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ABSTRACT Operating systems adopt kernel protection methods (e.g., mandatory access control, kernel
address space layout randomization, control flow integrity, and kernel page table isolation) as essential
countermeasures to reduce the likelihood of kernel vulnerability attacks. However, kernel memory corruption
can still occur via the execution of malicious kernel code at the kernel layer. This is because the vulnerable
kernel code and the attack target kernel code or kernel data are located in the same kernel address space.
To gain complete control of a host, adversaries focus on kernel code invocations, such as function pointers
that rely on the starting points of the kernel protection methods. To mitigate such subversion attacks, this
paper presents multiple kernel memory (MKM), which employs an alternative design for kernel address
space separation. The MKM mechanism focuses on the isolation granularity of the kernel address space
during each execution of the kernel code. MKM provides two kernel address spaces, namely, i) the
trampoline kernel address space, which acts as the gateway feature between user and kernel modes and ii) the
security kernel address space, which utilizes the localization of the kernel protection methods (i.e., kernel
observation). Additionally, MKM achieves the encapsulation of the vulnerable kernel code to prevent access
to the kernel code invocations of the separated kernel address space. The evaluation results demonstrated that
MKM can protect the kernel code and kernel data from a proof-of-concept kernel vulnerability that could
lead to kernel memory corruption. In addition, the performance results of MKM indicate that the system
call overhead latency ranges from 0.020 µs to 0.5445 µs, while the web application benchmark ranges from
196.27 µs to 6,685.73 µs for each download access of 100,000 Hypertext Transfer Protocol sessions. MKM
attained a 97.65% system benchmark score and a 99.76% kernel compilation time.

INDEX TERMS Memory corruption, kernel vulnerability, system security, operating system.

I. INTRODUCTION
A kernel vulnerability attack in an operating system (OS) is a
serious issue that compromises security in [1]. Kernel mem-
ory corruption is a common type of vulnerability that is used
as an attack vector in [2]. Approximately 5,850 kernel mem-
ory corruption vulnerabilities were reported until 2020 as
shown by the common vulnerabilities and exposures (CVE)
list [3].

The adversary carries out a privilege escalation, which
employs an illegal kernel memory corruption to overwrite or
force kernel code invocations that result in the modification
of privileged information variables to obtain full control of an
administrator account as mentioned earlier [1], [2].
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To prevent such subversions, several kernel protection
methods have been implemented. In [4], the authors have
proposed the stack monitoring of the kernel code to prevent
buffer overflows. The study conducted in [5] proposed the
kernel address space layout randomization (KASLR), which
randomizes the position of the virtual address range of the
kernel codes and data in the kernel address space. Another
study conducted in [6] proposed the control flow integrity
(CFI), which verifies a relation of kernel code invocations
to prevent the execution of malicious programs with modifi-
cations of the return address. Moreover, the kernel memory
observer (KMO) segregates the kernel monitoring code in
the dedicated kernel address space in [7]. To prevent melt-
down side channel attacks, kernel page table isolation (KPTI)
isolates the kernel memory from the kernel and user modes
in [8].
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In [9], the trusted computing base (TCB) ensures the trust-
worthiness of a small set of system components. TCB of the
firmware and kernel are combined with a secure boot that
validates the TCBs using signatures stored in the tamper-
proof device during the bootstrap process in [10]. Addi-
tionally, another mechanism was developed in [11], wherein
the supervisor mode access prevention (SMAP) forcefully
denies access, and the supervisor mode execution preven-
tion (SMEP) prevents execution on the user region.

These countermeasures mitigate the effects of kernel
memory corruption, thereby reducing the success rate of
kernel attacks (i.e., identification of vulnerable kernel code,
insertion of malicious code, and finally, the execution of
a malicious code). Nevertheless, invocation placements of
kernel codes for kernel protection methods (e.g., function
pointer) must be assigned to the same kernel address space
with a vulnerable kernel code. The invocation placements
of kernel protection methods at the kernel layer remains
an unaddressed threat. Adversaries can try to replace these
invocation placements with a function pointer of meaningless
kernel codes to defeat the kernel security mechanisms (such
as mandatory access control (MAC)) of SELinux in [12])
and gain elevated privileges via vulnerable kernel codes
in [13], [14].

This paper describes the characteristics of a novel security
mechanism known as the multiple kernel memory (MKM)
to enhance the resistance of the kernel to kernel memory
corruption. As part of MKM, two kernel address spaces
(trampoline and security) are introduced. To isolate the invo-
cation placements and kernel codes of kernel protectionmeth-
ods from a vulnerable kernel codes, MKM assigns the feature
of kernel address space switching to the trampoline kernel
address space. It also assigns kernel protection methods to the
security kernel address space. Thereby, MKM encapsulates
the vulnerable kernel code in the original kernel address
space. The multiple kernel address space of MKM mitigates
kernel vulnerability attacks that subvert the kernel protection
methods and the invocations placement of the kernel code.
Therefore, MKM forcefully restricts the visible region of the
kernel address space for vulnerable kernel codes to reduce the
likelihood of damage caused by kernel memory corruption.
An overview of the MKM security mechanism is as follows:
• As part of the MKM design, two kernel address spaces
are provided one for the trampoline and the another for
security to set the kernel code execution boundary. The
kernel address space for the trampoline acts as the gate-
way between the user and kernel modes, and it supports
the switching feature of the kernel address space. Subse-
quently, the kernel address space for security covers the
kernel protection methods. The original kernel address
space supports remaining the kernel codes that contain
the kernel vulnerabilities.

• Reducing the kernel’s attack surface requires a separa-
tion of the kernel address space to isolate the accessible
kernel code range at the kernel layer. The MKMmecha-
nism eliminates the risk of kernel memory corruption of

the invocation placements of kernel code (e.g., the ker-
nel switching gateway of the kernel address space and
the kernel protection methods). These kernel codes and
function pointer values are stored on the trampoline
and security kernel address space. The MKM forcefully
encapsulates the vulnerable kernel codes that can only
move to the original kernel address spaces.

In short, the primary contributions of this study are:
1) The proposed MKM mechanism, which is a novel

kernel memory separation mechanism designed to
specifically protect kernel protection methods at the
kernel layer. The MKM approach improves resilience
against kernel vulnerability attacks. This paper also
discusses the threat model, capability, limitations,
portability, and hardware considerations of MKM.

2) The efficacy of the implemented MKM was evaluated
with an actual kernel vulnerability (CVE-2017-
16995 in [15]) Proof-of-Concept (PoC) code that
subverts SELinux and the MKM switching of the
kernel address space. The kernel observation mecha-
nism accurately detected both cases as kernel mem-
ory corruption. MKM’s performance evaluation results
indicate that the round time overhead for system calls
were between 0.020 µs to 0.5445 µs. The overhead for
each Hypertext Transfer Protocol (HTTP) download
access via a web application was between 196.27 µs to
6,685.73 µs. Additionally, MKM achieved an accept-
able performance score that indicates system bench-
mark suites of 97.65% and a compiling time of 99.76%
for Linux kernel.

Finally, this paper highlights the contribution differences
from the previous paper in [16]. Although this paper is based
on conference proceedings in [7], [16], the present paper
provides additional design, evaluation results, and imple-
mentation portability. Additionally, this paper introduced the
general concept of MKM that can mitigate the memory cor-
ruption for running kernel and actual kernel vulnerability
attacks that cannot break the security capability of MKM
in [16]. As an evaluation result, the performance overhead
was evaluated based on the system call invocation and HTTP
server, which has a micro coverage in [16]. In a previous
paper [16], the authors discussed the memory observation
mechanism that identifies the kernel memory corruption at
the kernel layer, which is a different study of the primary
concept of this paper. The present paper also includes a
certain part of the results, as described in [16] that is otherwise
cited in a submitted paper. However, definite differences
between the two papers have been carefully highlighted. First,
this paper distinctly aims to establish the security bound-
ary for attacking target kernel code and vulnerable kernel
code. Second, it addresses the assignment of kernel codes
and function pointers to different kernel address spaces (e.g.,
trampoline, security, and original) and generalization of the
kernel address space switching sequences for the design of
kernel components. Third, it details the evaluation of the fea-
sibility of implementing MKM along with UnixBench score

111652 VOLUME 9, 2021



H. Kuzuno, T. Yamauchi: Mitigation of Kernel Memory Corruption Using MKM Mechanism

and Linux kernel compiling time (e.g., compiler and linker),
to attempt calculating actual kernel layer overhead for user’s
environment usage. Furthermore, to obtain a more technical
standpoint, this study investigated the proposed portability
of mechanism. MKM’s design and implementation can be
applied to other OSes (e.g., FreeBSD and XNU kernel) with
different architectures (e.g., ARM). This result indicates that
MKM is one of the various mitigation approaches for kernel
memory corruption.

II. MEMORY CORRUPTION AND COUNTERMEASURES
A. PRIVILEGE ESCALATION ATTACK
Adversaries need to execute arbitrary program code that
exploits kernel vulnerabilities to gain complete privilege
escalation at the kernel layer as shown by Chen et al. [2].
To circumvent kernel and central processing unit (CPU) pro-
tection methods, they can corrupt the kernel memory to allow
the reading and writing of kernel code or kernel data as shown
by Kemerlis et al. [1].

On Linux, adversaries can achieve privilege escalationwith
kernel memory corruption as presented in Table 1. PoC codes
insert a malicious program that forcefully invokes privilege
update kernel functions. The functions, commit_creds
and prepare_kernel_cred switch the user privileges
to root privileges and are usually used by Linux’s account
management system in [17]–[19]. Additionally, the kernel
memory corruption requires the overwriting of user account
privilege information (UID) variables in the cred structure
on the kernel memory in [15]. Linux uses MAC to restrict
root capability in [12]. Adversaries must subvert the kernel
protection methods of the Linux security module (LSM) at
the kernel layer. The kernel memory corruption can also
result in the replacement of the function pointer value of the
LSM for security_hook_list with a function pointer
value that points to a non-checking access control method.
Moreover, adversaries alter the security context variable to
circumvent the MAC system (e.g., SELinux) in [13], [14].

TABLE 1. Typical Linux memory corruption vulnerability list. ‘Types’ refers
to Mem. Corr.: Memory corruption, Priv. Inv.: Privilege update kernel code
invocation.

B. PROTECTION OF KERNEL MEMORY
Traditional protection mechanisms used by the CPU and
kernel control the referencing of the kernel address space
from user processes as mentioned earlier [20], [21]. To con-
duct kernel vulnerability attacks, an adversary requires virtual
address information to execute an arbitrary program code on
the kernel address space. Figure 1 shows that the page table
maintains page entry assignments, which allocates relation-
ships between the physical and virtual addresses for each page

of the page table. The Linux x86_64 architecture uses 48 bit
virtual addresses and 4 KB page sizes. The physical address
of the page table is held in the control register 3 (CR3) in [22].

The user processes of an adversary require the virtual
addresses to execute a malicious program via a kernel vul-
nerability. Although KASLR / CFI protects the kernel against
exploitation kernel attacks from the user processes of an
adversary as mentioned [5], [6], a meltdown side channel
attack that allows a user process to refer to any location in the
kernel address space without the use of existing kernel pro-
tection methods (e.g., KASLR) as demonstrated in [8]. The
kernel memory isolation is the countermeasure for meltdown
side channel attacks (e.g., Linux KPTI in [8]).

III. THREAT MODEL
The threat model is for an adversary who corrupts the kernel
memory to execute kernel vulnerability attacks that are only
successful if they are executed in the kernel mode in [2]. The
adversary’s aim is to obtain complete administrator privileges
on the kernel. Herein, the adversary is a normal user that
executes user processes to alter the function pointer variable
of the access control mechanism (e.g., LSM hook) using
vulnerable kernel codes, consequently disabling the MAC,
updating credential variables, and the switching function of
kernel address space on the original kernel address space of
the MKM.

This enables the user process of the adversary to insert a
malicious code into the original kernel address space, over-
writing any kernel code and data. Consequently, the adversary
gains complete administrator privileges on the kernel.

However, to achieve kernel memory corruption, the kernel
vulnerability and the targeted kernel code and data need to
be on the same kernel address spaces. Therefore, this attack
cannot overwrite other kernel address spaces.

IV. THE DESIGN OF MKM
A. DESIGN CONCEPT
This study designed the multiple kernel memory (MKM)
mechanism that retains the capabilities of kernel protection at
the kernel layer. It prevents the subversion of the invocation
placement i.e., the kernel code and function pointer.
• Security Requirement of the Kernel Protection Method
Invocation: A traditional kernel address space is shared
by the entire kernel code. Adversaries can easily subvert
kernel protection methods to bypass accurate privilege
checking for privilege escalation via the kernel memory
modification. Further protection against kernel memory
corruption requires the complete isolation of the kernel
address space of kernel protection methods and kernel
code invocation placements from the vulnerable ker-
nel code in the running kernel.

B. KERNEL RESILIENCE CHALLENGE
The design concept presented in section IV-A is the chal-
lenge faced by the kernel with MKM in terms of its
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FIGURE 1. Overview of page table structure (Linux x86_64 architecture) in [22].

FIGURE 2. Overview of the multiple kernel memory design.

resilience. To address this concern, the following provisions
are required:
• Isolated Kernel Address Space of Kernel Protection
Method Invocation:
To isolate the kernel address space and to execute the
kernel protection method, the MKM ensures kernel
resilience by manually assigning a set of kernel codes to
segregated kernel address spaces. It ensures that if the
kernel code is forcefully accessed, executed, and cor-
rupted, the corruption is confined to the isolated kernel
address space.

MKM satisfies the requirement of separated kernel address
spaces using two dedicated kernel address spaces. Figure 2
shows an overview of how MKM provides kernel memory
isolation by allocating a small set of kernel code and kernel
data to each kernel address space. The role of each proposed
kernel address space is as follows:
Trampoline: The trampoline kernel address space facilitates

the switching functions. The main part of the
trampoline kernel address space acts as a gate-
way for the transition between the user mode
and kernel mode.

Security: The security kernel address space employs fea-
tures of kernel protection methods that contain
specific sets of kernel codes and data. Only the
security kernel address space can execute these
kernel codes. The ‘‘in and out’’ transition is
forcefully permitted with the trampoline ker-
nel address space between the user and kernel
modes.

Even though the vulnerable kernel codes exist at the kernel
layer, the reach of these kernel codes is limited to their
kernel address space. The design of MKM implies that the
kernel protection method codes can only execute when on
the appropriate kernel address space when in kernel mode.
The trampoline and security kernel address space achieve the
segregation from the vulnerable kernel codes by performing
kernel address space switching of the MKM.

C. KERNEL ADDRESS SPACE SWITCHING SEQUENCE
MKM defines three switching sequences for switching
between multiple kernel address spaces. It ensures that the
jump to the trampoline kernel address space is located in
the middle of sequence 1 and 3 as shown in Figure 3.

111654 VOLUME 9, 2021



H. Kuzuno, T. Yamauchi: Mitigation of Kernel Memory Corruption Using MKM Mechanism

FIGURE 3. Overview of the switching sequences of the kernel address
space.

Additionally, MKM forces the use of these sequences when
transitioning between the user mode and the kernel mode
as a result of a user process issuing a request to the kernel,
as described below:
Sequence 1: User

1
−→ Trampoline

2
−→ Security

3
−→ Trampo-

line
4
−→ Kernel

Sequence 1 represents a system call invocation
or exception request that triggers a transition
from the user mode to the kernel mode. MKM
is involved when switching from the kernel
address space of the user mode to the original
kernel address space, via the trampoline and
security kernel address space. It is necessary for
the execution of the kernel protection methods
before the kernel feature deals with the request
from the user process.

Sequence 2: Kernel
5
−→ Security

6
−→ Kernel

Sequence 2 represents the timing of the ker-
nel protection method invocation during kernel
feature processing. MKM switches from the
original kernel address space to the security
kernel address space.

Sequence 3: Kernel
7
−→ Trampoline

8
−→ Security

9
−→ Trampo-

line
10
−→ User

Sequence 3 represents the return to the user
mode from the kernel mode. At this point,
the kernel features have completed the request
of the user process. MKM executes kernel
protection methods while in the kernel mode.
The switching flow is from the original kernel
address space to the kernel address space of
the user mode via the trampoline and security
kernel address space.

D. ATTACK SURFACE OF MKM
MKM suppresses the attack surfaces from vulnerable kernel
code. The point of reaming kernel attack surface is that a
kernel vulnerability attack can lead to the corruption of the
kernel memory of other kernel code or data stored in the
original kernel address space in the kernel mode.

Adversaries can inject the attack code that only disrupts the
switching function of original kernel address space of MKM.
This disruption intercepts the execution of the kernel protec-
tion methods for the switching of the kernel address space
during sequence 2 and sequence 3. MKM cannot prevent
kernel memory corruption that occurs during kernel process-
ing and after the system call invocation. The trampoline and
security kernel address space retain their ability to execute
the switching feature of the kernel address space (e.g., kernel
code and function pointer) for sequence 1 if subjected to this
attack. Therefore, the reduction of the attack surface protects
the kernel protection methods and data that are executable
at the kernel level. Hence, MKM can execute the kernel
protection methods prior to the system call.

V. MKM IMPLEMENTATION
In this study, the MKM is implemented on Linux for the
x86_64 CPU architecture and leveraged KPTI.

A. PAGE TABLE MANAGEMENT
MKM leverages KPTI by repurposing the kernel address
spaces pre-assigned to them to act as the user and original
kernel page tables. Additionally, MKM introduces the tram-
poline and security page tables for dedicated kernel address
spaces as shown in Figure 4. The trampoline page table
supports the switching gateway of the kernel address space.
All the user processes share the security page table that
supports the kernel protection methods. MKM assigns and
executes the kernel memory monitoring on the security page
table for the case study.

During implementation, MKM sets the initial value of the
trampoline page table to the pgd variable of the init_mm
structure. The security page table uses a four-page size
(16 Kbytes on the x86_64 architecture) offset from the
physical address of pgd (i.e., CR3 value + 0 × 4000).
The user page table uses a one-page size (4 Kbytes on the
x86_64 architecture) offset from the physical address of pgd
(i.e., CR3 value + 0 × 1000). The original kernel page
table is the kernel_pgd variable of mm_struct of the
task_struct structure.

B. PAGE TABLE SWITCHING
MKM automatically maintains page tables switching for
the execution of kernel code on the specific kernel address
spaces. Figure 4 indicates that MKM employs the switching
functions of the page table to transition to each page table.
These functions forcibly shift the kernel address space and
then continue the kernel processing to invoke the kernel
codes. The three switching sequences were implemented as
follows:
Sequence 1: User

1
−→ Trampoline

2
−→ Security

3
−→ Trampo-

line
4
−→ Kernel

Sequence 1 represents the transition from
the user mode to the kernel mode. MKM
employs the SWITCH_KPTI_CR3 function to
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FIGURE 4. Timing of switching kernel address space.

write the physical address of the trampoline
page table to the CR3. MKM also employs
SWITCH_SECURITY_CR3 to write the phys-
ical address of the security page table to the
CR3. It reverts to the trampoline page table
after executing the kernel protection methods.
The SWITCH_KERNEL_CR3 function writes
the physical address of the original kernel page
table to the CR3.

Sequence 2: Kernel
5
−→ Security

6
−→ Kernel

MKMutilizes SWITCH_SECURITY_CR3 and
SWITCH_KERNEL_CR3 to switch between
the security and original kernel page tables dur-
ing kernel processing. Kernel protection meth-
ods are executed on the security page table.

Sequence 3: Kernel
7
−→ Trampoline

8
−→ Security

9
−→ Trampo-

line
10
−→ User

Sequence 3 represents the transition from the
kernel mode to the user mode. The MKM uses
SWITCH_KERNEL_CR3 to write the physi-
cal address of the trampoline page table to
the CR3. Moreover, MKM uses SWITCH_
SECURITY_CR3 and SWITCH_KPTI_CR3
to write the user page table to the CR3 through
the security and trampoline page tables. MKM
executes kernel protection methods and reverts
to the user page table via the trampoline page
table.

VI. CASE STUDY
A. SECURITY FEATURES OF MKM
MKMprovides the same kernel code and kernel datamapping
for each kernel address space. To present an actual running

case of a protection method, MKM employs the kernel obser-
vation mechanism that is only visible and executable on
the security page table. The kernel observation mechanism
monitors the kernel code, data, and the kernel module as
shown in Figure 5. More specifically, it monitors the LSM
variables, and the switching functions of the page table for
memory corruption during evaluation.

During kernel boot time, MKM ensures the accuracy of
the monitoring process by invoking the kernel observation
mechanism after the virtual addresses of the target kernel
code are specified on the kernel page table. Subsequently,
the kernel observation mechanism writes valid data contain-
ing the monitoring data to the security page table.

MKM automatically handles the timing of the executions
of the protection methods during switching sequences of the
page table. The kernel observation mechanism starts mon-
itoring features before and after the system call invocation
and during kernel processing. During monitoring, the kernel
observationmechanism compares the target data and the valid
data on the security page table to catch any occurrences of
kernel memory corruption.

B. PAGE TABLE SWITCHING ATTACK ON MKM
Attacks on the MKM kernel that subvert the page table
switching function, leading to a complete disruption of the
kernel method invocation protection, must be considered.
In this study, the PoC code of the extended Berkeley packet
filter (eBPF) CVE-2017-16995 was employed to evaluate the
resilience of MKM to such an attack. The customized PoC
code can modify any kernel address space of the original ker-
nel page table. The PoC invokes the map_update_elem
function of kernel/bpf/syscall.c to execute the
exploit code that is directly inserted into the kernel.
Figure 6 depicts the mechanisms of this attack and its
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FIGURE 5. Monitoring region and evaluated region of kernel code on MKM.

detection flow. The user process of the adversary injects the
exploit code into the kernel address space of the original
kernel page table. Although the exploit code is executed
while in the kernel mode, it corrupts the original kernel page
table up to the switching functions of the page table. (e.g.,
SWITCH_SECURITY_CR3 and SWITCH_KERNEL_CR3).
The details of the kernel memory corruption and kernel pro-
cessing flow are as follows:

1) The adversary’s user process uses the map_update_
elem function through an eBPF system call.

2) The adversary’s user process overwrites the SWITCH_
KERNEL_CR3 function on the original kernel page
table via kernel vulnerability CVE-2017-16995.

3) The MKM kernel directory switches from the kernel
page table to the user page table.

4) The user process of the adversary invokes an exec sys-
tem call. MKM switches the trampoline page table to
the security page table to automatically start the kernel
observation mechanism.

5) The kernel observation mechanism executes the moni-
toring code.

6) The kernel observation mechanism identifies illegal
memory corruption by comparing the virtual address
of SWITCH_KERNEL_CR3 with valid data.

The user process of the adversary does not target the kernel
code and kernel data on other page tables (e.g., trampoline
and security) on the MKM kernel. Moreover, it is difficult for
the adversary to evade the inspection timing before the system
call invocation of MKM as kernel observation mechanism is
invoked after the user process of the adversary has already
compromised the host.

VII. EVALUATION
A. SECURITY CAPABILITY
The security capability of the MKM kernel is validated
through the identification and measurement times of kernel

memory corruptions to evaluate the security capability of the
MKM kernel.

1) Detecting kernel memory corruption of LSM using
MKM:
MKM uses the kernel observation mechanism to deter-
mine whether the function pointer virtual addresses of
the LSM are valid.

2) Detecting kernel memory corruption of the switching
feature of the page table:
MKM retains the switching capability of the page table
after kernel memory corruption. Additionally, the ker-
nel observationmechanism inspects whether the virtual
address of the switching function is valid.

B. PERFORMANCE MEASUREMENT
During practical implementation, the performance was mea-
sured to compare the effects of kernel feasibility for a vanilla
kernel and the MKM kernel.

1) Experimental results for the system call invocations
overhead:
Benchmarking software was used to calculate the sys-
tem call latency overhead.

2) Experimental results for application overhead:
The application executed several switches of the page
tables. Benchmarking software was used to measure
web access performance.

3) Experimental results of kernel processing overhead:
Measured the processing performance overhead of the
MKM kernel using benchmarking software and kernel
compilation time.

C. ENVIRONMENT OF THE EVALUATION
1) IMPLEMENTATION
MKM was implemented for the Linux x86_64 kernel with
KPTI and the kernel observation mechanism. To evaluate the
capabilities of MKMwith the kernel observation mechanism,
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FIGURE 6. Attack and detection flow of adversary process on MKM.

actual kernel vulnerability is necessary to lead to memory
corruption (e.g., CVE-2017-16995). This kernel vulnerability
required a Linux kernel 4.4.114. MKM’s overhead evaluation
requires stable behavior for the whole of the latest Linux ker-
nel 5.0.0. The OS environment is the Debian 9.0 distribution
and the CVE-2017-16995 PoC code was customized.

MKM supports dedicated page table management, switch-
ing, and monitoring features. Those features required the
addition of 27 source files and 1,254 lines of code to Linux
kernel 4.4.114, and the addition of 46 source files and
1,245 lines of code to Linux kernel 5.0.0.

2) EQUIPMENT
Evaluations were conducted on a stand-alone server equipped
with an Intel (R) Core (TM) i7-7700HQ (2.80 GHz, x86_64)
processor and 16 GB of DDR4 memory. The client machine
had an Intel (R) Core (TM) i5-4200U (1.6 GHz) with 8 GB of
memory and Windows 10 OS. The network environment for
the application benchmark included a 1 Gbps hub supporting
different ports for the server and client machines.

D. DETECTION EXPERIMENTS FOR MEMORY
CORRUPTION
1) DETECTING MEMORY CORRUPTION OF LSM USING MKM
The memory corruption resulting from the use of the eBPF
kernel attack, CVE-2017-16995 disables the LSM feature of
Linux. When the sys_bpf system call is invoked, the cus-
tomized PoC code replaces the LSM hook function pointer
of selinux_hooks with the virtual address of the original
linux kernel module (LKM) function. During kernel boot,
MKM stored the virtual address of the function pointer for
later use as ground truth. The kernel observation mechanism
inspects the target virtual addresses before and after the

FIGURE 7. Detection of the kernel memory corruption of the LSM
function pointer.

system call invocations. During inspection, the target virtual
address is compared to the stored valid, ground truth virtual
address on the security page table. Log messages record the
result of the comparison.

After memory corruption has been identified, the messages
‘‘Invalid LSM function is detected’’ and ‘‘Virtual Address
(Invalid)’’ are logged. As shown in Figure 7, the MKM
executed the kernel observation mechanism accurately, iden-
tifying the invalid LSM function pointers.

First, LKM logs the virtual address of the kernel mod-
ule function and function pointer value of the target LSM
(lines 2–6). MKM invokes the kernel observation mechanism
and does not detect illegal behavior (line 8). The eBPF kernel
attack using PoC commences at the kernel address space of
the original kernel page table (line 11). Subsequently, MKM
switches to the security page table via the trampoline page
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FIGURE 8. Detection of the memory corruption of page table switching
function.

table. This enables the kernel observation mechanism that
detects and identifies the actual attack (lines 14 and 15).
Finally, LKM logs that the LSM virtual address points to the
function of the kernel module function (line 18).

The kernel observation mechanism used by MKM identi-
fies the memory corruption attack within 0.0049 ms of the
kernel executing the PoC kernel code.

2) DETECTING MEMORY CORRUPTION OF PAGE TABLE
SWITCHING
The attack on page table switching also employed the PoC
of the CVE-2017-16995 kernel vulnerability to overwrite the
function pointer value of the page table switching to the vir-
tual address of the original kernel module function. The cus-
tomized PoC code aims to disable sequence 3 (i.e., switching
from the kernel to the trampoline page tables). The results
indicate that the compromising of SWITCH_KERNEL_CR3
was ineffective in changing the page table. MKM continued
to invoke the kernel observation mechanism that identified
the memory corruption and logged the messages ‘‘Invalid
vmem switching function is detected’’ and ‘‘Virtual Address
(Invalid)’’.

As shown in Figure 8, the kernel observation mechanism
used by MKM accurately identified the memory corruption
that overwrote the function pointer of SWITCH_KERNEL_
CR3, pointing it to the kernel module function pointer on the
kernel page table.

First, LKM logs the virtual address of the kernel mod-
ule function and target switching function value (lines 2–6).
Second, the kernel observation mechanism does not detect
any illegal behavior (line 8). Third, the eBPF kernel attack
modifies the function pointer of switching function value to
the kernel module function (line 11). Fourth, MKM invokes
the kernel observation mechanism to detect and identify the
memory corruption of the trampoline and security page tables
(lines 14 and 15). Finally, LKM logs the function pointer
value of the switching function (line 18).

The detection of the memory corruption occurred
within 0.0039 ms of the kernel executing the attack system
call.

E. MEASUREMENT OF PERFORMANCE OVERHEAD
1) EXPERIMENTAL RESULTS OF SYSTEM CALL INVOCATION
OVERHEAD
To measure the performance overhead incurred by the MKM
kernel relative to a vanilla Linux kernel, the LMbench soft-
ware was run ten times to calculate the average system call
overhead score (i.e., the cost of switching page tables for each
system call).

The LMbench uses different system calls invocation counts
for each system call: 54 invocations for fork+/bin/sh, 4 invo-
cations for fork + execve, two invocations for fork + exit
and open/close, and one invocation for all others. Table 2
shows that the fork + exit system call has the highest over-
head (0.5445 µs), whereas write has the lowest overhead
(0.020 µs).

TABLE 2. System call overhead of MKM mechanism on the Linux (µs).

2) EXPERIMENTAL RESULTS OF APPLICATION OVERHEAD
An Apache 2.4.25 web server was run on each kernel to mea-
sure the user process overhead of the MKM kernel relative to
the vanilla kernel. ApacheBench 2.4, run onWindows 10 OS,
was used to calculate theHTTP download request average run
time for HTTP accesses. ApacheBench sends 100,000 HTTP
accesses, and the files downloaded were 1 KB, 10 KB,
and 100 KB in size. The tests were run over a single con-
nection. As listed in Table 3, MKM had average overhead
of 196.27 µs to 6,685.73 µs for each file download access
of 100,000 HTTP sessions.

TABLE 3. ApacheBench overhead of MKM mechanism on the Linux (µs).

3) EXPERIMENTAL RESULTS OF KERNEL PROCESSING
OVERHEAD
The evaluation of kernel processing overhead involved com-
parison of benchmark scores and kernel compilation times
between the vanilla kernel and the MKM kernel.

UnixBench evaluates CPU, inter process communication,
and file handling costs in a general application execution
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environment. Additionally, both kernels’ compilation times
were measured by compiling Linux kernel 5.0.0 with the
Debian 9.0 default kernel configurations (e.g., .config file).
Each kernel’s score was the average of five compilation trials
to measure the average specific application (e.g., compiler
and linker) processing time. The MKM kernel has a 97.65%
performance score with UnixBench, and a 99.76% perfor-
mance score for kernel compilation performance score as
presented in Table 4.

TABLE 4. UnixBench and kernel compile performance of MKM
mechanism on the Linux.

VIII. DISCUSSION
A. KERNEL RESILIENCE
The PoC of the eBPF kernel vulnerability attack disables one
of the page table switching mechanisms (e.g., the sequence 2)
of MKM on the original kernel page table. Therefore, MKM
cannot invoke the kernel protection methods after the kernel
memory corruption caused by the system call invocation.
However, MKM continued to execute the kernel observation
mechanism on the security page table from the trampoline
page table before the system call invocation.

Vulnerable kernel code can only modify its kernel address
space under the restriction of the MKM. This shows that
the remaining MKM mechanism did not suffer any fur-
ther effects of kernel memory corruption. More specifically,
MKM enhanced the kernel resilience that protected the spe-
cific kernel code and data on the trampoline and security ker-
nel address spaces. Therefore, the implementation of MKM
supports the kernel protection methods and the remaining
kernel codes assigned to each individual kernel address space.
The user process of the adversary cannot evade the entirety of
the security capability of MKM when the malicious program
has only compromised the host.

B. PERFORMANCE
The benchmark results show that the overhead from MKM
handling multiple page tables was suitable for executing
processes on a running kernel. To reduce performance
overheads, MKM enables tag-based translation lookaside
buffers (TLBs). The implementation of Linux KPTI and
MKM assign the process-context identifier (PCID) of TLB.
Although it requires the CR3 update, the TLB’s cache
improved physical memory access without a page table walk.

The application process of MKM was without any over-
head in user mode. KPTI had already introduced the privi-
leged transition between the user mode and the kernel mode,
inducing page table switching overhead at system call invo-
cations. Moreover, MKM has additional overheads when
switching between the trampoline and security kernel page
tables in kernel mode. The kernel observation mechanism

requires additional overhead time of approximately 0.002 µs
to 8.246 µs for each system call invocation in [7].

C. LIMITATION
1) DESIGN LIMITATION
MKM provides three sequences for page table switch-
ing. Each sequence has a different purpose. MKM uses
sequences 1 and 3 before and after the system call invocation,
respectively, as MKM’s automatic protection mechanisms.
Although sequence 2 requires many modifications to the ker-
nel when manually applyingMKM, it fits the adequate place-
ment of kernel behavior to call a kernel protection method
(e.g., SELinux).

Another limitation for the design of MKM is that a
TLB-flush time is considered assuming that the kernel does
not use the PCID of TLB. The TLB cache needs to be
initialized at every page table switching, which increases the
overhead time. During the implementation ofMKM, the orig-
inal kernel TLB-flush timing is retained, and additional
TLB-flush timings are activated after page table switching
when the CPU no longer supports the PCID feature. It poten-
tially affects the performance overhead for the sequences for
page table switching on the MKM kernel.

2) SECURITY LIMITATION
Two security limitations must be considered. First, MKM
does not directly prevent the kernel memory corruption.
Adversary’s user process can still invoke the placement of
actual vulnerable kernel code (e.g., CVE-2017-16995); then,
other kernel codes and kernel data on the original kernel
address space can be defeated.

Another security limitation is that MKM relies on page
tables to achieve kernel address space isolation. MKM
assumes that the kernel protection methods and vulnerable
kernel codes are manually stored on different page tables to
protect specific kernel codes and kernel data. Therefore, ker-
nel protection methods and kernel drivers should be suitably
isolated in the MKM mechanism.

D. PORTABILITY
Kernel address space isolation is already implemented in
FreeBSD, Windows, and macOS in [23]–[25]. It indicates
that Linux running with x86_64 architecture can be imple-
mented on these OSes.

In this study, the feasibility of porting MKM is carefully
examined in comparison to other OS kernels (Table 5). The
MKM implementation for Linux is a reference that supports
KPTI and MKM at the kernel layer. FreeBSD has already
implemented kernel address space isolation method that has
two page tables for user and kernel modes in [26]. Moreover,
the XNU kernel has the no_shared_cr3 flag that supports
page table switching between user and kernel modes in [27].
Both approaches keep the entire kernel text and data on a
one page table. MKM is needed for additional separations at
the kernel layer. The trampoline page table is available and
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TABLE 5. Portability consideration of MKM mechanism for OSes
(X is supported; • is available on x86_64).

remains as a small set of kernel features. The original kernel
page table supports full kernel for the FreeBSD and XNU
kernels.

Additionally, other CPU architectures can be used to
validate the use of multiple kernel page tables (Table 6).
The x86_64 architecture indicates that certain hardware
specifications are needed to support the implementation of
page table isolation. ARM has translation table base regis-
ters (TTBR0 / TTBR1) that store page table addresses for
address translation. Additionally, the exception level flags
(EL0 / 1 / 2 / 3) specify the separation of accessible virtual
address ranges and hardware execution identification of mul-
tiple address spaces for the OS, hypervisor, and secure
monitor in [28].

TABLE 6. Portability consideration of MKM mechanism for architectures
(X is supported; • is available).

E. HARDWARE SUPPORT
Trusted execution environments (TEEs) provide hardware-
assisted trusted computing platforms with TCB (i.e., ARM
TrustZone, Intel SGX, and AMD SEV in [29]–[31]). TEEs
ensure that the attack surfaces are only the host applications
andOS. Therefore, the CPU and TCB are trusted. The TCB of
a TEE should be constructed with minimal code set with ver-
ification. Thus, the TCB of a TEE still requires modifications
to the existing kernel to allow for privilege handling (e.g.,
a kernel module or specific register management). Addition-
ally, the TCB of a TEE requires a high overhead time to
interact with non-TEE environments.

MKM achieves isolation of kernel components for differ-
ent kernel address spaces at the kernel layer. In this study,
it is necessary to consider the requirements such as separation
granularity, strength of the security perimeter, and the perfor-
mance cost to determine the adoption of hardware support
dependency for the isolation mechanism.

IX. RELATED WORK
Research into kernel security mechanisms have yielded
multiple software and hardware security techniques against
potential threats. Figure 9 shows an overview of the ker-
nel protection taxonomy, summarizing previous security
mechanisms.

A. USER PROCESS
User processes are the starting points for kernel attacks,
and the kernel directory provides MAC and restriction

FIGURE 9. Overview of the taxonomy of kernel protection.

mechanisms at the user layer in accordance with the principle
of least privilege.

1) PRIVILEGE MANAGEMENT
Security mechanism implementations (e.g., SELinux in [12])
manage access control models and polices that relate the
privilege relationships among users, processes, and resources
as mentioned earlier [20]. Additionally, capability restricts
the granularity of root privilege between user processes and
host resources, reducing the risk of a springboard case on a
compromised host as shown by Linden [32].

B. INSIDE KERNEL
The inside kernel, the kernel protection mechanism for run-
ning kernels, provides a variety of security capabilities for
each attack method.

Moreover, the reduction in the attack surface supports
page table isolation and monitoring and hardware layer (e.g.,
CPU) protection. This ensures integrity and enhances security
assurance. Fault tolerance is another aspect of kernel struc-
tural enhancement to be tackled given the existence of buggy
software.

1) RUNNING KERNEL PROTECTION
In [4], the authors have proposed the software-based coun-
termeasures to mitigate actual attack methods from arbitrary
programs. Stack monitoring protects against buffer overflow
attacks. Randomization of kernel memory layout via KASLR
for kernel attack hardening has been proposed in [5]. The
authors in [6] designed the kernel CFI that prevents ROP
code snippets from invoking illegal kernel code execution.
In [33], the authors have proposed the randomization of the
page table position to protect against data only attack. Addi-
tionally, another kernel protection was developed in [34].
The kRˆX is an exclusive privilege management method that
directly protects kernel code and data on the kernel memory.
Moreover, hardware support is useful for kernel protection.
TCB ensures that a small set of firmware and the kernel
are trustworthy. Secure boot verifies system images with
tamper-proof features during boot in [9], [10]. The study
conducted in [35] proposed the Sprobes, which determines
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TABLE 7. Comparison of the reduction in kernel memory attack surface (X is supported; 4 is partially supported).

kernel integrity using CPU security features and a trusted
execution environment.

2) REDUCING ATTACK SURFACE
PerspicuOS supports kernel feature isolation, enabling mini-
mum privilege assignments for kernel code sets, proposed by
Dautenhahn et al. [36]. kRazor, managing the list of kernel
code visible to user process has been proposed in [37]. The
authors in [38] proposed the KASR to provide a handling
mechanism that controls page table execution permissions
for user processes. In [39], authors designed the Multik that
reduces the available kernel code to create the minimum
mapping of kernel memory for each application. The study
conducted in [8], the authors proposed the KPTI separates the
user and kernel memory at the page table. In [40], the authors
provide low overhead kernel separation using the extended
page table on Intel CPUs. Additionally, in [7], the authors
demonstrated the KMO provides a dedicated page table to
isolate kernel protection methods from other kernel code.
An approachwas proposed byÖsterlund et al. [41] showcases
that the kernel multi-variant execution supports differential
virtual address spaces and stack behaviors to identify the
success or failure of attacks from anomalous process.

3) FAULT TOLERANCE
The kernel executes device drivers in separate protection
domains isolated from the main kernel (e.g., user space
driver) as proposed in [42], [43]. In [44], the authors devel-
oped the iKernel, which separates buggy devices on virtual
machines. In [45], the authors have leveraged the SIDE to set
up a dedicated page table for each driver with control trans-
fer mechanisms between kernel and drivers. These methods
employ virtual address separation or kernel code behavior
restrictions to protect the main kernel from malicious or
buggy device drivers.

C. OUTSIDE KERNEL
The outside kernel is a runtime monitoring mechanism
using hypervisor or monitoring from other hardware without
attack threats from the kernel or user layers. Moreover, ker-
nel vulnerability suppression automatically complements the
additional kernel features. Fuzzing techniques identify mis-
implementations of additional features, and the formal ver-
ification approach subsequently ensures that the anomalous
control flow behavior is excluded.

1) RUNNING KERNEL MONITORING
SecVisor and TrustVisor preserves the integrity of kernel code
and data with a hypervisor that executes the monitored kernel

as a guest OS as mentioned earlier [46], [47]. In an approach
proposed by Sharif et al. [48] SIM achieves real-time inspec-
tion of kernel behavior that depend on the insertion of a
monitoring mechanism into a guest OS’s memory space.
Recently, the authors in [49] designed the ED-Monitor as
a type of kernel module that monitors hypervisor behavior
using captures of register controlling. In [50], the authors
demonstrated the GRIM that employs a graphics processing
unit to execute protection mechanisms to monitor kernels
running on the CPU.

2) VULNERABILITY SUPPRESSION
The seL4 micro-kernel adopts a formal verification scheme
to ensure the functionality of memory management that
contains a small kernel-level set that does not to cause a
memory invalidation and other vulnerabilities as shown by
Klein et al. [51]. In addition, kmemcheck and KASAN,
with syzbot and syzkaller, automatically inspect the mem-
ory handling mechanism. Kernel memory fuzzing reveals
mis-implementations that lead to complex vulnerabilities as
demonstrated in [52]–[54].

D. COMPARISON
1) FEATURE COMPARISON
Table 7 shows a comparison of the security features of MKM
and those of five attack surface reducing mechanisms in [7],
[36]–[39]. To satisfy most attack mitigation requirements,
MKM provides attack mitigation method, whereby the kernel
memory is separated or minimized to mitigate the attack code
and protect the kernel.

In [37], kRazor must initially collect necessary kernel fea-
tures for a targeted program requirement, and it subsequently
deploys a set of kernel features during user process execution.
Moreover, KASR offline trains the targeted program behavior
to make a kernel code database; thereafter, the hypervisor
employs the executable kernel codes for the execution of the
user process in [38]. Although kRazor and KASR forcibly
create a minimum set of executable kernel function for the
running kernel to reduce the kernel’s attack surface that is
exploitable by user processes, these approaches do not pro-
vide separation mechanisms for the kernel memory at each
kernel feature.

In [36], PerspicuOS provides privilege separation mech-
anisms at the kernel layer. PerspicuOS contains a nested,
trusted kernel that supports a small part of the kernel code
and data, and an outer, untrusted kernel supports the rest
of the kernel with de-privileging. To prevent illegal mem-
ory corruption, the nested kernel completely drops hard-
ware control instructions (e.g., memorymanagement unit and
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TABLE 8. Gap comparison of the attack mitigation technique.

FIGURE 10. Comparison of the cover range in kernel.

CPU registers). Although MKM does not support hardware
privilege deduction, MKM provides the Application Binary
Interface to user processes and can be easily ported to other
OSes at the kernel layer.

In [39], Multik generates customized kernel images based
on the profiling of the necessary kernel codes. Applications
usemodified kernel page tables containing this minimum ker-
nel at the runtime. KMO dedicates independent page tables
to specific kernel codes to isolate them from the rest of the
kernel codes. Multik and KMO ensure that the separated page
tables are protected from illegal modification as a result of
memory corruption in [7]. However, the kernel page table
remains vulnerable because of vulnerable kernel codes and
the invocation placement of the kernel protection method
(e.g., page table switching function)

2) SECURITY TECHNIQUE COMPARISON
MKM’s security capabilities are similar to those of kernel
attack mitigation approaches that use memory management
mechanisms. Figure 10 shows a comparison of MKM and
other kernel security mechanisms proposed in [7], [36]–[39].
The earliest stage of a kernel protection method is still an
attack target kernel code. To mitigate the mapping of specific
kernel code and vulnerable kernel code to the same page
table, the MKM architecture strongly separates the specific
kernel codes of system call or kernel feature processing invo-
cations.

Additionally, Table 8 presents a comparison of the gap of
security techniques of MKM and previous security mecha-
nisms in [7], [36]–[39]. These designs and implementations
support setting a suitable attack mitigation point of a kernel
component, and the users can manage the effective separation
of the kernel considering each threat model on the running
kernel.

To complement the remaining attack mitigation of kernel
components, the security techniques of MKM enables the
separated mapping of page table switching kernel codes and
vulnerable kernel codes. It reduces the actual attack surface
of previous kernel protection methods.

The limitation ofMKMmust correspond with the updating
of security features’ kernel code for the mapping of the
suitable page table. It is a necessary process to keep the
isolation between attack target kernel codes and vulnerable
kernel codes. For the future approach,MKMdoes not provide
an executable kernel code reduction mechanism for user pro-
cesses. MKM’s approach needs to be combined with a kernel
code reduction approach to achieve a more flexible means of
kernel attack surface minimization.

X. CONCLUSION
The modern OS kernel should be able to mitigate the kernel
memory corruption of kernel vulnerabilities. To minimize
the attack surface and prevent attacks, kernels use stack
monitoring, CFI, KASLR, KPTI. However, kernel protection
methods and vulnerable kernel codes share the same kernel
address space; This leads to the subversion of the kernel
protection methods via kernel memory corruption.

In this paper, a novel security mechanism that contains the
trampoline and security kernel address spaces, i.e., MKM,
is proposed. MKM improves the resilience of the kernel that
relies on the separation of kernel page table. MKM assigns
the switching function of page table and kernel protection
methods (e.g., function pointers and kernel codes) to the
trampoline and security page tables. Subsequently, vulnerable
kernel codes are encapsulated in the original kernel page
table. Therefore, vulnerable kernel codes of the trampoline
and security kernel address spaces are cannot be targeted for
kernel memory corruption. Based on the evaluation result of
the Linux kernel with MKM, it is evident that MKM can mit-
igate the subversion of page table switching capability. Addi-
tionally, kernel observation mechanism can be implemented
with the MKM to detect illegal memory modifications. The
performance overhead of the system call invocations was
between 0.020 µs to 0.5445 µs. The overhead to a web client
program averages from 196.27 µs to 6,685.73 µs for each
download access of 100,000 HTTP sessions. MKM achieved
a 97.65% score for system benchmark score and a 99.76%
score for kernel compilation time.

XI. FUTURE WORK
In future studies, following three research approaches should
be considered. First, vulnerable kernel code execution should
be restricted. Kernel protection methods detect or prohibit the
unauthorized behavior of the adversary’s user process. When
using kernel vulnerability, the kernel protection method can
not prohibit the invocation of vulnerability kernel code.
To solve the granularity execution management due to the
principle of kernel code risk and stability, researchers can
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provide the design of kernel resilience which can not only
protect attack mitigation but also ensure sufficient attack
prevention on the running kernel.

The second approach is the security boundary collab-
oration between software and hardware. Modern CPUs
have provided hardware security mechanisms (e.g., TEE in
Sec. VIII-Ei). It would be better to extend the security bound-
ary for software security mechanisms. However, the latest
side-channel attack has become a new threat for hardware
(e.g., Meltdown in [8]) that makes it difficult to update
the user’s environment. Software security approaches can
mitigate side-channel attacks and complement the hardware
countermeasures in [8], [40]. To tackle malicious activity,
a strong and flexible security boundary should be constructed
with software and modern hardware mechanisms.

Finally, the performance issue of the security mechanism
must be addressed. A drawback of the security mechanism
is that it requires an overhead to solve the security problem.
If the security mechanism incurs heavy costs, it is impractical
for the actual environment. To satisfy security levels and
requirements, a simple design and lightweight implementa-
tion to demonstrate the countermeasure based on software
and hardware components should be adopted. It extends
security researches, so that its usefulness would be further
demonstrated with additional experiments.
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