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Impact of shear wave dispersion 
slope analysis for assessing 
the severity of myocarditis
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This study aimed to elucidate the utility of a novel ultrasound-based technique, shear wave dispersion 
slope (SWDS) analysis, which estimates tissue viscosity, for evaluating the severity of myocardial 
inflammation. Experimental autoimmune myocarditis (EAM) at different disease phases [3-week 
(acute phase): n = 10, 5-week (subacute phase): n = 9, and 7-week (late phase): n = 11] were developed 
in male Lewis rats. SWDS was measured in the right and the left ventricular free walls (RVFW and 
LVFW) under a retrograde perfusion condition. Histological myocardial inflammation was evaluated 
by CD68 staining. The accumulation of CD68-positive cells was severe in the myocardium of the EAM 
3-week group. The median (interquartile range) SWDS of RVFW was significantly higher in the EAM 
3-week group [9.9 (6.5–11.0) m/s/kHz] than in the control group [5.4 (4.5–6.8) m/s/kHz] (P = 0.034). 
The median SWDS of LVFW was also significantly higher in the EAM 3-week group [8.1 (6.4–11.0) 
m/s/kHz] than in the control group [4.4 (4.2–4.8) m/s/kHz] (P = 0.003). SWDS and the percentage of 
CD68-positive area showed a significant correlation in RVFW  (R2 = 0.64, P < 0.001) and LVFW  (R2 = 0.73, 
P < 0.001). This study showed that SWDS was elevated in ventricular walls with acute inflammation 
and also significantly correlated with the degree of myocardial inflammation. These results suggest 
the potential of SWDS in estimating the histological severity of acute myocarditis.

Myocarditis is an inflammatory heart disease that has been reported a high mortality  rate1.
To improve the prognosis of patients, diagnosing and assessing the severity of myocarditis play important 

roles in clinical practice, while they still depend on endomyocardial biopsy. However, because endomyocardial 
biopsy is an invasive procedure, it is accompanied by a risk of  complications2,3. Although several studies reported 
the usefulness of cardiac magnetic resonance imaging and 18F-fluoro-d-glucose positron emission tomography 
imaging as non-invasive tools for the assessment of myocarditis, these imaging modalities are difficult to per-
form in patients with severe disease  conditions4,5. The diagnosis of the severity of myocarditis at the acute phase 
remains challenging.

Shear wave (SW) imaging is a novel ultrasound technology for assessing the characteristics of tissues. SW 
is generated as a laterally propagating wave by an acoustic radiation force impulse, which is caused by pushing 
an ultrasound beam (Fig. 1A). SW speed depends on two characteristics of materials, such as elasticity and 
viscosity. SW elasticity, which is calculated by SW speed, has been reported to reflect tissue stiffness in various 
organs, including the liver, thyroid, and  breast6–10. In the field of cardiovascular diseases, Villemain et al. reported 
that myocardial stiffness during end-diastole calculated by SW speed was significantly higher in patients with 
hypertrophic cardiomyopathy than in healthy  volunteers11,12.

Recently, SW dispersion slope (SWDS) has been attracting attention as a method for evaluating tissue vis-
cosity. SW speed depends on the frequency of SW in a viscoelastic  tissue13. The gradient of SW speed, that is, 
the slope of SW speed versus SW frequency is changed in response to viscosity. Therefore, SWDS can be used 
to estimate tissue viscosity (Fig. 1B). Sugimoto et al. reported that SWDS was significantly correlated with the 
grade of inflammation in hepatic tissue in rat  models14. Based on these researches, we hypothesized that SWDS 
can diagnose myocardial inflammation and assess its severity. This study aimed to elucidate the utility of SWDS 
for evaluating the severity of myocarditis in rats of experimental autoimmune myocarditis (EAM) models with 
various disease phases.
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Methods
EAM models and experiment protocol. Forty-two male Lewis rats (Charles River Laboratories, 
Kanagawa, Japan), aged 7 weeks and weighing 150–200 g, were purchased, and were housed under standard 
conditions (temperature 23 ± 1 ℃, humidity 50 ± 60%, 12-h light–dark cycle), with food in the form of dry pel-
lets and tap water available ad libitum throughout the study. To induce EAM, we subjected the rats to porcine 
cardiac myosin (PCM) (M0531, Sigma Aldrich, St. Louis, MO, USA) immunization, as previously  described5. 
In brief, PCM was dissolved in phosphate-buffered saline (PBS) at 10  mg/mL and emulsified with an equal 
volume of complete Freund’s adjuvant (CFA) with 1 mg/mL Mycobacterium tuberculosis H37RA (BD 231131, 
Difco Lab., Detroit, MI, USA). EAM in rats was induced by immunization with 0.2 ml of PCM-CFA emulsion 
(containing 1 mg of PCM) by subcutaneous injection into the rear footpad under inhalation anesthesia using 
3% isoflurane, and 7 days later, rats were received second immunization by the same method. In this study, rats 
were divided into four groups: the control group (n = 10), the EAM 3-week group (n = 11) as an acute phase 
model, the EAM 5-week group (n = 10) as a subacute phase model, and the EAM 7-week group (n = 11) as a late 
phase  model5,15. EAM 3-week group, EAM 5-week group, and EAM 7-week group were received immunization 
at 11- and 12-week, 9- and 10-week, and 7- and 8-week of age, respectively, as shown on Supplementary Fig. 1. 
The control group (n = 10) was injected with PBS-CFA emulsion at 7- and 8-week of age. At the end of the study 
period (14 weeks of age), rats were anesthetized with inhalation of 3% isoflurane and received transthoracic 
echocardiography. Subsequently, blood was collected via the inferior vena cava, and then heart tissue was har-
vested to measure SWDS under a retrograde perfusion condition.

All experiments performed in this study were approved by the Okayama University Animal Care and Use 
Committee (Approval no: OKU-2019618). They were conducted in accordance with the Okayama University 
Guidelines, which are based on the National Institutes of Health’s Guide for the Care and Use of Laboratory 
Animal and the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Transthoracic echocardiography. Transthoracic echocardiography was performed using Aplio ver. 6.0 
with a 10-MHz sector probe (Canon Medical Systems, Otawara, Japan). The thickness of the right and left ven-
tricular free walls (RVFW and LVFW) and intraventricular septum, and left ventricular (LV) end-diastolic diam-
eter, LV end-systolic diameter, LV fractional shortening, LV ejection fraction, and right ventricular end-diastolic 
diameter were measured by M-mode imaging in the parasternal long-axis view.

Enzyme-linked immunosorbent assay (ELISA). Serum samples were separated after centrifugation 
of blood samples at 3,000 rpm for 20 min. Serum troponin I (ab246529, Abcam, Cambridge, UK) and serum 
interleukin-6 (R6000B, R&D Systems, Minneapolis, MN, USA) levels were measured by ELISA kits.

Retrograde perfusion system. We performed SW imaging by ex vivo experiment because the heart rate 
of rats is too rapid to obtain images. Therefore, a retrograde perfusion system was used to maintain the com-
pletely relaxed condition of rat’s hearts as previously  reported16–18. In brief, after the sacrifice of rats, hearts were 
excised and immediately submerged in the Tyrode’s solution (136 mmol/L NaCl, 5.4 mmol/L KCl, 1.8 mmol/L 
CaCl2, 0.53 mmol/L MgC12, 5.5 mmol/L HEPES, and 1% Glucose, pH 7.4, 37℃) added with 20 mmol/L butan-
edione monoxime, an inhibitor of actin-myosin interaction, and 10 μmol/L blebbistatin, a specific myosin II 
inhibitor. The ascending aorta was cannulated with an 18-gauge blunted needle connected to a retrograde perfu-
sion system. The heart was perfused with the Tyrode’s solution added butanedione monoxime and blebbistatin 
to induce complete  relaxation16.

Figure 1.  Mechanism of shear wave dispersion slope for assessing tissue viscosity. (A) Mechanism of shear 
wave generation in biological tissue. (B) Relationship between shear wave dispersion slope and tissue viscosity.
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SW imaging. The heart completely relaxed by the retrograde perfusion system was set in a water tank of agar 
phantom (Model 049A, CIRS, Norfolk, VA, USA). SW imaging was performed using Aplio i900 with an 18-MHz 
linear probe (Canon Medical Systems) by two cardiologists who did not know the background of samples. The 
B-mode image was obtained in the parasternal long-axis view. A rectangular region of interest (ROI) was placed 
on RVFW and LVFW. SW in the tissue was generated by pushing pulse of 5–18  MHz17. After confirming proper 
SW propagation in a “wave front” style display, SW speed was obtained based on the tissue Doppler technique. 
For the evaluation of SWDS, the displacement of the tissue caused by the SW was obtained by a technique 
based on tissue Doppler imaging. The displacement of the tissue at each beam position was transformed from 
time domain into frequency domain by Fourier transformation to estimate the phase change of SW in the lat-
eral direction at several frequencies. SW speed c(ω) at each frequency was calculated using the phase-gradient 
method: c(ω) = ω ΔL/Δφ, where ΔL and Δφ are the distance and the phase difference measured between two 
detection points along the SW propagation path. SWDS, which is the gradient of SW speed, was calculated based 
on the distribution of SW speed versus SW  frequency19. Also, SW elasticity was measured using the equation: 
3ρc2, where ρ is the density of the tissue. A circular ROI of 1-mm in diameter was placed at the mid-level of 
RVFW and LVFW, and SWDS and SW elasticity were measured automatically. Each measurement was repeated 
five times, and the average value was compared between each group. The setting of generation and analysis of 
SW was kept for all cardiac wall segments during the experiment.

Histological assessment. After SW imaging, heart weight was measured to calculate relative heart weight 
against body weight. The heart was sectioned transversely at the mid-papillary level, and then fixed with 10% 
formalin, embedded in paraffin, and cut into 5-μm sections. Sections were stained with hematoxylin–eosin for 
evaluating infiltrating inflammatory cells, and with picrosirius red for evaluating fibrosis. Macrophages, which 
accounted for the majority of infiltrating inflammatory cells in EAM model, were identified by mouse anti-rat 
CD68 monoclonal antibody (ab31630, Abcam) staining. The CD68-positive area was quantitatively calculated 
using ImageJ software (version 1.52v, National Institutes of Health, Bethesda, MD, USA) by setting an intensity 
threshold that matched the visually identified staining areas as previously  reported5. Similar to SW imaging, the 
percentage of CD68-positive area in a circular ROI of 1-mm in diameter was measured at five locations, and 
the average value was calculated. The percentage of CD68-positive area was compared between each group. The 
relationship between SWDS and the percentage of CD68-positive area was analyzed to examine whether SWDS 
reflects pathologically evaluated myocardial inflammation.

Statistical analysis. Samples obtained from all rats except those who died during the study period were 
included in each analysis. Statistical analysis was carried out with R (The R Foundation for Statistical Comput-
ing, Vienna, Austria)20 or SigmaPlot version 14.5 (Systat Software Inc., San Jose, CA, USA). The Shapiro–Wilk 
test was used to check the normality of data. Data are expressed as means ± standard deviation for normally 
distributed continuous variables and the median (interquartile range) for non-normally distributed continuous 
variables. We used one-way analysis of variance to compare normally distributed continuous variables. Kruskal–
Wallis analysis of median test was used for comparing non-normally distributed continuous variables. Bon-
ferroni correction was applied for post hoc comparisons between two groups. Pearson correlation coefficient 
was analyzed to evaluate the relationship of SWDS with the percentage of CD68-positive area, log-transformed 
serum troponin I level, or serum interleukin-6 level. Multivariate linear regression analysis was used to evaluate 
the impact of SWDS as a predictor for CD68-positive area in ventricular walls. Differences with P < 0.05 were 
considered significant.

Results
Clinical course of animals. One rat in the EAM 3-week group and one rat in the EAM 5-week group died 
during the acute phase of EAM. One rat in the control group died from infection secondary to arthritis caused 
by the injection of complete Freund’s adjuvant. Finally, a total of 39 rats were used for analyses in this study [the 
control group (n = 9), the EAM 3-week group (n = 10), the EAM 5-week group (n = 9), and the EAM 7-week 
group (n = 11)].

Basic data of each group. Representative images of the heart in each group, excised at 14 weeks age, were 
shown in Supplementary Fig. 2. The heart in the EAM 3-week group showed a severe edematous appearance. 
Heart weight and relative heart weight in the EAM 3-week group were significantly heavier than those in the 
control group and the EAM 7-week group (Supplementary Table 1). The thickness of RVFW, LVFW, and intra-
ventricular septum was increased in the EAM 3-week and the EAM 5-week groups, compared to the control 
group. In addition, all those parameters showed the highest in the EAM 3-week group. In the EAM 5-week and 
EAM 7-week groups, LV end-diastolic diameter was significantly larger than that in the EAM 3-week group. LV 
end-systolic diameter was increased in all EAM groups, compared to the control group. In addition, LV end-
systolic diameter in the EAM 5-week and EAM 7-week groups was significantly larger than that of the EAM 
3-week group. LV fractional shortening and LV ejection fraction were significantly decreased in all EAM groups, 
compared to the control group. Serum levels of troponin I and interleukin-6 of the EAM 3-week group were 
451.8 pg/ml and 122.2 ± 30.5 pg/ml, respectively, and those parameters were significantly higher in the EAM 
3-week group than in other groups. The details of basic data of each group are shown in Supplementary Table 1.

Histological evaluation. Histological findings of the myocardium were shown in Fig. 2. In RVFW and 
LVFW, hematoxylin–eosin staining showed more severe infiltration of inflammatory cells accompanied with 
extracellular edema in the EAM 3-week group, compared to the EAM 5-week group and the EAM 7-week 
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Figure 2.  Histological evaluation of myocarditis. (A–H) Hematoxylin–eosin staining in both ventricular free walls. 
(I–P) Fibrosis of both ventricular free walls stained with picrosirius red (shown as vivid red color). (Q–X) Infiltration 
of macrophages of both ventricular free walls stained with anti-rat CD68 antibody (shown as brown color). Scale 
bars = 50 μm. Comparison of the percentage of CD68-positive area of RVFW (Y) and LVFW (Z) between the groups 
[control group (n = 9), the EAM 3-week group (n = 10), the EAM 5-week group (n = 9), and the EAM 7-week group 
(n = 11)]. The CD68-positive area was quantitatively calculated using ImageJ software as described in “Methods” 
section. Box plots show the median, interquartile range, and minimum/maximum data of the samples. *P < 0.05 vs the 
control group. †P < 0.05 vs EAM 3-week group, in the EAM 5-week group or EAM 7-week group. EAM experimental 
autoimmune myocarditis, LVFW left ventricular free wall, RVFW right ventricular free wall.
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group (Fig. 2A–H). Fibrosis identified by picrosirius red staining was trivial in the control group and the EAM 
3-week group, while that was moderate in the EAM 5-week group and severe in the EAM 7-week group (Fig. 2I–
P). The staining by anti-rat CD68 antibody showed severe infiltration of macrophages in both ventricular free 
walls of the EAM 3-week group. On the other hand, the infiltration of macrophages was reduced in the EAM 
5-week group and the EAM 7-week group (Fig. 2Q–X). The percentage of CD68-positive area of RVFW was 
significantly increased in EAM groups, compared to the control group [0.2 (0.1–0.4) %] (all P < 0.001). There 
was no statistically significant difference between the EAM 3-week group [10.7 (6.3–16.0) %] and the EAM 
5-week group [4.4 (3.5–5.5) %], while the EAM 3-week group showed higher percentage of CD68-positive area 
in RVFW, compared to the EAM 7-week group [2.8 (1.9–4.0) %] (P = 0.005) (Fig. 2Y). In LVFW, the percentage 
of CD68-positive area was significantly increased only in the EAM 3-week group [8.5 (2.2–14.5) %], not in the 
EAM 5-group [1.8 (1.0–5.2) %] or the EAM 7-week group [1.6 (0.7–2.2) %], compared to the control group [0.5 
(0.4–0.7) %] (P < 0.001). The EAM 3-week group also showed higher percentage of CD68-positive area than the 
EAM 7-week group in LVFW (P = 0.017) (Fig. 2Z).

SW imaging and myocardial inflammation at various phases of EAM. Representative SW propa-
gation images and SWDS images in each group were shown in Fig. 3 (RVFW) and Supplementary Fig. 3 (LVFW). 
The value of SWDS was visually shown by using color distribution set in the range of 0–30 m/s/kHz. SWDS 
images in the control group, the EAM 5-week group, and the EAM 7-week group were blue or light blue color, 
which meant a low value of SWDS. On the other hand, the EAM 3-week group showed light green color, which 
meant a relative high value of SWDS in both of RVFW and LVFW.

Comparisons of SWDS of RVFW and LVFW between the groups were shown in Fig. 4A,B. SWDS of RVFW 
was significantly higher in the EAM 3-week group [9.9 (6.5–11.0) m/s/kHz], compared to the control group [5.4 
(4.5–6.8) m/s/kHz] (P = 0.034). In addition, SWDS of RVFW was 6.0 (5.5–6.7) m/s/kHz in the EAM 5-week 
group and 6.4 (5.2–7.0) m/s/kHz in the EAM 7-week group. There was no other significant difference in SWDS 
of RVFW between each group. SWDS of LVFW was significantly higher in the EAM 3-week group [8.1 (6.4–11.0) 
m/s/kHz] than in the control group [4.4 (4.2–4.8) m/s/kHz] (P = 0.003), the EAM 5-week group [5.0 (4.6–5.6) 
m/s/kHz] (P = 0.034), and the EAM 7-week group [5.0 (4.5–6.1) m/s/kHz] (P = 0.003). There was no other sta-
tistically significant difference in SWDS of LVFW between each group.

Figure 4C,D showed correlation diagrams between SWDS and the percentage of CD68-positive area in both 
ventricular free walls. These two factors showed a significant positive correlation in RVFW  (R2 = 0.64, P < 0.001) 
and LVFW  (R2 = 0.73, P < 0.001). SWDS was also correlated with log-transformed serum troponin I level in 
RVFW  (R2 = 0.32, P < 0.001) and LVFW  (R2 = 0.35, P < 0.001) (Fig. 4E,F) and serum interleukin-6 level in LVFW 
 (R2 = 0.18, P = 0.006) (Fig. 4G,H).

Because changes in ventricular geometry can affect SWDS, multiple linear regression analysis with adjustment 
for ventricular wall thickness and end-diastolic diameter was performed to determine the impact of SWDS a as 
predictive factor for CD68-positive area in RVFW and LVFW. As a result, after adjustment of those geometric 
factors, SWDS was still a significant predictor of CD68-positive area in RVFW [standardized regression coef-
ficient (β) = 0.59, P < 0.001] (Supplementary Table 2) and in LVFW (β = 0.92, P < 0.001) (Supplementary Table 3).

Comparisons of SW elasticity of RVFW and LVFW between the groups were shown in Supplementary Fig. 4. 
SW elasticity tended to be higher in the EAM 3-week group, but there was no significant difference in SW elastic-
ity between the control group and the EAM 3-week group in both RVFW [5.3 (3.4–5.8) kPa vs 5.8 (3.5–11.2)] 
and LVFW [6.6 (5.3–8.6) kPa vs 8.1 (6.5–11.2) kPa]. The only comparison that showed a significant difference in 
SW elasticity was the EAM 3-week group versus the EAM 5-week group [5.3 (4.1–6.7) kPa] in LVFW (P = 0.048).

Figure 3.  SWDS images. SW propagation image (left side) and SWDS image (right side) of RVFW in the 
control group (A), the EAM 3-week group (B), the EAM 5-week group (C), and the EAM 7-week group 
(D). The value of SWDS in a circular ROI of 1-mm in diameter on the myocardium was measured. EAM 
experimental autoimmune myocarditis, ROI region of interest, RVFW right ventricular free wall, SW shear 
wave, SWDS shear wave dispersion slope.
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Discussion
The main results of this study were as follows. First, SWDS of ventricular free wall was significantly increased 
only in the EAM 3-week group (acute-phase model), compared to the control group. Second, SWDS showed a 
significantly positive correlation with the percentage of CD68-positive area in RVFW and LVFW. To the best of 
our knowledge, this is the first study to demonstrate the utility of SWDS analysis for evaluating the severity of 
myocardial inflammation.

SW imaging and viscosity in myocardial inflammation. SW technology, which uses acoustic radia-
tion force impulse, is based on the theory that SW speed depends on the elasticity and viscosity of tissue accord-
ing to Kelvin-Voigt viscoelastic models. By using this model, SW speed Cs at SW frequency ω is calculated as 
shown below:

where ρ, μ, and η are the density, elasticity, and viscosity of the medium,  respectively21,22. Generally, viscosity 
does not change significantly in viscoelastic tissues, therefore it is possible to estimate the change of elasticity by 
ignoring viscosity (η = 0). However, the viscosity cannot be ignored especially in inflammatory diseases including 
myocarditis, in which the composition of tissues changes rapidly and dramatically. Sugimoto et al. reported that 
SWDS was transiently increasing during the acute period of hepatitis in a rodent model, and concluded that the 
increase in SWDS reflected the elevation of viscosity due to edematous change of hepatic tissues associated with 
inflammation and  necrosis14. In our study of myocarditis model, SWDS of myocardial tissue was increased only 
in the acute phase of inflammation, which is consistent with the result of the acute hepatitis model. Previous 
studies demonstrated that T2 value of cardiac magnetic resonance imaging was correlated with markers of cardiac 
injury in patients with myocarditis, by reflecting the degree of acute tissue necrosis and  edema23,24. The hearts of 
rats with the acute phase of EAM in our study also showed severe infiltration of macrophages accompanied with 
extracellular edema. Although we could not quantify the edema of myocardial tissue in this study, considering 
the results of these previous studies, it was suggested that the transient increase in SWDS of the heart in the acute 
phase indicated myocardial inflammation by reflecting edematous change of tissue.

SW elasticity has been reported to predict the degree of fibrosis in liver  tissue7,25. However, in our study, SW 
elasticity of the ventricular wall tended to increase in the acute phase of EAM, when myocardial tissue had not 
developed significant fibrosis. Because the previous reports showed that SW elasticity in the liver is correlated 
with tissue  stiffness26,27, the increase of SW elasticity in ventricular walls might be affected by the elevation of 
tissue pressure due to myocardial necrosis and edema developed in the acute phase of EAM. In addition, SW 
elasticity of ventricular walls was not statistically increased in the late phase of EAM. The results of our study 
could not support the potential of SW elasticity as an alternative to late gadolinium enhancement of cardiac 
magnetic resonance imaging for evaluating myocardial fibrosis.

Translational potential of SWDS. In this study, SWDS of ventricular walls was significantly higher in the 
acute phase of EAM, not in the subacute or late phase of EAM, compared to the control group. This result sug-
gests that SWDS can be a useful modality for detecting the acute phase of myocarditis non-invasively in patients 
with myocarditis. Because early diagnosis of myocarditis leads to an improvement in prognosis by appropriate 
treatments, the assessment of SWDS may be valuable in clinical practice. In addition, SWDS analysis have also 
a potential to be a useful tool for diagnosing other inflammatory diseases, such as cardiac sarcoidosis. Because 
SWDS image, as shown in Fig. 3, enables visualization of SWDS in myocardial tissue in real time, even local 
inflammation of myocardium may be able to be determined. This would contribute to reducing the sampling 
error of endomyocardial biopsy. The clinical usefulness of SWDS analysis has been reported in liver  diseases28,29. 
In the field of cardiovascular disease, the effectiveness of measuring SW speed for evaluating myocardial tissue 
stiffness during end-diastole was also reported in patients with hypertrophic  cardiomyopathy11,12. Therefore, 
clinical application of SWDS analysis, which is the same technology, seems to be feasible. However, there are 
several issues to be resolved. Cardiac geometry is reported to be affected when measuring SW  propagation30. 
Furthermore, although patients with fulminant myocarditis often have sinus tachycardia or tachyarrhythmias, 
the appropriate heart rate for assessing SW imaging is unclear. In addition, a frequency analysis of SW is known 
to be difficult due to the limited signal-to-noise  ratio31. Further studies are needed to establish the clinical appli-
cation of SWDS for myocardial diseases including myocarditis.

Cs(ω) =

√

2 (µ2+ω2·η2)

ρ(µ+
√

µ2+ω2·η2)

Figure 4.  SWDS and the severity of myocardial inflammation. Comparison of SWDS of RVFW (A) and LVFW 
(B) between the groups. Box plots show the median, interquartile range, and minimum/maximum data of 
the samples [control group (n = 9), the EAM 3-week group (n = 10), the EAM 5-week group (n = 9), and EAM 
7-week group (n = 11)]. Relationship between SWDS and the percentage of CD68-positive area in RVFW (C) 
and LVFW (D) [the control group (n = 9), the EAM 3-week group (n = 10), the EAM 5-week group (n = 9), and 
the EAM 7-week group (n = 11)]. Relationship between SWDS and serum troponin I level in RVFW (E) and 
LVFW (F). Relationship between SWDS and serum interleukin-6 level in RVFW (G) and LVFW (H). EAM 
experimental autoimmune myocarditis, LVFW left ventricular free wall, R pearson correlation coefficient, 
RVFW right ventricular free wall, SWDS shear wave dispersion slope.
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Study limitations. First, this study did not perform SWDS analysis in vivo because the heart rate of rats 
is too rapid (approximately, 350–400 beats per minutes) to obtain SW imaging. We analyzed SWDS under a 
retrograde perfusion system to make the heart fully relaxed for mimicking the end-diastolic state, however the 
measurement under the non-beating condition was the major limitation of this study. Second, SW interacts with 
the boundaries of tissue, resulting in reflections and mode conversions, guiding SW along the cardiac wall, thus 
tissue geometric factors including the wall thickness or curvature can affect the value of SWDS. We could not 
fully include ventricular geometric factors, for example, wall curvature, in multivariate linear regression analysis 
for evaluating predicting factors of CD68-positive area in ventricular walls. Therefore, there is a possibility that 
the impact of SWDS as a predictor of myocardial inflammation was overestimated in this study. Third, we meas-
ured SWDS of the heart in the long-axis view, because the heart was too small to obtain sufficient area for placing 
ROI in the short-axis view. On the other hand, histological evaluation was performed in the short-axis view. The 
measurement sites of SWDS analysis and CD68-positive area might be mismatched.

Conclusions
SWDS was elevated in the ventricular wall accompanied with acute myocardial inflammation. SWDS was sig-
nificantly correlated with the degree of myocardial inflammation. SWDS analysis can be a novel method for 
evaluating the severity of myocarditis by reflecting the viscosity of myocardial tissue.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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