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ABSTRACT 

Purpose: To provide an organizational schema for systematic error and random error in 

estimating causal measures, aimed at clarifying the concept of errors from the perspective of 

causal inference.  

Methods: We propose to divide systematic error into structural error and analytic error. With 

regard to random error, our schema shows its four major sources: non-deterministic 

counterfactuals, sampling variability, a mechanism that generates exposure events, and 

measurement variability. 

Results: Structural error is defined from the perspective of counterfactual reasoning, and divided 

into non-exchangeability bias (which comprises confounding bias and selection bias) and 

measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. 

Non-exchangeability bias implies a lack of “exchangeability” between the selected exposed and 

unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, 

justifying its separation from confounding bias and selection bias. Many forms of analytic errors 

result from the small sample properties of the estimator used and vanish asymptotically. Analytic 

error also results from wrong (misspecified) statistical models and inappropriate statistical 

methods.  

Conclusions: Our organizational schema is helpful for understanding the relationship between 

systematic error and random error from a previously less investigated aspect, enabling us to better 

understand the relationship between accuracy, validity, and precision. 

 

Keywords: bias, causality, epidemiologic methods 

List of abbreviations: DAG (directed acyclic graph)
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INTRODUCTION 

Error is common in science, contrary to some popular belief. No matter how diligently one tries 

to prevent errors, they do persist in some biomedical research. Epidemiology is no exception. 

Much epidemiologic research is aimed at obtaining an accurate estimate of the causal effect of 

exposure on the health outcome in the source population of the study [1], and the quest for it can 

be viewed as a struggle against errors. 

 Two broad kinds of errors can occur in studies in the health, life, and social sciences: 

systematic error and random error [2]. In introductory epidemiology textbooks [3, 4], the 

distinction between them is usually explained using a schematic illustration of target shooting. 

Suppose the parameter is the bull’s-eye of a target, the estimator is the process of shooting at the 

target, and the individual bullet holes are estimates. Bias, or systematic error or invalidity, in this 

example is described as the distance between the average position of the bullet holes and the 

bull’s-eye. This definition of bias has been often explained in statistical dictionaries as: ˆ( )E  − , 

where   is the parameter of interest and ˆ( )E   is the expected value of an estimator ̂  of the 

parameter   [5, 6]. This bias is also referred to as exact bias [7]. Epidemiology has borrowed 

the term “bias” from the statistical literature, using it as a synonym for systematic (non-random) 

error in the design and conduct of the study [8-10]. Variance, or random error, is described as the 

degree of dispersion of the bullet holes. 

 In this research, we provide an organizational schema for errors in estimating causal 

measures (e.g., causal risk difference, causal risk ratio) in the counterfactual framework [11, 12]. 

In so doing, we discuss both systematic error and random error from the perspective of causal 

reasoning. Understanding these errors is of great significance to epidemiologists because it 

enables them to better understand the relationship between accuracy, validity, and precision when 

examining cause–effect relationships. In this paper we focus on errors in estimating causal 

measures, and do not discuss errors relating to descriptions of a particular measurement. 

 

NOTATION 

We let A denote an exposure of interest and Y an outcome of interest for an individual. Then, we 

let Ya denote the potential outcomes for an individual if, possibly contrary to fact, there had been 

interventions to set A = a. For simplicity, we will generally assume a binary exposure variable (1 

= exposed, 0 = unexposed) and a binary outcome variable (1 = outcome occurred, 0 = outcome 

did not occur), but the remarks here are applicable more generally. Throughout the manuscript we 

will assume that the consistency assumption is met [13, 14], which implies that the observed 

outcome for an individual is the potential outcome, as a function of intervention, when the 
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intervention is set to the actual exposure (i.e., ( )1 01= + −Y AY A Y ). We also assume that there is 

no interference [15], so that one person’s outcome does not depend on the exposure of others. We 

denote parameters or measures of interest by ( )1 0,   , which is a function of the parameters 1  

and 0 . When defining causal effects, a  is a counterfactual parameter for the distribution of 

potential outcomes Ya if A had been set to a for all in the target population [16]. In epidemiology, 

  is often risk when the outcome of interest is binary [17]. Then, causal measures in the target 

population (e.g., risk difference, risk ratio) can be described as: 

 

( ) ( )( )1 0, , (1)E Y E Y  

 

which is the bull’s-eye (i.e.,  ) in the schematic illustration of target shooting. In the causal 

inference literature, causal measures have been referred to as effect measures or measures of 

effect [18, 19]. Note that these are defined in terms of potential outcomes; they compare what 

would happen to one population under two possible but distinct life courses or conditions, of 

which, at most, only one can occur [19]. 

 In Figure 1, we show an organizational schema for errors in estimating the causal 

measure (i.e., Formula 1). In the following sections, we explain our schema step by step. 

 

--- Place Figure 1 about here --- 

 

SYSTEMATIC ERROR 

Many epidemiologists have been interested in obtaining unbiased estimates of the effect of an 

exposure on the health outcome, and there is a large volume of literature on systematic error or 

bias [20-25]. Recall that the amount of exact bias is defined by the difference between the 

expected value of an estimator and the causal measure (i.e., ˆ( )E  − ), which can be 

algebraically described as: 

 

( ) ( )( ) ( ) ( )( )1 0 1 0
ˆ , , . (2)E E Y E Y E Y E Y   −   

 

Note that ( ) ( )( )1 0
ˆ ˆ,E Y E Y  is commonly used as ( ) ( )( )1 0

ˆ ,E Y E Y , and an issue of estimators 
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is addressed in the Analytic error section. In this section, we show how Formula 2 can be 

decomposed from the perspective of causal reasoning, explaining the upper part of Figure 1. In so 

doing, we use a traditional tripartite categorization of biases, i.e., confounding, selection, and 

measurement/information [7, 10, 26]. Recently published literature has reported that these three 

major sources of bias can be graphically described using directed acyclic graphs (DAGs) [27-34]. 

As shown in Figure 2, we let L denote a common cause of A and Y. Typically, L is called a 

confounder of the effect of A on Y. We also let S denote a selection variable (1 = selected, 0 = not 

selected), which is a common effect of A (or a cause of A) and Y (or a cause of Y). Conditioning 

on S, shown by square around S, yields a spurious association between A and Y (in at least one 

strata of S, say S = 1), which is called selection bias [30]. We also consider a situation in which 

there is measurement bias due to misclassification of exposure and outcome, and we use asterisks 

to denote misclassified exposure and outcome (i.e., A* and Y*, respectively).  

 In our schema (Figure 1), systematic error is divided into analytic error and structural 

error. To simplify the explanation, we first explain structural error followed by analytic error. 

 

--- Place Figure 2 about here --- 

 

Structural error 

Obviously, we are only able to observe one of the two potential outcomes (i.e., Y1 and Y0) for an 

individual, and the measure of effect is not available in actual studies. Recall that a measure of 

effect compares what would happen to one population under two possible but distinct life courses 

or conditions. Thus, in actual studies, we use measures that compare what happens in two distinct 

populations, although the two distinct populations may correspond to one population in different 

time periods [19]. In the causal inference literature, these have been referred to as associational 

measures or measures of association [18, 19]. Using the notation above, they can be algebraically 

described as: 

 

( ) ( )( )*| * 1, 1 , * | * 0, 1 , (3)E Y A S E Y A S = = = =  

 

where ( )*| * *, 1E Y A a S= =  equals ( ) ( )*| * *, 1, | * *, 1= = = = = =l
E Y A a S L l P L l A a S .  

We here propose to define structural error by comparing a measure of association with a measure 

of effect as: 
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( ) ( )( ) ( ) ( )( )1 0*| * 1, 1 , * | * 0, 1 , . (4)E Y A S E Y A S E Y E Y = = = = −  

 

Unlike Formula 2, structural error is defined by comparing the two measures, each of which is a 

function of two population parameters. Note that the newly proposed structural error corresponds 

to previously known “bias” in epidemiology, including confounding bias, selection bias, and 

measurement bias. Because the error described in Formula 4 is structural, DAGs are useful to 

illustrate this kind of error (Figure 2). 

 We here propose to decompose structural error into measurement bias and 

non-exchangeability bias from the perspective of causal reasoning. We first explain 

non-exchangeability bias followed by measurement bias. 

 

Non-exchangeability bias  

The assumption of exchangeability often receives most attention in discussions about causal 

inference [11, 35-37], and it is commonly explained as statistical independence between the 

observed exposure A and the potential outcome Ya (i.e.,  for aA Y a ) [18]. It is fairly well 

known that both confounding bias and selection bias imply a lack of exchangeability between the 

exposed and unexposed groups [30, 36-38]. Here, we propose to define non-exchangeability bias 

by comparing a measure of association without measurement error and a measure of effect as:  

 

( ) ( )( ) ( ) ( )( )1 0| 1, 1 , | 0, 1 , . (5)E Y A S E Y A S E Y E Y = = = = −  

 

The presence of the newly proposed non-exchangeability bias implies a lack of “exchangeability” 

between the selected exposed and unexposed groups. Note that, even without exchangeability 

between these two groups, Formula 5 may become 0, depending on the measure used. Thus, it 

should be emphasized that the presence of non-exchangeability bias is not a necessary but a 

sufficient condition for a lack of exchangeability [39]. 

 Graphically, non-exchangeability bias implies the presence of an undirected open path 

(i.e., a biasing path) between the exposure A and the outcome Y, and can be divided into 

confounding bias and selection bias based on the causal structures [30]. As mentioned above, 

confounding bias occurs because of common causes of exposure and outcome, whereas selection 

bias occurs because of conditioning on common effects of exposure (or a cause of exposure) and 

outcome (or a cause of outcome) (Figure 2) [30]. Although these two types of bias imply the 

same phenomenon, i.e., a lack of exchangeability between the exposed and unexposed groups in 

the study (selected) population, the distinction based on the causal structure is important because 
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it frequently guides the choice of analytic methods and study design to reduce or avoid the bias 

[30]. Algebraically, confounding bias and selection bias can be described as: 

 

( ) ( )( ) ( ) ( )( )1 0| 1 , | 0 , , (6)E Y A E Y A E Y E Y = = −  

 

and  

 

( ) ( )( ) ( ) ( )( )| 1, 1 , | 0, 1 | 1 , | 0 , (7)E Y A S E Y A S E Y A E Y A = = = = − = =  

 

respectively. Note that the definition of confounding bias essentially corresponds to that of 

confounding in measure in the original population [40]. It is also notable that the target parameter 

in Formula 7 refers to the difference in association measure between the original (unselected) and 

the study (selected) populations, and thus is not a causal measure. Although it may seem 

inconsistent with the conventional definition of bias, however, when there is no confounding bias, 

the second term of Formula 7 is equal to ( ) ( )( )1 0,E Y E Y . The decomposition of 

non-exchangeability bias in Formula 5 to confounding bias in Formula 6 and selection bias in 

Formula 7 is consistent with the fact that confounding usually precedes selection bias (e.g., 

case-control sampling, censoring in cohort) in observational studies. In Supplementary Appendix 

A, we discuss alternative decomposition of non-exchangeability bias. Finally, we note that 

measurement error in confounders (for simplicity, not assumed in Figure 2) or misspecification of 

the functional forms of confounders in the model (e.g., error in scale of the continuous 

confounders) results in residual confounding bias in adjusted estimates. Similar argument applies 

to selection bias adjustment. 

 

Measurement bias  

Measurement error in both the exposure and the outcome is a common problem in epidemiology 

studies. However, bias due to measurement error has been relatively less addressed in the causal 

inference literature. Recently, Edwards et al. [41] demonstrated that bias due to measurement 

error can be incorporated into the counterfactual framework. We here propose to define 

measurement bias as the difference between structural error in Formula 4 and 

non-exchangeability bias in Formula 5, which is algebraically described as: 
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( ) ( )( ) ( ) ( )( )*| * 1, 1 , * | * 0, 1 | 1, 1 , | 0, 1 . (8)E Y A S E Y A S E Y A S E Y A S = = = = − = = = =  

 

Note that, unlike non-exchangeability bias, the definition of measurement bias is based on the 

comparison of two associational measures; the first term of Formula 8 is calculated using the 

misclassified exposure and the misclassified outcome among the selected individuals, whereas 

the second term is calculated using the true exposure and the true outcome among the selected 

individuals. In other words, the target parameter is not a true causal parameter but a “true” 

associational measure among the selected individuals. Thus, the newly defined measurement bias 

may seem inconsistent with the conventional definition of bias. When there is neither 

confounding bias nor selection bias, however, the second term of Formula 8 is equal to 

( ) ( )( )1 0,E Y E Y . 

 The rationale to separate measurement bias from the other two major types of bias (i.e., 

confounding and selection) may be readily understood by describing measurement bias in DAGs 

[31-34]. Hernán and Cole [31] showed that DAGs can be used to represent four types of 

measurement error: independent non-differential, dependent non-differential, independent 

differential, and dependent differential. To simplify our discussion, Figure 2d shows a situation in 

which there is an independent non-differential measurement error of the exposure and the 

outcome, in addition to confounding bias and selection bias. Note that, conditional on S, there are 

three open backdoor paths between A* and Y* (i.e., A*←A→Y→Y*, A*←A←L→Y→Y*, and 

A*←A→S←Y→Y*), and bias due to the causal structure of the third path has been specifically 

referred to as M-bias [42]. Thus, unlike confounding bias and selection bias, measurement bias is 

not described as yielding an undirected open path between the true exposure A and the true 

outcome Y; rather, measurement bias is explained by the presence of backdoor path(s) between 

the misclassified exposure A* and the misclassified outcome Y*. Therefore, a lack of 

exchangeability between the truly exposed and truly unexposed groups is not a primary concern 

of measurement bias, which would justify distinguishing measurement bias from confounding 

bias and selection bias. 

 Finally, under the assumption of no confounding bias and no selection bias, independent 

non-differential measurement error of the exposure and outcome does not result in bias under the 

causal null hypothesis of no effect of the exposure on the outcome [31]. Although this is a notable 

exception, measurement error will generally result in bias. Even when there is no effect of A on Y 

in Figure 2d, the two open backdoor paths between A* and Y* (i.e., A*←A←L→Y→Y* and 

A*←A→S←Y→Y*) remain and the independent non-differential measurement bias persists. 
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Analytic error 

Comparison of the systematic error (Formula 2) and the newly defined structural error (Formula 

4) yields the identification of analytic error. Using Formula 3, we may estimate 

( ) ( )( )1 0,E Y E Y  by ( ) ( )( ) ( ) ( )( )1 0
ˆ ˆ, * | * 1, 1 , * | * 0, 1E Y E Y E Y A S E Y A S = = = = =  so that 

the bias in Formula 2 becomes 

( ) ( )( ) ( ) ( )( )1 0
ˆ *| * 1, 1 , * | * 0, 1 ,E E Y A S E Y A S E Y E Y  = = = = −  . Then, analytic error is 

algebraically described as: 

 

( ) ( )( )

( ) ( )( )

ˆ *| * 1, 1 , *| * 0, 1

*| * 1, 1 , *| * 0, 1 . (9)

E E Y A S E Y A S

E Y A S E Y A S





 = = = = 

− = = = =
 

 

Note that the target of analytic error is the measure of association (Formula 3), whereas the target 

of conventional bias is the measure of effect (Formula 1). When there is no structural error, 

however, the second term of Formula 9 is equal to ( ) ( )( )1 0,E Y E Y . In short, analytic error is 

interpreted as a component of systematic error that cannot be explained by structural error. 

 Many forms of analytic errors result from the small sample properties of the estimator 

used and vanish asymptotically. For example, ratio measures estimates suffer from a positive 

small-sample bias (of order 1/n); their exact bias based on Formula 9 is infinite, because there is a 

nonzero probability of having a zero denominator. This bias can occur even with large sample 

sizes if the data lack adequate numbers of observations for some combination of risk factor and 

outcome levels, which may arise even if the total sample size appears large and thus the bias is 

better termed sparse-data bias [43]. Stratification on a vector of confounders thins out cells much 

faster than risk factor/outcome levels alone. Regression modeling can mitigate the sparse-data 

bias inherent in stratification by imposing modeling assumptions (e.g., linearity, no interaction 

between confounders) at the expense of introducing model-misspecification bias. Sparse-data 

bias can be reduced using penalization methods [43-46]. 

 There are other important and common sources of analytic error such as bias due to 

wrong (misspecified) statistical models and bias due to inappropriate statistical methods, which 

can generally occur even if the size of population is large. For example, when the target 

parameter is the marginal causal effect, standardization and inverse-probability weighted 

estimates better estimate the marginal causal effect than covariate-conditional odds ratios derived 

from direct outcome regression even if both odds ratios are unconfounded. This is because the 
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target parameter of the latter method is not a marginal but a common causal effect [47, 48]. 

 In Table 1 we summarize algebraic descriptions of the decomposition of systematic 

error. 



11 

 

Table 1. Decomposition of systematic error 

Error Algebraic description 

Systematic error (2) 
( ) ( )( ) ( ) ( )( )1 0 1 0

ˆ , ,E E Y E Y E Y E Y   −   

Analytic error a (9) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 0
ˆ , * | * 1, 1 , *| * 0, 1

ˆ *| * 1, 1 , *| * 0, 1 *| * 1, 1 , *| * 0, 1

E E Y E Y E Y A S E Y A S

E E Y A S E Y A S E Y A S E Y A S

 

 

  − = = = = 

 = = = = = − = = = = 

 

Structural error (4) 
( ) ( )( ) ( ) ( )( )1 0*| * 1, 1 , * | * 0, 1 ,E Y A S E Y A S E Y E Y = = = = −  

Measurement bias (8) 
( ) ( )( ) ( ) ( )( )*| * 1, 1 , * | * 0, 1 | 1, 1 , | 0, 1E Y A S E Y A S E Y A S E Y A S = = = = − = = = =  

Non-exchangeability bias (5) 
( ) ( )( ) ( ) ( )( )1 0| 1, 1 , | 0, 1 ,E Y A S E Y A S E Y E Y = = = = −  

  Selection bias (7) 
( ) ( )( ) ( ) ( )( )| 1, 1 , | 0, 1 | 1 , | 0E Y A S E Y A S E Y A E Y A = = = = − = =  

  Confounding bias (6) 
( ) ( )( ) ( ) ( )( )1 0| 1 , | 0 ,E Y A E Y A E Y E Y = = −  

We let A denote a binary exposure of interest (1 = exposed, 0 = unexposed) and Y denote an outcome of interest. We also let S denote a 

selection variable (1 = selected, 0 = not selected), which is a common effect of A and Y. We use asterisks to denote misclassified 

exposure and outcome (i.e., A* and Y*, respectively). We denote measures of interest by ( )1 0,   , which is a function of the 

parameters. See text for details. 

a We show an algebraic definition of analytic error when estimating ( ) ( )( )1 0,E Y E Y  by 

( ) ( )( ) ( ) ( )( )1 0
ˆ ˆ, * | * 1, 1 , * | * 0, 1E Y E Y E Y A S E Y A S = = = = = . 
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RANDOM ERROR 

Much epidemiology literature has simply explained random error as an error other than 

systematic error, and few have provided systematic discussion of random error. Indeed, there is 

no entry for “random error” in A Dictionary of Epidemiology [2], although there is an entry for 

“systematic error”. Hernán [18] discussed stochastic (non-deterministic) counterfactuals and 

sampling variability as two sources of random error. Note that the former error is at the individual 

level and the latter error is at the sample level. A non-deterministic definition of counterfactual 

outcome attaches a statistical distribution of Ya to each subject. See Hernán [18] and Hernán and 

Robins [7] for further discussion. 

 We here propose to add “mechanism that generates exposure events” and “measurement 

variability” as sources of random error (see the lower part of Figure 1). The former error is at the 

exposure assignment level in a particular sample, while the latter error occurs at measurement, 

which is related to issues of inter-rater/intra-rater variability. Note that these errors can occur 

even when there is no sampling involved. For example, even if one has accounted for 

measurement bias in a particular sample, there is a remaining variability in measurement, which 

is referred to as “error due to measurement variability”. Our schema does not show type 1 error 

or type 2 error, which are defined based on statistical decision-making in the face of random 

error.  

 To illustrate the relationship between systematic error and random error in general, we 

explain the relationship between “confounding bias” and “error due to a mechanism that 

generates exposure events”, addressing a distinction between the notions of confounding “in 

expectation” and “realized” confounding [36, 40, 49]. In an ideal randomized controlled trial, the 

randomized groups will be comparable in their potential outcomes on average over repeated 

experiments. For any given experiment, however, the particular randomization may result in 

imbalances by chance because of the particular allocation or exposure assignment [50]. Such a 

scenario would be one in which there is no confounding in expectation but there is realized 

confounding for the particular experiment [40, 49]. (This phenomenon has been also referred to 

as “random confounding” [51]. Under stochastic potential outcome models for continuously 

distributed risks, there is always some random confounding in finite samples.) To grasp the 

profound distinction between these notions of confounding, we need to understand the 

mechanism that generates exposure events, not the product of that mechanism.  

 In Figure 1, we refer to “confounding bias” by employing the notion of confounding in 

expectation. See Supplementary Appendix B for its strict algebraic description. When there is 

confounding in expectation (a form of systematic error), we also expect to observe realized 

confounding in a study. In this case, realized confounding is a result from “confounding bias” as 

well as “error due to a mechanism that generates exposure events”. However, even if there is no 
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bias or systematic error, there is a possibility of realized confounding because of “error due to a 

mechanism that generates exposure events”, particularly when the size of the population is small. 

In other words, irrespective of whether there is “confounding bias” or confounding in expectation, 

“error due to a mechanism that generates exposure events” is a determinant of the presence of 

realized confounding. Since error due to a mechanism that generates exposure events is a type of 

random error, it declines as the size of the population increases, and realized confounding 

converges to confounding in expectation. On a related issue, it is notable that, in such a situation 

in which there is no confounding in expectation, one describes the estimator as being an unbiased 

estimator and the realized value is referred to as an unbiased estimate even if there is realized 

confounding [2, 6]. This unbiasedness, however, is only “unconditional” (or pre-allocation state) 

and not helpful for analysis of a given experiment and there would be “conditional” (or 

post-allocation state) bias in the unadjusted estimator [11, 36, 50, 51].  

 Analogous discussions apply to the relationship between “selection bias” and “error due 

to sampling variability” as well as the relationship between “measurement bias” and “error due to 

measurement variability” in Figure 1. 

 

DISCUSSION 

To our knowledge, there is little in the literature providing comprehensive schema of both 

systematic error and random error. Here we provide an organizational schema for systematic 

error and random error in estimating causal measures, aimed at clarifying the concept of errors 

from the perspective of causal inference. We propose to divide systematic error into structural 

error and analytic error. Structural error comprises three main sources of bias: confounding bias, 

selection bias, and measurement bias. Although some researchers have provided very extensive 

lists of specific biases [52, 53], there is concern that these lists are not necessarily comprehensive, 

and can be confusing because of the inconsistent terminology [22]. Also many, if not most, of 

these types of biases are structural and can be easily mapped to epidemiologic confounding, 

measurement bias, and selection bias [54]. Thus, we aim to provide an overall relationship of 

“bias” by employing the well-known tripartite taxonomy. Although analytic error has not been 

fully addressed in epidemiology literature, it provides a unifying perspective of epidemiology and 

statistics. We also detail the four major sources of random error in our schema. This clear 

explication is useful for understanding the relationship between systematic error and random 

error from a previously less investigated aspect.  

 We should note that our schema is not truly complete. For example, we assumed that 

there is no measurement error of confounders, and we did not consider dependent measurement 

error between covariates, etc. Also exact mean-unbiasedness considered in this paper is just one 

of several useful definitions of bias. In practice, validity is sometimes taken to mean a strong 
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combination of uniform consistency, asymptotic unbiasedness, and normality to ensure that 

approximate Wald intervals are asymptotically valid. Although these are important issues in 

causal inference, our schema is helpful for understanding the overall relationship of errors.  

 The target of inference is important in evaluating the bias in effect estimates. The target 

can be the total population, or the exposed, marginal or conditional on the covariates. The effects 

in the total population can be different from the effects in the exposed if there is modification of 

effect measures across levels of the confounders. Similarly, the marginal causal effects can be 

different from conditional causal effects simply due to non-collapsibility of effect measures [55]. 

For example, in a matched cohort study with matching variable as the sole confounder, the crude 

and matching variable conditional odds ratios are different even though both have causal 

interpretations for their target (the target of the crude odds ratio is the exposed population if as 

usual unexposed subjects are matched to the exposed subjects) [39, 56, 57]. This example 

highlights the point that non-collapsibility should not be confused with bias.  

 Although the best endeavors are usually made to ensure the accuracy of scientific 

research, unfortunately there are potential errors in all scientific papers. However, in public health 

practice, we must take appropriate action to ensure the safety and health of the public before it is 

too late, while still being aware of potential errors. A balanced approach should be applied to 

interpretation, and the aim of the research should not be overlooked, such as disease control and 

prevention. In so doing, it is also important to bear in mind that quantitative bias analyses are 

now recommended to obtain more valid study results [58]. A systematic understanding of errors 

is key in the pursuit of causal inference. 
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Figure captions 

Fig. 1 An organizational schema for errors in estimating causal measures 

The presence of non-exchangeability bias implies a lack of exchangeability between the selected 

exposed and unexposed groups. Non-exchangeability bias is divided into the two types of bias 

based on their causal structures; confounding bias occurs because of common causes whereas 

selection bias occurs because of conditioning on common effects. Note that random errors due to 

stochastic (non-deterministic) counterfactuals, sampling variability, a mechanism that generates 

exposure events, and measurement variability are at the individual level, at the sample level, at 

the exposure assignment level, and at the measurement level, respectively. 

 

Fig. 2 Directed acyclic graphs illustrating structural error 

A, Y, L, and S denote exposure, outcome, confounder, and selection variable, respectively, and we 

use asterisks to denote misclassified variables. The square around S in Figure 2c and d indicates 

that the analysis is restricted to those who do not drop out (i.e., S = 1). Figure 2a shows a 

situation in which one can readily identify a causal relationship between the exposure A and the 

outcome Y. Figure 2b illustrates a situation in which there is confounding bias, and Figure 2c 

illustrates a situation in which there are both confounding bias and selection bias. Figure 2d 

illustrates a situation in which there is an independent non-differential measurement error of the 

exposure and the outcome, in addition to confounding bias and selection bias. Hernán and Cole 

[31] represent on their diagrams factors responsible for measurement error, UA and UY, other than 

A and Y. Following a recent approach suggested by VanderWeele and Hernán [34], we do not 

represent the factors in Figure 2d. 
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Supplementary Appendix A: Alternative decomposition of non-exchangeability bias 

In the main text, we show the decomposition of non-exchangeability bias (Formula 5) into 

confounding bias (Formula 6) and selection bias (Formula 7). We here show that 

non-exchangeability bias can be alternatively decomposed into: 

( ) ( )( ) ( ) ( )( )1 0| 1, 1 , | 0, 1 | 1 , | 1 , (A.1)E Y A S E Y A S E Y S E Y S = = = = − = =  

and 

( ) ( )( ) ( ) ( )( )1 0 1 0| 1 , | 1 , . (A.2)E Y S E Y S E Y E Y = = −  

Note that Formula A.1 is the definition of confounding bias (Formula 6) among the selected 

individuals (i.e., S = 1). In other words, the difference between Formulas 6 and A.1 can be 

understood as a difference in the target populations; the target of the former is the total population 

whereas that of the latter is the subpopulation of S = 1. Formula A.2 is the difference between the 

2 distinct causal measures, and may arise as an error due to selection of comparison groups. By 

contrast, recall that Formula 7 is the difference between the 2 distinct associational measures, and 

this bias is induced by selecting individuals into the study or the analysis [1].  

In conclusion, Formula A.1 is related to internal validity of the subpopulation in randomized 

controlled trials, whereas Formula A.2 is related to external validity or generalizability in 

randomized controlled trials. In perfect randomized controlled trials, we expect that Formula A.1 

becomes zero. Although non-exchangeability bias can be alternatively decomposed into Formulas 

A.1 and A.2, we note that this decomposition uses 2 distinct target populations. It would thus be 

natural to decompose non-exchangeability bias into Formulas 6 and 7 by consistently using a 

total population as the target population. 

 

Supplementary Appendix B: Strict algebraic description of confounding in expectation 

As mentioned in the main text, we refer to “confounding bias” in our schema by employing the 

notion of confounding in expectation [2, 3]. In a strict sense, however, the algebraic description 

of confounding bias in Formula 6 is based on the notion of realized confounding. Here we 

provide a strict algebraic description of confounding bias in the notion of confounding in 

expectation. To show a clear distinction between the notions of realized confounding and 

confounding in expectation, we need to introduce new notations, clarifying the mechanism that 

generates exposure events. We let Jm denote a scenario of exposure allocation among the target 

population, which is generated by the mechanism m. We also let Aj denote a binary exposure (1 = 

exposed, 0 = unexposed) under the scenario j. Then, realized confounding under scenario j can be 
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algebraically described as: 

( ) ( ) ( )( )1 0( | 1), ( | 0) , , (B.1)j jE Y A E Y A E Y E Y = = −  

which essentially corresponds to Formula 6. On a related issue, Greenland and Mansournia [4] 

formalized “random confounding” using the potential-outcome (counterfactual) model and the 

notion of “sample exchangeability”. 

Confounding in expectation under mechanism m can be algebraically described as: 

( ) ( ) ( )( )1 0( | 1), ( | 0) , , (B.2)
m m m mJ Y J J Y JE E Y A E E Y A E Y E Y = = −  

where ( )|
m mJ Y JE E Y A a=  can be calculated as ( ) ( )| = = Y j mj

E Y A a P J j . Note that 

confounding in expectation (Formula B.2) is dependent on each mechanism that generates 

exposure events, whereas realized confounding (Formula B.1) is dependent on each product of 

that mechanism (or scenario). To simplify our discussion, we do not use Formula B.2 in the main 

text. Analogous discussions apply to selection bias and measurement bias. 
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