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Abstract

Ion specific effects on the solubility of nonpo-
lar solutes and on the solute-solute hydrophobic
interaction in aqueous electrolyte solutions are
studied based on a continuum theory that incor-
porates the excluded volume of the molecules
using the four-component (water, cations, an-
ions, and solutes) Boubĺık-Mansoori-Carnahan-
Starling-Leland model and the ion-hydration
(electrostriction) using the Born model. We
examine how the ordering of ions in the salt
effect on the solubility as measured by the
Sechenov coefficient KS changes with varying
sizes of ions and solutes. Our calculation re-
produces the general trend of experimentally
measured KS and also provides an insight into
the irregular behavior of KS for lithium ion.
The correlation between KS and the salt ef-
fect on the hydrophobic interaction that has
been pointed out earlier is accounted for by an
explicit connection between KS and the salt-
enhanced-association coefficient CI in the ex-
pansion of the second osmotic virial coefficient
B(ns) = B(0)−CIns + · · · in powers of the salt
density ns at fixed pressure and temperature.
The quadratic relation CI ≈ K2

S/4 is derived
for ions and solutes that are not very large.

Introduction

Specific ion effects have been a long-standing
problem in properties of aqueous solutions of
electrolytes such as salt activity coefficient,1,2

surface tension,3,4 viscosity,5 and nanobubble
stability6 in aqueous electrolyte solutions. Ad-
dition of ions to a fluid mixture can induce
phase separation, and whether macroscale or
microscale separation occurs depends on the
salt species.7–10 Ion-specificity is often referred
to as the Hofmeister effect, which, in the orig-
inal sense, is the ion-specificity of the ability
for salting-out/salting-in proteins.11 Contrary
to the initial expectation that the (original)
Hofmeister effect is determined by the bulk
properties of aqueous electrolyte solutions, re-
searches in the last decades indicate that it is
in fact a result of complex interplays of spe-
cific interactions among ions, water, and hy-
drophilic/hydrophobic groups of proteins.12,13

Ion-specificity in the solubility of simple non-
ionic solutes (gasses) in aqueous electrolyte so-
lutions has also been known for long, since
Sechenov (Setschenow) empirically found the
relation14 − ln Σ ≈ KSns between the Ost-
wald adsorption coefficient Σ and the salt den-
sity ns. The proportionality coefficient KS,
which is usually positive (salting-out), is now
called the Sechenov coefficient, and is specific
to both ion and solute species. Its experi-
mental data are available for many combina-
tion of ions and solutes.15–19 Molecular dynam-
ics (MD) simulations,20–23 molecular-based the-
ory,24 and Monte-carlo (MC) simulation25 have
reproduced some of the data including a no-
table irregular behavior of Li+. The Sechenov
coefficient KS usually increases as the ion (resp.
solute) size becomes smaller (resp. larger),
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whereas for some large ions it decreases as the
solute size becomes larger and can even be neg-
ative (salting-in). Early theoretical studies15,26

have provided simple explanation for some of
these features, but overall understanding has
yet to be completed.

The Sechenov coefficient KS is a measure of
the specific ion effect on the solvation free en-
ergy µ∗h of an isolated, single solute molecule in
a solvent; it is not a direct measure of the ion
effect on the solute-solute effective interaction
in the solvent. In the present study, we intro-
duce a new measure CI for the ion effect on the
solute-solute effective interaction and evaluate
in terms of CI the specific ion effects on the
hydrophobic interaction.

The effective pair interaction between solute
molecules is expressed as the solute-solute po-
tential of mean force (PMF). Using MD27–29

and MC30 simulations, some authors found that
an addition of salt leads to a downward shift of
the solute-solute PMF. Furthermore, Thomas
and Elcock31 found that the magnitude of the
shift is greater for ions with larger KS. An-
other measure of the solute-solute effective in-
teraction is the second osmotic virial coeffi-
cient B = −G0

hh/2, where G0
hh is the solute-

solute Kirkwood-Buff integral32 in the dilute
limit. Recently, Koga and Yamamoto33 per-
formed MD simulations of a methane-NaCl-
water solution, and found a similar correlation
between µ∗h and B as the salt concentration
is varied. The understanding of the ion- and
solute-specificity in these correlations, however,
remains qualitative.

The following thermodynamic identity for B
was derived in an earlier study of binary (sol-
vent+solute) solutions:34,35

B = B′′ − (vh − kBTκw)2/2kBTκw, (1)

where B′′ is the coefficient analogous to B in
the expansion of the osmotic pressure with re-
spect to the solute density nh at fixed density
nw of the solvent, instead of fixed chemical po-
tential of the solvent. Equivalently, B′′ appears
as a coefficient in the expansion of the solute
excess chemical potential µ∗h with respect to nh

as B′′ = (1/2kBT ) limnh→0(∂µ∗h/∂nh)T,nw . In

the second term of (1), vh is the solute partial
molecular volume in the dilute limit, and κw

the isothermal compressibility of pure solvent.
It was recently noted that B′′ is given by the
integral of the solute-solute direct correlation
function,2

B′′ = −1

2

∫
chh(r)dr (nh → 0), (2)

which is in correspondence with the Kirkwood-
Buff expression for B

B = −1

2

∫
hhh(r)dr (nh → 0), (3)

where hhh is the solute-solute pair correlation
function.

While the second term of Eq. (1) is consid-
erably negative, B′′ is usually positive, and
hence B can be either positive (repulsive) or
negative (attractive). Combining the identity
(1) and van der Waals-type equations of state,
Cerdeiriña and Widom calculated B as well as
the contributions to it, B′′ and B−B′′, and dis-
cussed their temperature dependencies.35 More
recently, it has been found that extensions of
Eq. (1) naturally appear in studying density
fluctuations and thermodynamic behaviors of
ternary non-ionic fluids (binary solvent + so-
lute)36 and of aqueous electrolyte solutions.2 In
the former work, a new term due to the solvent
composition fluctuations is added to Eq. (1),
and can be a dominant factor of solute-solute
effective interaction. In the latter, counterparts
of the second term of Eq. (1) have played essen-
tial roles in ion-size-dependence of the activity
and osmotic coefficients.

In this paper, we develop a continuum the-
ory for the gas solubility and the solute-solute
effective interaction in aqueous electrolyte solu-
tions; we shall find KS and B can be expressed
as the generalizations of Eq. (1). Combin-
ing the Boubĺık-Mansoori-Carnahan-Starling-
Leland (BMCSL) model37,38 and the Born
model,39 we investigate the Sechenov coefficient
KS and the coefficient CI introduced in Eq. (40),
which are, respectively, measures of the salt ef-
fects on the solubility of solutes and the solute-
solute interaction. More specifically, we exam-
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ine the ion-size and the solute-size dependencies
of KS and CI.

The organization of this paper is as follows.
We start with a review of thermodynamic quan-
tities of fluid mixtures, e.g., isothermal com-
pressibility and partial volumes. We then de-
rive expressions for the Sechenov coefficient and
the second osmotic virial coefficient of the so-
lutes. The partial volumes of individual ion
species are also introduced; they can neither
be defined in thermodynamics nor measured in
experiments, but are convenient in understand-
ing the numerical analysis. We then introduce
a simple model for liquid solutions composed
of solvent (water), salt, and solute. We use
the BMCSL model for the steric effects and the
Born model for ion-hydration (electrostriction).
We then numerically examine the ion-size- and
solute-size-dependence of KS and CI, as well as
the correlation between them. Final section is
devoted for summary and remarks.

Theory

For simplicity we consider 1:1 salt, which in wa-
ter dissociates into cations and anions of elec-
tric charges e and −e, respectively. Let n̂w, n̂c,
n̂a, and n̂h denote the fluctuating number den-
sities of water, cation, anion, and hydrophobic
solute (gas), respectively. In equilibrium, their
average values are homogeneous in space. The
average water and solute densities are denoted
by nw and nh,

〈n̂w〉 = nw, 〈n̂h〉 = nh, (4)

and the average ion densities satisfy the charge
neutrality condition,

〈n̂c〉 = 〈n̂a〉 = ns = nI/2. (5)

Here ns is the salt density, and nI the total
ion density. Throughout the paper, we shall
study solubility and interaction of the almost
infinitely-dilute hydrophobic solute in a dilute
electrolyte solution (solvent). That is, we as-
sume

nh � nI � nw. (6)

In the following, we shall not take the limit
nI → 0 unless the limit nh → 0 is taken in
advance.

Thermodynamics

We can generally expand the Helmholtz free en-
ergy density f(nw, nI, nh) in powers of nh,

f =f s(nw, nI) + kBTnh{ln(nhλ
3
h)− 1}

+ kBTnhν
s
h(nw, nI) +

n2
h

2
U s

hh(nw, nI) + · · · ,
(7)

where the logarithmic term, which is singular at
nh = 0, has not been expanded. In the above λh

is the thermal de Broglie length of the solute,
f s the Helmholtz free energy density of the elec-
trolyte solution without the solute, kBTν

s
h = µ∗h

the solvation free energy or excess chemical po-
tential of the solute at infinite dilution (nh = 0),
and the coefficient U s

hh of n2
h is the contribution

arising from the solute-solute interaction.
The chemical potentials µi (i = w, I, h) and

the pressure p are expressed in terms of f as

µi = ∂f/∂ni (8)

p =
∑

j=w,I,h

nj(∂f/∂nj)− f. (9)

Hereafter the quantities are regarded as func-
tions of the temperature T and the densi-
ties {ni}, and hence the partial derivatives
with respect to ni are taken with fixed T and
{nj}j 6=i, unless otherwise indicated explicitly
(e.g., Eq. (25)). Using Eq. (9), the isothermal
compressibility κT = −V −1(∂V/∂p)T,{Nj} is ex-
pressed as

κ−1
T = kBT

∑
i,j=w,I,h

ninjI
ij, (10)

with the second derivatives,

kBTI
ij ≡ ∂2f/∂ni∂nj = (∂µi/∂nj)T,{nk}k 6=j

.

(11)

In particular, the isothermal compressibility for
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pure water κw is given by

κ−1
w = n2

w(∂2fw/∂n
2
w) = kBTn

2
w lim
nI,nh→0

Iww,

(12)

where fw(nw) = f s(nw, 0) is the Helmholtz free
energy density of pure water.

We also define the (dimensionless) excess
chemical potential of the solute νh in pure water
and the ion-solute direct interaction coefficient
UhI in water as

νh(nw) ≡ νs
h(nw, 0) (13)

UhI ≡ kBT lim
nI→0

(∂νs
h/∂nI) = kBT lim

nI,nh→0
IhI.

(14)

Partial volumes

Let V and Ni denote the system volume and the
particle number of species i (= w, I, h), respec-
tively. The partial molecular volume of species
i is defined as v̄i = (∂V/∂Ni)T,p,{Nj}j 6=i

. Note
that in the previous paper2 the salt partial vol-
ume v̄s = (∂V/∂(NI/2))T,p,{Nj}j 6=I

= 2v̄I was dis-
cussed instead of v̄I. From the definition of v̄i,
we derive

v̄i = κT (∂p/∂ni)T,{nj}j 6=i
= kBTκT

∑
j=w,I,h

I ijnj,

(15)

where we have used Eq. (9) in the second equal-
ity. The solvation partial volume is also defined
as

v̄∗i ≡ v̄i − kBTκT . (16)

For nearly incompressible solvent such as aque-
ous electrolyte solutions, these two partial vol-
umes almost coincide, vs∗

i ≈ vs
i unless the

molecular size of species i is too small. Since
V and Ni are extensive variables, we have the
sum rule, ∑

i=w,I,h

niv̄i = 1. (17)

For convenience, we shall introduce some
symbols representing partial volumes in lim-
iting cases. The partial volumes in the limit

nh → 0 are written as vs
i and vs∗

i (i = w, I, h),
i.e.,

vs
i ≡ lim

nh→0
v̄i, vs∗

i ≡ lim
nh→0

v̄∗i = vs
i − kBTκ

s
T ,

(18)

where κs
T = limnh→0 κT is the isothermal com-

pressibility of the electrolyte solvent. Further-
more, let vi and v∗i denote the partial volumes
in the limit, nI, nh → 0:

vi ≡ lim
nI→0

vs
i , v∗i ≡ lim

nI→0
vs∗
i = vi − kBTκw.

(19)

Using Eq. (15) with Eqs. (7) and (11) and
taking the limit nh → 0, we have

vs
h = kBTκ

s
T

[
1 +

∑
i=w,I

ni(∂ν
s
h/∂ni)

]
(20)

vs∗
h = kBTκ

s
T

∑
i=w,I

ni(∂ν
s
h/∂ni). (21)

In the limit nI → 0, these reduce to

vh = kBTκw(1 + nwν
′
h), v∗h = kBTκwnwν

′
h,
(22)

where ν ′h = ∂νh/∂nw. Without the ions and the
solute, nI = nh = 0, Eq. (17) yields the trivial
relation,

vw = 1/nw. (23)

Isobaric condition and solvent composi-
tion susceptibility for nh → 0

In this subsection, we assume the solute density
is infinitely small, nh → 0. In experiments, the
pressure p is kept fixed as the salt density is
varied (isobaric condition). This condition is
written as

p(nw, nI) = p(n0
w, 0), (24)

where n0
w is the water density without the salt.

Differentiating Eq. (24) with respect to nI and
using Eq. (15), we obtain2

(∂nw/∂nI)T,p = −vs
I/v

s
w. (25)
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The solvent particle density n and the ion mo-
lar fraction XI are given by

n = nw + nI, XI = nI/n. (26)

We define the composition susceptibility of the
electrolyte solvent as χI ≡ kBTn

−1(∂XI/∂h)T,p
with h = µI − µw. Using Eq. (SI-13) in Sup-
porting Information, we obtain

χ−1
I = n3

[
Iww

s vs
I + I II

s v
s
w − IwI

s (vs
w + vs

I)
]
,
(27)

where I ijs = limnh→0 I
ij (i, j = w, I). The com-

position susceptibility χI is also a measure of
the fluctuations of the total ion density n̂c + n̂a

in the long-wavelength limit [See Eq. (SI-37)
in SI-D]. Because of the logarithmic term in

Eq. (7), we have I II
s = 1/nI + O(n

−1/2
I ) and

vs
w = 1/nw +O(nI) as nI → 0. We hence have

χI = nI/n
2
w +O(n

3/2
I ). (28)

See Eq. (SI-49) for higher order contributions.
We introduce the inverse matrix {Is

ij}i,j=w,I

of {I ijs }i,j=w,I, and define ∆0 = det{Is
ij} =

[det{I ijs }]−1. Using Eq. (15) and (10), we can
rewrite Eq. (27) as36

χI =∆0/(kBTn
4κs

T )

=n−4(Is
wwn

2
I + Is

IIn
2
w − 2Is

wInwnI). (29)

Sechenov coefficient

When the solution is in equilibrium with a gas
phase, the solubility of a solute is measured by
the Ostwald adsorption coefficient, i.e., the ra-
tio of the solute density nh in the solution to
that in the gas phase ngas

h ,

Σ = lim
nh→0

(nh/n
gas
h ) = e−ν

s
h . (30)

The salting-out (salting-in) effect on the gas sol-
ubility in a dilute electrolyte solvent is mea-
sured by the Sechenov (Setschenow) coeffi-
cient,14

KS =− lim
ns→0

(∂ ln Σ

∂ns

)
T,p

= 2 lim
nI→0

(∂νs
h

∂nI

)
T,p

=(2/kBT )(UhI − v∗hvI/κw), (31)

where use has been made of Eqs. (14), (22),
and (25) in the second line. In the litera-
ture, the Sechenov coefficient is often defined by
kscc = − limns→0(∂ log10 Σ/∂ns)T,p = KS/ ln 10,
but in Eq. (31) we use natural logarithm as
in the original work by Sechenov.14 In analogy
with Eq. (1), we introduce the effective solute-
ion interaction coefficient as

U eff
hI ≡ UhI − v∗hv∗I /κw. (32)

We can then rewrite Eq. (31) as

KS = (2/kBT )(U eff
hI − kBTv

∗
h). (33)

For general nI, the Sechenov coefficient can
be generalized to the solvation coefficient gh ≡
(∂νs

h/∂XI)T,p. This measures the asymmetry
between the solute-water and solute-salt inter-
actions. We can calculate this derivative using
Eq. (SI-13):

gh ≡ (∂νs
h/∂XI)T,p = n2

[
vs

w

∂νs
h

∂nI

− vs
I

∂νs
h

∂nw

]
.

(34)

In the limit nI → 0, ∂νs
h/∂nI = UhI/kBT by

definition (14) and ∂νs
h/∂nw → v∗h/kBTnwκw

from (22), and so we have

lim
nI→0

gh =
nw

kBT
(UhI − v∗hvI/κw) = nwKS/2,

(35)

where the second equality follows from Eq. (31).

Second osmotic virial coefficient and salt-
enhanced-association coefficient

Suppose a solution (water+ions+solute) and
a solvent reservoir (water+ions) are separated
by a semipermeable membrane that permeates
only the water and ions. The chemical poten-
tials of water µw and of ions µI are common in
both regions, i.e., µi(nw, nI, nh) = µi(n

r
w, n

r
I, 0)

for i =w, I, where nr
w and nr

I are the water
and ion densities, respectively, in the reservoir.
The osmotic pressure is the pressure difference
between the two regions, Π = p(nw, nI, nh) −
p(nr

w, n
r
I, 0). In the expansion Π = kBT (nh +

Bn2
h+· · · ), B is called the second osmotic virial
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coefficient, which measures the effective solute-
solute interaction.

We have the thermodynamic identities for el-
ements of the inverse matrix {Iij} of {I ij} de-
fined in Eq. (11):

Iij = kBT (∂ni/∂µj)T,{µk}k 6=j
(i, j = w, I, h)

(36)

Note that as nh → 0, the component Ihh ∼
n−1

h diverges, but {Iij}i,j=w,I,h has a well-defined
limit; in particular, for i, j = w, I, the limit
is equal to Is

ij which has been defined above
Eq. (29). See SI-A for detailed discussions.

As nh is varied, the change rate of Π is
dΠ/dnh = (∂p/∂nh)T,µw,µI = kBTnh/Ihh, where
in the second equality we have used Gibbs-
Duhem relation. We thus have

2B = lim
nh→0

(1/Ihh − 1/nh). (37)

From Eqs (37) and (SI-12), we obtain

B = U eff
hh/2kBT. (38)

where the effective solute-solute interaction co-
efficient U eff

hh is defined as

U eff
hh ≡ U s

hh − (vs∗
h )2/κs

T − kBTχIg
2
h. (39)

with χI defined above Eq. (27) and gh in
Eq. (34). The coefficient U eff

hh is also a mea-
sure of the solute density fluctuations in the
long-wavelength limit [See Eq. (SI-61) in SI-
D]. The first two terms of Eq. (39) divided
by 2kBT are respectively the same as the two
terms of Eq. (1), and so the sum of the two
is identical to B for one-component solvents.
The last term of Eq. (39) is the contribution
from the coupling between the solvent compo-
sition and the asymmetric solute-solvent inter-
actions,36 which is unique to mixture solvents
and vanishes at nI = 0 [see Eq. (28)]. The ex-
pression in Eq. (39) is formally the same as that
of a system composed of a non-ionic binary sol-
vent and a small amount of solute,36 where the
third term can dominate over the other contri-
butions at intermediate solvent compositions.
Here (and in SI-A) we have derived Eqs. (38)
and (39) in a purely thermodynamic way, while

the previous derivation36 was via the thermo-
dynamic fluctuation theory (see also SI-D).

Our interest is the salt effect on the solute-
solute interaction in a dilute electrolyte solvent,
and therefore we introduce the salt-enhanced-
association (SEA) coefficient,

CI ≡ − lim
nI→0

( ∂B
∂ns

)
T,p

=
−1

kBTnw

lim
nI→0

(∂U eff
hh

∂XI

)
T,p
, (40)

where the second equality follows from Eqs. (5),
(38) and (SI-13). A positive (resp. negative)
value of CI indicates that the salt enhances
(resp. reduces) the solute-solute attraction. For
later convenience we divide this into two parts
CI = C

(1)
I + C

(2)
I , where C

(1)
I is from the first

two terms in Eq. (39) and C
(2)
I the third term:

C
(1)
I ≡

1

kBTnw

lim
nI→0

(
∂[(vs∗

h )2/κs
T − U s

hh]

∂XI

)
T,p

(41)

C
(2)
I ≡

1

nw

lim
nI→0

(∂[χIg
2
h]/∂XI)T,p = K2

S/4. (42)

Here the second equality of Eq. (42) follows
from Eqs. (28), (35) and (SI-13). See SI-B for

the rather lengthy expression for C
(1)
I .

Note that in Eq. (42) the numerical factor 4
is specific to 1:1 electrolyte solutions. For a
salt with general valence numbers, i.e., XaYb →
aXZ1 + bY Z2 with b = −aZ1/Z2, the numerical
factor is replaced by 2(a + b). See SI-C for the
details.

Partial volumes of individual ion
species

The densities can fluctuate about their respec-
tive average values even in equilibrium. In par-
ticular those of cations and anions can locally
be different at times. In long-wavelengths, such
density fluctuations can be discussed using the
free energy functional F [n̂w, n̂c, n̂a, n̂h], where
the coarse-grained density variables n̂i have
the Fourier components n̂iq =

∫
drn̂i(r)e−iq·r

with wavenumbers smaller than an upper cut-
off Λ < κ. Here the Debye wavenumber is de-
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fined as κ =
√

8π`Bns with the Bjerrum length
`B = e2/kBTε. In the local density approxima-
tion, we have the functional of the form2

F =

∫
dr
[
f̂(n̂w, n̂c, n̂a, n̂h) +

ε(nw)|∇Φ|2

8π

]
.

(43)

Here the local free energy f̂ includes the fluctu-
ation effects of wavenumbers larger than Λ (e.g.,
Debye-Hückel (DH) free energy). The second
term is the long-range Coulombic interaction,
where the electrostatic potential Φ obeys the
Poisson equation, −∇ · ε∇Φ = 4πe(n̂c − n̂a).

As is well-known, the density fluctuation vari-
ances in the long-wavelength limit are expressed
in terms of thermodynamic quantities such as
κT and χI (See SI-D for details). They are
closely related to the so-called Kirkwood-Buff
integrals (KBIs).32 The KBIs have been utilized
in simulation studies to discuss ion-specificity
in electrolyte systems.22,23,40–43 Shimizu et al.
have also discussed the ion-specific KBIs us-
ing experimental data of water-salt-protein so-
lutions.44 In the present case, important quan-
tities such as χI, KS, and B can be expressed in
terms of KBIs. We shall derive the expressions
in SI-E for completeness, while some of them
can be found in the literature.2,23,36,44–46

The minimum of F under the constraint
of fixed particle numbers gives the thermody-
namic Helmholtz free energy, and so we have

f(nw, nI, nh) = f̂(nw, nI/2, nI/2, nh). (44)

From Eqs. (10) and (44), we readily obtain

κ−1
T =

∑
i,j=w,c,a,h

f̂ij〈n̂i〉〈n̂j〉. (45)

In analogy with Eqs. (15) and (16), we define
the partial volumes of species i (= w, c, a, h),

v̄i ≡ κT
∑

j=w,c,a,h

f̂ij〈n̂j〉, v̄∗i ≡ v̄i − kBTκT .

(46)

From Eq. (44), this definition is equivalent to
Eq. (15) for i = w, h, and the following relations

follow for i = c, a:

v̄c + v̄a = 2v̄I, v̄∗c + v̄∗a = 2v̄∗I . (47)

As in the same manner as in Eqs. (18) and (19),
we also define the symbols vs

i , v
s∗
i , vi, and v∗i for

i = c, a as the ion partial volumes in the limiting
cases, nh → 0, and nh, nI → 0.

The salt partial volumes 2v̄I of many salts
have been measured in experiments,47,48 and
many authors have attempted to separate ex-
perimental salt partial volumes for infinitely di-
lute electrolyte solutions into cation and an-
ion contributions, i.e., vc and va, by assign-
ing, for example, the partial volume of H+ a
value of zero, and by assuming additive, inde-
pendent contribution from each ion species.47

The latter assumption is valid for infinitely di-
lute electrolyte solutions in which the contribu-
tion from the ion-ion interactions is negligible.
While it seems difficult to thermodynamically
determine vc and va since the cation and an-
ion numbers cannot be changed independently,
Zana and Yeager (1967) have measured dynam-
ical responses (ionic vibration potential) of elec-
trolyte solutions to ultrasonic waves to deter-
mine individual ionic volumes without assum-
ing any value of any ionic volume.47,49

Model local free energy

We introduce a model for the local free energy
density f̂(n̂w, n̂c, n̂a, n̂h). Once this is done,
all the thermodynamic quantities discussed in
the previous section can be calculated since the
Helmholtz free energy density f is given by
Eq. (44) in terms of f̂ . Specifically, we shall
numerically investigate KS and CI defined re-
spectively in Eqs. (31) and (40), varying the
ion and solute sizes.

In our model, the steric and hydration (elec-
trostriction) effects shall be taken into ac-
count, using the Boubĺık-Mansoori-Carnahan-
Starling-Leland (BMCSL) model for hard-
sphere mixtures37,38 and the Born model,39

respectively. This is a straightforward gen-
eralization of the previous model2 for aque-
ous electrolyte solutions, which can semi-
quantitatively explain the puzzling behavior
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of the ion-specificity in the salt activity co-
efficient, osmotic coefficient, and salt partial
volume.

We assume that the model local free energy
density f̂ consists of five parts,

f̂ =kBT
∑

i=w,c,a,h

n̂i[ln(n̂iλ
3
i )− 1]

+ f̂h + f̂a + f̂B + f̂DH. (48)

The first term is the entropic contribution of
an ideal mixture, where λi is the thermal de
Broglie length of species i. The second term
f̂h is the free energy of the steric interactions;
we use BMCSL model for four-component hard-
sphere mixtures,37,38 where each species has a
hard-sphere diameter di (i = w, c, a, h). The
third term f̂a arises from the short-range at-
traction (van der Waals force). For moderately
varying densities, f̂a is given by the van der
Waals form, f̂a = −1

2

∑
i,j=w,c,a,hwijn̂in̂j. The

interaction coefficient wij is determined from
the integration of the attractive part of the
Lennard-Jones (LJ) potential,2,36,50–52 wij =
(32
√

2/9)πεijd
3
ij, where εij and dij are the LJ

energy and size parameters, respectively. We
set the size parameter using the hard-sphere di-
ameter as dij = (di+dj)/2. The hydrogen bond,
which does not stem from the LJ interactions,
causes many unique behaviors of water.53,54 In
our model, however, we effectively include the
water-water attraction due to hydrogen bond
into f̂a by tuning the parameter εww.

For ion-hydration free energy we use the sim-
ple Born model,39 f̂B = kBT

∑
i=c,a n̂i[`B(n̂w)−

`B(0)]/2Ri, where Ri(∼ di/2) is the Born ra-
dius. Here we assume the Bjerrum length `B =
e2/kBTε(n̂w) depends only on the solvent den-
sity n̂w, but not explicitly on the solute density
n̂h. To the best of authors’ knowledge, there
are no experimental data of ε for aqueous so-
lutions of nonpolar solutes. However, this as-
sumption can be justified as follows. The po-
larization density pe of the solution is a func-
tion of nw only, under the assumptions that the
nonpolar solute has no dipole moment and that
the solute does not affect the dipole moment
of water molecules; the dielectric permittivity
ε is determined by the polarization density pe

using, for example, the Kirkwood’s expression
pe = (ε − 1)(2ε + 1)/9ε. In theories for dielec-
tric permittivity of polar mixture fluids, similar
assumptions have been made that the dipole
moment of each component is not affected by
mixing.55,56

Note, even though ε has no explicit depen-
dence on the solute density nh, ε depends
on nh in isobaric condition because a change
in nh is accompanied by that in the water
density nw. To be more explicit, we have
limnh→0(∂ε/∂nh)p = −(∂ε/∂p)vh/κw, where in
the right hand side the derivative is taken for
pure water at nh = 0 (see also SI-F).

One may claim that the Born energy is not
a “short-ranged” one, as it is an integration of
the electrostatic energy over the whole space
around an isolated charged sphere of radius
Ri. However, the electrostatic energy is con-
centrated in the vicinity of the ion, so that we
may regard this as a short-range interaction be-
tween ions and the solvent molecules. For an
ion with a Born radius 1Å, the electrostatic en-
ergy within the third hydration radius (∼ 10Å)
is about 90% out of the total Born energy.

The last term f̂DH in Eq. (48) is the Debye-
Hückel free energy,57 which stems from the
charge fluctuations on the length-scale shorter
than the Debye length κ−1. It is given by f̂DH =
−kBT κ̂

3/12π + (1/2)
∑

i,j=c,a u
ex
ij n̂in̂j + · · · to

second order in n̂c and n̂a, where κ̂(n̂w, n̂c, n̂a) is
the fluctuating Debye wavenumber2 defined in
Eq. (SI-43), and the coefficient uex

ij may depend

both on n̂w and n̂h. It turns out that f̂DH is not
relevant to KS and CI that we shall examine
numerically. This can be understood as follows.
The coefficients KS and CI include the deriva-
tives of f̂DH with respect to n̂i (i = w, c, a, h) in
the limit n̂c = n̂a = ns → 0. However, we can
confirm that the orders of n̂c- and n̂a-derivatives
are at most one, so that all these terms vanish
in the limit ns → 0.

Selected parameter values

The parameter values for the solvent (water)
and ions are the same as those in the pre-
vious paper.2 We do not study temperature
dependence, so that it is kept fixed at T =
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300 K. For the solvent, we set dw = 3 Å
and εww = 412.72 K. These values are cho-
sen so that the isothermal compressibility at
p = 1 atm and T = 300 K coincides with
the experimental value of water, κw = 4.5 ×
10−4 MPa−1. On the other hand, this choice
slightly underestimates the density of pure wa-
ter, nw0 = 0.857/d3

w ≈ 31.7 nm−3. For the
ions and solute, the LJ parameters εii between
the same particle species are set all equal to
200 K: εcc = εaa = εhh = 200 K. We assume
the Lorentz-Berthelot relation εij =

√
εiiεjj for

i 6= j; we then have εca = εch = εah = 200 K
and εwc = εwa = εwh = 287.30 K. In real-
ity, the εij-values should differ for different ions
and solutes, and hence one can vary the εij-
values simultaneously with the changes of ion-
and solute-diameters, which may give a better
fit to the experimental data. However, changes
of these parameter-values within a reasonable
range do not alter the general trend of ion- and
solute-size dependencies of the thermodynamic
quantities, and hence we keep them fixed not
to complicate the study.

In the following numerical analysis, the ion
hard-sphere diameter di (i = c, a) and Born ra-
dius Ri (i = c, a) are varied, whereas the ratio
Ri/di is kept fixed atRi/di = 0.2 (i = c, a). The
Born model with this parameter choice com-
bined with the BMCSL model gives a good es-
timation of ion partial volumes,2 while the Born
model is a crude one for ion hydration.

The value of the dielectric permittivity ε at
p = 1 atm and T = 300 K is selected so
that the Bjerrum length coincides with that
of water, `B(nw) = 7 Å. Measurements of the
water dielectric constant under various pres-
sure58,59 give ε−1(∂ε/∂p)T ≈ 5 × 10−4 MPa−1,
and hence we set aε ≡ nwε

−1(∂ε/∂nw) =
ε−1(∂ε/∂p)T/κw = 1.1. Finally, to calculate CI,
we set AB ≡ (∂2ε/∂p2)/(εκ2

waε)− 2aε = −7.5.
We make some remarks. (i) With our model,

the high-order derivatives of the free energy can
somewhat deviate from those of water. Specif-
ically, our model gives nw(∂κw/∂nw)/κw ≈
−5.4, which deviates from the experimental
value −8.33 of water.60 We have correspond-
ingly set2 AB = −7.5, while the experimental
data of water dielectric permittivity gives58,59

ε−1∂2ε/∂p2 ≈ −6 × 10−7 MPa−2 which yields
AB ≈ −5. (ii) In general, cations and anions
interact differently with solvent molecules; in
water, cations tend to attract hydrogen atoms
of water, while anions favor an oxygen atoms.61

For simplicity, however, we do not differentiate
the properties of (monovalent) cations and an-
ions except the signs of the charges and the di-
ameters di (i = c, a). Hence all the numerical
results in the following are invariant under the
exchange of dc and da.

Results and Discussion

For the sake of lighter notation we introduce the
normalized hard-sphere diameters of the ions
and solute

αi ≡ di/dw (i = c, a, h). (49)

In the following we shall numerically examine
the Sechenov coefficient KS and the SEA coef-
ficient CI defined in Eq. (40), varying αc, αa,
and αh.

Sechenov coefficient

Figures 1a and 1c present the calculated nor-
malized Sechenov coefficient KS/d

3
w as a func-

tion of the cation diameter αc for the fixed an-
ion diameters αa = 0.7 and 1.3, respectively. In
each panel the solute diameter αh is set equal to
1.4, 1.2, 1.0, 0.8, and 0.6. In Figures 1b and 1d
surface plots are also shown as a function of αc

and αh for αa = 0.7 and 1.3, respectively. Note
that the exchange of αc- and αa-values gives ex-
actly the same result. We observe that (i) KS

decreases as the ion-size increases, (ii) KS in-
creases as the solute size αh increases for not
very large ions (in the whole plot-range of Fig-
ures 1a and 1b, and αc . 0.9 in 1c and 1d), (iii)
for large ions (αc & 0.9 in Figures 1c and 1d),
the αh-dependence of KS is inverted, so that
KS decreases as αh increases, and (iv) KS can
be negative for large ions and solutes as shown
in Figures 1c and 1d.

In Table 1 experimental data of Sechenov co-
efficient KS are listed for hydrogen, oxygen, and
benzene in alkali metal halide solutions. The
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Figure 1: Normalized Sechenov coefficient
KS/d

3
w vs cation diameter αc = dc/dw for (a)

αa = da/dw = 0.7 and (c) 1.3. In each panel we
set the normalized solute diameter αh = dh/dw

to 1.4, 1.2, 1.0, 0.8, and 0.6. Surface plots
of KS/d

3
w as a function of αc and αh are also

presented for (b)αa = 0.7 and (d)1.3. In (b)
and (d) the pale-blue color indicates the region
where KS ≈ Kel

S is a good approximation.

general trend of the data is fairly consistent
with the above four features of our theoretical
curves, whereas one exception is the values for
Li+ that is the smallest cation in size. We shall
later discuss this rather irregular behavior of
Li+.

To study KS in detail, we divide the (stan-
dard) ion partial volume vi (i = c, a) into two
parts,

vi = vint
i + vel

i , (i = c, a) (50)

where ”intrinsic” volume vint
i is the partial vol-

ume without the electrostriction effect48,62,63

and is comparable to the molecular size. The
second term vel

i (< 0) is the electrostriction vol-
ume, which arises from the polarization of the
solvent molecules (electric dipoles) around the
ion. Using Eq. (50), we can also divide the
Sechenov coefficient KS in Eq. (31) into two
parts, KS = K int

S +Kel
S ; K int

S is due to the steric
effect and the short-range attractive interac-
tions (i.e., f̂h and fa in our model) when the
electrostriction is ”turned off,” and Kel

S is the
additional contribution when the electrostric-
tion is ”turned on.” Since we assume the so-
lute is non-polar, we may generally neglect the
electrostriction effect on UhI; in fact, the Born
model f̂B that we use in the numerical analy-
sis is irrelevant to UhI since we assume the di-
electric permittivity ε does not depend on the
solute density nh at fixed nw (note, however, ε
varies as nh is changed in isobaric condition for
which an increase in nh induces a decrease in
nw). The solute partial volume v∗h is also free
from the electrostriction effect, so that we have

kBTK
int
S /2 = UhI − v∗hvint

I /κw (51)

kBTK
el
S /2 = −v∗hvel

I /κw, (52)

where vint
I = (vint

c +vint
a )/2 and vel

I = (vel
c +vel

a )/2.

The combination of the BMCSL model f̂h and
the attraction contribution f̂a gives2 vint

i ∼ α3
i

for not too small αi. With our model the
electrostriction volume vel

i is the Drude-Nernst
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Table 1: Sechenov coefficient KS in units of L/mol (≈ 62d3
w) for non-polar gases in alkali

metal halide solutions. (a) Long and McDevit15 (b) Hermann et al.18

LiCl NaCl KCl RbCl CsCl CsI
hydrogen 0.17a 0.26a 0.23a 0.21b 0.18b 0.15b

oxygen 0.23a 0.32a 0.30a 0.25b 0.22b 0.19b

benzene 0.32a 0.46a 0.39a 0.32a 0.21a -0.014a

form2,64 derived from Born energy f̂B,

vel
i = vB

i ≡
kBTnwκw

2Ri

∂`B
∂nw

= −kBTκw`Baε/2Ri,

(53)

where aε has been defined in the section of Se-
lected parameter values. It turns out in SI-
F that Kel

S in Eq. (52) with the Drude-Nernst
electrostriction volume in Eq. (53) can also be
derived from Debye-McAulay theory.15,26 Our
parameter choice gives2

vint
i ≈ DLd

3
wα

3
i , vB

i = −DBd
3
w/αi (54)

with DL ≈ 1.1 and DB = 0.44.
The plotted in Figures 2a and 2c are K int

S

as a function of αc for the fixed anion diam-
eters αa = 0.7, and 1.3, respectively. Except
for negligibly small positive values at αh = 0.6,
K int

S is negative and decreases as αc and αh

increase. Using Eqs. (14) and (44), we can
rewrite Eq. (51) as kBTK

int
S =

∑
i=c,a[Uhi −

v∗hv
int
i /κw], where Uhi = limnI,nh→0 f̂hi. As dis-

cussed previously,2 effective interactions with-
out electrostriction is mostly negative (attrac-
tive) and is roughly approximated as [Uhi −
v∗hv

int
i /κw]/kBTd

3
w ∼ −(α3

h +α3
i )

2. This approx-
imation becomes accurate as αh and/or αi be-
come large. Within this approximation we have

K int
S /d3

w ∼ −
∑
i=c,a

(α3
h + α3

i )
2. (55)

Let us evaluate the right hand side (RHS) of
Eq. (55) in some cases. (i) At αc = 0.4 (the
lower bound of the horizontal axis) in Figure
2a, RHS of Eq. (55) is equal to -2.9, -7.5, and -
17.4 for αh = 1.0, 1.2, and 1.4, respectively. (ii)
At αc = 1.2 (the upper bound of the horizontal
axis) in the same panel, it is -9.2, -16.2, and
-29.5 for αh = 1.0, 1.2, and 1.4, respectively.

Figure 2: The normalized pseudo-Sechenov co-
efficient K int

S /d3
w without Born energy vs cation

diameter αc = dc/dw for (a) αa = da/dw = 0.7
and (c)1.3. The difference between the full
Sechenov coefficient KS and K int

S , i.e., Kel
S =

KS − K int
S for (b) αa = 0.7 and (d) 1.3. In

each panel the normalized solute diameter αh =
dh/dw is set to 1.4, 1.2, 1.0, 0.8, and 0.6.

(iii) At αc = 0.4 in Figure 2b, it is -11.4, -18.6,
and -32.3 for αh = 1.0, 1.2, and 1.4, respec-
tively. (iv) At αc = 1.2 in the same panel, it
is -17.7, -27.3, and -44.4 for αh = 1.0, 1.2, and
1.4, respectively. While in the case (i) the RHS
of Eq. (55) overestimates the value of K int

S , it
captures the overall behavior of K int

S as we can
see from the other examples (ii)–(iv).

Regarding Kel
S , as in the case of vint

i the com-
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bination of f̂h and f̂a gives v∗h ≈ d3
wα

3
h, so that

Kel
S /d

3
w ≈ Hα3

h(α−1
c + α−1

a ), (56)

where H = DBd
3
w/kBTκw = 6.4. In Figures 2b

and 2d Kel
S is plotted as a function of αc for

αa = 0.7 and 1.3, respectively. We can see that
Kel

S decreases as the ion sizes αc and αa increase,
whereas it increases as the solute size increases.
The approximate expression (56) explains these
features.

We now discuss the overall behavior of KS in
Figures 1a–1d, using Eqs. (55) and (56). (i)
If the cation is smaller than the solute in size
(αc < αh) we can neglect αc-dependence of
K int

S to have KS/d
3
w ∼ Kel

S /d
3
w − α6

h − (α3
h +

α3
a)2; the αc-dependence of KS for small αc in

Figures 1a and 1c solely comes from Kel
S /d

3
w.

(ii) Furthermore, when αc is small such that
αc � H/α3

h, H/α
3
a, we can neglect K int

S and
hence have KS ≈ Kel

S . This means Debye-
McAulay theory becomes more plausible for
small ions and solutes. In Figures 1b and 1c
the pale-blue color indicates the region where
0.9 < Kel

S /KS . 1.25. (iii) Because Kel
S is al-

ways positive, the negative KS value for large
ions and solutes in Figure 1c is due to K int

S ,
i.e., the combination of steric effects and short-
range attraction. (iv) To discuss the inversion
of αh-dependence ofKS in Figures 1c and 1d, we
consider the inequality ∂KS/∂(α3

h) > 0, which
yields

Hα−1
c − 2α3

c > 4α3
h −Hα−1

a + 2α3
a (57)

within the approximations of Eqs. (55) and
(56). Here the left hand side (LHS) is a mono-
tonic decreasing function of αc that varies from
∞ to −∞ in the range 0 < αc < ∞, so that
the inequality holds when αc is smaller than a
threshold value αc,th determined by αa and αh;
αh-dependence is reversed at αc = αc,th. We
also notice that the RHS of Eq. (57) is an in-
creasing function of αa, and hence the threshold
value αc,th decreases as αa increases. Equating
the LHS to RHS of Eq. (57), we obtain, for ex-
ample, αc,th = 1.44 at (αa, αh) = (0.7, 1.2), and
0.84 at (1.3, 1.2); this explains the reason why
we can see the inversion of αh-dependence in

Figure 1c but not in the plot-range of 1a.
We make remarks on the irregular behavior

of KS for Li+. In Table 1, the values of KS

for LiCl is smaller than the corresponding val-
ues of NaCl. This contradicts our theoretical
result and the general trend of the experimen-
tal data that ions with smaller sizes tend to
have larger values of KS. This irregular behav-
ior of Li+ has been reproduced in all-atom MD
simulations,22,23 but cannot be captured by our
simple model. While microscopic (molecular
level) modeling seems necessary for a full under-
standing,23 we can partly understand this be-
havior using the divisions in Eqs. (50) and (52).
We may make these divisions without assuming
Born model for the electrostriction effect. Since
Li+ is small in size, we neglect K int

S and have
KS ≈ Kel

S = −v∗hvel
I /κw. Meanwhile, attempts

have been made to evaluate electrostriction vol-
umes vel

I from experimental salt partial volumes
of various salts, under some assumption for the
intrinsic volume vint

I ; there have been some vari-
ations, but all assume vint

I to be comparable
to the molecular volumes.63 With a reasonable
choice of vint

I , the evaluated electrostriction vol-
umes are -13.0 and -7.2 in units of cm3/mol
for NaCl and LiCl, respectively.48 That is, the
electrostriction effect on the ion partial volume
is weaker for LiCl than for NaCl, which op-
poses the result of Born model in Eq. (53) that
predicts smaller ions give stronger electrostric-
tion effect. This irregular electrostriction vol-
ume of Li+ is the source of the smaller value of
KS ≈ −v∗hvel

I /κw for LiCl than for NaCl. Re-
cently, the correlation between KS and vI has
also been discussed using MD simulations of
methane-salt-water solutions.23

Salt-enhanced-association (SEA)
coefficient

We now examine the SEA coefficient CI defined
in Eq. (40). In Figures 3a and 3b the normal-
ized SEA coefficient CI/d

6
w is plotted as a func-

tion of the cation diameter αc for the fixed an-
ion diameters αa = 0.7 and 1.3, respectively.
In each panel the solute diameter αh is set to
1.4, 1.2, 1.0, 0.8, and 0.6. In Figures 4a and
4b surface plots of CI in the (αc, αh)-plane are
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also presented for αa = 0.7 and 1.3, respec-
tively. They show that CI is positive in most of
the plot ranges, which means that an addition
of ions usually shifts the solute-solute interac-
tion towards attraction. We also notice that the
ion effect is stronger for larger solutes and for
smaller ions.

In Figures 3a and 3b the plotted in broken
lines are the contribution C

(2)
I = K2

S/4 from
the coupling between the solvent composition
and the asymmetric solute-solvent interactions
(see Eq. (42)). We notice that the curves of

C
(2)
I behave similarly to those of CI. Figures 3c

and 3d present the plots of CI vs C
(2)
I , where

the parameters are the same as in Figures 3a
and 3b, respectively. In the entire plot-range,
we observe that

CI ≈ C
(2)
I = K2

S/4. (58)

Figures 3e and 3f show the plots of CI vs KS

with marks and C
(1)
I vs KS with dashed lines.

These also confirm the validity of the approx-
imate relation Eq. (58); C

(1)
I also varies with

KS, but the correlation is much weaker than
that between the total SEA coefficient CI and
KS.

Equation (58) approximately quantifies the
correlation between the two different salt ef-
fects: the one on the solubility of solutes and
the other on the solute-solute effective interac-
tion. Because a change in solvent-solvent and
solute-solvent molecular interactions crucially
influences both the solubility and effective in-
teraction, it is not surprising KS and CI are
somehow correlated. However, how they are
correlated is by no means trivial, as the for-
mer is determined for a single, isolated solute
molecule in the solvent. In principle, the os-
motic second virial coefficients B is extracted
from, for instance, the nh-dependence of solute
activity. However, such experiments would be
very difficult when the solubility of a solute is
extremely low as in the present case, and to
the best of the authors’ knowledge, no experi-
mental data of B for nonpolar solutes in water
with nor without salt are available in the liter-
ature. Hence at present computer simulation is
the only effective tool to check our theoretical

Figure 3: (a) and (b): The normalized SEA co-

efficients CI/d
6
w (solid lines) and C

(2)
I /d6

w (bro-
ken lines) as functions of the cation diameter

αc = dc/dw. (c) and (d): CI vs C
(2)
I in units of

d6
w102. (e) and (f): CI/d

6
w vs KS/d

3
w. Each

mark-shape corresponds to its respective αh-
value shown in (c) and (d). The dashed lines

present C
(1)
I /d6

w, where each line color corre-
sponds to the αh-value of the mark with the
same color. The normalized anion diameter
αa = da/dw is set to 0.7 in (a), (c), and (e),
and to 1.3 in (b), (d), and (f). In each panel
the normalized solute diameter αh = dh/dw is
set to 1.4, 1.2, 1.0, 0.8, and 0.6.
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Figure 4: Surface plots of the normalized SEA
coefficient CI/d

6
w as a function of the cation di-

ameter αc = dc/dw and the solute diameter
αh = dh/dw for (a) αa = da/dw = 0.7 and
(b)1.3. The pale-red color indicates the region

of |C(1)
I /C

(2)
I | . 1/3.

prediction.
Thomas and Elcock31 performed MD simu-

lations to investigate how additions of alkali-
halide salts affect the solute-solute PMFs of
methane and neopentane solutions. They found
that the salts with larger KS-values tend to
lower the PMFs more abundantly in a wide
range of the solute-solute distance, which sug-
gests their simulation data is at least qualita-
tively consistent with Eq. (58).

More recently, Koga and Yamamoto33 have
studied the correlation between the excess so-
lute chemical potential kBTν

s
h and the sec-

ond osmotic virial coefficient B of methane
in a NaCl-water solution, using MD simula-
tions. From their simulation data, we esti-
mate B ≈ −0.02 L/mol without salt and B ≈
−0.10 L/mol at ns ≈ 1 mol/L, which yields
CI ≈ 0.08 L2/mol2. Here we have used Eq. (SI-
67) to obtain the solute-solute KBI Gs

hh = −2B
in the limit nh → 0 from the KBI Ghh com-
puted at nh ≈ 0.67 mol/L, while Koga and Ya-
mamoto33 have simply approximated as B ≈
−Ghh/2 ≈ −0.12. We also estimate KS ≈
0.51 L/mol from the data of kBTν

s
h in Koga and

Yamamoto, which yields C
(2)
I ≈ 0.065 L2/mol2.

We hence have C
(2)
I /CI ≈ 0.81, and Eq. (58)

holds fairly well.
Note, meanwhile, that Eq. (58) does not al-

ways mean |C(1)
I /C

(2)
I | � 1. The plotted in

Figures 5a and 5b are the ratio C
(2)
I /CI as a

function of αc (Note that αc in Figure 5b is re-
stricted in the range such that CI < 0, while
in Figure 3b CI becomes positive from negative
at around αc ≈ 0.9.). The pale-red color in
Figures 4a and 4b indicates the region where
|C(1)

I /C
(2)
I | . 1/3. They show the tendency

that |C(1)
I /C

(2)
I | � 1 (or C

(2)
I /CI ∼ 1) is vio-

lated for large ions and/or solutes, for which
both KS and |CI| are small.

In summary, the approximation in Eq. (58)

is good in a sense that |C(1)
I /C

(2)
I | � 1,

when the ions and/or solutes are small in
size, αc, αa, αh . 1. Otherwise the inequality

|C(1)
I /C

(2)
I | � 1 is violated; even in this case, as

is shown in Figures 3c–3f we can nevertheless
use Eq. (58) for a rough estimate of the SEA
coefficient CI from the Sechenov coefficient KS.
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Figure 5: C
(2)
I /CI vs αc. The normalized anion

diameter αa = da/dw is set to 0.7 in (a), and to
1.3 in (b). In each panel the normalized solute
diameter αh = dh/dw is set to 1.4, 1.2, 1.0, 0.8,
and 0.6.

Conclusions

We have investigated the salt effects on the gas
solubility (the solute excess chemical potential
kBTν

s
h) and the effective solute-solute interac-

tion (second osmotic virial coefficient B or the
effective interaction coefficient U eff

hh ). The for-
mer is measured by the Sechenov coefficient
KS and the latter by the SEA (salt-enhanced-
association) coefficient CI defined in Eqs. (31)
and (40), respectively. In our study the den-
sities of water, ions, and solutes are explic-
itly regarded as the variables, so that solvent-
mediated interactions are naturally taken into
account.2,36

We have first introduced some basic thermo-
dynamic quantities such as the solute excess
chemical potential νs

h, the partial volumes v̄i,
vs
i and vi, and the solvent composition sus-

ceptibility χI. Then in terms of these quan-
tities we have expressed the Sechenov coeffi-
cient KS and the effective interaction coefficient
U eff

hh ; the expressions in Eqs. (31)–(33), and (39)
are generalization of Eq. (1). In Eq. (39) the
term −kBTχIg

2
h, where gh measures the asym-

metry between the solute-salt and solute-water
interactions, is due to the coupling of composi-
tion susceptibility and the asymmetric solute-
solvent interactions. Previously,36 the same ex-
pression has been derived for the solute-solute
effective interaction coefficient in a non-ionic
ternary mixture composed of a solute and a bi-

nary solvent, using thermodynamic fluctuation
theory; the previous result can be used by re-
garding the cations and anions as a single indis-
tinguishable component. To quantify the salt
effect on the solute-solute effective interaction,
the SEA coefficient CI has been introduced as
the coefficient of the second-order term of the
expansion of the second osmotic virial coeffi-
cient B in powers of the salt density in Eq. (40).
We have also introduced, in terms of the coarse-
grained local free energy density f̂ , the partial
volumes of individual ion species, which play
important roles in understanding the ion-size
dependence of KS.

We have modeled the local free energy den-
sity using the four-component (water, cation,
anion, and solute) BMCSL (Boubĺık-Mansoori-
Carnahan-Starling-Leland) model for the steric
effect and the Born model for the electrostric-
tion effect. Our model is an extension of the
previous ones for electrolyte solutions2 and for
non-ionic ternary mixtures composed of a so-
lute and a binary mixture solvent.36 We have
then numerically examined how KS and CI de-
pend on the ion and solute sizes. Regarding
KS, our simple model semi-quantitatively re-
produces the the experimental data. In particu-
lar, the inversion of solute size (αh) dependence
of KS for large ions have been explained by the
interplay of steric and electrostriction effects.
The negative value of KS observed for large
ions and solutes, e.g., benzene and CsI in Table
1, is also reproduced as a result of the steric
effects and short-range attractive interactions.
For small ions and solutes, we have a rather sim-
ple expression KS ≈ Kel

S = −v∗hvel
I /κw. While

our simple model cannot reproduce the irregu-
lar behavior of Li+, Eq. (52) suggests that the
small KS values associated with Li+ are the re-
sult of the weak electrostriction effect on the
partial volume of Li+ as compared with that of
Na+.

The correlation between the salt effect on the
solute solubility and that on the solute-solute
effective interaction that has been known by
earlier simulation studies has been accounted
for by the explicit connection between KS and
CI in Eqs. (40)–(42). When ions and so-
lutes are not very large, we have the simple
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quadratic relation CI ≈ K2
S/4 in Eq. (58).

The right hand side of Eq. (58) is the contri-
bution from −kBTχIg

2
h in Eq. (39), i.e., the

coupling of composition fluctuations and the
asymmetric solute-solvent interactions (see also
Eq. (42)). This prediction is qualitatively con-
sistent with the salt-induced downward shifts
of solute-solute PMFs obtained from MD sim-
ulations of methane and neopentane in alkali-
halide solutions.31 Furthermore, we have con-
firmed that the data of the recent MD simula-
tions of a methane-NaCl-water solution33 satis-
fies Eq. (58). This approximate relation (58) is
less precise for large ions and solutes, but can
nevertheless be used for a rough estimate of CI

in the wide range of ion and solute sizes.
We make final remarks. (i) While our numer-

ical calculations reproduce the overall behav-
ior of the experimental data of KS fairly well,
our model free energy remains rather approxi-
mate; it takes into account neither the asymme-
try between the cation-water and anion-water
interactions nor the hydrogen-bonding between
water molecules. The latter effect, for exam-
ple, should play a relevant role in the temper-
ature dependence of gas solubility in aqueous
electrolyte solutions as in pure water.54 (ii) Al-
though we have seen that the relation Eq. (58)
is in good agreement with the data of previ-
ous MD simulations in methane-NaCl-water,
quantitative understanding of the correlation
between KS and CI for non-polar solutes re-
mains incomplete. MD simulations for various
combinations of solutes and ions would be in-
formative. (iii) It is known that for molecular
species with both hydrophobic and hydrophilic
groups such as alcohols, surfactants, peptides
the Sechenov coefficient is relatively small (shift
towards salting-in) as compared with non-polar
ones.15 Salt effects on the effective interactions
between such solutes would also be interest-
ing.65
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Carlo Simulations of the Hydrophobic Ef-
fect in Aqueous Electrolyte Solutions. J.
Phys. Chem. B 2006, 110, 8782–8788.

(31) Thomas, A. S.; Elcock, A. H. Molecular
Dynamics Simulations of Hydrophobic As-
sociations in Aqueous Salt Solutions Indi-
cate a Connection between Water Hydro-
gen Bonding and the Hofmeister Effect. J.
Am. Chem. Soc. 2007, 129, 14887–14898.

(32) Kirkwood, J. G.; Buff, F. P. The statistical
mechanical theory of solutions. I. J. Chem.
Phys. 1951, 19, 774–777.

(33) Koga, K.; Yamamoto, N. Hydrophobic-
ity Varying with Temperature, Pressure,
and Salt Concentration. J. Phys. Chem.
B 2018, 122, 3655–3665.

(34) Koga, K.; Holten, V.; Widom, B. Deriv-
ing second osmotic virial coefficients from
equations of state and from experiment. J.
Phys. Chem. B 2015, 119, 13391–13397.

(35) Cerdeiriña, C. A.; Widom, B. Osmotic sec-
ond virial coefficients of aqueous solutions
from two component equations of state. J.
Phys. Chem. B 2016, 120, 13144–13151.

(36) Okamoto, R.; Onuki, A. Theory of non-
ionic hydrophobic solutes in mixture sol-
vent: Solvent-mediated interaction and
solute-induced phase separation. J. Chem.
Phys. 2018, 149, 014501.
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