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Evaluation of multi‑task learning 
in deep learning‑based positioning 
classification of mandibular third 
molars
Shintaro Sukegawa1,2*, Tamamo Matsuyama3, Futa Tanaka4, Takeshi Hara4,5, 
Kazumasa Yoshii6, Katsusuke Yamashita7, Keisuke Nakano2, Kiyofumi Takabatake2, 
Hotaka Kawai2, Hitoshi Nagatsuka2 & Yoshihiko Furuki1

Pell and Gregory, and Winter’s classifications are frequently implemented to classify the mandibular 
third molars and are crucial for safe tooth extraction. This study aimed to evaluate the classification 
accuracy of convolutional neural network (CNN) deep learning models using cropped panoramic 
radiographs based on these classifications. We compared the diagnostic accuracy of single‑task and 
multi‑task learning after labeling 1330 images of mandibular third molars from digital radiographs 
taken at the Department of Oral and Maxillofacial Surgery at a general hospital (2014–2021). The 
mandibular third molar classifications were analyzed using a VGG 16 model of a CNN. We statistically 
evaluated performance metrics [accuracy, precision, recall, F1 score, and area under the curve (AUC)] 
for each prediction. We found that single‑task learning was superior to multi‑task learning (all p < 0.05) 
for all metrics, with large effect sizes and low p‑values. Recall and F1 scores for position classification 
showed medium effect sizes in single and multi‑task learning. To our knowledge, this is the first deep 
learning study to examine single‑task and multi‑task learning for the classification of mandibular 
third molars. Our results demonstrated the efficacy of implementing Pell and Gregory, and Winter’s 
classifications for specific respective tasks.

The mandibular third molar is one of the most commonly impacted teeth. Treatment requires tooth extraction 
surgery, and extraction of the third molar is one of the most common surgical procedures worldwide. Since 
mandibular third molars cause various complications, surgical treatment is primarily performed to treat the 
symptoms associated with  impaction1,2 and prevent conditions that impair oral health, such as future dentition 
 malocclusion3. Infection and neuropathy are common complications that occur after extraction of the man-
dibular third molars; it is known that the position of these molars influences the occurrence of postoperative 
 complications4,5. Therefore, an accurate understanding of the position of the mandibular third molars based on 
preoperative radiographs taken before surgery leads to safer treatment.

Pell and  Gregory6, and Winter’s  classifications7 are often used for classifying third molars. In the Pell and 
Gregory classification, the mandibular third molars are classified according to their position with respect to the 
second molars and the ramus of the mandible; in addition, the position of the mandibular third molar in the 
mesio-distal relationship is classified into classes I, II, and III, and the part of the mandibular third molar in 
depth is classified into levels A, B, and C. Based on the Winter’s classification, the slope category is classified with 
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respect to the vertical axis of the mandibular third molar. These classifications help describe the condition of the 
third molar of the lower jaw among dentists using a standardized language and make it easier to understand the 
difficulty of tooth extraction. In addition, diagnosis using these classifications is effective not only for sharing 
diagnosis information before tooth extraction but also for feedback after tooth extraction; additionally, these 
classifications are important from an educational perspective.

Deep learning is a machine learning method that can automatically detect the functions required to predict 
a specific result from the given data. Complex learning is possible using a deep convolutional neural network 
(CNN) with multiple layers between inputs and outputs. Many achievements have been made in the application 
of these technologies in the medical field. In particular, analyses using deep learning based on medical images 
have provided comprehensive knowledge because this methodology can interpret data complexity more appro-
priately than standard statistical methods. In the field of dentistry, this methodology has also been applied to the 
identification and diagnosis of dental  caries8, endodontic  lesions9, dental  implants10, orthodontic  diagnoses11, 
and  osteoporosis12. Various methods are currently being developed for use in machine learning. Among these, 
the multi-task learning method learns multiple classification items simultaneously, enabling multiple predictive 
 diagnoses13. This efficient machine learning method may improve performance compared to single-task learning 
by evaluating interrelated concepts.

This study aimed to present a CNN-based deep learning model using panoramic radiographs according to Pell 
and Gregory, and Winter’s classifications, with the purpose of locating the precise positioning of the mandibular 
third molars. Furthermore, we propose multi-task learning as another approach for analyzing medical images 
while improving the generalization function of multiple tasks. In addition, we aimed to evaluate the accuracy of 
position classification of the mandibular third molars via multi-task deep learning.

Results
Prediction performance. Performance of the single‑task model. Performance metrics for each of the sin-
gle-task model are shown in Table 1. Position classification showed high performance metrics in a single-task. 
Supplementary Fig. S1 shows the ROC curves of single-task learning at tenfold.

Performance of the multi‑task model. Table  2 shows the performance metrics of the three-task multi-task 
model, including information on class, position, and Winter’s classification. Table  3 shows the performance 
metrics for the two-task multi-task model, including information on class and position. Supplementary Fig. S1 
shows the ROC curves of the two-type multi-task learning at tenfold.

Comparison of the single‑task and multi‑task models in terms of performance metrics. Table 4 shows the statis-
tical evaluation results of the single- and multi-task models for each performance metric. Comparing the two 
groups by p-value, the single-task model was superior to the multi-3task model, and the single-task model was 
superior to the standard statistical approach for all metrics. In the single-task and multi-2task (class and posi-
tion) models, the single-task model was superior in all metrics except the AUC for position classification.

Regarding effect size, in the single-task and multi-3task models, the effect size was large for all metrics except 
position classification (AUC and p-value). On the contrary, in the single-task and multi-2task models, recall and 
F1 score (in the position classification) showed medium effect sizes, and all other parameters showed small effect 
sizes. The power in the post hoc analysis of this study was 1.0 for all performance metrics.

Visualization. Grad-CAM was used to explain the prediction process for the CNN in terms of identifying 
each category. Consequently, we visualized the judgment basis for determining the identification image area 
used for classification (Fig. 1, Supplementary Fig. S2). For the classification of class and position, the space above 
the mandibular third molar is regarded as a characteristic area of the CNN judgment basis. In contrast, Winter’s 
classification was used as a characteristic area for classification judgment of the entire crown of the mandibular 
third molar. In the multi-task models, in addition to the characteristics for each task, the characteristics of other 

Table 1.  Prediction performance on the single-task model. SD standard deviation, 95% CI 95% confidence 
interval, AUC  area under the receiver operating characteristics curve.

Accuracy Precision Recall F1 score AUC 

SD SD SD SD SD

95%CI 95%CI 95%CI 95%CI 95%CI

Class

0.8541 0.8588 0.8544 0.8538 0.9638

0.0074 0.0075 0.0071 0.0073 0.0018

0.851–0.858 0.856–0.862 0.852–0.857 0.851–0.857 0.963–0.965

Position

0.8895 0.8824 0.8877 0.8831 0.9739

0.0055 0.0075 0.0064 0.0064 0.0017

0.887–0.892 0.880–0.885 0.885–0.890 0.881–0.886 0.973–0.975

Winter’s classification

0.8663 0.8559 0.8003 0.8138 0.9801

0.0052 0.0143 0.0119 0.0123 0.0025

0.864–0.868 0.851–0.861 0.796–0.805 0.809–0.818 0.979–0.981
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Table 2.  Prediction performance of the multi-task model, including class, position and Winter’s classification. 
SD standard deviation, 95% CI 95% confidence interval, AUC  area under the receiver operating characteristics 
curve.

Accuracy Precision Recall F1 score AUC 

SD SD SD SD SD

95%CI 95%CI 95%CI 95%CI 95%CI

Class

0.8487 0.8541 0.8478 0.8474 0.9606

0.0087 0.0065 0.0083 0.0084 0.0018

0.845–0.852 0.851–0.857 0.845–0.851 0.844–0.851 0.960–0.961

Position

0.8861 0.8779 0.8829 0.8781 0.9733

0.0056 0.0065 0.0084 0.0070 0.0025

0.884–0.888 0.875–0.880 0.880–0.886 0.875–0.881 0.972–0.974

Winter’s classification

0.8537 0.8332 0.7747 0.7896 0.9770

0.0068 0.0124 0.0105 0.0110 0.0024

0.851–0.856 0.829–0.861 0.771–0.779 0.786–0.793 0.976–0.978

Table 3.  Prediction performance of the two-task multi-task model including class and position. SD standard 
deviation, 95% CI 95% confidence interval, AUC  area under the receiver operating characteristics curve.

Accuracy Precision Recall F1 score AUC 

SD SD SD SD SD

95%CI 95%CI 95%CI 95%CI 95%CI

Class

0.8543 0.8590 0.8539 0.8534 0.9633

0.0094 0.0102 0.0094 0.0088 0.0028

0.887–0.892 0.856–0.862 0.850–0.857 0.850–0.857 0.962–0.964

Position

0.8899 0.8814 0.8857 0.8813 0.9737

0.0069 0.0102 0.0077 0.8813 0.0018

0.772–0.814 0.878–0.885 0.882–0.891 0.878–0.884 0.973–0.974

Table 4.  Statistical comparisons by p-value and effect size for the single-task and multi-task models. SD 
standard deviation, 95% CI 95% confidence interval, AUC  area under the receiver operating characteristics 
curve.

Class Accuracy Precision Recall F1 score AUC 

P value

Multi3 0.029 0.064 0.006 0.006  < 0.0001

Multi2 0.996 0.994 0.955 0.966 0.523

Effect size

Multi3 0.674 0.554 0.857 0.817 1.823

Multi2 0.019 0.0235 0.064 0.057 0.233

Position Accuracy Precision Recall F1 score AUC 

P value

Multi3 0.056 0.062 0.030 0.014 0.447

Multi2 0.947 0.851 0.491 0.497 0.887

Effect size

Multi3 0.616 0.651 0.641 0.759 0.267

Multi2 0.068 0.1122 0.281 0.258 0.122

Winter’s classification Accuracy Precision Recall F1 score AUC 

P value

Multi3  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001

Effect size

Multi3 2.082 1.699 2.285 2.072 1.238
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simultaneously learned tasks were added to the criteria. In addition, because of a tendency of multi-task feature 
areas, we mainly focused on areas that are common to these models.

Discussion
In this deep learning study, mandibular third molar classification (class, position, Winter’s classification) was 
performed in single-task and multi-task models. In multi-task models, wherein three classification tasks are 
simultaneously performed for each single-task, we found that the classification evaluation metric was statistically 
superior to that of the multi-task models. There was no significant difference in classification accuracy between 
and single-task models and the two classification multi-task model..

Multi-task modeling uses inductive transfer to improve task learning using signals from related tasks discov-
ered during  training20. Multi-tasks have a great advantage in reducing calculation costs because they can perform 
multiple tasks simultaneously. In fact, in our research, we observed a significant difference when comparing the 
total number of parameters for each single-task and the number of parameters for multiple tasks. In addition, 
multiple tasks can improve the accuracy of other classifications by learning the characteristics common to each 
 task13,21. However, in our results, the classification performance of multi-task models decreased after three tasks. 
This may be because each task has classification criteria for different characteristics. Thus, in multi-task models, 
classification performance may be degraded due to conflicting areas of interest for the classification of each task.

The mandibular third molar classifications performed in this study were the Pell and Gregory classification 
as well as Winter’s classification. In the Pell and Gregory classification, certain classes and positions are clas-
sified according to the mesio-distal positional relationship and vertical depth of the mandibular third  molar6. 
Accuracy was improved by simultaneously performing these two tasks. Unfortunately, no statistically significant 
improvement in performance metrics was observed. On the contrary, we found a statistically significant decrease 
in classification performance of the three task multi-task with the addition of Winter’s classification. Specifi-
cally, in Winter’s classification, the angulation and inclination of the mandibular third molar are judged, with 
the orientation of the mandibular third molar as the  criterion7. Because feature extraction is weighted toward 
the entire mandibular third molar, the features for predicting CNN were possibly different from those of the 
Pell and Gregory classification.

A few studies have used deep learning to classify the position of the mandibular third molar. Yoo et al.22 
performed class, position, and Winter’s classifications of the mandibular third molar. Additionally, the observed 
accuracy was 78.1% for class, 82.0% for position, and 90.2% for Winter’s classification. Although Winter’s clas-
sification cannot be compared because all evaluations had not been performed, our results are more accurate 
for class and position.

For the weights learnt by the CNN, Grad-CAM can use the gradient of the classification score for convo-
lutional features determined by the network to understand which parts of the image are most important for 
 classification19. Grad-CAM can visualize the judgment basis for learning by CNN, which is regarded as a black 
box. In this study, visualization was performed using the gradient of the final convolution layer. Visualization 
results for Grad-CAM class and position classifications often show similar feature areas, while Winter’s classifica-
tions primarily assign features to the entire crown. Interestingly, in the multi-task models, the characteristics of 
the other tasks were added to the judgement basis together with the characteristics of each task. Therefore, the 
rate of classification errors may have been increased by referring to other parts that deviated from the judgment 
basis based on the original most notable features in multi-task.

Figure 1.  Visualization of the judgment basis for classification prediction by a convolutional neural network 
(CNN) using Grad-CAM.
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Since statistically significant differences are easily recognized in proportion to the sample size within statis-
tical hypothesis tests between two groups, effect sizes and statistically significant differences are important for 
evaluating substantial  differences23. Effect size can be interpreted as a value that indicates the actual magnitude of 
the difference, which does not depend on the unit of measurement; this is one of the most important indicators 
for analysis. In this study, there was a correlation between the statistical hypothesis test and effect size in the two 
groups, and statistical evaluations showed that the sample size was appropriate. Our study is the first to show 
the effect size for the evaluation of mandibular third molar position classification using deep learning. The effect 
sizes calculated from this experiment will be useful when pre-designing the sample size in a similar study. To our 
knowledge, there are a few reports on the calculation of effect sizes for comparison between deep learning models.

Diagnosis of the third mandibular molar is the most common oral surgery and is important not only for oral 
and maxillofacial surgeons, but also for general dentists. Accurate diagnosis leads to safe tooth extraction. In the 
future, as an auxiliary diagnosis, it is desirable to automatically diagnose the mandibular third molar using deep 
learning on the captured digital panoramic X-ray image. For this purpose, we would like to work on automatic 
detection using object detection of the mandibular third molar.

The strength of our study over previous studies is that the influence of multi-task learning was statistically 
evaluated. The mandibular third molar classification grouping performed in this study was as close as possible 
to the clinical setting. To the best of our knowledge, this is the first study to statistically and visually reveal the 
influence of multi-task learning on mandibular third molar classification by deep learning. Grad-CAM revealed 
areas of interest for each model of CNN. Additionally, the calculated effect size can be used to estimate the sample 
size for future studies: it is suitable for statistically evaluating results correctly, rather than simply comparing 
values between different groups.

This study had several limitations. First, the amount of data for the current evaluation was modest. Espe-
cially in the Winter’s classification, there are few buccolingual and inverted results, which could result in bias. 
We verified our findings using a stratified K-fold CV to avoid any bias in the data set for training; however, it is 
important to conduct further studies with a larger amount of data. Second, the CNN type was VGG16 only. In 
the future, CNNs with various characteristics should be evaluated, and it will be necessary to verify the most 
suitable CNN. The third limitation is the search for a Pareto optimal solution. In multi-task learning, classifica-
tion performance is degraded due to conflicting areas of interest for the classification of each task. Therefore, in 
multi-task learning, it is necessary to consider the ratio of the gradients of loss function, wherein the gradients 
of each task are relatively balanced.

Conclusions
To our knowledge, this is the first deep learning study of the classification (class, position, Winter) of the man-
dibular third molar to examine single-task and multi-task models. The multi-task model with two tasks (class 
and position) was not statistically significantly different from single-task models, and the three multi-task clas-
sifications were statistically significantly less accurate than the respective single-task classifications. Finally, we 
found that, in the deep learning classification of the mandibular third molar, it is more effective to classify the 
Pell and Gregory, and Winter’s classifications based on their respective tasks. Our results will greatly contribute 
to the development of automatic classification and diagnosis of mandibular third molars from individual pano-
ramic radiograph images in the future.

Materials and methods
Study design. The purpose of this study was to evaluate the classification accuracy of CNN-based deep 
learning models using cropped panoramic radiographs according to the Pell and Gregory, and Winter’s classifi-
cations for the location of the mandibular third molars. Supervised learning was chosen as the method for deep 
learning analysis. We compared the diagnostic accuracy of single-task and multi-task learning.

Data acquisition. We used retrospective radiographic image data collected from April 2014 to December 
2020 at a single general hospital. This study was approved by the Institutional Review Boards of the respective 
institutions hosting this work (the Institutional Review Boards of Kagawa Prefectural Central Hospital, approval 
number 1020) and was conducted in accordance with the ethical standards of the Declaration of Helsinki and 
its later amendments. Informed consent was waived for this retrospective study because no protected health 
information was used by the Institutional Review Boards of Kagawa Prefectural Central Hospital. Study data 
included patient’s aged 16–76 years who had panoramic radiographs taken at our hospital prior to extracting 
their mandibular third molars.

In the Pell and Gregory classification, the mandibular second molar was the diagnostic criterion. Therefore, 
cases of mandibular second molar defects, impacted teeth, and residual roots were excluded from this study. 
Additionally, we excluded cases of unclear images, residual plates after mandibular fracture, and residual third 
molar root or tooth extraction interruptions. Overall, we excluded residual third molar roots (39 teeth), man-
dibular second molar defects or residual teeth (15 teeth), impacted mandibular second molars (12 teeth), tooth 
extraction interruptions of third molars (9 teeth), unclear images (3 teeth), and residual plates after mandibular 
fracture (1 tooth). In total, 1,330 mandibular third molars were retained for further deep learning analysis.

Data preprocessing. Images were acquired using dental digital panoramic radiographs (AZ3000CMR or 
Hyper-G CMF, Asahiroentgen Ind. Co., Ltd., Kyoto, Japan). All digital image data were output in Tagged Image 
File Format format (2964 × 1464, 2694 × 1450, 2776 × 1450, or 2804 × 1450 pixels) via the Kagawa Prefectural 
Central Hospital Picture Archiving and Communication Systems system (Hope Dr Able-GX, Fujitsu Co., Tokyo, 
Japan). Two maxillofacial surgeons manually identified areas of interest on the digital panoramic radiographs 
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using Photoshop Elements (Adobe Systems, Inc., San Jose, CA, USA) under the supervision of an expert oral 
and maxillofacial surgeon. The method of cropping the image was to cut out the mandibular second molar and 
the ramus of the mandible in the mesio-distal direction and completely include the apex of the mandibular third 
molar in the vertical direction (Fig. 2). The cropped images had a resolution of 96 dpi/inch, and each cropped 
image was saved in portable network graphics format.

The manual method of cropping the image involved cutting out the mandibular second molar and the ramus 
of the mandible in the mesio-distal direction as well as completely including the apex of the mandibular third 
molar in the vertical direction.

Classification methods. Pell and Gregory  classification6 is categorized into class and position compo-
nents. The classification was performed according to the positional relationship between the ramus of the man-
dible and the mandibular second molar in the mesio-distal direction. The distribution of the mandibular third 
molar classification is shown in Table 5.

Class I: The distance from the distal surface of the second molar to the anterior margin of the mandibular 
ramus was larger than the diameter of the third molar crown.

Class II: The distance from the distal surface of the second molar to the anterior margin of the mandibular 
ramus was smaller than the diameter of the third molar crown.

Class III: Most third molars are present in the ramus of the mandible. Position classification was performed 
according to the depth of the mandibular second molar.

Level A: The occlusal plane of the third molar was at the same level as the occlusal plane of the second molar.
Level B: The occlusal plane of the third molar is located between the occlusal plane and the cervical margin 

of the second molar.
Level C: The third molar was below the cervical margin of the second molar.
Based on Winter’s classification, the mandibular third molar is classified into the following six  categories7,14:
Horizontal: The long axis of the third molar is horizontal (from 80° to 100°).
Mesioangular: The third molar is tilted toward the second molar in the mesial direction (from 11° to 79°).
Vertical: The long axis of the third molar is parallel to the long axis of the second molar (from 10° to –10°).
Distoangular: The long axis of the third molar is angled distally and posteriorly away from the second molar 

(from − 11° to − 79°).
Inverted: The long axis of the third molar is angled distally and posteriorly away from the second molar 

(from 101° to –80°).
Buccoangular or lingualangular: The impacted tooth is tilted toward the buccal-lingual direction.

CNN model architecture. The study evaluation was performed using the standard deep CNN model 
(VGG16) proposed by the Oxford University VGG  team15. We performed a normal CNN consisting of a convo-
lutional layer and a pooling layer for a total of 16 layers of weight (i.e., convolutional and fully connected layers).

Figure 2.  A depiction of the crop method for data preprocessing.

Table 5.  Distribution of Pell and Gregory, and Winter’s classifications.

Pell & Gregory 
classification

Winter’s classificationClass Position

I 405 A 438
Horizontal 514

Mesioangular 346

II 607 B 693
Vertical 282

Distoangular 79

III 318 C 199
Inverted 79

Bucco/lingualangular 30
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With efficient model construction, fine-tuning the weight of existing models as initial values for additional 
learning is possible. Therefore, the VGG 16 model was used to transfer learning with fine-tuning, using pre-
trained weights in the ImageNet  database16. The process of deep learning classification was implemented using 
Python (version 3.7.10) and Keras (version 2.4.3).

Data set and model training. The model training was generalized using K-fold cross-validation in the 
model training algorithm. Our deep learning models were evaluated using tenfold cross-validation to avoid 
overfitting and bias and to minimize generalization errors. The dataset was split into ten random subsets using 
stratified sampling to retain the same class distribution across all subsets. Within each fold, the dataset was split 
into separate training and test datasets using a 90% to 10% split. The model was trained 10 times to obtain the 
prediction results for the entire dataset, with each iteration holding a different subset for validation. Data aug-
mentation can be found in the appendix.

Multi‑task. As another approach to the mandibular third molar classifier, a deep neural network with mul-
tiple independent outputs was implemented and evaluated. There are two proposed multi-task CNNs. One is a 
CNN model that can analyze the three tasks of the Pell and Gregory, and Winter’s classifications simultaneously. 
The other is a CNN model that can simultaneously analyze the class and position classifications that constitute 
the Pell and Gregory classification. These models can significantly reduce the number of trainable parameters 
required when using two or three independent CNN models for mandibular third molar classification. The pro-
posed model has a feature learning shared layer that includes a convolutional layer and a max-pooling layer that 
are shared with two or three separate branches and independent, fully connected layers used for classification. 
For the classification, two or three separate branches consisting of dense layers were connected to each output 
layer of the Pell and Gregory, and Winter’s classifications. Each branch included softmax activation. (Fig.  3) 
Table 6 shows the number of parameters for each of the two types of multi-tasks and single-tasks in the VGG 
16 model.

In the multi-task model, each model was implemented to learn the classification of the mandibular third 
molars. In both training, the cross entropy calculated in (Eq. 1) was used as the error function. The total error 
function (L_3total) of the multi-task model for the three proposed tasks is the sum of the Pell and Gregory 

Figure 3.  Schematic diagram for classification of the mandibular third molars using single-task and multi-task 
convolutional neural network (CNN) models.
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classification class and position prediction errors (L_cls), (L_pos), and Winter’s classification prediction errors 
(L_wit) (Eq. 2):

The error function (L_2total) of the entire multi-task model for the two tasks was the total of the prediction 
errors (L_cls) and (L_pos) of class and position, as well as the Winter’s classification (Eq. 3):

Deep learning procedure. All CNN models were trained and evaluated on a 64-bit Ubuntu 16.04.5 LTS 
operating system with 8 GB of memory and an NVIDIA GeForce GTX 1080 (8 GB graphics processing unit). 
The optimizer used stochastic gradient descent with a fixed learning rate of 0.001 and a momentum of 0.9, which 
achieved the lowest loss on the validation dataset after multiple experiments. The model with the lowest loss in 
the validation dataset was chosen for inference on the test datasets. Training was performed for 300 epochs with 
a mini-batch size of 32. The model was trained 10 times in the tenfold cross-validation test, and the result of the 
entire dataset was obtained as one set. This process was repeated 30 times for each single-task model (for class, 
position, Winter’s classification), multi-task model (for class and position classification [two tasks], and all three 
multi-tasks) using different random seeds.

Performance metrics and statistical analysis. We evaluated the performance metrics with precision, 
recall, and F1 score along with the receiver operating characteristic curve (ROC) and the area under the ROC 
curve (AUC). The ROC curves were shown for the complete dataset from the tenfold cross-validation, produc-
ing the median AUC value. Details on the performance metrics are provided in the Appendix.

The differences between performance metrics were tested using the JMP statistical software package (https:// 
www. jmp. com/ ja_ jp/ home. html, version 14.2.0) for Macintosh (SAS Institute Inc., Cary, NC, USA). Statistical 
tests were two-sided, and p values < 0.05 were considered statistically significant. Parametric tests were performed 
based on the results of the Shapiro–Wilk test. For multiple comparisons, Dunnett’s test was performed with 
single-task as a control.

Differences between each multi-task model and the single-task model were calculated for each performance 
metric using the Wilcoxon test. Effect sizes were calculated as Hedges’ g (unbiased Cohen’s d) using the follow-
ing  formula17:

M1 and M2 are the means for the multi-task and single-task models, respectively; s1 and s2 are the standard 
deviations for the multi-task and single-task models, respectively, and n1 and n2 are the numbers for the multi-
task and single-task models, respectively.

The effect size was determined based on the criteria proposed by Cohen et al.18, such that 0.8 was considered 
a large effect, 0.5 was considered a moderate effect, and 0.2 was considered a small effect.

Visualization for the CNN model. CNN model visualization helps clarify the most relevant features used 
for each classification. For added transparency and visualization, this work used the gradient-weighted class 
activation maps (Grad-CAM) algorithm, which functions by capturing a specific class’s vital features from the 

(1)L = −
∑

i=0

tilogyi(a)(ti : correct data, yi : predicted probability of class i)

(2)L3total = Lcls + Lpos + Lwit

(3)L2total = Lcls + Lpos

Hedges′g =
|M1 −M2|

s

s =

√

(n1 − 1)s21 + (n2 − 1)s22
n1 + n2 − 2

Table 6.  The number of parameters for each of the two types of multi-tasks and single tasks in the VGG16 
model. Bold is the sum of the parameters for each task.

VGG16 Total parameter Trainable parameter Non-trainable parameter

Multi-3task (class, position, and Winter’s) 15,252,307 537,612 14,714,695

Multi-2task (class and position)  + Single-task (Winter’s) 30,492,314 1,062,924 29,429,390

Multi-2task (class and position) 15,246,157 531,462 14,714,695

Single-task (Winter’s) 15,243,082 528,387 14,714,695

Single-task (class + position + Winter’s) 45,729,246 1,585,161 44,144,085

Each single-task (class/position/Winter’s) 15,243,082 528,387 14,714,695

https://www.jmp.com/ja_jp/home.html
https://www.jmp.com/ja_jp/home.html
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last convolutional layer of the CNN model to localize its important  areas19. Image map visualizations are heat-
maps of the gradients, with “hotter” colors representing the regions of greater importance for classification.
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