) in Q[z] are given as follows [BLSD?|:

o k=2m.3
p@) = 5e—17 @)+,
r(z) = O2) =2 -2+ 1, (4.21)
to) = z+1,
Vi) = -1 -,
o k=23"
p(x) = (-1 r()+az,
@) = (o) = 5 4T ), (422)
tr) = z+1,

V() = Lx-1) 2% +1).

Let z be an integer making p(z) and r(z) being primes and t(z) and V(z) being integers
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where the condition z = 1 (mod 3) leads to all involved parameters being integers. One
can find an elliptic curve E/F, ) : y* = 2 +b such that n(z) = #E(Fy)) = p(z)+1—1(2)
with the prime divisor r(z), which we say F is the BLS curve. Let d = 6 and 3 for k = 2™-3
and 3", respectively. Then, one can also find a correct twist £’ /Fp(z)k/d cy2 =23+ b of
degree d of E such that r(z) | n'(z) = #E'(F

defined over I, y.

p(z)k/d) and twisting isomorphism ¢, : £’ — E

Let pt,(») be the multiplicative subgroup of IF,,.y» of order r(z) consisting of the r(z)-th
root of identity. Let G; and G, be the base-field and trace-zero groups of r(z)-torsion
subgroup E|r(z)], respectively. Since T'(z) = t(z) — 1 = z, the standard ate pairing is
defined as follows:

Cap - g2 X gl — Hr(z),

p(z2)F -1

eur(Q. P) = fogr(P)"5 (4.23)

Since log, (z)/¢(k) =~ log, z, the ate pairing can be computed by Miller’s algorithm with
one of the shortest iterations. This means that the ate pairing is exactly one of the
optimal ate pairings given by [Wer(ld]. It is possible to define the pairing on E’ by using
the preimages Gy and G of G, and G; under ¢q, respectively. Assuming e is an ate
pairing on E' and P € G; and Q' € G), one can efficiently compute the ate pairing either
ar(64(Q), P) or €,,(Q, 67 (P)).

As the other optimization, the exponent (p(z)*—1)/r(z) of the final exponentiation can
provides one of the efficient algorithms for computing the final exponentiation by using

the Frobenius endomorphisms.

4.4.2 Determination of the number of rational points on the

correct twists

To determine the twist equation E’ by using Lemma B4, the knowledge of the number of
the rational points on E’ is required. This subsection shows the knowledge for the BLS

family of curves for £k = 2™ - 3 and 3" with any integers m,n > 0, respectively.

(i) The case of k =2" -3 for any m > 0

Let p(z), r(z), t(x), and V(z) be the polynomials fixed as Eq. (E221) for the BLS family of
curves with k£ = 2™ -3 for any integer m > 0. For an integer z making p(z) and r(z) being
primes and ¢(z) and V' (z) being integers, let E/F(.) and E'/F_j2m-1 be the BLS curve and
correct twist of degree 6 of E. For any integer s > 0, let t5(2) = p(2)°+1—#E(F,):) be a
trace of E defined over F,(,)« and V;(z) be a parameter such that 3V(z)? = 4p(z)* —t,(2)*.
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Then, the group order of the correct twist is specifically represented as follows:

Theorem 4.11. For k£ = 2™ - 3 with any m > 0, the group order of the correct twist
E’ /]Fp(z)27n—1 of degree 6 of F is uniquely given as

tom-1(2) — 3ng71(z)'

#E/(Fp(z)m—l) = p(2)2m71 +1- 9

(4.24)

To prove Theorem BT, the author provides the following Lemmas B2, T3, and B-14.

Lemma 4.12. For any integer [ > 0, toi+1(2) and Vi1 (2) can be built from the knowledge
of ty(z) and Vy(2) as follows:

torer (2) =t (2)? — 2p(2)?, (4.25)
Vo (2) = ta(2) - Vi (2). (4.26)

Proof of Lemma [-13. According to Theorem P50, for any [ > 0, the trace tu(z) =
PP +1— #E(Fp(z)2z) can be written as ty(z) = a? + 3% where a and 3 are roots of the
polynomial X% —t(2) - X +p(z), i.e., a- B8 = p(z) and a + B = t(2). Thus, ty1(z) can be

represented as
o (z) =+ 877 = (0¥ + %) = 2(a- B)? = tw(2)? — 2p(2)? (4.27)

Moreover, with the above, the following is also obtained.

(2)
(2)

= dp(2)*" —tu(2)" + Atw(2)? - p(2)? — dp(2)? "
(2)

2 (2 3V (2)?, (4.28)
which leads to Vo1 (2) =ty (2) - Vi (2). O
Lemma 4.13. For any integer [ > 0, the following holds.

to(2) = 2% +1 (mod r(z)). (4.29)

Proof of Lemma [f-13. The lemma can be proven by induction on .

(i) For [ =0, it is obvious that ty(z) = t(z) = z 4+ 1 (mod r(z)).
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(ii) Forl = s with an integer s > 0, suppose that t3s(2) = 2% +1 ( mod 7(2)). According
to Lemma B12 and p(z) = (z — 1)?/3 - r(2) + 2 = 2z (mod r(2)),

b1 (2) = tas (2) — 2p(2)”
=t5.(2)2 =222 = (2% +1)2 =22 =227 41 (mod r(2)). (4.30)

Thus, o1 (2) = 2277 + 1 (mod 7(z2)) is also true for [ = s + 1.
Since both the base case (i) and the inductive step (ii) have been proven, ty(z) = 22+
1 (mod r(z)) holds for any I > 0. O
Lemma 4.14. For any integer [ > 0, the following holds.
ty(2) £3V(2) A2 t(2)£3V() A2
= Z 2t = Z 2" (mod 7(2)). (4.31)

2 ; 2 ,
=0 i=1

Proof of Lemma [.14. The lemma can be proven by induction on .

(i) For I =1, from Lemmas B12, T3, and p(z) = z (mod r(z)), the following can be

obtained.

ta(2) £3Va(2) _ (4(2)* — 2p(2)) £ ((2) - 3V (2))

2 2
() t(2) j:23V(z) —p(2)
_ t(z) £ 3V (z)
=(z+1)- 5 — z (mod 7(2)). (4.32)

Thus, the lemma is true for [ = 1.

(ii) For [ = s with an integer s > 1, suppose that the lemma is true. Then, the following

is obtained.

t23+1 (Z) :l: 3‘/Qs+l (Z)

2
NUICELTOSFYNORIR) (mod r(2)
=tgs(2) - ) 123‘/25(2) —p(2)*
=" +1)- (Z 2t w - 2 z’) — 2% (mod r(z))

= ( Z_ 2+ Z_ zi> . —t(z) iQSV(z) — Z_ 2t — Z_ 2= 2% (mod r(2))
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2511 2511
o t(z) £3V(2) ,
= 2t —— 2 mod 7(z2)).
; 5 2; (mod r(2))

(4.33)

Thus, the lemma is also true for [ = s + 1.

Since both the base case (i) and the inductive step (ii) have been proven, it is clear that

the lemma is true for any [ > 0. 0J

Then, the author provides the proof of Theorem BT by using the above lemmas.
Proof of Theorem [.11. According to Eq. (BR), the group order of the twist of E/F,.

can be determined corresponding to the twist degree d. In this case, since d = 6, it is

found that #E’ ( 22 1) is given by one of the following.

tmel(Z) + 3‘/277171(2)
2 Y

tmel(Z) - 3‘/277171 (Z)
2 .

np(z) = p(2)”" +1- (4.34)

ni(z) = p(2)"" 1 (4.35)

Besides, from the definition, the group order of the correct twist is divisible by r(z).
Thus, to prove the theorem, it is enough to show that r(z) divides n}(z) but does not
divide ny(2), i.e., ni(z) Z 0 (mod 7(2)) and nj(z) = 0 (mod r(z)). Note that r(z) =
22" — 22" +1=0 (mod r(2)) in this case.

Applying Lemma B4, the possible group orders n{(z) modulo r(z) can be denoted
as follows:

np(z)=22"" +1— ( Z_ 2 w — Z_ zz> (mod r(2))

=0
am—1_1 am=1_1
=" 41— Zo((z=1)-22" 1)+ Z 2z (mod r(z))
i=0 =1
2m—1—1 am—1_1
=" 41— (T -1 2 - Z 2+ Z 2" (mod 7(2))
i=0 i=1
=22 124 - (mod r(2))
= 22" 422" (mod r(2)). (4.36)

On the other hand, for n}(z) modulo r(z), the following is obtained.

n(z)=22"" 41— ( Z 2 — 3V( ) _ Zﬁ z’) (mod r(2))

i=1
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om—1_1 om—1_1

=" 41— Z Zo(—(z=1)-27" 4+ 2)+ Z 2" (mod r(2))
i=0 i=1
2m71 2m7171
=22 1+ (2 1) - Z 2+ Z 2" (mod 7(z))
i=1 i=1
=22 142 T (mod r(2))
=" -2 41 (mod r(z))
=0 (mod 7(2)). (4.37)
Thus, Theorem BT is true. 0

(ii) The case of k = 3" for any n > 0

Let p(x), r(z), t(x), and V(z) be the polynomials fixed as Eq. (2222) for the BLS family of
curves with £ = 3" for any n > 0. For an integer z making p(z) and r(z) being primes and
t(z) and V/(z) being integers, let E/Fy.) and E'/F st be the BLS curve and correct
twist of degree 3 of E. For any integer s > 0, let t,(2) = p(2)° + 1 — #E(Fp)s) be a
trace of E defined over F,)s and V,(z) be an integer such that 3V,(z)? = 4p(2)* — t,(2)*

Then, the group order of the correct twist can be represented as shown in the below.

Theorem 4.15. For £ = 3" with any n > 0, the group order of the correct twist
E'/ Fp(z)gn_1 of degree 3 of F is uniquely given as the following.

3n71

_tgnfl (Z) - 3‘/3'”71 (Z)
B .

#E (F o) =p(2)”  +1-— (4.38)

Theorem ETA can be proven with the following Lemmas B8, 217, and E—18.

Lemma 4.16. For any integer [ > 0, t3+1(2) and Vi1 (2) can be built from the knowledge
of t3(z) and Va(2) as follows:

by (2) = t3(2)® = 3p(2)* - ta(2), (4.39)
Vi (2) = Vi (2) - (ki (2)% — p(2)™). (4.40)

Proof of Lemma F-1g. Similar to proof of Lemma B2, for any [ > 0, the trace t5(z) =
P 41— #E(Fp(z)3z) can be written as t5(2) = o® + 3% where a and 8 are roots of the
polynomial X? —#(2) - X + p(z), i.e., a- 8 = p(z) and a + 3 = t(z) (see [Sil09]). Thus,

tyir1(z) can be denoted as follows:

tyn(2) = o™ + 55 = (0 + B7)° = 3(a- B)" - (o + )
= t5(2)% = 3p(2)* - t51(2). (4.41)
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Besides, it is also denoted as follows:

Vi (2)2 = Ap(2)*" — tyin(2)?

ap(2)* " = (ta(2)® = 3p(2)* - ta(2))?

4p<z>3l“ tyr(2)° + 6p(2)* - tyu(2)" — Ip(2)* - t(2)?

= (4p(2)* — tz(2)?) - (tn(2)* — p(2)*)?

= 3V (2)? - (ta1(2)2 — p(2)* )2, (4.42)

which leads to Vi (2) = Vai(2) - (t3:(2)? — p(2)*). O
Lemma 4.17. For any integer [ > 0, the following holds.

ty(z) = 2% +1 (mod r(2)). (4.43)
Proof of Lemma [.17. The lemma can be proven by induction on .

(i) For [ =0, it is clear that t30(2) = t(2) = 2z + 1 (mod r(z2)).

(ii) For | = s with an integer s > 0, let t3s(z) = 2% + 1 (mod r(z)) be ture. Then,
according to Lemma BT2 and p(z) = z (mod r(z)), the case of [ = s+ 1 can be

obtained as follows:

tyer(2) = ty(2)? — 3p(2)* - t3:(2)

= +1)3 3252+ 1) (mod r(2))
=23 1322 1328 41— 3228 — 32 (mod r(2))
=" +1 (mod 7(2)). (4.44)

Thus, t3:+1(2) = 25" 4+ 1 (mod 7(z)) is also held for [ = s+ 1.

Since both the base case (i) and inductive step (i) have been proven, ty(z) = 2%

_l’_
1 (mod r(z)) is true for any [ > 0. O

Lemma 4.18. For any integer [ > 0, the following holds.

3l—1 3l_1

—t3i(2) £3Vai(2) ;. —t(z) £3V(2) ;
5 = ZZ; 2 5 + Zzl 2" (mod r(2)). (4.45)

Proof of Lemma [f-1§. The lemma can be proven by induction on .

(i) For [ =1, from Lemmas B18, AT47, and p(z) = z (mod r(z)), it is found that

—t3(z) £ 3V5(2)
2
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—(t(2)° = 3p(2) - 1(2)) £3V(2) - (1(2)* — p(2))
2
—t(2) - (t(2)* — p(2)) + 2p(2) - 1(2) £ 3V (2) - (1(2)* — p(2))

2
(z) £3V(2)
2

—(t(2)* — pl2)) - +p(2) - 1(2). (4.46)

Then, taking modulo r(z),

—t3(2z) £ 3V5(2)
2

—t(z) £ 3V (2)
2

=("+2+1)- + (22 4+ 2) (mod r(z)). (4.47)

The above shows that the lemma is true for [ = 1.

(ii) For [ = s with an integer s > 1, suppose that the lemma is true. With the assump-

tion, for [ = s 4 1, the following can be obtained.

—t3s+1(2) £ 3V3s11(2)
2
—(t3:(2)® — 3p(2)* - t3:(2)) £ 3V5:(2) - (t3:(2)* — p(2)*")
2
—t3: (2)-(t3: (2)° —p(2)* ) +2p(2)* t5: (2)£3V5: (2)-(t: (2)° —p(2)*")
2
—t3s(2) £ 3V3s(2)
2

=(t3:(2)* = p(2)") - +p(2)” -t (2). (4.48)

Similarly, taking modulo r(z), the following is obtained.

—tzs+1(2) £ 3V3s11(2)

2
351 351
35 s . —t(z) £3V(2) ,
=% + 25 +1)- 2zt + z
( ) ZO : Zl
+ (223 + 2%) (mod r(2))
| 2:3°—1 35—1
: . —t(z) £
= < Z 2"+ Z 2"+ Z z’) (2) 5 V() (mod 7(2))
1=2-3% 1=3% =0
3stl_q 23°-1 31
+ Z 2+ Z zz+Zz’+(z23 +2%)  (mod r(z))
=235 41 i=35+1 i=1
3stl_q 3stl_1
. —t(z) £3V(2) ,
= 2zt + z* mod r(z)). (4.49
. > (mod 7(:)). (449

Thus, the lemma is also true for [ = s + 1.

Since both the base case (i) and the inductive step (ii) have been proven, the lemma is
true for any [ > 0. U
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In the following, the author provides the proof of Theorem BE-T3 by using the above

lemmas.

Proof of Theorem -19. According to Eq. (AR), the group order #FE (Fp(z)gn_1) of twist of
degree 3 of E/IF, ) is given by one of the following.

_t3n71 (Z) + 3‘/;]n71 (Z)
2 Y

_t3n71 (Z) - 3‘/37171 (Z)
2 .

np(z) =p(2)*" +1- (4.50)

n(2) =pz)*" +1-— (4.51)

Since the group order is divisible by 7(z), it is enough to show that r(z) divides n/(z) but
does not divide n{(z), i.e., nj(z) Z 0 (mod r(z)) and n)(z) = 0 (mod r(z)). Applying
Lemma BT8R, the possible group order ng(z) modulo r(z) = %(2’2'3n—1 + 287" 4+1) can be

written as follows:

3n—1-1 3n—l-
- - 3V (z
ny(z) = 2° 1+1—<Z 2 ()+ —|— Zz) (mod r(2))
i=0 i=1
3n—l-q 3nl_1
=z Z 2 ((z—1) - Z ' (mod r(z2))
i=1
3n—l-1 3n—l_1
=" 1P -1 2+ 2t — ' (mod r(z))
i=0 i=1
=" 12T T (mod r(2))
=223 128 40 (mod r(z)).  (4.52)
For the case of n/(z) modulo r(z),
TR b SR R (O I S I
ny(z) = z — 2 z mod r(z
' i=0 2 i=1
3n=l_1 3n=l_1
=" 41— Z Zo(—(z—=1)-2 —2) = z (mod r(z))
i=0 i=1
3n—1 3n_171
=" 1+ =)+ Z 2t — Z 2 (mod r(z2))
i=1 i=1
=2 142 T (mod r(2))
=223 42 4 (mod r(2))
=0 (mod r(2)). (4.53)

From the above, Theorem ET3 is true. 0



4.4. Proposed BLS subfamilies of curves with k =2™ -3 and 3" for any m,n >0 132

4.4.3 Proposed restriction of integer parameters

The author extends Costello et al.’s work [CLNTT] and provides the restrictions of integer
parameters for the BLS subfamilies of curves with £ = 2™ - 3 and 3" with any m,n > 0.
The details of the proposals for the cases of k = 2™ -3 and 3" are described in the following.

(i) The case of k =2" -3 for any m > 0

Let z be an integer parameter for the BLS family of curves with k£ = 2™ - 3 where m > 0

is an arbitrary integer. The author proposes to restrict z as follows:

(4.54)

_ ) 7,10,16,28,31,34 (mod 36) ifm=1,
| 7,16,31,64 (mod 72) if m > 1.

Once finding z under the above restrictions, the specific subfamilies of the BLS family

with the options are obtained.

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;
(ii) The BLS curve E/F,.) is immediately determined,;
(iii) The correct twist E'/F  j,m-1 is also immediately determined.

The constructions also enable one of the simplest twist isomorphisms. The details of the
field and curve options (i), (ii), and (iii) are summarized in Table BH, where o and
are elements in F,.)2 and F,,2ms such that a®> = —1 and 2713 = o 4 1, respectively,
and where ¢ = 5% ¢ IFP(Z)QWH. Note that the case of m = 3 can provide almost the same
results of [CLNTI] described in Sect. B270. The correctness of Table B3 is provided in the
following theorem. Before describing the theorems, the author presents the knowledge of
the quadratic and cubic residue properties in IF;‘)(Z) in the following Lemma ET9.
Lemma 4.19. For the symbols (ﬁ) and (m)g, the following is true.

(a) For m =1,

— 1 if z=1 12
o) =0 e (4.55)
—1 if 2=4,7,10 (mod 12).

For m > 1,

(—_1) )1 %f z=1,10 (mod 12), (4.56)
—1 if 2=4,7 (mod 12).
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Table 4.5: The field and curve options for the proposed BLS subfamilies of curves with
k=2".3 for any m > 0.

(a)m=1
z Tower BLS curve E/Fy) | Twist E'/F,jom
(mod 36) | (see Theorem [-20) | (see Theorem G-21) | (see Theorem [-23)
16, 34 Fpizy2 = Fpry (@) yi=a3+4 =2 —1
31 Fpiye = Fpz) (B) y?=ad+1 y? = a3 — 1/4
10, 28 y? =23+ 16 yr=a3-1
(b) m >1
z Tower BLS curve E/Fy) | Twist E'/F, jom
(mod 72) | (see Theorem [-20) | (see Theorem G-21) | (see Theorem [-23)
7 =2 +1 yP=a3+1/C
16 ]Fp(z)2 = ]Fp(z)((l/) y2 =3 +4 y2 =3 -+ 4C
31 Fp(z)zm-s = Fp(z)2 (ﬁ) y2 = $3 +1 y2 = 1‘3 + C
64 y?=a® -2 yi=a3—-2/C
(b) For m =1,
( 2 ) )1 %f z=1,19 (mod 24), (4.57)
p(2) —1 if 2 =4,7,10,13,16,22 (mod24).
For m = 2,
( 2 ) )1 %f z=1,4,10,19 (mod 24), (4.58)
p(z) —1 if 2 =17,13,16,22 (mod 24).
For m > 2,
2 1 ifz2=1,4,19,22 d 24
<_) _ it (mod 24), (4.59)
p(z) —1 if 2 =17,10,13,16 (mod 24).
(¢) For m > 0,
< 2 ) =1 %f z=1,4 (mod 18), (4.60)
p(z) )4 | #1 if 2=7,10,13,16 (mod 18).

Proof of Lemma [-19. (a) and (b): The author refers to Lemma P25 and verifies the
value of p(z) modulo 4 and 8. As a result, (a) and (b) are obtained.
(c): The author refers to Euler’s conjecture given in Lemma EZR. In the following,
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the author classifies z satisfying z = 1 (mod 3) into two cases, i.e., z = 1 (mod 6) and
z =4 (mod 6).
If z=1 (mod 6), p(z) can be modified as follows:

o= (5) =('5)
(o) e

For b(z) = (z —1)/6 - (22" — 1), if z = 1 (mod 18) then 3 divides b(z); if z =
7,13 (mod 18) then 3 does not divides b(z). Thus, according to (b) in Lemma P28, if
z=1 (mod 18)then( )3 =1;if 2 = 7,13 (mod 18)then( )s # 1.

If =4 (mod 6), ( ) can be represented as follows:

p(z) = (W):?) (M)Q

AR I I L AR I AN
_< 5 ) +3( - ) . (4.62)

For b(z) = ((z = 1) - 22" 4+ 2 +2)/6, if z = 4 (mod 18) then 3 divides b(z); if z =
10,16 (mod 18) then 3 does not divide b(z). In the same manner, it is obtained that if
z =4 (mod 18) then ( ))3—1 if 2 = 10,16 (mod 18) then( 7)3 7 1. O

Then, the author provides Theorems E20, B=21, and B=22A associated with the con-

struction of the tower of extension fields, the BLS curve with k£ = 2" - 3, and its correct

twist.

Theorem 4.20. If z satisfies the condition Eq. (E554), the following tower of extension

fields is always available. For m =1,

Foep = Fpelal/(@® +1) = Fpe(a), (4.63)
P = Fpeplz]/(2® —2) = TFye2(6),
where a and f are elements in Fy(,)2 and F,)s such that > = —1 and * = 2, respectively.
For m > 1,
Fo 22 . 1 = Fo
Fp(zym-s Fpz2 [xl/ (@2 = (a+1)) =Fyp) (5)7
where o and 3 are elements in F(.)2 and F,,,)2m.5 such that a? = —1 and ﬂQm*l’?’ =a+1,
respectively.

Proof of Theorem [-20. For m = 1, to admit the tower of extension fields, the binomials
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2?4+ 1 and 2® — 2 must be irreducible in Fy,)[z] and F,)2[z], respectively. According to
(a) in Lemma B4, the binomial z? + 1 is irreducible in F,)[z] if —1 is quadratic non-
residue in F) ). The binomial x* — 2 is irreducible in F,)2[z] if the norm of 2, which is
2 Fp (2) =2 27} = 2% = 4, is cubic non-residue in F . Note that
(b) in Lemma B4 is satisfied for both cases. Since it is found that if z satisfies Eq. (E54),
(%) = —1 and (%)3 # 1 which results in (I%)g # 1 from Lemma B9, the tower is

p(2) p(z)
available.

computed as N]Fp<

Similarly, for m > 1, to admit the tower of extension fields, the binomials 22 + 1 and
22" '3 — (@+1) must be irreducible in F,.)[z] and F,.j:[2], respectively. According to (a)
in Lemma B4, the binomial 2?+1 is irreducible in Fy,)[z] if —1 is quadratic non-residue in
F7.)- The binomial 22" "3 —(+1) is irreducible in Fp()2[2] if the the norm of a+1, which
is computed by Ne _,w,. (a+1) = (a+1)- (a+1)P@) = (a+1)-(—a+1) = —a®>+1 =2,
is quadratic and cubic non-residue in I} . Besides, (b) in Lemma B4 is satisfies for both
cases. Since it is found that if z satisfies Eq. (E54), (1%) = —1, <z%) = —1, and
(1%)3 # 1 from Lemma BT9, the tower is available. O

Theorem 4.21. Under the same assumptions as in Theorem B0, the BLS curve E/F .

can be determined as follows: For m = 1,

v =23+1 if 2=7,31 (mod 36),
E/Fps 8 vP=2*+4 if 2 =16,34 (mod 36), (4.65)
y> =2 +16 if 2 =10,28 (mod 36).

For m > 1,

v =2*+1 if =731 (mod 72),
E[Fpey: 4 2 =2°+4 if 2 =16 (mod 72), (4.66)
y? =23 -2 if 2 =64 (mod 72).

Proof of Theorem [.Z1. The author verifies the cofactors of the possible group orders to
determine the coefficient b of the BLS curve by using Lemma EZ5. From the definition,
the curve with the group order n(z) = p(z) + 1 — t(z) is the BLS curve.

If z=7,31 (mod 36) for m =1; 2 = 7,31 (mod 72) for m > 1, then n(z) is divisible
by 6 but the other group orders are not divisible by 6. According to (a) and (b) in
Lemma B3, the coefficient b of the BLS curve is quadratic and cubic residue element b in

Foe- Such the coefficient can be chosen as b = 1 since it is obvious that (ﬁ) =1 and
(-5)s = 1.

p(z)
Similarly, if z = 16,34 (mod 36) for m = 1; z = 16 (mod 72) for m > 1, n(z) is
always divisible by 3 but is not divisible by 2 and 9, however, the other group orders do

not have such the properties of cofactors. Thus, according to (a) and (b) in Lemma A3,
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b is quadratic residue and cubic non-residue in ]F;(Z) and 4b is cubic non-residue in F;(Z).
Then, the coefficient b of the BLS curve can be explicitly chosen as b = 4 since (z%) 3 # 1
from Lemma B—TY.

Finally, if z = 10,28 (mod 36) for m = 1; z = 64 (mod 72) for m > 1, 9 always
divides n(z) but 2 does not divide n(z) and the other group orders are not divisible by 9.
According to (a) and (c) in Lemma B3, it is found that b is quadratic residue and cubic
non-residue in IF;(Z), and 4b is cubic residue in IE‘;(Z). Such the coefficient b of the BLS
curve can be chosen as b = 16 since (]%)3 # 1 from Lemma B-T9. For m > 1, since the
quadratic and cubic residue properties of —2 and 16 are exactly the same, b = —2 can
also be chosen for the BLS curve. 0J

Theorem 4.22. Suppose that the tower of extension fields is constructed as in The-
orem and E/F,.) be the BLS curve determined as in Theorem E=Z1. Then, the

correct twist B’ /Fp(z)szl of degree 6 of E' can be determined as follows: For m =1,

vy P=a2>—-4 if z=7 (mod 36),
o1 1 ¢ y? =% —1/4 if 2 =31 (mod 36), (4.67)
v =23—1 if 2 =10,16,28,34 (mod 36).

E'|F

p(z

For m > 1, letting ( = 3% € F,(2m-1 with 8 € F)2ms such that B2 = a4 1,

(2)
yP=23+1/C if 2 =7 (mod 72),
y?=2*+4¢ if 2 =16 (mod 72),
=2 +¢  if 2= 31 (mod 72),
v =23—2/C if 2 =64 (mod 72).

E'[F omer - (4.68)

Proof of Theorem F-23. The author verifies the cofactors of the group order n’(z) of the
correct twist E'/ Fyzm—1 y? = 23 + b to determine V' by using Lemma BE3. Then, b’ can
be represented as b’ = b/§, where b is the coefficient of the BLS curve and § is quadratic

and cubic non-residue in IF; (2y2m1 The author also verifies the cofactors of the group order

n"(2) of the twist E”/F,_m-1 : y? = 2® + " of degree 2 of E', where V" = V//6° = b - 5"
Note that n/(z) is derived as in Theorem BID and n”(z) = 2p(2)*" " + 2 — n/(z) from
Eq. (E3).

For m =1, if 2z =7 (mod 36), it is found that n’(z) is not divisible by 2, 3, and 9. It
is also found that n”(z) is divisible by 3, but is not divisible by 2 and 9. Thus, according

to Lemma B3, the following information is obtained.
(a) ' is quadratic and cubic non-residue in F ..

(b) v is quadratic residue and cubic non-residue in Fy .
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(c) 40" is cubic non-residue in F7 .

In this condition, the coefficient b of the BLS curve is determined as b = 1 and —4 is
quadratic and cubic non-residue in IF;(Z). Thus, the coefficient o' of the correct twist
E'[F; ., can be denoted as either ' = —1/4 or —4. In addition, the coefficient b” of the
twist E”/IF, ) of degree 2 of E' can also be denoted as either V" =1/ 4* or 4*. From the
above, it is found that both candidates of b and 0" satisfy (a) and (b), however, (c) is
satisfied if b” = (—4)%, which leads to ¥’ = —4. Thus, b’ = —4 is obtained. In the same
manner, the other cases of z = 10, 16,28, 31,34 (mod 36) can also be obtained.

For m > 1, if 2 = 7 (mod 72), n/(2) is not divisible by 2, 3, and 9. Besides, if m is
even, n”(z) is divisible by 9 but is not divisible by 2, otherwise, n”(z) is divisible by 3, but
is not divisible by 2 and 9. Thus, the following information is obtained from Lemma E=3.

(a) ¥ is quadratic and cubic non-residue in F* . ..
p(2)?

(b) b" is quadratic residue and cubic non-residue in ]F; (2y2m1-

(c) If m is even, 40" is cubic residue in IF;(Z)Qm,l, otherwise, 4b” is cubic non-residue in
F* o

p(z)
Under this condition, the coefficient b of the BLS curve is determined as b = 1. Besides,
¢ = B% is quadratic and cubic non-residue in ]F;(Z)Qm,l since the norm of ¢, which is

computed as follows, is quadratic and cubic non-residue in F;(z).

gm—1l_j

N s[5, (€) = €0
gm—2_1

~ (¢

om—2 om—2_4

+1)‘Zi:0 p(z)I

i

p(2)" _ g(p

2m—3_q

p(z)i — (_CQQ)EZ‘:O p(z)i

_ (_CQ’”*Q)p(z)-H: (_62m*1-3)p(z)+1 _ (_(a + 1))p(z)+1
— (@t -(a—-1)=2 (4.69)

Thus, the coefficient b’ of the correct twist E’/ IF; (zyzm-1 Can be denoted as either b’ = 1/¢
or (. Besides, the coefficient b” of the twist E”/I[’T;(Z)Qm,1 of degree 2 of £’ can also be
denoted as either " = 1/¢* or ¢*. From the above, it is found that both candidates of ¥/
and b satisfy (a) and (b). As for (c), since the norm of 4/¢* and 4¢* are computed as
NFP(Z)szl/lFma (4/¢%) = 922™ 714 414 NFP(Z)szl/Fp(z) (4¢*) = 922" 7'+4 in) the same manner
as the computation of the norm of (, respectively, it is found that (c) is satisfied if
b = 1/¢*, which leads to ¥ = 1/(. Thus, ¥ = 1/ is obtained. The other cases of
z =16,31,64 (mod 72) can also be determined. O

From the above theorems, the equations of F and E’ are determined corresponding to

z. This gives rise to the twisting and untwisting isomorphisms as in Table EG. For m > 1,
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Table 4.6: Twisting and untwisting isomorphisms for the proposed BLS subfamilies with
k=2m.3.

(a)m=1
z Twisting isomorphism Untwisting isomorphism
(mod 36) ¢s: E' — FE ¢¢: B — E
7 (,y) = (=272, =27 ya) (z,y) = (=27 2ya)
16, 34 (r,y) — (=232, 2ya) (x,y) — (=27128, —271ya)
31 (2,y) = (—25%,2ya) (2,y) = (=278, —27'ya)
10,28 (z,y) — (=220, 4ya) (z,y) —~ (=47 12B?, —47ya)
(b) m > 1
z Twisting isomorphism Untwisting isomorphism
(mod 72) ¢ B — FE ¢ B — E'
7 (z,y) = (x6%,y5°) (z,y) = (C'ap, 'y p?)
16 (z,y) = (CTrap, Ty p) (z,y) = (z5°,y58°)
31 (z,y) = (Crap, ('yp?) (z,y) = (x52,y58°)
64 (2,y) = (28% yB°) (z,y) = (C'ap*, (T'yl?)

the twisting and untwisting isomorphisms constructions are similar to the case of the BN
subfamilies of curves. Since {1, 3,..., 3%} is a basis of the 6-th dimensional vector space of
FP(Z)
termined by using the relations o = —1 and 3% = 2. For example, if z = 7 ( mod 36), it is
obtained ¢ : E' — E, (z,y) — ((—4)"3x, (—4)7'/2y) where the image of (x,y) under ¢g
is given by ((—4)"Y3z,(—4)"12y) = (—27123z, —(=1)/227y) = (=27'2B3, —2"'ya);
65" B o E(ny) o (—)%, (—4)2y) where ((—4)Vz, (—~4)Y2y) — (=225,
(—=1)/22y) = (—xB%,2ya). For the other cases of z = 10,16,28,31,34 (mod 36), the

formulas of isomorphisms are explicitly obtained. Note that the isomorphisms are also

om—1, the isomorphisms are low complexity. For m = 1, the isomorphisms are also de-

efficiently computable since {1,a} x {1, 3, 3%} is a basis of the 6-th dimensional vector
space of F.).
(ii) The case of k = 3" for any n > 0
Let z be an integer parameter for the BLS family of curves with £ = 3" where n > 0 is
an arbitrary integer. The author proposes to restrict z by

z =4 (mod 6). (4.70)
Once finding z under the above restriction, the specific BLS subfamily with the options
are obtained.

(i) A fixed tower of extension fields with one of the best performing arithmetics is

always available;
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Table 4.7: The field and curve options for the proposed BLS subfamily of curves with
k = 3" for any n > 0.

z Tower BLS curve E/F,.) Twist E'/F,jen-1
(mod 6) | (see Theorem [-23) | (see Theorem [=23) | (see Conjecture [-20)
4 Fpeym = Py (@) y* =25+ 16 y? = 23 + 162

(ii) The BLS curve E/Fp.) is immediately determined,;

In addition to this, the BLS subfamily might have the option (iii) the correct twist
£ /Fp(z)yH is also immediately determined. If that is true, these constructions also
enable one of the simplest twist isomorphisms. The details of the field and curve options
are found in Table EZ2, where « is an element in F,ys» such that o =2 and ¢ = o
The author also provides Theorems and B23 which show the correctness that the
proposed BLS subfamily has the options (i) and (ii), respectively. Although it is required
another theorem for the discussion, unfortunately, the author does not complete proof,
yet. Therefore, the author shows Conjecture about the options (iii). Before providing
the theorems and conjecture, the knowledge of the quadratic and cubic residue properties

in IF;(Z) is provided in the following Lemma E=23.

Lemma 4.23. For any n > 0, the following is true.

2 =1 if z=1 (mod 6),
(p(Z)>3{ #1 if z=4 (mod 6). (4.71)

Proof of Lemma [7-23. The author classifies z into z = 1 (mod 6) and z =4 (mod 6).
If z=1 (mod 6), p(z) can be modified as follows:

p(z) = <t(72>>2 +3 (V;Z)>2
() (e e

For b(z) = (z —1)/6 - (22*"" + 1), 3 divides b(z). According to Lemma 228, 2 is cubic

residue in F ;(2) under this condition.

Similarly, if z = 4 (mod 6), p(z) can be modified as follows:

p(z) = (WY% (Mf

(z—1)-25" 4z ’ —(z=1)-2" 4242 ’
:( 5 ) +3< c ) : (4.73)
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For b(z) = (—(z — 1) - %" + 2+ 2)/6, 3 does not divide b(z). Thus, it is obtained that

2 is cubic non-residue in ]F;(Z) from Lemma PZR. O

Then, the author provides Theorems and I3 associated with the construction

of the tower of extension fields and the BLS curve.

Theorem 4.24. If z satisfies Eq. (B270), the following tower of extension fields is always

available.

n

Fpepn = Fpolal/ (2™ = 2) 2 Fyp (), (4.74)

where « is an element in F,ysn such that o®" = 2.

Proof of Theorem [.24. To adopt the tower of extension fields given in Eq. (E2), the
binomial 2" —2 has to be irreducible in F,)[z], .e., 3 | (p(z)—1) and 2 is cubic non-residue
in k7 ) from Lemma B. The former requirement is satisfied for any z. If z =4 (mod 6),

the latter requirement is also satisfied since (1%)3 # 1 under this condition as found in
Lemma B3 UJ

Theorem 4.25. Under the same assumptions as Theorem B=24, the BLS curve with

k = 3" is immediately determined as E/F,,) : y* = 2* 4+ 16 for any n > 0.

Proof of Theorem [.2J. The author verifies the cofactors of the possible group orders,
which n(z) = p(z) + 1 — t(2) is the group order of the BLS curve. If z = 4 (mod 6), 9
always divides n(z), however, 2 does not divide that. Note that the other group orders
cannot be divisible by 9. According to (a) and (c) in Lemma B3, the coefficient b of the
BLS curve is quadratic residue and cubic non-residue in F;;(z) and 4b is cubic residue in

IF;(Z). From Lemma B=23, such the coefficient can be chosen as b = 16. 0

Unfortunately, it could not determine the correct twist £’/ ]Fp(z)gnfl by using Lemma =3
since the field Fp(z)gnfl in which twist is defined always makes the coefficient b of the BLS

curves I/Fp.) being cubic residue in ]F; (= However, the author makes the following

)3n71 .
prediction from the experimental results of the determination of the twist equation with

some small n.

Conjecture 4.26. With z satisfying Eq. (BZ70), suppose that the tower of extension
fields is constructed as in Theorem and E/F,.) be the BLS curve determined as in
Theorem E23. The correct twist of degree 3 of F can be determined as E’ /]Fp(z)gnfl :

y? = 23 + 16¢* where ( = o3 € Fp(z)g,nfl with a € (.3 such that ¥ =2,

Note that there is a possibility that Conjecture can be proven by using another

twist determination technique given by Yasuda et al. in [YTSTH], however, their technique

is not so simpler than Costello et al.’s one [CLNTI| and require the knowledge of number
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Table 4.8: The twisting and untwisting isomorphisms for the proposed BLS subfamily of
curves with k = 3".

z Twisting isomorphism | Untwisting isomorphsim
(mod 6) ¢3: B — E ¢3: E— FE
4 @y = (Clra,Cly) | (z,y) = (20”,¢y)

theory. According to [YI'STH], the author just finds that if the following Conjecture B-24a

is true, Conjecture is true.

Conjecture 4.27. Let € be a primitive cube root of the identity in ]F;(Z) which is rep-
resented as € = —(1 + t(z) - V(2)7')/2 (mod p(z)). If 2 = 4 (mod 6), the following is

always true.

p(z)—1

€-2" 35 =1 (mod p(2)). (4.75)

If the conjectures are true, there are efficient performing twisting and untwisting iso-
morphisms shown in Table B8. Since there is a relation ¢ = o, the twisting isomorphism
is given by ¢3 1 B — E,(z,y) — ((*2,(7Py) = (', (Cly) = (o, CTly).
The untwisting isomorphism is also given by ¢3 : B — E,(z,y) — ((¥?z,(*?y) =
(za?, Cy).

4.4.4 Sample parameters and evaluation

The author applies the proposal and obtains sample parameters z for generating the
proposed BLS subfamilies of curves with & = 2™ - 3 and 3" for m,n € {2,3}, i.e.,, k =9,
12, 24, and 27. For k = 24, although Costello et al. provided many candidates of z
in [CLNTI], the author reproduces the parameters based on the latest security analysis
[Gui20]. According to the suggestions of [Gui20], the curves with k € {9,12} and {24, 27}
are adopted for the pairings at the 128 and 192-bit security levels, respectively. For
the pairings at the 128-bit security, the author searches z which gives rise to r(z) with
log, r(2) > 256 and p(z) with log, p(z)F > 5472 for k = 9 and log, p(2)* > 5376 for k = 12.
For the pairings at the 192-bit security, the author also searches z which gives rise to r(z)
with log, r(z) > 384 and p(z) with log, p(2)* > 12202 for k = 24 and log, p(2)* > 11496
for k = 27. The parameters z having the low-Hamming weight are found for efficiency
reasons of the pairings. For k = 3™ such that 2 1 k, it is effective to choose z with the
specific binary representations such that z = S"1°%2*7 2%, where t; € {0,1} or {—1,0} for
searching z. The details of the fact are described in App. Q.

Tables B9, B10, BT1, and BT show the sample parameters z for the pairings with the
BLS family of curves with £ = 9,12,24, and 27, respectively. Note that all the seeds for
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Table 4.9: Sample seeds z for the attractive BLS subfamily of curves with £ = 9 for the
pairings at the 128-bit security level.

z Bit size
No. (mod 6) Seed z HW A T 76
1 4 —77 962 4 920 3 | 615 | 5530 | 461
2 4 —277 _ 219 4 99 3 | 615 | 5530 | 461
3 4 —27T7T _ 975 _ 932 3 | 617 | 5553 | 463
4 4 4277 4 262 4 935 4 925 4 | 615 | 5530 | 461
5 4 4276 1 9T 4 946 4 922 4 | 609 | 5481 | 457
6 4 —276 _ 9275 _ 970 _ 925 _ 9l 5 | 612 | 5501 | 459
7 4 —Q76 _ 9™ _ 965 _ 963 _ 919 | 5 | 609 | 5481 | 457
8 4 —276 _ 975 _ 957 _ 951 _ 918 | 5 | 612 | 5500 | 458
9 4 —276 _ o™ _ 954 _ 934 _ 928 | 5 | 609 | 5481 | 457
10 4 4276 4 9™ 4 242 L 931 L 92T | 5 | 609 | 5481 | 457
11 4 4276 4 275 4 2™ 4 260 L 219 | 5 | 613 | 5516 | 460
12 4 4276 4 27 4 265 4 954 4 ol | 5 | 609 | 5481 | 457

Table 4.10: Sample seeds z for the attractive BLS subfamilies of curves with &k = 12 for
the pairings at the 128-bit security levels.

z Bit size
No. (mod 72) Seed z HW 2 TpF 7
1 7 —276 _ 928 _ 923 _ 90 4 | 455 | 5453 | 305
2 7 4275 261 4 931 _ 90 4 | 449 | 5381 | 300
3 7 —9275 4 2524 940 4 97T _ 90 | 5 | 449 | 5381 | 300
4 7 —275 4254 _ 9236 L 94 _ 90 | 5 | 449 | 5381 | 300
5 7 —275 4 270 4 250 _ 944 _ 90 | 5 | 449 | 5378 | 300
6 16 —277 — 259 4 29 [BD1Y] 3 | 461 | 5525 | 309
7 16 —277 4 250 4 233 [BDI1Y] 3 | 461 | 5525 | 308
8 16 4275 4265 _ 945 _ 910 4 | 449 | 5382 | 301
9 16 —275 926 4 921 _ 910 4 | 449 | 5381 | 301
10 16 4275 960 4 945 4 924 4 | 449 | 5381 | 300
11 31 4276 _ 972 _ 912 _ 90 4 | 454 | 5447 | 304
12 31 4275 4 240 _ 936 __ 90 4 | 449 | 5381 | 301
13 31 4275 270 _ 95 _ 90 4 | 449 | 5378 | 300
14 31 —275 955 _ 942 4L 940 _ 90 | 5 | 449 | 5381 | 301
15 31 —27 251 4 240 _ ol _ 90 | 5 1 449 | 5381 | 301
16 64 +275 4254 927 3 | 449 | 5381 | 301
17 64 4276 _ 970 4 966 3 | 455 | 5452 | 304
18 64 +275 4 269 4 964 4 935 4 | 449 | 5383 | 301
19 64 4275 4 255 _ 954 _ 927 4 | 449 | 5381 | 301
20 64 —275 4 245 1 243 _ 96 4 | 449 | 5381 | 300
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Table 4.11: Sample seeds z for the attractive BLS subfamilies of curves with k = 24 for
the pairings at the 192-bit security levels.

z Bit size
No. (mod 72) Seed z HW T pEF 17
1 7 =201 — 228 4 oM _ 90 [CLNTT] | 4 | 509 | 12202 | 409
2 7 +251 — 232 920 4 93 _ 90 5 | 509 | 12202 | 408
3 7 —251 934 4 924 4 ol4 90 5 | 509 | 12202 | 409
4 7 —251 4230 924 _ 913 _ 90 5 | 509 | 12202 | 408
5 7 —251 248 _ 92 _ 913 _ 90 5 | 511 | 12243 | 410
6 16 4251 241 4 234 4 ol 4 | 509 | 12203 | 409
7 16 —251 — 948 4 945 1 939 [CLNTT] | 4 | 510 | 12238 | 410
8 16 +251 4 241 936 _ 95 4 | 509 | 12203 | 409
9 16 4252 249 4 920 4 910 4 | 517 | 12396 | 415
10 16 4252 248 946 4 915 4 | 518 | 12414 | 416
11 31 +20T — 215 28 90 [CLNTI] | 4 | 509 | 12202 | 408
12 31 —262 _ 928 4 918 _ 90 [CLLNTT| | 4 | 519 | 12442 | 417
13 31 —251 4 230 _ 919 4 91l _ 90 5 | 509 | 12202 | 408
14 31 +251 227 — 212 4 93 _ 20 5 | 509 | 12202 | 409
15 31 —251 4 938 _ 210 4 94 _ 90 5 | 509 | 12202 | 408
16 64 —251 4 231 _ 24 3 | 509 | 12202 | 408
17 64 —252 — 239 4 216 [RDTY] 3 | 519 | 12443 | 417
18 64 —251 4 235 934 o4 4 | 509 | 12202 | 408
19 64 4251 4 227 4 217 4 24 4 | 509 | 12202 | 409
20 64 +251 — 239 4 933 _ 910 4 | 509 | 12202 | 408

Table 4.12: Sample seeds z for the attractive BLS subfamily of curves with k£ = 27 for
the pairings at the 192-bit security level.

z Bit size
No. (mod 6) Seed z HW PO T PEF 73
1 4 —222 _ 92124 98 _ 96 4 | 439 | 11838 | 395
2 4 4223 _ 218 4 old _ 910 4 | 458 | 12354 | 412
3 4 —2% 21T 1 98 9l 4 | 459 | 12390 | 413
4 4 4222 1 218 4 913 4 94 4 9l 5 | 441 | 11886 | 397
5 4 —222 9221l _ 99 _ 96 _ 9l 5 | 453 | 12216 | 408
6 4 —223 _2l7T _oll _9l0 _ 98 5 | 459 | 12390 | 413
7 4 —223 _ 918 _98 97T __ 93 5 | 460 | 12402 | 414
8 4 4222 4 220 4 219 4 914 4 99 L 9T | G | 453 | 12218 | 408
9 4 4222 4220 L ol L 99 4 94 1 92 | 6 | 445 | 12014 | 401
10 4 4222 ol L o1l L 98 L 94 L 92 | 6 | 439 | 11841 | 395
11 4 4222 4 217 4 99 4 9T 4 95 4 94 6 | 440 | 11862 | 396
12 4 —222 922l _9ol5_9ol3 _9ll _ 991 G | 451 | 12159 | 406
13 4 —222 _9oll _9l0_99__98__ 96 6 | 439 | 11838 | 395
14 4 —222 _9ll _9l0 _ 99 __ 96 __ 94 6 | 439 | 11838 | 395
15 4 —222 _ 921 _9ol7T _ 912910 _98 | g | 451 | 12170 | 406
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the cases kK = 9 and 27 can provide the correct twist in Table EZ2. The author evaluates the
seeds for the pairings on BLS curves by an implementation. The implementation adopts
the ate pairing €], (Q',¢5"(P)) on E’ with efficient formulas for computing Miller’s algo-
rithm given by Costello et al. in [CLNT0]. The projective and affine formulas are adopted
for the pairings at the 128- and 192-bit security levels, respectively. For the case of the
curves with £ = 9 and 27, the revised version of Miller’s algorithm in App. O is adopted as
appropriate according to z of the loop parameter. For the final exponentiation algorithm,
curves with £ = 12 and 24, it is also adopted the compressed squaring in the cyclotomic
subgroup in the full extension field given by Karabina in [KarT3], which is available during
the computation of the hard part of the final exponentiation. Unfortunately, the curves
with £k =9 and 27 cannot have such efficient squaring in the final exponentiation.

With the above optimizations, the author implements the software for executing the
pairings by C language. The big integer arithmetics are implemented by using mp_limb_t
data type of the GMP library [eals]. The software is compiled with GCC 8.3.0 with the
option -02 -march=native and is executed by 3.50GHz Intel(R) Core(TM) i7-7567U CPU
running macOS Big Sur version 11.2.3. To evaluate the parameters, the average execution
times of 100,000 trials of Miller’s algorithm and final exponentiation are measured. Note
that the measurement is performed by repeating the functions for 1,000 random inputs
100 times.

Tables 13, BT4, BT3, and EIG show the results of the average execution time of
Miller’s algorithm and final exponentiation for the pairings on the BLS curves with k = 9,

12, 24, and 27, respectively. The results are analyzed as follows:

e Comparing the results between the same curves, the execution times of the pairings
on the curves with small HW(z) are typically faster than that of the curves with
large HW(z) since the performance of the pairing depends on the signed binary
representation of z. Although some results do not follow this trend, the author
considers that it might come from the effects of cache and parallel processing. Rather
than that, the execution times more strongly depend on the word size of p(z). For
example, for the curves with & = 24, the parameters of No. 18 could not result in
the best performing pairing due to the word size of p(z) even though that has the
smallest Hamming weight. As for the curves with £ = 12 and 24, although there is
a difference in the untwisting isomorphisms between the congruence classes of z as
in Table B8, the author could not find the difference between the congruence classes
of z. Note that it is theoretically better to choose z satisfying z = 16,31 (mod 72)
under this assumption. The author considers that this effect might be small enough

to ignore in this environment.

e Comparing the results between the same security levels, it is clear that the curves
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with k£ = 12 and k£ = 24 result in higher performance of the pairings at the 128 and
192-bit security levels compared with the curves with & = 9 and 27, respectively.
This cause of that the curves with £ = 9 and 27 have low degree twists which can
have disadvantages for computing Miller’s algorithm. Besides, these curves cannot
result in an efficient squaring in the cyclotomic multiplicative subgroup of the full

extension field for computing the final exponentiation.

As a result, among the candidates shown in this paper, the author suggests the curves
with £ = 12 with the parameters of No. 1, 6, 7, 11, and 17 for the pairing at the 128-bit
security level. The author also suggests the curves with k = 24 with the parameters of

No. 16 for the pairing at the 192-bit security level.

4.5 Summary of contributions

In this chapter, the author proposes specific restrictions of integer parameter z for gener-
ating curves in the BN and BLS subfamilies that have the advantage for the pairings-based
cryptography by extending Costello et al.’s work [CLNTI)]. The proposed subfamilies give
rise to the fixed field and curve constructions, which allow us to reduce the initial settings
of the pairings. In addition to this, since all z in the certain restriction have the common
field and curve constructions, the results can also support to change of z smoothly. For
example, if there exists an implementation of the pairing with a certain z satisfying the
restriction, z can be updated without changing the implementation of the field and curve
arithmetics as long as z is chosen from the same restriction. Thus, if there is progress
in the security analyses, the results also allow us to flexibly respond to the update of
z without changing implementations as far as possible. Moreover, since the results are
available for the BLS curves with & = 2™ - 3 and 3™ with any integers m,n > 0, the
proposed method will be useful for the researcher and implementer of the pairings for a

long time.



4.5. Summary of contributions

146

Table 4.13: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with k& = 9 at the 128-bit security

level.

z Word| ML | FE |Total

No. (mod 6) Seed 2 HW size | [ms] | [ms] | [ms]
1 4 —27T _ 262 4 920 3 10 | 2.38 | 3.41 | 5.79
2 4 —277T _ 219 4 99 3 | 10 | 237|339 5.76
3 4 —277 _ 275 _ 932 3 | 10 | 233|338 |5.71
4 4 +277 4262 1 935 4 925 4 | 10 |2.3513.36 | 5.71
5 4 4276 4 974 4 946 4 922 4 10 | 2.34 | 3.34 | 5.69
6 4 —276 _ 27 _ 970 _ 925 _ 9l 5 10 | 2.38 | 3.46 | 5.84
7 4 —276 _ o™ _ 965 _ 963 _ 919 | 5 10 | 2.41 | 3.51 | 5.92
8 4 —276 275 _ 95T __ 951 _ 98 | 5 1 10 | 2.38 | 3.48 | 5.86
9 4 —Q76 T4 _ 9% _ 934 _ 92 | 5 1 10 | 239 3.49 | 5.89
10 4 4276 4™ 1 942 4 931 L 927 1 5 | 10 | 2.37 | 3.40 | 5.77
11 4 4276 4 275 4 9™ 4 960 L 919 | 5 10 | 2.34 | 3.35 | 5.69
12 4 4276 4 o™ 4 965 4 954 4 oll | 5 10 | 2.37 | 3.41 | 5.77

Table 4.14: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with £ = 12 at the 128-bit security

level.

z Word| ML | FE |Total

No. (mod 72) Seed 2 HW size | [ms] | [ms] | [ms]
1 7 —276 2% _ 9% _ 90 41 8 | 1541541308
2 7 4275 — 261 4 931 _ 90 4 | 8 |1.59|1.60|3.20
3 7 —2T 4292 4240 4 27T 20 | 5 1 8 |1.62|1.69 | 3.31
4 7 —275 4254 236 194920 | 5 | 8 |1.62|1.69 | 3.30
5 7 275 4 270 4 250 94 90 | 5 | 8 | 1.57|1.64 | 3.21
6 16 —277 — 259 4+ 29 [BDTY| 3] 8 [1.53]1.52]3.05
7 16 =277+ 250 4+ 233 [BD19] | 3 | 8 | 1.54| 1.52 | 3.06
8 16 4275 4 205 245 _ 910 4 | 8 |1.59|1.66 |3.25
9 16 —275 2% 4 921 _ 910 4 | 8 |1.59|1.66 |3.25
10 16 4275 — 260 1 945 4 924 4| 8 | 159|166 |3.25
11 31 42760 27 212 _ 90 41 8 |1.51]1.52]3.03
12 31 +275 4 240 936 _ 90 4 | 8 | 1.59|1.61]3.20
13 31 427 — 270 25 20 4 | 8 |1.54 | 157311
14 31 —27 2% 242 4 980 90| 5 1 8 161 |1.70 | 3.30
15 31 —275 25t 4 240 _9ld_90 1 5 1 8 | 1.61]1.70 | 3.30
16 64 +275 4 254 — 2% 31 8 [159]1.58]3.17
17 64 4276 — 270 4 966 3| 8 |1.52|1.51]3.03
18 64 4275 4 269 1 264 4 935 4| 8 |1.62|1.67]3.28
19 64 +275 4 2% — 254 _ 9%7 4| 8 |1.60|1.66 | 3.27
20 64 —275 4 245 4 243 _ 96 4| 8 |1.60|1.65]3.25
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Table 4.15: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with £ = 24 at the 192-bit security

level.

z Word| ML | FE |Total

No. (mod 72) Seed 2 HW size | [ms] | [ms] | [ms]
1 7 =201 92 L oW 90 [CLNTT] | 4 | 8 |2.82]5.38 |8.20
2 7 +251 — 232 920 4 93 _ 90 5| 8 | 284|577 |8.62
3 7 —251 934 4 924 4 ol _ 90 5| 8 | 284|577 8.60
4 7 —251 4 230 924 _ 913 _ 90 5| 8 |285 581 |8.66
5 7 —251 g8 92l 9l3_ 90 5| 8 |284 577|861
6 16 +251 241 4 934 4 oll 4 | 8 279549 |8.28
7 16 —901 048 1 9% L 939 [CLNTT] | 4 | 8 | 281554835
8 16 4251 4241 236 95 4 8 | 278 | 5.48 | 8.27
9 16 +25%2 — 249 4 920 4 210 4 | 9 |331[6.499.80
10 16 +252 — 2148 _ 916 4 915 41 9 [332]652|984
11 31 +2°1 — 215 98 _ 20 [CLNTI] | 4 | 8 |2.81]5.36 817
12 31 —252 228 4 918 90 [CCNTT] | 4 | 9 |3.36|6.37 | 9.73
13 31 —251 4 230 219 4 oll 90 5| 8 | 283|577 | 8.60
14 31 +251 227 — 212 4 93 _ 90 5| 8 |284|5.77]8.61
15 31 —251 4 238 910 4 o4 20 ) 8 | 285 5.81 | 8.66
16 64 —250 4 934 9t 3] 8 [279512|7091
17 64 —252 — 239 4 216 [BDTY| 31 9 |330]6.03]9.34
18 64 —251 935 931 _ ot 4 | 8 |282]5.55]837
19 64 +2°1 4227 4 217 4 24 4 | 8 |281|555]8.36
20 64 +251 — 239 4 933 _ 210 4 | 8 | 282557839

Table 4.16: Average execution times for computing Miller’s algorithm (ML) and final
exponentiation (FE) for the pairings on BLS curves with k& = 27 at the 192-bit security

level.

No. z Seed = HW Word ML | FE |Total
(mod 6) size | [ms| | [ms] | [ms]

1 4 —2%2 _ oIz 4 98 _ 96 41 7 [241]131]155
2 4 49223 _ 918 4 ol _ 910 4 | 8 28011531 18.1
3 4 —9228 _ 91T 1 98 _ 9l 4 | 8 2841531182
4 4 4222 4 218 4 913 4 94 4 9l 5 7 1231]12.7| 15.1
5 4 —9222_ 921 _9l9__ 96 _ 9l 5 8 |270|15.6 | 18.3
6 4 —02 _ 1T _oll _ 910 _ 98 51 8 [280]16.1]18.9
7 4 —92 _9l8 _ 98 _ 97T _ 93 5 8 |278]16.0 18.8
8 4 4222 420 4 919 L 914 L 99 L 9T | 6 | 8 |2.72]15.3 | 18.0
9 4 42224220 4 oM 4 99 4 94 192 | 6 | 7 236|133 15.7
10 4 4222 p ol oll L 98 4 94 192 1 6 | 7 |235(13.2|15.6
11 4 4222 421 4929 19T 425424 | 6| 7 235133156
12 4 —922_ 921 _9l5_913_oll_ 99| g | & [282]16.6| 194
13 4 —02_9oll_9l0_99_98 _96 | 6 | 7 244 |14.3 | 16.7
14 4 —22 _ ol _ 910 _99_96 94 | g | 7 |243|14.2 | 16.6
15 4 —9222_ 921 _9oIT_912_ 910 _98| ¢ | 8 |281|16.6| 194




Chapter 5

Performance Analyses of SIDH with
Several Constructions of Quadratic

Extension Fields

The supersingular isogeny Diffie-Hellman (SIDH) is one of the isogeny-based key exchange
protocols, which is considered it can not be broken even though the post-quantum com-
puters are realized. Since it is an important tool for constructing the supersingular isogeny
key encapsulation (SIKE) which is submitted in the NIST post-quantum standardization,
there are many works of the optimizations, efficient implementations, and security anal-
yses of the SIDH in recent years. This chapter also provides one of such works for the
SIDH, which is introduced as the third work in Sect. I=3. In the following, the background

and motivation are provided.

5.1 Background and motivation

In [UDETI], Jao and De Feo, who were introduced the SIDH, presented that the large-
degree isogenies can be efficiently computed by decomposing into low-degree isogenies
involving point multiplications on supersingular elliptic curves defined over quadratic
extension field. Besides this, there are many works [CLNT6; CHT7; FH+17; RenlR| for
optimizing the SIDH. Particularly, in [CLNT6], Costello et al. proposed efficient formulas
for computing the low-degree isogenies, i.e., 2, 3, and 4-isogenies, with a projective point
associated with fast arithmetic on curves of special form, which are called the Montgomery
curves, and updated that in [CHT7]. To achieve more optimization, the author focuses
on the construction of IF,2 for the following reasons: (i) Since SIDH requires arithmetic
operations in [F,2, the performance of the arithmetic operations in F,» might affect the
performance of SIDH. (ii) Moreover, since the range of the supersingular elliptic curves

depends on F,2 that restricts conditions of field characteristics, there is a possibility that
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the range can expand by changing the construction of F ..
In this context, the author focuses on the following construction methods of IF,» with

efficient performing arithmetics:

e Optimal extension fields (OEFs) [BPOI] in which polynomial multiplication is im-
plemented by using Karatsuba multiplication [KOG62].

e All-one polynomial extension fields (AOPFs) [NSM03] with an efficient multiplica-

tion algorithm named a cyclic vector multiplication algorithm (CVMA).

e Extension fields with normal basis representation (EFNs) of which multiplication is
efficiently implemented by the NTT method [KAHOQO].

Since the OEFs are the most well-known constructions with efficient performing arith-
metics, the typical SIDH employed IF,» which is defined by the OEF with the irreducible
polynomial 22 + 1 in F,[z] Note that this construction results in the best performing
arithmetics among the OEFs. On the other hand, F,. can also be constructed by using
the AOPFs and EFNs. Then, the numbers of additions in F,, for the multiplications in [F
are smaller than that of OEFs. This means that there is a possibility of the performance
improvement of the SIDH by exploiting IF,» by the AOPFs and EFNs instead of the OEF.

In this chapter, the author confirms that F,» based on the AOPFs and EFNs are
applicable for the SIDH. Since there are several candidates of F,2, an isomorphic map
between F,2 to convert the constructions efficiently and conveniently is also presented.
The author describes the performance analyses of the SIDH with several candidates of
F,2. As a result of the experiment, the performances of SIDH with F,. based on the
AOPFs and EFNs are comparable to that of the typical F,2 based on the OEF. Moreover,
one of the candidates of IF,,» based on the EFNs results in a new efficient implementation

of the SIDH by using curves that have not been used at this time.

Notations. The calculation costs of the multiplication, squaring, addition, shift oper-

ations in [F)» are denoted as ma, 52, as, and hy, respectively.

Organization. In the rest of this chapter, Sect. B2 reviews the SIDH key exchange
protocols. Sect. B3 overviews efficient formulas used for the SIDH. Then, Sect. b= de-
scribes the constructions of [, its applicability for the SIDH, and isomorphisms between
the possible candidates of > for SIDH. The performance analyses of SIDH are given in

Sect b. Finally, the contributions are summarized in Sect. b

5.2 Review of SIDH key exchange protocol

This section reviews the SIDH key exchange protocol together with the basic construc-
tions of elliptic curves used for the SIDH. Note that the notations and mathematical

fundamentals used in this section are described in Chapter B.
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5.2.1 Supersingular elliptic curves of smooth order

The SIDH requires isogeny classes of supersingular elliptic curves with smooth orders. To
achieve that, it is exploited the elliptic curves defined over a finite field with a special

characteristic p, such that
=S £1, (5.1)

where [4 and [p are two small distinct primes, e4 and eg are two positive integers, and f
is a cofactor. A prime of the above form is called SIDH-friendly prime.

Then, one can find a supersinglar elliptic curve £ defined over F,2 such that #E(F,2) =
(pF1)? =17 f. Forl € {la,lp} and e € {eq4, ep}, there is [*-torsion subgroup in E(F,2),
ie., E[l°] C E(F,2). Since [ is coprime to p, E[l°] = Z/I°Z x Z/I°Z, which means that
El°] consists of (I¢+ 1) subgroups of order [°. Let P and @ be points on E[i¢] such that
(P,Q) = E[l¢]. For an integer m, if and only if I does not divide m, there is a point
R = P + [m|Q of order [°. Such points can generate a unique subgroup (R) of order [°,
such that (R) C EJl¢]. The SIDH uses a [*-isogeny of the base curve E where the kernel
is (R). As described in Sect. P75, [°-isogeny can be decomposed into e-times low degree

[-isogenies and can be efficiently computed.

5.2.2 SIDH key exchange

This section recalls the SIDH key exchange protocol introduced in [TDFETI]. In what
follows, the steps of key exchange between the two-person, Alice and Bob, and its security
are summarized. Note that the author refers to the construction of SIDH given in [CLNTH]

for fast implementation.

e Setup: The public parameters are the supersingular curve Ey/F,2 of which group
order is ({5157 f)? as in Sect. B2, two independent points Py and Q 4 that generate
Eo[l5'], and two independent points Pp and QQp that generate Ey[l5’]. Alice and

Bob agree to use these public parameters.

e Key generation: Alice chooses her secret integer as sy € Z/I%'7Z such that a point
Ry = Pa+ [sa]Qa has order [%*. Her secret key is computed as the degree [5*-
isogeny ¢4 : Eg — E4 where the kernel is Ry, i.e., x4 = Ey/(R4) and her public
key is the isogenous curve E4 together with the image points @ 4(Pg) and p4(Qp).

Similarly, Bob chooses his secret integer sp € Z/I%7Z such that a point Rp =
Pg + [sp|@Qp has order [%. His secret key is computed as the degree [7-isogeny
¢vp : Fg — Ep where the kernel is Rp, i.e., Ep = Ey/(Rp) and his public key is Ep
together with the image points ¢g(P4) and ¢p(Qa).

Finally, they send their public key to each other.
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e Shared secret: To compute the shared secret, Alice uses her secret integers and
received Bob’s public key and computes a point R, = ¢g(Pa) + [sa]lpp(Qa) =
op(Pa + [s4](Qa)) = wp(Ra). Then, Alice computes the degree [5*-isogeny ¢/, :
Ep — Eps where the kernel is Ry, i.e., Epa = Eg/(R,).

Similarly, Bob computes a point Ry = pa(Pg) + [splea(@p) = va(Pp+[sB]QB) =
wa(Rp) from his secret integer sp and Alice’s public key. Bob also computes the
degree 1577 -isogeny ¢ : E4 — Eap where the kernel is R, i.e., Eap = Es/(R)

Then, Eps and E,p are isomorphic since Fgy = E/(Ra, Rp) = Eap, they can

share the same j-invariant j(Epa) = j(Fap).

In the following, the operations for computing the [°-isogeny with images of some
points in the key generation phase and [°-isogeny in the shared secret phase are denoted as
keygen_iso and keyshare_iso, respectively. The operation for computing the generator
point of kernel subgroups of order (¢, i.e., R = P+ [m]Q with P,Q € E[l*] and m € Z/I°Z
is denoted as kernel _gen. As seen in the steps of SIDH, these operations occupy almost

all the computational complexity of the SIDH.

5.2.3 Security of the SIDH

In [DEJPT4), De Feo, Jao, and Plut gave computational problems related to the SIDH
and discuss their complexity. The security of the SIDH is based on the assumptions that

the following problems are difficult for solving.

Definition 5.1. (Supersingular computational Diffie-Hellman problem (SSCDHP)) Given
E4, Ep and the points 0 (Pp), 94(Q4), ¢5(Pa), p5(Q4), find the j-invariant of Ey/(Pa+
[sa]Qa, Pp + [s5]@p)-

Definition 5.2. (Supersingular decision Diffie-Hellman problem (SSDDHP)) Given a
tuple sampled with probability 1/2 from one of the following two distributions:
o (Ea, Ep,0a(Pp),0a(@n), p(Pa), pp(Q4), Eap), where
Eap = Eo/(Pa+ [s4]Qa, P+ [s8]QB);
b (EA7 EB> SOA(PB)a SOA(QB)a @B(PA)a @B(QA)? EC)> where
Ec = Ey/(Pa+ [54]Qa, Pp + [sB]QB).

Definition 5.3. (Computational supersingular isogeny problem (CSSIP)) Given E,4 and
the values w4 (Pp) and ¢4(Qp), find a kernel R = P 4 [m]Q of the isogeny ¢ : £ — E.

According to [DEJPT4], given a CSSIP (resp., SSCDHP) solver, it is trivial to solve
SSCDHP (resp., SSDDHP).
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5.3 Review of Efficient operations for SIDH

As described in [CLNT6], supersingular elliptic curves in the Montgomery form are sug-
gested using for fast SIDH. In this section, the formulas of efficient Montgomery operations

for the SIDH are summarized.

5.3.1 Montgomery curves

An elliptic curve E over F,, of the Weierstrass equation y* = z*+ax+b can be transformed
into a special equation if 4 divides #FE(F,), which is found by Montgomery in [Mon&7].
Indeed, let o and 8 be elements in Fq such that a® +aa+b = 0 and 3% = 30% + a. Then,
the substitution of x — (z — «)/f results in

E: By* = 2* + Az? + , (5.2)

where A and B are coefficients in F, satisfying B # 0 and A? # 4. The elliptic curve
of the above equation is called the Montgomery curve. The Montgomery curve has the
j-invariant given by j(E) = 256(A? — 3)3/(A? — 4).

All the rational points on the Montgomery curve can be represented in homogenized
coordinates in P? over F, such that (X : Y : Z) with 2 = X/Z,y = Y/Z with Z # 0,
which a point at infinity becomes O = (0 : 1 : 0). There are more efficient formulas in

projective coordinates without Y-coordinate by using a 2-to-1 mapping as shown below.

x:E— E/(-),
X:Z) itZ#0
Py X:2) EZZ0, (5.3)
(1:0) iftzZz=0,
where — is a negation automorphism given as — : (z,y) — (x,—y). Then, E/(—) is a

projective 1-space P! over F,.

Since — is commutative with [s], a point multiplication z(P) — z([s]P) can also be
available in P!. An isogeny ¢ : E — E between Montgomery curves E and E can also
be computed in P!, i.e. z(P) — z(¢o(P)), since the x-coordinate of ¢(P) is determined
without the y-coordinate of a point P. The above operations on E typically depend on
only the coefficient A, which is typically taken as (A 4 2)/4 for efficient formulas. More

details of the facts of the Montgomery curves are described in [CSTS]

5.3.2 Projective Montgomery operations for SIDH

The author refers to [CLNT6; (CHT7] and presents the formulas of projective Montgomery
operations for the SIDH. In this subsection, the SIDH with p = ({7’ f £ 1 where I4 = 2,
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lp =3, and 2 | e, is considered.

Projective point operations

The author uses the projective coordinates not only the points of the curve but also
the curve coefficients since they are not fixed but moved in isogeny graphs. Thus, the
constant term (A —2)/4 in the projective coordinates is denoted as (Agy : Coyq). Assuming
z(P) = (Xp:2Zp), 2(Q) = (Xg : Zg), and 2(Q — P) = (Xg_p : Zg-p), a point doubling
operation xDBL : (z(P), (A — 2)/4) — x([2]P), a tripling operation xTPL : (z(P), (A —
2)/4) — x([3]P), and a point addition xADD : (z(P),z(Q),z(Q — P)) — z(Q + P) are

given as follows:

e Doubling operation (xDBL)

[2](Xp . Zp) = (CQ4(XP + ZP)Q(XP - Zp)2 .
4XpZp(Cos(Xp + Zp)? + 4A0uXpZp). (5.4)

e Tripling operation (xTPL)

[3](Xp : Zp) = (Xp(16A24XpZ§);. — CQ4(XP — 3Zp)(XP + Zp)3>2 .
Zp(16A04 X3 Zp + Cos(3Xp — Zp)(Xp + Zp))?). (5.5)

e Addition operation (xADD)

(Xo: Zo)+ (Xp 2 Zp) = (Zg-p((Xo — Z0)(Xp + Zp) + (Xg + Zo)(Xp — Zp))?

Xo-p((Xq = Zo)(Xp + Zp) — (X + Zo)(Xp — Zp))?).
(5.6)

According to [CHTIT], xTPL can be computed by taking a coefficient as (Agg, Koy = Aoy +
(C4). The operations xDBL and xTPL are used for the computations of the points of order
2 and 3 required for 2- or 4-isogeny and 3-isogeny computations, respectively. Although
xADD is typically does not exploited for SIDH, an operation to compute xDBL and xADD
simultaneously, i.e., xDBLADD : (z(P),z(Q),z(Q — P), (A +2)/4) — (z([]2]P),z(Q — P))
is used for the SIDH operation kernel_gen as described in [DFIPT4; FH+17)].

Projective isogenies computation

As for the computation of the 2°4-isogeny with 2 | e, 4-isogenies are typically adopted
for the SIDH. Let (X}, : Zp) and (A, : C%,) be an image of (Xp : Zp) and coefficient
of an elliptic curve given by ¢, respectively. Assuming (X3 : Z3) and (X, : Z;) denote

rational points of order 3 and 4, the isogenies of degrees 3 and 4 are computed as follows:
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Table 5.1: The calculation costs of the projective operations for SIDH.

Operation/ Input(s) Output(s) Operations
from  type(s) | type(s) [ mo [ s2 | az | ho
xDBL | 2(P), A24, Cos | z([21P) ] 4 121410
[NMon&7] P x Fp2 x Fpe Pt
xIPL | __ o(P), Agay Koa | z(B]P) | 715110 0
App. A in [CHIT] P! x Fp2 x Fp Pt
xDBLADD ‘T(P>7x(Q>7I(Q_P)7% I([Q]P),J}(Q—P) 7 4 8 0
~ - Tl Pl Pl T 17T T-- "7
[CLNTH] P x P! x P' x Fpe P
37i807curve 77777777 :L;(;Pgi) 77777777 _ 7(:2 77‘/47/2é7 pé47 —_ 2 3 14 0
App. A in [CHI7| P! (F2)? x Fpe x Fpe
3-iso.curvex | z(P3) ey, Ay, Ky | 5 |3l13] 0
This work P! (F2)? x Fp2 x Fpe
3.isopoint | = (cp,x(P)) | z(p(P) | 4 lalalo
App. A in [CHIT] (Fp2)? x P! P!
tisocurve | P MG | alals
App. A in [CHI7| P! (F2)® x Fpe x Fpe
4 isopoint | = (c3,z(P)) | z(eP) 6 l2l6lo
App. A in [CHIT] (Fj2)® x P! P!

e 3-isogeny operations (3_iso_curve, 3_iso_point)

(AL, - Ch) = (X3 + Z3)(Z3 — 3X3)* : 16X373), (5.7)
(X} : Zp) = (Xp(X3Xp — Z3Zp)? : Zp(Z3Xp — X3Zp)?). (5.8)

e 4-isogeny operations (4_iso_curve, 4_iso_point)

(A/24 : 054) = (lel - Zf : fo), (5-9)
(Xp: Zp) = (Xp(2X4Z4Zp — Xp( X3 + Z1)(XuXp — Z47p)* -
Zp(2X4 72, Xp — Zp(X2 + Z))(ZsXp — X4Zp)). (5.10)

The author modifies 3_iso_curve by using Koy = Aoy + Cyy and defines an operation

3_iso_curve* which compute (A}, K}, = A}, + C%,) as follows:
(A/24 : Ké4) = ((Xg + Zg)(Zg - 3X3>3 : (Zg - Xg)(Zg + 3X3)3), (511)

which results in a reduction of single addition in [F ..
The calculation costs and I/O specifications of xDBL, xTPL, xDBLADD, 3_iso_curve,
3_iso_point, 3_iso_curve*, 4_iso_curve, and 4_iso_point are summarized in Table b,

where cy and c3 are common variables for the curve determination and point evaluation.
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5.4 Constructions of quadratic extension fields for
fast SIDH

In this section, several attractive constructions of IF» with efficient performing arithmetics

are described. This section also presents the applicability of these constructions of IF,» for
the SIDH with p = 2°43°8 f + 1.

5.4.1 Construction methods

A quadratic extension field applied for the SIDH has to be particularly efficient since the
efficiency of the SIDH strongly depends on the efficiency of arithmetics in F,.. Thus,
the author constructs implementation-friendly 2 by exploiting the existing construction
methods of extension fields with efficient performing arithmetics, which are introduced

below.

(i) Optimal extension field

In [BPOT], Bailey and Paar proposed the OEFs which are defined by using irreducible
binomials. An OEF of degree m of I, is defined as F,m = Fylz]/(z™ — o) = Fy(a),
where f(z) = 2™ — ¢y is an irreducible binomial in F,[z] and « is an element in Fym
such that f(o) = 0. Any element a € F,m is represented as a = ap + a;a + - -+ +
am-10™ 1 where a; for 0 < 7 < m — 1 are elements in F,. A set {1,a,...,a™ '} isa
basis of a which is classified into a polynomial basis. In F,m, there are several efficient

multiplication algorithms such that Karatsuba multiplication [KO62] and Toom-Cook

pseudo-Mersenne primes, it is possible to extend for the general characteristics including
the SIDH-friendly primes. Thus, the author considers the following definition of F .

Fye 2 Fyla]/(2” - ¢o) = (), (5.12)

where 22 — ¢ is an irreducible polynomial in F,[z] and « is an element in F,2 such that
a? = ¢y. The small value of ¢y leads to efficient performing arithmetics. Indeed, the choice
of cg = —1 results in the best performing arithmetics among the OEFs and is used for
the typical SIDH.

(ii) All one polynomial field

In [NSMO3], Nogami et al. proposed other attractive extension fields, i.e., AOPFs. An
AOPF of degree m of F, is defined as Fpm = F,[z]/(z™ + 2™ ' + - + 1) = F,(8),
where f(z) = 2™ + 2™ ' 4+ .- + 1 is an irreducible all-one polynomial in F,[z] and
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f is an element in Fym such that f(8) = 0. Any element a € F,m is represented as
a = a8+ a4+ -+ a,B™ where a; for 1 < i < m are elements in F,. A set
{B,B% ...,8™} is a basis of a classified into an optimal normal basis [Mul£88]. In Fpym,
Since the AOPF can also be extended for the fields with SIDH-friendly primes, the author

considers the following definition of [F ..
Fpo = F,[o]/(a + o + 1) 2 F,(9), (5.13)

where 2 + z + 1 is an irreducible polynomial in F,[z] and 8 is an element in F,2 such
that such that 5% = -3 — 1.

(iii) Extension field with a normal basis

There exist extension fields such that any elements are represented by using a basis
classified into a normal basis. Such fields are called the EFNs in this thesis. An EFN
of degree m of I, is defined as Fym = Fplx]/(2™ + ¢p12™ 1 4+ -+ + ¢o) = Fp(7), where
f(z) =a™+cp_12™ '+ -+ ¢ is an irreducible polynomial with non-zero trace in F,[z]
and v is an element in F,m such that f(y) = 0. Any element a € F,m is represented as
a=ayy+ay’+-- ~+am,1’y”mfl where a; for 0 <7 < m—1 are elements in F,. Note that
a set {7,7*,...,7*" '} is a basis of a which is called the normal basis. The EFNs are
efficiently implemented by using the NTT method [KAHOO]. From the above, the author

also considers the following definition of IF..
F2 2 Fylz]/(2” + c1z + co) 2 Fy(7), (5.14)

where z? + ¢z + ¢y with non-zero ¢; is an irreducible polynomial in F,[z] and ~ is an

element in F,2 such that 42 = —¢1y — ¢o.

5.4.2 Attractive candidates of I

According to the constructions of F,. described in the previous subsection, the author

considers the following candidates of F.

OEF x2+1 : F,[z]/(2* + 1), OEF x2+2 : F [2]/(2* + 2),
OEF x2-2 : F,[z]/(2* — 2), OEF x2+3 : F,[z]/(2* + 3),
OEF x2-3 : F,[z]/(2* — 3), OEF x2+4 : F,[2]/(2* + 4),
OEF x2+5 : F,[z]/(z* + 5), OEF x2-5 : F,[2]/(z* — 5),

AOPF x2+x+1 : Fy[z]/(2* + 2 + 1),
EFN x2-x+1: F,[z]/(z® — 2 + 1), EFN x2-x-1: F,[2]/(2® — 2 — 1),
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Table 5.2: The calculation costs of arithmetic operations in [F ..

Constructions Multiplication Squaring

my | S1 | 4y hl my | S1 | 4y hl

OEF_x2+1 3105702 (0]3]0
OEF_x2+2 3106 (02 (0|50
OEF x2-2 310151020510
OEF _x2+3 31015112032
OEF _x2-3 31016102 ]0]|5]0
OEF _x2+4 31015112 ]0]5]|1
OEF_x2+5 3101612 ]0|4]2
OEF x2-5 31015112 ]0|4]2
AOPF x2+x+1 | 3 |0 |4 10| 2 [0] 4]0
EFN x2-x+1 310141702 (0]4]0
EFN_x2-x-1 3101417010 1(3]3]0

where [F,. defined by a certain polynomial is denoted as [field name]_[polynomiall,
e.g., F,2 based on OEFs given by a polynomial 2% 4+ 1 is denoted as OEF_x2+1. Note that
OEF _x2+1 is employed for the typical SIDH. The details of the operation algorithms for
OEF_x2+1, OEF_x2-5, AOPF_x2+x+1, EFN_x2-x+1, and EFN_x2-x-1 are especially presented
in App. 0.

The calculation costs of multiplication and squaring in IF,» based on the OEF, AOPF,
and EFN are summarized in Table B2, According to Table b3, it is found that OEF x2+1
is the best performing arithmetic among IF,» based on the OEFs. In contrast, 1 addition
in [F, for the multiplications in AOPF_x2+x+1, EFN_x2-x+1, and EFN_x2-x-1 is reduced
from that of OEF_x2+1. However, 1 addition in F, for squarings in AOPF_x2+x+1 and
EFN_x2-x+1 is increased from that of OEF_x2+1, which is a degradation. As for the squar-
ing in EFN_x2-x-1, 2 multiplications in [, are replaced with 3 squarings in [F,, from that of
OEF _x2+1. According to Table b7, multiplications in F,. are more often required for the
SIDH operations than squarings in F . If it is possible to apply AOPF_x2+x+1, EFN_x2-x+1,
and EFN_x2-x-1 for the SIDH, the performance of the SIDH might be competitive to or
rather better than that of OEF x2+1.

5.4.3 Applicability of the candidates of IF,» for SIDH

The author confirms the applicability of the candidates of [F,2 described in Sect. for
the SIDH. Note that not all SIDH-friendly primes results in IF,,> based on any constructions
since there exist restrictions of field characteristics from the irreducibility of a polynomial.
In the following, the author especially describes the applicability of IF,» based on the target
constructions for the SIDH with p = 2°43°8 f £+ 1.
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Theorem 5.4. The field characteristic p has to satisfy the following conditions for con-

structing 2.

OEF _x2+1 : p = 3 (mod 4), OEF x2+2: p = 5,7 (mod 8),
OEF x2-2: p = 3,5 (mod 8), OEF x2+3 : p = 2 (mod 3),

OEF x2-3:p =5,7 (mod 12), OEF x2+4 : p = 3 (mod 4),

OEF x2+5 : p = 11,13,17,19 (mod 20), 0EF x2-5:p = 2,3 (mod 5),
AQPF x2+x+1 : p =2 (mod 3),

EFN x2-x+1 : p = 2 (mod 3), EFN x2-x-1:p = 2,3 (mod 5).

Proof of Theorem B4. To construct F2, a polynomial f(z) = 2 + ¢z + ¢ in Flz] has
to be irreducible over F,. The irreducibility of f(x) depends on the quadratic residue
properties of the discriminant D = ¢? — 4cy since a root of f(z) is given as (—c; £v/D)/2.
If D is a quadratic non-residue in F;, the polynomial is irreducible in F[x]. For OEF x2+1,
OEF_x2+2, OEF x2-2, OEF_x2+3, OEF_x2-3, OEF_x2+4, OEF x2+5, OEF_x2-5, AOPF_x2+x+1,
EFN_x2-x+1, and EFN_x2-x-1, the discriminants are given as D = —4, —8, 8, —12, 12, —16,
—20, 20, —3, —3, and 5, respectively. Applying the properties of the Legendre symbol
described in [Koh94], the restriction of the characteristic for the certain discriminant can
be uniquely obtained as follows: (_Tfl) = (_716) = —-1< p =3 (mod 4), (_Tf) =-1&
p=5,7 (mod 12), (3) = —1 < p=3,5 (mod 8), (52) = (3}) = ~1 & p =2 (mod 3),
(3)=~-1&p=57 (mod 12), (°) = —1 & p = 11,13,17,19 (mod 20), and () =
(%) = —1< p=2,3 (mod 5). Thus, the restrictions to apply [,z are obtained as shown

in the theorem. O

The SIDH-friendly prime given by p = 29438 f 4+ 1 are clearly satisfy the condition p =
+1 (mod 2°4) and p = £1 (mod 3°8), respectively. When comparing to the restrictions
to exploit IF2 given in Lemma b4, the applicability of IF,2 for the SIDH with p = 2°43°5 f 4
1 is obtained as shown in Table b23 where v and X denote applicable and inapplicable,
respectively.

From Table B33, the new candidates of Fj2 such that AOPF x2+x+1 and EFN_x2-x+1
can be available for the SIDH with p = 2°43°8f — 1. Moreover, if the primes satisfy
p = 2,3 (mod 5), EFN_x2-x-1 can also be applied not only for p = 2¢43°6 f — 1 but also
for p = 2°43°2 f + 1 which have not so many choices of F,2 based on the OEFs. Thus,
there is a possibility that the SIDH with p = 2°43°8 f 4+ 1 also results in an efficient
implementation, however, the previous SIDH implementation does not focus on that.

Note that the sign of the constant term of the SIDH-friendly prime might not affect
the performance of the modular reduction described in [CLNT6], which is based on Mont-
gomery reduction [Mon85]. Assuming p = 2°43°5f + 1 and R is slightly larger than the

size of p given as R = 2™ with an integer m, one can compute the Montgomery residue
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Table 5.3: Applicability of the constructions of I,z for the typical SIDH.

_ Applicabilit
Constructions =T —plp py: 2435 f + 1
OEF_x2+1 v X
OEF _x2+2 v X
OEF _x2-2 X X
OEF _x2+3 X X
OEF x2-3 v X
OEF_x2+4 v X
OEF_x2+5 v v
0EF_x2-5 Ve v
AOPF_x2+x+1 v X
EFN_x2-x+1 v X
EFN x2-x-1 v )

v
*If only a SIDH-friendly prime satisfies p = 2,3 (mod 5)
“If only a SIDH-friendly prime satisfies p = 1,4 (mod 5)

¢ =aR(mod p) for an input a < pR as ¢ = (a + (aM'(mod R))p)/R = (a + aM’'(mod
R))/R+((pF1)(aM'(mod R))) = (ataM’'(mod R))/R+(2°43°5 f(aM'( mod R))) where
M' = —p~Y(modR).

5.5 Isomorphisms between the candidates of I

Since there are several candidates of IF,» which are applicable for the SIDH, the author
provides an isomorphic map between F,» to convert the constructions efficiently and
conveniently. Indeed, the author presents a construction method of an isomorphic map
from [, of the typical construction OEF_x2+1 for the SIDH with the typical prime p =
2°43°8 f —1 to 2 of any constructions. Before describing the proposed map, the following

lemma is required.

Lemma 5.5. If a field characteristic is p = 2438 f — 1, there exists a primitive cube

root of identity in F}.

Proof of Lemma B4, Since the primitive cube root of identity is written as v/1 = (—1 %
V=3)/2, it is defined over F, if /=3 € F,2. According to [CemT3], if 3 1 (p — 1) is
satisfied, 3 and —1 are quadratic residue and non-residue in F, which leads to —3 is
quadratic non-residue in Fj, which mans that V-3 € IFZQ. Since p = 2°43°Bf — 1 is
satisfied the condition, v/1 € F.

O

In the following, let us define F 2 as Fy[z]/ (22 +1) = Fy(a) and Fp2(z]/(2? +c124¢o) =

F,(w) where o and w are elements in Fj» such that o = —1 and w? = —cjw — 2,
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respectively. From Lemma BH, there exists a primitive cube root of identity in F,(«)
and F,(w) with a SIDH-friendly prime given by p = 2¢43°5f — 1. In the following, let
d =6p+ 0 € Fy(a) and ( = (p + Gw € F,(w) be primitive cube roots of the identity
in F,(a) and F,(w) where &y, 61, (o, (1 € F), respectively. Indeed, § and ¢ can be written
by using 8 = —1/2, 0, = +v3/2, (o = (=1 £ ¢1/=3/D)/2, and {; = +1/—3/D where
D =c—dc € [}, respectively. Note that we have V3, \/% € F, from the quadratic

residue property of 3 and quadratic non-residue property of —3 and D in F}.

Theorem 5.6. If a field characteristic is p = 2°43°2 f — 1, an isomorphic map from [F,(«)

to any IF,(w) is defined as follows:

M F,(a) = Fy(w),

ag + ajae — (ag + may) + najw, (5.16)

where m = (¢o — d0)/d1,n = (1/01 € F),.

Proof of Theorem BA. Let a and b be elements in F,(«) represented by a = ag + a;a with
ap, a1 € F, and b = by + by with by, by € F, respectively.

(i) Additive homomorphism. It is clearly satisfied that M(a+b) = ((ap+ bo) +m(a; +
b1)) + n(ar + by)w = M(a) + M(b).

(ii) Multiplicative homomorphism. It is obtained that M (a-b) = (agbo+m(aobs +a1by)—
a1by) +n(agbo+a1bg)w and M(a)- M (b) = (agbo+m(aghy +a1by) +doaiby) +n(agh +
aoby —dyaiby )w where dy = m? —con? and d; = n(cyn—2m). Since m = iclm
and n = +2,/—1/D with D = ¢§ — 4¢y € F7, we have dy = —1 and d; = 0 which
leads to M(a-b) = M(a)- M (D).

(iii) Monomorphism. Since n # 0, it is satisfied that M (a) # M () if a # b € F,(a).

From the above (i)—(iii), M is an isomorphism. O

From the above, the isomorphic map M : F,(a) — F,(w) is easily constructed once
the primitive cube root of identity 6 € F,(«) and ¢ € F,(w) are obtained. The elements
0 and ¢ are obtained without square root computation by computing a cubic non-residue
element to the power of (p? —1)/3 in F,(a) and F,(w), respectively. The calculation cost
to compute an image of a € F,(a) is enough low since it requires only 2 multiplications
and 1 addition in F,. Note that M(z) € F,(w) with the polynomial basis representation

can also be deformed to the optimal normal basis and normal basis representations as

M(a) = (ap + may) + naw

= ((—c1ap + (con — cym)ay) /co)w — ((ag + may) /co)w?
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= ((—ap + (an — m)ay) /c1)w — ((ag + may) /cy)w?, (5.17)

where ¢y and ¢; are non-zero coeflicients.

The proposed isomorphic map supports the generation of the public parameters of
SIDH with [F,» based on several constructions from the existing parameters defied over
OEF x2+1, e.g., SIKEp434 given in [Cam=+19]. The details of the application of the iso-
morphism are described in App. E.

5.6 Performance analyses of SIDH

The author picks up the four implementation-friendly F,., i.e., OEF_x2+1, OEF_x2-5,
AQOPF x2+x+1, and EFN_x2-x-1 and compares the performance of the operations keygen_iso,
keyshare_iso and ker_gen which occupy almost all computational complexity of SIDH.
The author also confirms the performance of the SIDH with p = 2°43°6f — 1 and

p=20435f 4 1.

5.6.1 Assumptions

In the following, the author presents the details of the experimental assumptions such as

the parameter setting, environment, optimization, and evaluation methods.

Parameters setup

The author chooses the SIDH-friendly primes satisfying p = 2,3 (mod 5) to use various
constructions of F,2. The SIDH-friendly primes which can ensure quantum security at

the 128-bit levels are given as follows:

Pasa— = 2210387 — 1, (5.18)
Paary = 2216317139 4 1, (5.19)

where the sizes of the primes are given by 434-bit and 441-bit, respectively. Note that
Pasa— is presented in [Cam+1Y] where the parameter set is called SIKEp434 and py414 is
found by this work. It is considered that the proposed parameter py4;. can also ensure
the same security level since e4 and eg which are parameterized the size of the kernel of
isogenies are the same size as py34_ oOnes.

The author uses supersingular elliptic curves of Montgomery form defined over F» of
which orders are (p + 1) and (p — 1)? for the prime py34 and py4;., respectively. For
pasa_, the supersingular elliptic curve is given as E/F, : y? = 23 + 62> + x. For py., the

curve can be found by using a quadratic twist as described in App. E.
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Experimental environment.

To evaluate the performance of the SIDH with several candidates of IF,2, the protocol
is implemented by C language. In the implementation, the big integer arithmetics are
implemented by using mpz_t data type of GMP library [feal5]. The software is compiled
with GCC 8.3.0 with the option -02 -march=native, and is executed on 3.50GHz Intel(R)
Core(TM) i7-7567U CPU running macOS High Sierra version 10.13.6.

The four categories of arithmetic functions of GMP which are mpz mul, mpz add/
mpz_sub, mpz mul 2exp/ mpz_tdiv_q 2exp, mpz_invert, mpz mod, and mpz_set are em-
ployed in the software. The categories are referred as mul, add, shift, mod, and set
respectively. If mpz mul has the same operands, it is denoted as the sixth category sqr.
To minimize the number of function calls of mod which has one of the highest computa-
tional complexity among the categories, the author allows the operands with the twice
size of characteristic for add. The size of the operand(s) is denoted as a subscript of the
category’s name, e.g., mpz_mul with s-bit operands is denoted as mul;.

The weight of these operation categories with the specific size of the operand(s) used
for the implementation is given in Table b4. The weight is derived from one hundred
million trials of execution time excluding the overhead on this environment. Unlike mul,
sqr, and mod, the differences of the weights of add, shift, and set between py34 and

paq1+ are invisible since these operations are low computational complexity.

Optimization

All arithmetics are performed on Montgomery curves and applied the optimization pro-
posed in [DEJPT4; CLNTH] as described in Sect. B3, The author refers to Sect. 4.2.2
in [DEIPT4] and finds the optimal paths of computing 4'%- and 3'3"-isogenies from the
ratio of a single point multiplication and isogeny evaluation. The ratio is derived from
the computational complexities of these operations which are calculated by the sum of
the number of operation categories multiplied by the weight given in Table B4. From
the optimal paths, it is found that the numbers of operations xDBL and 4_iso_point
for computing 4'%-isogeny are specifically given by 666 and 405 for all candidates of
]Fp

3_iso_point required for computing

2 in this implementation, respectively. Similarly, the numbers of operations xTPL and
4108 isogeny are also specifically given as 407 and
597, respectively. Note that this implementation does not adopt the Montgomery reduc-
tion described in Sect. b473 since the performance of that of ps34— and py4;_ are might

be competitive.
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Table 5.4: Weight of the operation categories employed in the implementation of SIDH.

log,|s| | mul, | sqr, | adds | addys | shift, | modys | sets
434 512 | 3.46 | 1.00 | 1.14 1.04 16.4 | 0.63
441 513 | 3.47 | 1.00 | 1.14 1.04 16.8 | 0.63

Evaluation

The author measures the number of function calls required for the SIDH operations, i.e.,
keygen_iso, keyshare_iso, and kernel _gen, which occupy almost all the computational
complexity of SIDH. Since the number of function calls of kernel gen typically depends
on the secret key, the average of the result of 1,000 random secret keys are calculated.
The computational complexity of the SIDH operations is computed by the sum of the
numbers of the function calls multiplied by the weight of the operation categories. Besides,
average execution times of 100,000 trials of the operations are measured. Note that the
measurement is performed by repeating the operations for 1,000 random secret keys 100

times.

5.6.2 Results and analyses

Tables b8 and 5@ show the numbers of the function call of the operations (a) Alice’s
keygen_iso, (b) Bob’s keygen_iso, (c) Alice’s keyshare_iso, (d) Bob’s keyshare_iso.
(e) Alice’s kernel gen, and (f) Bob’s kernel gen for the primes py34— and py4;, respec-
tively. The tables also involve computational complexity and average execution time.
Figs. b and B2 also provide the results of the computational complexity and execution
time for py34 and pyq1,. The details of the results and their analyses are described below.

From Table b33 and Fig. B, the performance of the SIDH operations with pyzs_
applied AOPF_x2+x+1 and EFN_x2-x-1 are competitive to that of OEF_x2+1 which is ex-
ploited for the previous implementations. The results are caused by the complexities of
the multiplication and squaring in [F,2 as described in Sect. 5472, Moreover, EFN_x2-x-1
can achieve more 1% improvement than that of 0EF_x2+1 since the computational com-
plexity of 3 squarings in [F,, is lower than that of 2 multiplications in IF,, which results in
more efficient performing squaring in EFN_x2-x-1 than that of OEF_x2+1. Therefore, the
performance improvement for the entire SIDH can be expected by using AOPF_x2+x+1 or
EFN_x2-x-1 as a replacement for 0EF_x2+1. Since the calculation costs of arithmetic op-
erations in EFN_x2+x-1 are exactly the same as AOPF _x2+x+1, EFN_x2+x-1 is yet another
candidate for the replacement. However, the results of the execution time with 0EF_x2+1
are slightly better than that of AOPF x2+x+1 despite the reduction of the complexity. The
author confirms the software by GNU profiler and finds that the number of function calls

of the operations applied OEF _x2+1 and AOPF _x2+x+1 is exactly correct, however, the exe-
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Table 5.5: The number of function calls, computational complexity and execution
time of the SIDH operations (a) Alice’s keygen_iso, (b) Bob’s keygen iso, (c) Al-
ice’s keyshare_iso, (d) Bob’s keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s
kernel_gen with py34_.

Const- | Ope- Function calls Complexity Time
ruction-|ration|mulyss|sqr,;, |addsss|addses|shiftyss|modges|setysa [ms]
(a) |27,557 0[35,759(23,820 216/20,520| 1,284| 541,567.20| 5.04

(b) {30,389 0(43,473(25,453 0(23,234| 1,632| 610,146.86| 5.66

OEF_ | (c) |20,429 0]27,186(16,841 216|15,336| 1,284| 403,525.18| 3.70
x2+1 | (d) |23,813 0[35,146(19,806 0[18,302| 1,632| 480,828.36| 4.47
(e) | 6,231 2| 8,291] 5,251 0 4,729 16| 123,752.46| 1.15

(f) | 6,271 0| 8,331] 5,292 0| 4,757 16| 124,496.28| 1.15

(a) |27,557 0[35,709(27,092| 13,698/20,520| 1,284| 559,268.56| 5.24

(b) {30,389 0[43,403(29,985| 16,079(23,234| 1,632| 631,965.50| 5.88

OEF_ | (c) |20,429 0]27,14519,456| 10,458|15,336| 1,284| 417,116.96| 3.86
x2-5 | (d) |23,813 0[35,091(23,501| 12,791/18,302| 1,632| 498,288.30| 4.64
(e) | 6,231 9| 8,278| 6,124| 3,224| 4,729 16| 128,087.64| 1.19

(f) | 6,271 0| 8,318] 6,170|  3,243| 4,757 16| 128,856.92| 1.20

(a) [27,557 0[42,711]13,052 216(20,520| 1,284| 536,243.68| 5.08

(b) 130,389 0]53,085(13,148 0]23,234| 1,632| 605,731.16| 5.73

AOPF_ | (c) {20,429 0[32,462| 9,045 216|15,336| 1,284| 399,913.74| 3.78
x2+x+1| (d) (23,813 0[42,925[10,156 0[18,302| 1,632| 477,606.36| 4.52
(e) 6,231 2110,142| 2,755 0] 4,729 16| 122,758.02| 1.16

(f) | 6,271 0[10,199| 2,776 0| 4,757 16| 123,496.04| 1.17

(a) |21,113| 9,666(33,771|18,770 216/20,520| 1,284| 534,273.28| 4.97

(b) [21,465| 13,386/40,582|21,189 0]23,234| 1,632| 603,019.58| 5.59

EFN_ | (¢) |15,281| 7,722|25,329|13,604 216/15,336| 1,284| 398,338.36| 3.64
x2-x-1| (d) [16,533| 10,920|32,723|16,718 0[18,302| 1,632| 475,394.64| 4.41
(e) | 4,512 2,581] 7,749 4,289 0| 4729] 16| 122,235.84| 1.14

(f) | 4,541 2,595 7,787| 4,322 0| 4,757 16| 122,967.58| 1.15

cution time of single addy34 of AOPF_x2+x+1 is strangely slower than that of OEF_x2+1. At
this time, the author considers that it might come from the effects of cache and parallel
processing.

The results Table b3 and Fig. b also show that the performance of the SIDH op-
erations applied 0EF_x2-5 compares unfavorably to OEF_x2+1. Thus, such constructions
of F,2 should be kept away from practical implementations. However, as described in
Sect. B2473, there do not exist good choices of 2 based on the OEFs for the SIDH with
p = 2°43°8 f 4 1. In contrast, the author finds the new candidate of 2, i.e., EFN_x2-x-1,
for such the SIDH. According to Table b8 and Fig. b2, EFN_x2-x-1 contributes to im-
prove the performance of the SIDH operations around 4% compared with the previous
best choice of F2 based on OEFs, i.e., 0EF_x2-5. Moreover, the performance of the SIDH
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Table 5.6: The number of function calls, computational complexity and execution
time of the SIDH operations (a) Alice’s keygen_iso, (b) Bob’s keygen iso, (c) Al-
ice’s keyshare_iso, (d) Bob’s keyshare iso. (e) Alice’s kernel gen, and (f) Bob’s
kernel_gen with pg41.

Const- | Ope- Function calls Complexity Time
ruction|ration|mulyy; |sqr,,; |addss;|addsgs|shiftyy;|modsss|setyq; [ms]
(a) (27,557 0(35,244|27,557| 13,698|20,520| 1,284| 567,817.23| 5.23

(b) 130,389 0(43,000(30,388| 16,079(|23,234| 1,632| 641,619.41| 5.88

OEF_ | (c¢) |20,429 0]26,814(19,787| 10,458|15,336| 1,284| 423,501.99| 3.84
x2-5 | (d) |23,813 0[34,780(23,812| 12,791|18,302| 1,632| 505,890.77| 4.64
(e) | 6,232 1| 8,181| 6,221 3,224| 4,729 16| 130,056.81| 1.20

(f) | 6,271 0| 8,223| 6,265 3,243\ 4,757 16| 130,835.73| 1.21

(a) |21,113] 9,666(32,028/20,513 216(20,520| 1,284| 543,033.09| 5.01

(b) 121,465| 13,386|38,544 (23,227 0(23,234| 1,632| 612,947.01| 5.66

EFN_ | (c¢) |15,281| 7,722(24,030{14,903 216(15,336| 1,284| 404,884.65| 3.68
x2-x-1| (d) [16,533| 10,920(31,145|18,296 0[18,302| 1,632| 483,210.89| 4.46
(e) 4,512 2,581| 7,321| 4,716 0| 4,729 16| 124,257.15| 1.16

(f) | 4,541 2,595| 7,357| 4,752 0| 4,757 16| 125,001.94| 1.16

with pgy14 applied EFN_x2-x-1 is competitive to that of py34_ applied OEF x2+1. Thus,
the author concludes that the efficient implementation of the SIDH with p = 2°43°5 f + 1

can exist.

5.7 Summary of contributions

In this chapter, the author considers the SIDH using elliptic curves defined over [, that
are specified by several constructions such as OEFs, AOPFs, and EFNs. It is found
that not only the OEFs but also AOPFs and EFNs can be applied for the SIDH with
p = 2435 f — 1. Moreover, the EFN is also available for the SIDH with p = 26435 f + 1,
which leads to expanding the range of the elliptic curves used for the SIDH. With the
possible candidates of Iz, the author implements the SIDH and analyzes the performance
of the SIDH. The results of the experiment show that the performance of the SIDH with
p = 2°43°8f — 1 is competitive between the possible candidates of IF,.. Besides, the
SIDH with p = 2435 f + 1 applied the EFNs are almost competitive to the SIDH with
p = 2°43° f — 1 applied the typical OEFs. Thus, there are many candidates of F,2 for
fast SIDH, which involves the constructions of . that have not been considered in the
previous works. Note that changing the constructions of [F,2 requires not so much effort

by using isomorphisms between IF,..
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Chapter 6
Conclusion and Future Works

The mathematical fundamentals of cryptography using elliptic curves are introduced from
the description of algebraic systems in Chapter B. The author presented efficient algo-
rithms for computing the final exponentiation for several candidates of curves suggested
for the pairings at the 128-bit security level in Chapter B. The author also provided the
formulas for generating fixed final exponentiation algorithms that are applicable for a
certain family of curves with any generalized embedding degrees. In Chapter B, the au-
thor described methods for obtaining attractive subfamilies of pairing-friendly curves with
many embedding degrees, which are one of the extended works of [CLNTI] by Costello
et al. The author presented concrete parameters suggested for the pairings at the 128-
and 192-bit security levels. In Chapter B, the author discussed the SIDH by using several
constructions of quadratic extension fields. The performance of SIDH was analyzed by
an implementation.

The results of Chapters B and @ contribute to optimizing the pairings and determining
the attractive curves and algorithms for computing pairings efficiently. Besides, the result
of Chapter B contributes to finding new constructions of SIDH which have the competitive
performance of the previous ones. The author considers that the results involve important
achievements for the practical applications of pairing and SIDH.

Finally, the author briefly shows the future works and outlook. As seen in Chapters
B and B, the author is interested in completely operating the settings and algorithms
for computing the pairings by the curves and their parameters. To achieve that for much
more curves, the author considers that a deeper understanding of the structures of pairing
computations specified by the families of curves is required. The author is also interested
in an alternative method [Sta07] for computing the Tate pairing via the elliptic nets,
however, it is slower than the typical Miller’s algorithm. There is a possibility that an
efficient pairing computation is provided by improving the elliptic nets. The author also
hopes to find such new alternative methods for computing the isogenies and curves for
the SIDH.
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Appendix A

Formulas of Cubings in Cyclotomic

Subgroup

The author describes cubings in the cyclotomic subgroup Gg, () of F;k. In the following,
let k| (p—1), 3|k, and ¢ = p*/3. Let Fs is defined by F,[z]/(2® — ¢) 2 F,(w) where w is
an element in F s such that w? = (. Then, there is a cyclotomic subgroup of Fes of order
P3(q), which is denoted by Ga,(g). Since Gao,(g) involves a cyclotomic subgroup Ge, (),
arithmetic operations in Gg,(g) is also available in G, (). In the following, the author
describes the cubing in F s and derives efficient cubing in Gg,(4) based on [GST0] which

shows efficient squarings.

A.1 Typical cubing

Let a be an element in IF}, represented as a = ag+ a,w + asw? where ag, a1, as € F,. Then,

the formula of typical cubing is given as follows:

a® =(ap + a1w + aw?)

=ay + (6agaras + a})¢ + as¢?
+ 3 (agar + as(agas + aj)¢) w
+ 3 (ao(aoas + af) + ara3¢) w. (A1)

3

Assuming a® = by + byw + baw? € F s, the elements by, by, by € F,, are obtained as follows:

to = ((ao + a2)* — (ag + a3)) /2 + ai,

t1 = agtp, ta = agty, i3 = agal,u = alag,

ts = (ag + a1 + az)® — (@) + a3+t +ty + 13+ ty),

bo = ap + t5C + a5¢%, by = 3(ts + 12€), by = 3(t1¢ + ta), (A.2)

178



A.2. Cyclotomic cubing 179

which leads to the following sequence of operations.

to = ag,t1 = af, ty = a3, t3 = toag, ts = taay,

ts = ap + ag, te = ts + ar, ty = tg, ts = tety, ts = 13,

ts = t5 —to, t5 = t5s — ta, 15 = t5/2,11 = t1 + s,

ts = tiag, t1 = t1ag, to = toar, ta = taay, iy = t5(,

t; =tg+ ty,tg = 2t7,b01 = t7 + tg, t7 = o,

tr =1y + U7, 18 = 2t7, by = t7 + tg, 10 = to + 11,

to =to+ ta, tg = tg + t5, t1 = 2ty, tg = to + t1,

to =1tg +t3,tg = tg + tg,tg = ts — to, to = toC,

ty = t4C% tg = to + t4,bo = to + ts. (A.3)

Thus, the typical cubing takes 7 multiplications, 5 squarings, 18 additions, 4 shift opera-
tions, and 4 multiplication by ¢ in F,.

A.2 Cyclotomic cubing

Let o = ag + aqw + asw? with ag, oy, e € F, be an element in Gg,q). Since a has a
specific order, there is a relation associated with a; for 0 < i < 2 as shown in the following

lemma.

Lemma A.1. For a € Gg,(g), the following is satisfied.

a® D = o + (=3agajay + a3)¢ + aja® = 1. (A.4)

Proof of Lemma A Tt is clearly satisfied the equation a®*@ = -a?-a?" = 1 where o is
given as follows: a? = (ap+ ayw + asw)? = ag+ aw? tw+ ag (Wi 1)2w? = ap + algqs;lw +

a—1 g—1 . e e . . . . . .
a3(¢ 3 )%w?. Note that ( 3 is a primitive cube root of unity since  is cubic non-residue in
q—1

7. As the same manner, it is obtained that a? = apg4a1(¢CF)2w T as¢ 5w Assuming

€= (Lgl, e =1 and € + €+ 1 =0. Then, the equation can be deformed as follows:

a®@ — . 0. o7
=al +ajadai(E+e+Nw
+ ao (e + af) (€% + €) + (apas + afe’)) w?
+ (aparaa(e* + 3€* + 2¢) + aje’) w®
+ as (s + af) (€8 + €) + (s + aje’)e) w

+ ara3e® (€2 + e + 1w’ + adedw’
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= ap + (—3apaias + ) +as? = 1. (A.5)

Thus, Lemma 1 is obtained. 0

When applying Lemma BT for the typical cubing given in Eq. (A), the formula of

cyclotomic cubing is obtained as follows:

o’ =(ap + a1w + aw

2)3
=1+ 90(0051042(
+ 3 (o + az(apas + a})() w

+ 3 (ao(aoas + of) + anaz() w. (A.6)
Assuming o® = S+ 1w+ Paw? € F 3, the elements Sy, b1, B2 € F, are obtained as follows:

to=((ao+a2)® = (af + a3)) /2,t1 = to + oF,
t2 = toOél,tg = aotl,t4 = Odgtl,tg) = OégOél,tﬁ = alag,

Bo = 14 9t(, B1 = 3(ts5 + ta(), B2 = 3(t3¢ + t6), (A7)
which leads to the following sequence of operations.

to=ag,t1 = ity = a3, t3 = ap + g, t3 = 13,

t3 =t3 —to, t3 = t3 — lo, 13 = t3/2,t4 = t3a,

ty = 2%ty bty = ta+t5, ta = ta(, Bo = ta + 1,

ty =11 + 13,10 = Lo, t3 = thcvg, t3 = 13,

t3 = to + 13,14 = 23, 51 = {3 + 1y, t2 = ta0u,

to = t9(,t1 = tiay, t1 = t1 + to, to = 2t1, By = to + to. (A.8)

This takes 5 multiplications, 4 squarings, 9 additions, 4 shift operations, and 3 multipli-
cation by ¢ in Iy, and 1 addition in F,. When comparing the operation counts of the
cubings, it is found that the cyclotomic cubing can reduce 2 multiplications, 1 squaring,

9 additions, and 1 multiplication by ¢ in F, from the calculation cost of the typical one.



Appendix B

Reproduced Calculation Costs of

Final Exponentiations

We reproduce the calculation costs for the final exponentiation for curves with £ = 6 and

and assumes the calculation costs of the arithmetics in F o as Table Bl

B.1 Cocks-Pinch curve with k£ =6

According to [GMT20], the Cocks-Pinch curve has the parameterizations of p(zx), r(x),

and t(x) as follows:

p(x) = 5((9h2 + 6hy + 4)z* — (18R2 + 6h,, + 12)2?
+(27h2+18h,+16)2* — (18h2+12h, )z + 9h.+12h,+4),

r(z) = ®g(zr) =22 —z+1,

t(x) = z+1—r(x),

(B.1)

where h,, is an integer. In the following, let z be an integer making p(z) and r(z) being

primes. Then, the exponent of the final exponentiation is given by (p(z)® — 1)/r(z) =
(p(2)* = 1) - (p(2) + 1) - (p(2)* = p(2) + 1)/r(z) where (p(2)* = 1) - (p(2) + 1) and d(z) =

the hard part representation, it does not work. In [SSMZT], Song et al. corrected that
and proposed a multiple d’(z) = 3d(z) of d(z) that is denoted by

d'(2) = 3(2" +3(=2z + 1)) +3c(2) - (p(2) — (z* +2(—2 + 1)), (B.2)
3c¢(z) = (Ow* + 3w+ 1) - (z — 1) + (9w® + 6w)) - (z — 1) + 9w? + 9w + 3, (B.3)
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Table B.1: The calculation costs of the arithmetics in F,» of £ =1, 2, 6 and 12.

k my Sck Zk Z‘clc flz
1 my my 25my -
2 3m1 2m1 29m1 - -
6 18m1 6m1 59m1 4m1 4m1

12 54m1 18m1 119m1 10m1 10m1

where w = h,/2 and which results in the following computations.

to = f*ty = t5,to =t to = to - f,

ty =ta,to = to - to, tg = to - t1,t3 = to, tg = t3 - to,

ty =ty -ty ty =ty ty = [Pty =ty - 1,

ty =12ty =ty -ty ty = t9 ty =t b5 =ty - t3, b5 = 1Y ty = t5 - Ly,

ts =13ty =5 ta,ts =t - ti, bty =ty - 13,13 = t3 - to,

ts =t Nty =t5 -ty ts =12 t5 = t5 - t3, 10 = t5 - to. (B.4)

This requires the calculation cost 2ug + 2ug ' + 2u + 16mg + 4.6 + 3ieg + f&. Adding
the cost of the easy part 2mg + ig + fo + fi, we obtain the calculation cost of the final
exponentiation as 2ug + 2ui™! + 2u¥ + 18mg + 4Seg + ig + icg + 2f4 + f3.

In contrast, we propose to use the simpler decomposition of d’'(z) such that

d(2)=3d(2) (p(z) + 2 —1) + 3, (B.5)
3¢ (2) = (9w? + 3w + 1)z — (9w + 2))z + (9w? + 3w + 1). (B.6)

Assuming f is an element after computing the easy part, u = ¢ is computed by the

following sequence of the operations.

to=f2ti=to- fila =10 13 =13ty =t5-lg, 14 = 1},

to=1to-ta,to =1ty "ty =ty fity=t5 -ty ty =ty -1y,

ty = t5,tg = tg - to, to = t5,tg = to - t3,

ty=thto =1 to =to-to, u =1t - t1. (B.7)

The above requires the calculation costs 2u +ug ™" +2ul + 10mg + 2506 +icg + fo. Adding
the cost of the easy part, we obtain the calculation cost of the final exponentiation as
2u6 +ug T 4 2uf 4 12mg + 2806 + g +ic + 2.f¢ + f3. Since the proposal results in reducing

L 6mg + 2506 + 2icg from the previous one, here we adopt the proposed decomposition

for the calculation cost estimation of the final exponentiation.
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For the pairing at the 128-bit security level, in [GMT20], Guillevic suggested using z
and h,, such that

5= 2128 _ 9124 _ 969 (B.8)
h, = 280 — 270 _ 266 _ol4 4 95, (B.9)

Then, the calculation costs of the exponents by z and w are given by ui = 4(128 —
Dmy + (12 — 3)ymy + 2mg + 651 + 41 + icg = 588my, ui ' = ui + mg = 606m;, and
ug =4(79—1)my + (24 —3)my +4me+ 1251 +i1 +i.q = 446my, respectively (see Corollary
4.1 in [KarT3]). Thus, the calculation cost of the final exponentiation is estimated as
2(588my )+ (606my ) +2(446m4 ) +12(18mq ) +2(6mq ) + (59my ) + (4my ) +2(4mq ) + (4my) =
2977m;.

B.2 BLS curve with k£ = 12

We recall that the BLS family of pairing-friendly curves with & = 12 has the parameters
pa) = s(x —1)* - r(z) + o, r(z) = Pa(z) = 2* — 22 + 1, and ¢(z) = 2 + 1. For an
integer z making p(z) and r(z) being primes, the exponent of the final exponentiation

is given as (p(2)? — 1)/r(2) = (p(2)°® = 1) - (p(2)* + 1) - (p(2)* — p(2)* + 1)/r(2) where
(p(2)8 — 1) - (p(2)> + 1) and d(z) = (p(2)* — p(2)? + 1)/r(z) is easy and hard parts,
respectively. In [HHT20], Hayashida et al. proposed to use a multiple d'(z) = 3d(z) =
(z—=1)2-(z+p(2) - (22 +p(2)? = 1) + 3. If 2| 2, the calculation cost of the hard part is
given by 4uiy, + u¥ + Tmis + Seia + 2ic1s + fiy + fi5 (see Example B77). Adding the cost
of the easy part given by 2mis + 10 + [ + f5, the cost of the final exponentiation is
Aufy + uly 4+ 9Mag + Serg + 12 + 2ic1o + 2f15 + [y + fia

For the pairing at the 128-bit security level, it is suggested using z = —277 + 259 4 233
in [BDTY], which leads to uj, = 4(77—1)mao+ (12— 3)mg+2my2 + 659 +ia+ico = 1098m,
and ufy = 4(76 — 1)mag+ (12 — 3)mao +2myo + 653 + i + 415 = 1086m; (see Corollary 4.1 in
[KarT3]). Then, the calculation cost is estimated as 4(1098m;) + (1086m4) + 9(54m,) +
(18m1) + (119m1) + 2(10my) + 4(10m,) = 6161m,



Appendix C

Miller’s Algorithm for Pairings on
Curves with Embedding Degree of
Multiple of Three

Algorithm T shows Miller’s algorithm for computing the ate variant pairings e,,. which
adopt the rational function fr o where T' is a loop parameter and () is a point trace-
zero subgroup G,. For the curves with embedding degree k of multiple of 3, Zhang et
al. proposed an alternative function of lg, ,/vg,+0, for points @)1 and @2 in G, without
denominator in [ZLT2]. This results in avoiding the execution of the inversions in F . in
DBL, ADD, and SUB steps. However, unfortunately, there still remain vél in INIT_ and SUB
steps. Thus, for fast Miller’s algorithm, it is advantageous to use not only T with low
Hamming weight but also 7" such that it does not contain ¢; = —1 for 0 <7 < n as much
as possible to avoid SUB step. However, since there are not many elliptic curves that fulfill
the above requirements, the range of the practical choices of elliptic curves is limited
especially for odd embedding degrees. To ease this restriction, the author proposes to
compute the ate pairing by using a rational function f_r ¢ instead of fr o which results

in swapping the ADD and SUB steps by using a technique given by Hess et al. in [HSV0G].

Theorem C.1. The value e,,.(Q, P) can also be computed as follows (see Sect. 2 of
[HSVOH]):

pF-1

ear(Q, P) = ((f-1.o(P) - v_1q(P))™") 7

(C.1)

Proof of Theorem [C1. A map with the above image also ensures an ate pairing since
div((forq - v-1¢)™") = =(=T(Q) = (-=TQ) + (T + 1)(0)) = ((-TQ) + (TQ) — 2(0)) =
T(Q) — (TQ) — (T' = 1)(0) = div(fr.)- O

From Theorem T, it is found that the ate pairing can be computed by using f_r¢
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Algorithm C.1: Miller’s algorithm for computing the ate variant pairings.
Input: T =t;2' + -+ + ;21 + 4,20 € Z where t; € {-1,0,1}, P € G, and Q € G,
Output: fro(P)
If t; = 1 then

J < LR+ Q; //INIT,
else if ¢{;, = —1 then

[ v5'(P), R+ —Q; //INIT_
endif
For i from [ — 1 downto 0 do
7 fefz«JII:;R;Q),R%R—FR; //DBL
8 Ift;, =1 then

o [« f- j:gfg),}z — R+Q; //ADD
10 else if ¢;, = —1 then
o f fo=90 5 (P), R+ R-Q; //SUB

vr-qQ(P)

S Ttk W N

12  endif
13 endfor
return f;

with some adjustments instead of fr, however, it involves an additional inversion in
IF;k. Fortunately, for the target ate pairings which are defined on the elliptic curves with
3 | k, this inversion can be removed by extending the Aranha et al.’s work [Ara+11] for
an optimal ate pairing on BN curves (see Lemma 1 of [Ara+11]). Indeed, the inversion is

replaced with inexpensive exponentiations according to the following corollary.

Corollary C.2. If 3 | k, the value e,,.(Q, P) is deformed as follows:

k_q

ar(@ P) = ((fr(P) - vorg(P)™1) 7, (C2)

where ¢ = p*/3.

Proof of Corollary [C2. The corollary is true since the exponent is represented as —(p* —

D/r=01-q)(F+q+1)/r=(-q) (@+q+1)/r=(+q)-(¢-1)-(¢*+q+1)/r=
(@®+4q) - (p* —1)/rmod (p* —1). O

The exponentiation by ¢ and ¢? are performed by the Frobenius endomorphism in .
Although there remains one multiplication by v_rq(P) in F, it is less expensive than
the typical multiplication in F, since v_pq(P) gives a sparse element in [F .

As a result, the algorithm for computing the value of the proposed rational function
is given in Algorithm I, where ADD and SUB steps are swapped from the previous com-
putation given in Algorithm CZ. INIT, and INIT_ steps are also swapped. Although

the proposed algorithm requires an additional ADJ step, it is suitable for computing the
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Algorithm C.2: An alternation of Miller’s algorithm for computing the ate
variant pairings.
Input: T = ;2" + -+ + 2! +#,2° € Z where t; € {—1,0,1}, P € G, and Q € G,
Output: (f_T,Q(P) . U_TQ(P>>q2+q

1 If ¢, =1 then
2 [y (P), R+ —Q; //INIT_
3 else if {;, = —1 then
1 [« LR+ Q; //INIT,
5 endif
6 For i from [ — 1 downto 0 do
7 [ [ ZRRP) R+ R+ R; //DBL
8 Ift,=1 then
o [ B2 0l (P), R« R-Q; //SUB
10 else if {;, = —1 then
lr.o(P)

u fe f ey Re R+ Q5 //ADD
12 endif
13 endfor
14« (f -vr(P)"; //AD3

return f;

pairings on curves with 7' such that it does not contain t; = 1 for 0 < ¢ < n, which

opposite holds for the typical algorithm.



Appendix D

Algorithms for Computing
Arithmetic Operations in Fpg

Let A = (ag,a1) and B = (by, b1) be any elements in F,2, where ag, a1, by, by € F,. Then,

multiplication of A and B and squaring of A, i.e., A- B = (ug,u;) and A? = (vg, v1) with

U, U1, Vo, v1 € I, can be computed by using variable elements ¢, 29,3, %4 € I, as follows:
e OEF _x2+1

Multiplication: tl = aobo,tg = albl,tg = Qo + a17t4 = b() + bl,UO = tl — tg,ul =

t3ty, ur = up — t1, U = uy — to.

Squaring: t; = ag + aq,ts = ag — a1, v1 = apay, V1 = v1 + V1,V = tits.

e OEF x2-5

Multiplication: tl = Qo + CLl,tQ = b() + bl,tl = tltg,tg = aobo,tg = albl,t2 =
tQ + t37U1 = tl — tg,tg = 4t37U0 = tz + tg.

Squaring: t; = ag + a1, ty = 4ay,ty =ty +ay,ty = ag + ta, t; = tits, to = apar, vy =
to + b, t3 = 4vy, b3 = 3 — v, v9 = t1 — 3.
e AOPF_x2+x+1:

Multiplication: tl = ag — CLl,tQ = b() - bl,tl = tltg,tz = aobo,tg = albl,uo =

tl - tg,ul = tl — t3.
Squaring: tl = agp + ao,t1 = a] — tl, t2 =a + a]_,tQ = Qg — tQ, Vo = tlal,vl = tgao.
e EFN x2-x+1

Multiplication: tl = ag — al,tg = b() — bl,tl = tltg,tg = aobo,tg = albl,uo =

t2 —tl,ul :t3 —tl.

Squaring: t; = ag + ap,t1 =ty — a1, ty = ay + a1, ty =ty — ag,vo = t1a1,v1 = taay,
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e EFN_x2-x-1

Multiphcation: tl = Qg — al,tz = b() — bl,tl = tltg,tg = Clobo,tg = albl,uo =
tl + tg,ul = tl + t3.

Squaring: tl = ag — a17t1 = t%,tg = a%,tg = a%,vo = tl —|—t2,U1 = tl +t3,U1 = tl +t3



Appendix E

Conversion of Public Parameters of
SIDH

The author applies the proposed isomorphism and obtains the public parameter set for
SIDH with F,. defined by F,[z]/(2* + = + 1) = F,(5) where § is an element in F,2 such
that 3% = — — 1. It is adopted the existing public parameter set SIKEp434 defined over
Fplz]/(x? + 1) 2 F,(a) where « is an element in F,2 such that a® = —1, which consists of
the following materials (see Chapter 1.6.1 in [Cam=+19]):

o p=2M63B7 1 je. ly=21p=3, es =216, and ep = 137;
o Fy:y*> =2+ Ar? + x where A =6+ 0a € Fy(a);

e z-coordinates of the initial points Pa, Qa, Ra = Pa — Qa € E[l5'], Ps, @5,
Rp = Pg — Qp € E[l}7], which are elements in F,(a

). Note that since we work on
the Montgomery curves without y-coordinates, x(R4) and x(Rp) are required.

The author constructs an isomorphic map M : F,(a) — F,(f) and derives a public
parameter set of SIDH defined over F,(w) by computing M(A), M(z(Pa)), M(x(Qa4)),
M(x(Ra)), M(x(Pp)), M(x(Qp)), and M(z(Rp)).

According to Theorem B, the isomorphism map F,(a) — F,(3) is obtained by M :
Fy(a) = Fu(B), 20 + 100 = (9 + may) + na1 8 = (—xo + (n — m)zy1) 8 — (20 + may) B2

where m and n are given as follows:

m =00db6794 b8c6558d €8372711 9¢d51000 00000000 00000000 00000000,
n =01b6cf29 718cablb d06ed4e23 39222000 00000000 00000000 00000000.

Applying M, a curve coefficient A € F,(«) is mapped to M(A) = —68 — 63> € F,(0).
For S € {P,Q, R} and X € {A, B}, the z-coordinates of initial point z(Sx) in F,(a) can
be mapped to an element in F,(4) by computing M (z(Sx)) = z(S%) = zs_ 08 + g, 15°
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where x5 o and zg, 1 are elements consists of as follows:

xp, 0 =0001b7ec 3cb83805 31034815 ffcce3b5 40693f5a fb9bbd81 80395c7b
9cfbb4fb 30adbbdd 3cba824f 73f213fe e7125ecc 8be3d9%afc 2fcf4c60,
xpy 1 =00000293 5e9bbadf 35£24ff3 5ded4ldac a2843950 b9£07d05 b49cbb3b
12d96a45 d64a0409 5dceb9dd eadaaeaa 0c29fc7a df7a8ab4 a3a31d0f,
Q0 =0001bcec 6753b4d5 c8dd8561 ab7eeca8 cc29930f a7b9a009 d83cb9bb
al09001f 13c48aba 2f9f£3c3 c6f7ded8 67ad08b5 e671097a 225bc897,
T, 1 =00011cch b86ac995 173a0084 4c1e862d b9733e81 129c3bdl 59924a7c
3eclbalb 5ed21eb2 55da228c b8565£38 ceee876b 1dd4al0d clcele8f,
Try, 0 =0000b936 ddd16ale 503£960c 9c71la2fc 210958e0 306a79c0 573cbb2c
c04a31b8 462b666b acf65cb4 ccc79553 2d9ad510 582b7ab6f 55726594,
Try, 1 =0001c812 09c63acd 2e8£4126 ae76elad 7c4fd316 6921dcf9 d3£29fad
559a7dac c167£8c0 08dcd073 b6c29408 5cb6fc9a cd8d5b69 1e93503e.
Tpy, 0 =0001adba a0b8cbbc 560c24a4 9falbde9 3b5c300b 6094d83c b7611fct
faa76a13 c8c97403 ££620503 4c26819c 609a161b aOb9a8c4 £9c84856,
Tpra =0001adba aOb8cb6c 560c24a4 9fal5de9 3b5c300b 6094d83c b7611fct
faa76a13 c8c97403 ££620503 4c26819c 609a161b aOb9a8c4 £9c84856.
rq, 0 =0001059a 4fb24deb 8667a051 bfc945a6 €20e2135 ca957fdd a2b130ff
1806b39c 14£9c97e 174e18c6 73f4dbe3 e64699a0 2461ebf9 25¢c2c7b9,
T¢, 1 =0001059a 4fb24deb 86672051 bfc945a6 €20e2135 ca957fdd a2b130ff
1806b39c 14£f9c97e 174e18c6 73f4dbe3 e64699a0 2461ebf9 25¢c2c7b9.
Try, 0 =00004a01 53e81db2 b207c2d4 9cc9Ic890 c660622d 7785390f 637£a6d6
£44e6787 266dbc35 100£2130 c5c6£60b 3351c140 4ce94455 a3517d60,
TRy, 1 =000083ec 47621b2c 28213cd2 95¢£9731 dc0d41£9 a79332cd 53df0535
e132f50e ddc026b7 66d32c9a 1badf05d 732eeedb 7e031£07 480913c6.



Appendix F

Construction of Supersingular
Elliptic Curves of Order (p — 1)

Let E be a supersingular elliptic curve of which order is #E(F,2) = (p — 1)%. According
to [Waf6d], a twist of F, which is denoted as E'/F, : y* = 2 + ax + b, has an order
#E'(F2) = (p+ 1)% For p = pary = 2%03137139 + 1, the coeflicients of E' are easily
found by using ecgen library [JTanTg].

a = 00627426 b720ddfa 4e7970c2 25507717 £583111e 9cba318c 9bba7fcd
d4e49249 24924924 92492492 49249249 24924924 92492492 49249245,
b= 00cfd8c3 829ab82c de8e98b6 501817dd 3£312424 2e6cal7e 2c50d4eb
6c1b6db6 db6db6db 6db6db6d b6db6db6 db6db6db 6db6db6d b6db6dbe.

Since F is a quadratic twist of £’ defined over 2, the curve E is obtained as E/F,2 :
y? = 23 + 6*3azx + 6b where § is quadratic non-residue and cubic residue in F,2. One can
convert the elliptic curve of the Weierstrass to the Montgomery form. As a result, the

Montgomery curve of #E(F,2) = (p — 1)? is obtained.
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