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ABSTRACT 

Purpose: To show conditions of covariate balance for no confounding in the sufficient-cause model 

and discuss its relationship with exchangeability conditions.  

Methods: We consider the link between the sufficient-cause model and the counterfactual model, 

emphasizing that the target population plays a key role when discussing these conditions. 

Furthermore, we incorporate sufficient causes within the directed acyclic graph framework. We 

propose to use each of the background factors in sufficient causes as representing a set of covariates 

of interest and discuss the presence of covariate balance by comparing joint distributions of the 

relevant background factors between the exposed and the unexposed groups.  

Results: We show conditions for partial covariate balance, covariate balance, and full covariate 

balance, each of which is stronger than partial exchangeability, exchangeability, and full 

exchangeability, respectively. This is consistent with the fact that the sufficient-cause model is a 

“finer” model than the counterfactual model. 

Conclusions: Covariate balance is a sufficient, but not a necessary, condition for no confounding 

irrespective of the target population. Although our conceptualization of covariate imbalance is 

closely related to the recently proposed counterfactual-based definition of a confounder, the concepts 

of covariate balance and confounder should be clearly distinguished. 

 

Keywords: bias; causality; confounding factors; epidemiologic methods  

List of abbreviations: DAG (directed acyclic graph) 
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Introduction 

Since the publication of the seminal paper by Greenland and Robins [1], the counterfactual approach 

to confounding has been widely accessible to epidemiologists, and the concept of confounding is 

now explained in the counterfactual framework [2-7]. Much of the literature on this topic has 

explained that exchangeability between the exposed and the unexposed groups is a core concept to 

make causal inference. In this context, covariate balance is often addressed as a key feature to control 

confounding in epidemiology, and many researchers have been concerned about whether covariate 

balance is achieved between the exposed and the unexposed groups in their analyses. Despite its 

significance, however, a covariate is broadly defined as a “variable that is possibly predictive of the 

outcome under study” [8], and the term “covariate” has been often used interchangeably with the 

term “confounder”.  

 In this article, we aim to show conditions of covariate balance for no confounding in the 

sufficient-cause model and discuss its relationship with exchangeability conditions. In so doing, we 

consider the link between the sufficient-cause model and the counterfactual model, emphasizing that 

covariate balance depends on the target population of interest.  

 

The link between the sufficient-cause model and the counterfactual model 

The sufficient-cause model and the counterfactual model have become cornerstones for causal 

thinking in epidemiology [9-11], and the link between these models has been addressed [12-15]. In 

this section, we provide a brief overview of the link between these two fundamental causal models in 

a situation in which there is a binary cause E (1 = exposed, 0 = unexposed) and a binary outcome Y 

(1 = outcome occurred, 0 = outcome did not occur). 

 In the counterfactual framework, we let Ye denote the potential outcomes for an individual if, 

possibly contrary to fact, there had been interventions to set E = e. Throughout this article, we will 

assume that the consistency assumption is met [16, 17], which implies that the observed outcome for 

an individual is the potential outcome, as a function of intervention, when the intervention is set to 

the observed exposure. For each individual, there would thus be two possible potential outcomes, Y1 

and Y0, corresponding to what would have happened to that individual had he or she been exposed 

and unexposed, respectively. As a result, individuals can be classified into four different response 

types, as enumerated in Table 1 [1]. We let pj, qj, and rj, j = 1–4, be proportions of response type j in 

the exposed group, the unexposed group, and the total population, respectively.   

 In the sufficient-component cause framework [11], each sufficient cause for the outcome 

might require the presence of E, the presence of E , or may not require either, where we let E  

denote the complement of E in the terminology of events. We could thus enumerate three different 

types of sufficient causes for Y along with certain background factors Ck: C1, C2E, and 3C E . Here, 

Ck denotes a set of all components or factors, other than the presence of E and E , that may be 

required for a particular mechanism to operate. We assume that Ck is an actual or intrinsic biological 

factors. For simplicity, we denote the presence of these background factors as Ck = 1 and their 
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absence as Ck = 0. An individual is at risk of, or susceptible to, sufficient cause k if Ck is present for 

that person. Note that an individual is of one, and only one, response type in the counterfactual 

framework, whereas an individual may be at risk of none, one, or several sufficient causes. Then, we 

can enumerate eight (i.e., 23) types of possible risk status for sufficient causes (Table 1). We let sj, tj, 

and uj, j = 1–8, be proportions of risk status type j in the exposed group, the unexposed group, and 

the total population, respectively.  

 As illustrated in Table 1, the potential outcomes of Y can be described using the background 

factors Ck as: ( )1 1 2max ,Y C C=  and ( )0 1 3max ,Y C C= . These descriptions provide important 

implications in the following discussion.  
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Table 1. Correspondence between response types and risk status types under a binary exposure and a binary outcome a 

Response types 
 

Risk status types 

Type 
Potential 

outcomes 

 
Proportion of types in b 

 
Type 

Background 

factors 

 
Proportion of types in b 

  Y1 Y0   Exposed Unexposed 
Total 

population 
    C1 C2 C3   Exposed Unexposed 

Total 

population 

1 1 1 
 

p1 q1 r1 
 

1d 1 1 1 
 

s1 t1 u1 
        

2 1 1 0 
 

s2 t2 u2 
        

3d 1 0 1 
 

s3 t3 u3 
        

4 1 0 0 
 

s4 t4 u4 
        

5d 0 1 1 
 

s5 t5 u5 

2 1 0 
 

p2 q2 r2 
 

6 0 1 0 
 

s6 t6 u6 

3c 0 1 
 

p3 q3 r3 
 

7d 0 0 1 
 

s7 t7 u7 

4 0 0   p4 q4 r4   8 0 0 0   s8 t8 u8 

a We consider a binary exposure E (1 = exposed, 0 = unexposed) and a binary outcome Y (1 = outcome occurred, 0 = outcome did not 

occur). We consider two potential outcomes, Ye, for an individual. We consider three different sufficient causes for outcome Y along with 

certain binary background factors as follows: C1, C2E, and 3C E , where we let E  denote the complement of E. 
b Note that rj can be calculated as:    1 0j jp P E q P E = +  = , where  P E e=  represents the prevalence of E = e in the total 

population. Likewise, uj can be calculated as:    1 0j js P E t P E = +  = . 
c Under the assumption of (counterfactual) positive monotonicity (i.e., 0 1Y Y  for all individuals), this response type is excluded [15, 18].  
d Under the assumption of no preventive action [18], or sufficient-cause positive monotonicity [19] (i.e., 

3 0C =  for all individuals), these 

risk status types are excluded [15, 20]. Note that no preventive action implies positive monotonicity. 
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The concept of confounding and exchangeability conditions in the counterfactual model 

Before showing conditions for covariate balance, we provide a brief overview of the counterfactual 

approach to confounding in this section [1-6, 21-23]. (In this article, we primarily use the notion of 

confounding in distribution [24-26]. See Appendix A for further discussion.) In the counterfactual 

model, a causal effect is defined on the basis of contrasts between potential outcomes under different 

exposure status. Thus, when the exposed is the target population, we compare the incidence 

proportion under E = 1 in the exposed and the incidence proportion under E = 0 in the exposed. The 

former quantity is, by definition, observable or estimable, and it is described as  1 1| 1= =P Y E  or 

(p1 + p2). By contrast, the latter quantity,  0 1| 1= =P Y E  or (p1 + p3), is unobservable because it is 

counterfactual. Thus, we use the actual unexposed group as a substitute of what would have occurred 

in the actual exposed group had they been unexposed. In other words, we use the incidence 

proportion in the unexposed group,  0 1| 0= =P Y E  or (q1 + q3), as a substitute of  0 1| 1= =P Y E  

or (p1 + p3). Thus, confounding corresponds to the difference between the desired counterfactual 

quantity and the observed substitute, and a sufficient and necessary condition for no confounding is 

given by [1]: 

 

    ( )

( ) ( )( )

0 0

0

1 3 1 3

| 1 | 0 0,1

. [Eq. 1]

P Y y E P Y y E y

Y E

p p q q

= = = = = =



 + = +

 

 

Conversely, when the unexposed group is the target population, a sufficient and necessary condition 

for no confounding is given by:  

 

    ( )

( ) ( )( )

1 1

1

1 2 1 2

| 1 | 0 0,1

. [Eq. 2]

P Y y E P Y y E y

Y E

p p q q

= = = = = =



 + = +

 

 

Finally, when the target is the total population, a sufficient and necessary condition for no 

confounding is given by: 

 

          ( )

( )

( ) ( )  ( ) ( ) ( )

1 1 0 0

1 2 1 2 1 3 1 3

| 1 | 0 0,1

0,1 . [Eq. 3]e

P Y y P Y y E P Y y P Y y E y

Y E e

p p q q p p q q

= = = =  = = = = =

 =

 + = +  + = +

 

 



7 
 

If Equation 3 holds, the groups that are actually exposed and unexposed are representative of what 

would have occurred had the total population been exposed and unexposed, respectively. Equations 1 

and 2 are referred to as partial exchangeability conditions, whereas Equation 3 is referred to as 

exchangeability condition [1, 27]. 

 We should note that complete comparability of response types between the exposed and the 

unexposed groups (i.e., ( )0 1,Y Y E  or ( ) ( )1 2 3 4 1 2 3 4, , , , , ,p p p p q q q q= ) is a sufficient, but not a 

necessary, condition for no confounding in the three target populations. This is referred to as full 

exchangeability condition [27]. 

 

Covariate balance for no confounding in the sufficient-cause model 

In this section, we propose to show conditions of covariate balance for no confounding in the 

sufficient-cause model. This would fit the concept of covariate balance because one innately focuses 

on the “factor” or “mechanism” that induces confounding when discussing it. To begin with, note 

that we use each of the three background factors, C1, C2, and C3, as representing a set of covariates of 

interest. These background factors may be several combinations of variables, each of which is part of 

the sufficient causes. Note also that this conceptualization well describes that these factors are 

“predictors” of the outcome Y. To illustrate our discussion, we incorporate sufficient causes into the 

directed acyclic graph (DAG) framework [28, 29]. In Figure 1, we show all of the sufficient causes 

for outcome Y as nodes, and add an ellipse around the sufficient-cause nodes to indicate that the set 

of sufficient causes is determinative. In the following discussion, we do not have to assume that the 

background factors are marginally independent of one another, e.g., due to shared component 

cause(s). However, we do not show the possible dependencies between the background factors to 

simplify the diagrams. 

 In ideal randomized controlled trials with perfect adherence to assignment and no loss to 

follow-up, we can expect that the exposed and the unexposed groups are completely comparable and 

that there is no confounding [30]. Thus, Equations 1 to 3 all hold in this situation. (Strictly speaking, 

there is no confounding “in expectation” although there is a possibility of “realized” confounding [5, 

6, 24, 25, 30]. This phenomenon has been also referred to as “random confounding” [31, 32].) From 

the perspective of the sufficient-cause model, we can also expect that, in ideal randomized controlled 

trials, all of the three background factors are distributed comparably between the exposed and the 

unexposed groups. Thus, there is no association between each of the background factors and the 

exposure, and we can expect that covariate balance is achieved. Figure 1 describes this situation; 

there is no backdoor path from E to Y, implying there is no confounding in this case. 

 By contrast, in observational studies, the exposed and the unexposed groups are usually not 

comparable, which implies the presence of covariate imbalance. From the perspective of the 

sufficient-cause model, we would expect that the distributions of the three background factors are not 

comparable between the two groups. Let us tentatively suppose that each of the background factors is 

associated with the exposure either positively or negatively. In Figure 2, we show the associations or 
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correlations using their (unknown or unmeasured) common causes U1, U2, and U3. (Note that we 

here assume that none of the background factors is an intermediate step in the causal path between E 

and Y. We discuss a related issue in Appendix B.) There are three unblocked backdoor paths between 

E and Y in Figure 2, which conveniently describes a situation of covariate imbalance of C1, C2, and 

C3 between the exposed and the unexposed groups.  

 Like the (partial) exchangeability conditions, the target population plays a key role when 

discussing covariate balance for no confounding. Recall that, when the exposed group is the target 

population, we use the actual unexposed group as a substitute of what would have occurred in the 

actual exposed group had they been unexposed. Given that sufficient cause 2 (i.e., C2E) contains 

exposure as a component, it can never complete when the individual is unexposed. Therefore, when 

the exposed group is the target population, we do not have to consider the comparability of C2 

between the exposed and the unexposed groups. In other words, C2 represents an irrelevant set of 

covariates for no confounding, and we need to consider the comparability of only C1 and C3 between 

the exposed and the unexposed groups. If we compare their joint distributions between the two 

groups, we can obtain a sufficient condition of covariate balance for no confounding as follows: 

 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )  ( ) ( )  ( ) ( ) ( )

1 3 1 3 1 3 1 3 1 3

1 3

1 3 1 3 2 4 2 4 5 7 5 7

, , | 1 , , | 0 , 0,1

, . [Eq. 4]

= = = = = =      



 + = +  + = +  + = +

P C C c c E P C C c c E c c

C C E

s s t t s s t t s s t t

 

 

We refer to this joint independence as partial covariate balance. Note that Equation 4 is stronger 

than the partial exchangeability condition in Equation 1, that is, a sufficient and necessary condition 

for no confounding. This point can be readily shown by rewriting Equation 1 as: ( )1 3max ,C C E  

or ( ) ( )1 2 3 4 5 7 1 2 3 4 5 7s s s s s s t t t t t t+ + + + + = + + + + + . When ( ) ( )1 3, 1,1C C =  in the first equation of 

Equation 4, the left-hand side represents a proportion of subjects who are at risk of sufficient causes 

1 and 3 (i.e., C1 and 3C E , respectively) in the exposed group, whereas the right-hand side represents 

the corresponding proportion in the unexposed group. More strictly speaking, these subjects 

potentially become at risk of sufficient causes 1 and 3 during the follow-up period. Thus, when the 

first equation is met, the exposed and the unexposed groups are comparable in terms of susceptibility 

to sufficient causes 1 and 3. An analogous discussion applies when ( ) ( ) ( )1 3, 1,0 , 0,1C C = , or ( )0,0 .  

 Conversely, when the unexposed group is the target population, C3 represents an irrelevant 

set of covariates for no confounding because sufficient cause 3 (i.e., 3C E ) can never complete when 

the individual is exposed. Thus, we need to consider the comparability of joint distributions of C1 

and C2 between the exposed and the unexposed groups, which yields a sufficient condition of 

covariate balance for no confounding as: 
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( ) ( ) ( ) ( ) ( )

( )

( ) ( )  ( ) ( )  ( ) ( ) ( )

1 2 1 2 1 2 1 2 1 2

1 2

1 2 1 2 3 4 3 4 5 6 5 6

, , | 1 , , | 0 , 0,1

, , [Eq. 5]

P C C c c E P C C c c E c c

C C E

s s t t s s t t s s t t

= = = = = =      



 + = +  + = +  + = +

 

 

which is stronger than the partial exchangeability condition in Equation 2, that is, a sufficient and 

necessary condition for no confounding. This point can be readily shown by rewriting Equation 2 as: 

( )1 2max ,C C E  or ( ) ( )1 2 3 4 5 6 1 2 3 4 5 6s s s s s s t t t t t t+ + + + + = + + + + + . We also refer to Equation 5 

as partial covariate balance.  

 Finally, when the target is the total population, we need to consider the comparability of 

joint distributions of C1 and C2 between the total population and the exposed group, as well as the 

comparability of joint distributions of C1 and C3 between the total population and the unexposed 

group. This yields a sufficient condition of covariate balance for no confounding as: 

 

( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) 
( ) ( )

( ) ( )  ( ) ( )  ( ) ( ) 

( ) ( )  ( ) ( ) 

1 2 1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3 1 3

1

1 2 1 2 3 4 3 4 5 6 5 6

1 3 1 3 5 7 5 7

, , , , | 1 , 0,1

, , , , | 0 , 0,1

, 2,3 , [Eq. 6]k

P C C c c P C C c c E c c

P C C c c P C C c c E c c

C C E k

s s t t s s t t s s t t

s s t t s s t t

= = = = =      

 = = = = =      

 =

   + = +  + = +  + = +  
   + = +  + = +  

 

 

which is stronger than the exchangeability condition in Equation 3, that is, a sufficient and necessary 

condition for no confounding. This point can be readily shown by rewriting Equation 3 as: 

( ) ( )1max , 2,3kC C E k =  or 

( ) ( )  ( ) ( ) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 7 1 2 3 4 5 7s s s s s s t t t t t t s s s s s s t t t t t t+ + + + + = + + + + +  + + + + + = + + + + +

. Equation 6 is simply a product of Equations 4 and 5, and we refer to Equation 6 as covariate 

balance in a more limited sense. We should note that complete comparability of risk status types 

between the exposed and the unexposed groups (i.e., ( )1 2 3, ,C C C E  or 

( ) ( )1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8, , , , , , , , , , , , , ,s s s s s s s s t t t t t t t t= ) is stronger than Equations 4 to 6. We refer to this 

complete comparability as full covariate balance, which is stronger than the full exchangeability 

condition. Equations 4 to 6 are neither stronger nor weaker than the full exchangeability condition. 

 The discussion above illustrates that, irrespective of the target population, covariate balance 

is a sufficient, but not a necessary, condition for no confounding. In other words, although 

confounding implies the presence of covariate imbalance, the presence of covariate imbalance does 

not necessarily induce confounding. In Table 2, we summarize the relationship between 

exchangeability and covariate balance for no confounding. See Appendix C for further remarks under 
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the assumption of no preventive action (i.e., 
3 0C =  for all individuals). When discussing covariate 

balance, a set of covariates can be generally divided into covariates that have no causal coaction with 

an exposure (i.e., C1) and covariates that have any causal coaction with an exposure (i.e., C2 and C3). 

Consequently, the target population plays a key role when discussing covariate balance for no 

confounding. An illustrative example from real data is provided in Online Appendix 1.  

 In Online Appendix 2, we show that one can obtain weaker sufficient conditions of 

covariate balance for no confounding by comparing distributions of the number of the relevant 

susceptible background factors between the exposed and the unexposed groups. Furthermore, in 

Online Appendix 3, we discuss alternative conditions of covariate balance by considering the 

comparability of marginal distributions of each of the relevant background factors between the 

exposed and the unexposed groups. See Online Appendix 4 for a more subtle conceptualization of 

covariate balance. 
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Table 2. The relationship between exchangeability and covariate balance for no confounding a 

Target population Counterfactual model  Sufficient-cause model 

 Exchangeability  Exchangeability in terms of background factors Covariate balance 

Exposed group 0Y E    ( )1 3max , C C E   ( )1 3,C C E   

Unexposed group 1Y E    ( )1 2max , C C E   ( )1 2,C C E   

Total population ( )0,1eY E e =    ( ) ( )1max , 2,3 =kC C E k   ( ) ( )1, 2,3kC C E k =   

     

 

( )0 1,



Y Y E
 

 

( ) ( )( )1 3 1 2max , ,max ,C C C C E




  

( )1 2 3, ,



 C C C E
 

a See Table 1 for notations. 
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Discussion 

Within the sufficient cause model, we proposed to use each of the background factors in sufficient 

causes as representing a set of covariates of interest and discuss the presence of covariate balance by 

comparing joint distributions of the relevant background factors between the exposed and the 

unexposed groups. By considering the link between the sufficient-cause model and the counterfactual 

model, we illustrated that covariate balance is a sufficient, but not a necessary, condition for no 

confounding irrespective of the target population. This is consistent with the fact that the 

sufficient-cause model is a “finer” model than the counterfactual model. We incorporated sufficient 

causes within the DAG framework to graphically illustrate our conceptualization of covariate 

balance. 

 As noted above, the term “covariate” is used broadly including the term “confounder” [8], 

and these are often used interchangeably. A confounder was traditionally explained as a factor that 

has the following three necessary (but not sufficient or defining) characteristics: (a) it must be a risk 

factor for the outcome; (b) it must be associated with the exposure; and (c) it must not be an 

intermediate step in the causal path between the exposure and the outcome. These points are often 

explained in epidemiology and statistics textbooks using a simple diagram such as that shown in 

Figure 3, with some variations [33-38]. Because the background factors C1, C2, and C3 may contain 

C in Figure 3, our conceptualization of covariate balance can be extended as a mechanistic 

representation of this traditional “definition” of a confounder in the sufficient-cause model. Note that 

the background factors appear to be truly mechanistic in that they causally produce the outcome. (A 

confounder that blocks a backdoor path from exposure to outcome, but does not cause the outcome is 

not included in the background factors. We focus on a factor that causally produces the outcome on 

the backdoor path.) As has been well addressed, however, this traditional “definition” is not a good 

definition of a confounder, which may lead to inappropriate adjustment for confounding [2-7]. See 

Hernán and Robins [27] for further discussion. 

 Recently, VanderWeele and Shpitser [39] proposed that, within the counterfactual 

framework, a confounder be defined as a pre-exposure covariate C for which there exists a set of 

other covariates X such that effect of the exposure on the outcome is unconfounded conditional on (X, 

C) but such that for no proper subset of (X, C) is the effect of the exposure on the outcome 

unconfounded given the subset. Equivalently, a confounder is defined as a “member of a minimally 

sufficient adjustment set”, which they illustrated coheres with the following two properties; (i) if one 

were to control for all confounders, then it would suffice to control for confounding; and (ii) control 

for a confounder in some sense helps to eliminate or reduce confounding. As a consequence of this 

so-called intervention-based perspective, the presence or absence of confounders is, by definition, an 

issue only when there is confounding. Indeed, the definition of a confounder is different from the 

definition of confounding. By contrast, our conceptualization of covariate balance is based on a 

so-called mechanistic perspective to identify which covariates should be adjusted for to achieve 

comparability between the exposed and the unexposed groups, which results in no confounding. 
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Thus, our conceptualization of covariate balance does not necessarily correspond to confounding. 

When there is confounding, however, if one were to control for all relevant background factors to 

achieve their comparable joint distributions between the exposed and the unexposed groups, it would 

suffice to control for confounding. Furthermore, control for each of the relevant background factors 

helps to eliminate or reduce confounding. Therefore, when there is confounding, the concept of 

covariate imbalance coheres to the abovementioned two properties of a confounder, which shows 

that covariate imbalance in the sufficient-cause model is closely related to the counterfactual-based 

definition of a confounder. Despite their similarities, however, the concepts of covariate balance and 

confounder should be clearly distinguished. 

 We should note that our conceptualization of covariate balance is based on a representation 

of a set of (observed and unobserved) covariates rather than a single covariate although one generally 

refers to a particular component cause (or a risk factor) as a covariate. Our discussion is also limited 

to a simple situation in which one considers a binary exposure and a binary outcome. 

 Covariate balance between the exposed and the unexposed groups has been a key issue 

when inferring causality, and many researchers show characteristics of study participants for each 

group in their analysis. We proposed a mapping between covariate balance under the sufficient-cause 

model and exchangeability conditions in the counterfactual model, highlighting the facts that 

covariate balance is a stronger condition than no confounding and that the required covariate balance 

depends on the target population of interest. Our formalization of the notion of covariate balance will 

be useful in clarifying the meaning of confounding.  
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Appendix A: Covariate balance and the notions of confounding 

Recent literature highlights the significance of the fact that the notion of confounding can be defined 

with respect to both marginal distributions of potential outcomes (i.e., confounding in distribution) 

and a specific effect measure (i.e., confounding in measure) [2, 24-26]. According to VanderWeele 

[24], confounding in distribution is defined as follows: 

 

We say that there is no confounding in distribution of the effect of E on Y conditional on C if 

( ) ( )| | ,eP Y C c P Y E e C c= = = =  for all e, c. 

 

In the main text, we show sufficient and necessary conditions for no confounding when C is an 

empty set without loss of generality. We denote measures of interest by ( )1 0,   , which is a contrast 

of population parameters. When defining population causal effects, 
e  is a population parameter for 

the distributions of potential outcomes Ye if E had been set to e for all in the target [40]. Then, 

according to VanderWeele [24], confounding in measure is defined as follows: 

 

We say that there is no confounding in measure μ of the effect of E on Y conditional on C if 

( ) ( )( ) ( ) ( )( )1 0| , | | 1, , | 0,E Y C c E Y C c E Y E C c E Y E C c = = = = = = =  for all c. 

 

Because no confounding in distribution is a sufficient condition for no confounding in measure 

[24-26], covariate balance is a stronger condition than no confounding irrespective of whether we 

use either the notions of confounding in distribution or confounding in measure. Further, this relation 

applies in both the notions of confounding “in expectation” and “realized” confounding [25]. In line 

with this, we may distinguish the concepts of covariate balance “in expectation” and “realized” 

covariate balance. A further discussion about the notions of confounding is provided elsewhere [25]. 

 

Appendix B: Covariate balance when considering mediation 

In this Appendix, we show that, when considering mediation, a distribution of an intermediate factor 

is a distinct issue from the conditions of covariate balance for no confounding. In so doing, we 

extend our discussion to illustrate the concept of covariate balance when considering mediation in 

the sufficient-cause model [41-43]. (Note that we do not discuss time-varying covariates in this 

article.) We consider a situation in which some of the effects of exposure E on outcome Y are thought 

to be mediated by a binary intermediate M. Then, mediation is conceptualized as a two-stage process, 

including both the M-stage (processes that lead to the formation of the mediator) and the Y-stage 

(processes that lead to the formation of the outcome). In the M-stage, we could enumerate three 

different types of sufficient causes for M along with certain background factors Ak: A1, A2E, and 

3A E . We let Ak denote a set of all components or factors, other than the presence of E and E , that 

may be required for a particular mechanism to operate. In the Y-stage, we could enumerate nine (i.e., 

32) different types of sufficient causes for Y along with certain background factors Bk: B1, B2E, B3M, 
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4B E , 5B M , B6EM, 
7B EM , 

8B EM , and 
9B EM . Here, Bk denotes a set of all components or 

factors, other than the presence of E, E , M, and M , that may be required for a particular 

mechanism to operate. Accordingly, we can enumerate eight (i.e., 23) and 512 (i.e., 29) patterns of 

possible risk status for sufficient causes in the M-stage and the Y-stage, respectively, and combining 

these yields 4,096 (i.e., 8 × 512) patterns of possible MY risk status [43]. Recall that we use each of 

the background factors (i.e., Ak and Bk) as representing a set of covariates of interest. Figure B.1 

shows a causal diagram depicting mediation [42]. Note that the intermediate M is not included in the 

covariates of interest. Its distribution is a distinct issue from the concept of covariate balance. 

 As illustrated in the main text, the target population plays a key role when discussing the 

concept of covariate balance. To simplify the discussion, let us tentatively assume that there are only 

two M-mediated paths, i.e., E → A2E → M → B3M → Y and E → A2E → M → B6EM → Y. In this 

case, the unexposed individuals can have neither M nor Y, and trivially, none of the exposed 

individuals would have had M or Y if there had been interventions to set E = 0. Thus, when the target 

population is the exposed group, there is no confounding, even if either of the abovementioned two 

M-mediated paths exists differentially between the exposed and the unexposed groups due to 

covariate imbalance. (Graphically, this situation can be depicted by adding an unmeasured common 

cause between E and A2, E and B3, and E and B6, respectively, in Figure B1.) However, the exposed 

group is not an ideal representative of what would have occurred had the total population or the 

unexposed group been exposed. Thus, when the target population is either the total population or the 

unexposed group, the presence of covariate imbalance can generally lead to confounding.  

 

Appendix C: Further remarks on covariate balance for no confounding 

The relationship between exchangeability and covariate balance applies in general; for example, let 

us consider a situation in which one can assume no preventive action (i.e., C3 = 0 for all individuals) 

when the target is the total population. Recall that, under the assumption of no preventive action, the 

individuals of risk status types 1, 3, 5, and 7 are excluded (Table 1). Recall also that no preventive 

action implies positive monotonicity since risk status type 7 corresponds to response type 3. Then, 

the exchangeability condition in Equation 3 (i.e., ( )0,1eY E e =  or ( ) ( )1max , 2,3kC C E k = ) 

becomes: 

 

  ( )

    ( )

( ) ( )    ( )

1 1 2

1 1 2 2 3 3

2 4 2 4 6 6 1 3 5 1 3 5

max , . [Eq. C.1]

0

0

C E C C E

p q p q p q

s s t t s t s s s t t t



 =  = = = 
 
  + = +  = = = = = = = 

 

 

And, the condition of covariate balance in Equation 6 (i.e., ( ) ( )1, 2,3kC C E k = ) becomes: 
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( )

( ) ( ) ( ) ( )( )
1 2

2 2 4 4 6 6 1 3 5 7 1 3 5 7

, , [Eq. C.2]

0

C C E

s t s t s t s s s s t t t t =  =  = = = = = = = = =
 

 

which is stronger than Equation C.1. Thus, when the total population is the target population, even in 

the presence of covariate imbalance, we may observe no confounding. This exemplifies that it would 

be of significance to understand the subtle difference between exchangeability and covariate balance, 

based on the link between the counterfactual model and the sufficient-cause model. 

 Although exchangeability and covariate balance are in general subtly different, they become 

consistent in a particular situation. As an example, let us consider the exposed group as the target 

population under the assumption of no preventive action. In this case, Equations 1 and 4 reduce to 

1C E  or ( ) ( )2 4 2 4s s t t+ = + . This coincidence, however, would be rare in practice. 
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Figure captions 

Fig. 1 Directed acyclic graph incorporating sufficient causes 

We consider a binary exposure E and a binary outcome Y. We consider three different types of 

sufficient causes for outcome Y along with certain binary background factors as follows: C1, C2E, 

and 3C E , where we let E  denote the complement of E. 

 

Fig. 2 Directed acyclic graph depicting covariate imbalance in the sufficient-cause model 

U1, U2, and U3 denote (unknown or unmeasured) common causes between the background factors 

and the exposure. 

 

Fig. 3 Typical diagram showing confounding/confounder 

E, Y, and C denote exposure, outcome, and confounder, respectively. As mentioned in the text, the 

traditional “definition” of a confounder may lead to inappropriate adjustment for confounding. 

 

Fig. B1 Directed acyclic graph depicting mediation in the sufficient-cause model 

We consider a binary exposure E, a binary intermediate M, and a binary outcome Y. For details, see 

the text. 
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Covariate balance for no confounding in the sufficient-cause model 
 

Online Appendix 1: An example of the Western Collaborative Group Study 
To illustrate the methods, we discuss the relationship between the concepts of confounding and covariate 

balance using real data from the Western Collaborative Group Study (WCGS) [1]. This data has often been 

used in epidemiology textbooks [2, 3], and we describe it briefly here. The WCGS data consist of 3,154 

middle-aged men (aged 39 to 59) recruited from ten California companies during the years 1960–1961. 

The exposure of interest was behavior type (type A vs. type B). Type A behavior is characterized by 

aggressiveness and competitiveness, whereas type B behavior is characterized by a relaxed, 

noncompetitive, less hurried personality. A total of 1,589 type-A and 1,565 type-B individuals were 

identified using tape-recorded interviews. The outcome of interest was the occurrence of coronary heart 

disease (CHD), which was determined by expert diagnosis. During the mean of 8.5 years of follow-up, 

CHD occurred in 257 subjects. Online Table 1 summarizes the relationship between behavior type and 

CHD. The risk of CHD among type-A individuals (i.e., the exposed group) was 0.112, while the risk of 

CHD among type-B individuals (i.e., the unexposed group) was 0.051. 

Online Table 2 shows a possible distribution of response types and risk status types in the WCGS data. 

Various risk factors were also measured in the study (e.g., smoking, blood pressure, cholesterol level), and 

each of the three background factors, C1, C2, and C3, represents a set of measured and unmeasured 

covariates. Consistent with the results in Online Table 1, the incidence proportion in the exposed group, 

 1 2p p , is 0.112 and the incidence proportion in the unexposed group,  1 3q q , is 0.051. The 

associational risk difference is calculated as:    1 2 1 3 0.061p p q q    . Equations 1 to 3 are not met, 

and there is confounding irrespective of the target population, which is likely in most observational studies. 

The causal risk differences in the exposed group, the unexposed group, and the total population are 0.017, 

0.004 , and 0.007, respectively. Furthermore, Equations 4 to 6 are not met, and there is covariate 

imbalance irrespective of the target population. Recall that confounding implies the presence of covariate 

imbalance. For example, a proportion of subjects who are at risk of sufficient causes 1 and 3 in the exposed 

group is calculated as: 1 3 0.020s s  , and the corresponding proportion in the unexposed group is 

calculated as: 1 3 0.010t t  . Once covariate balance is achieved for a specific target population, we can 

obtain unconfounded estimates for the population.  

As another possible example, suppose that proportions of response types 3 and 4 (or risk status types 7 

and 8) in the exposed group are 0.006 and 0.882, respectively, in Online Table 2 (i.e., 3 7 0.006p s   and 

4 8 0.882p s  ). Then, Equation 1 is met, and there is no confounding when the exposed group is the 

target population. The causal risk difference in the exposed group is now calculated as: 

   1 2 1 3 0.061p p p p    , which is equal to the associational risk difference. However, Equation 4 is 

not met, and there is covariate imbalance. Thus, even in the presence of covariate imbalance, we may 

observe no confounding. When the target population is the unexposed group or the total population, there 

is confounding and covariate imbalance; Equations 2, 3, 5, and 6 are not met. 

A deeper understanding about etiology helps researchers to achieve covariate balance to obtain 
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unconfounded estimates of causal parameters. 
 
Online Appendix 2: Weaker sufficient conditions of covariate balance for no confounding 

In the main text, we show sufficient conditions of covariate balance for no confounding by comparing joint 

distributions of relevant background factors between the exposed and the unexposed groups (see Equations 

4 to 6). In this Online Appendix, we show that one can obtain weaker sufficient conditions of covariate 

balance for no confounding by comparing distributions of the number of the relevant susceptible 

background factors between the exposed and the unexposed groups. 

Recall that, when the exposed group is the target population, we do not have to consider the 

comparability of C2 between the exposed and the unexposed groups. In other words, C2 represents an 

irrelevant set of covariates when considering covariate balance for no confounding, and we need to 

consider the comparability of only C1 and C3 between the exposed and the unexposed groups. If we 

compare distributions of the number of relevant susceptible background factors between the two groups, 

we can obtain a sufficient condition of covariate balance for no confounding as follows: 

     

 

          

1 3 1 3

1 3

1 3 1 3 2 4 5 7 2 4 5 7

| 1 | 0 0,1,2

, [Eq. A1]

P C C c E P C C c E c

C C E

s s t t s s s s t t t t

       

 

           

 

which is weaker than the partial covariate balance in Equation 4 (i.e., 1 3( , )C C E ). When 1 3 1C C   in 

the first equation of Equation A1, the left-hand side represents a proportion of subjects who are at risk of 

one of the relevant background factors (i.e., sufficient causes 1 and 3) in the exposed group, whereas the 

right-hand side represents the corresponding proportion in the unexposed group. In other words, we do not 

distinguish those who are at risk of only sufficient cause 1 from those who are at risk of only sufficient 

cause 3 in Equation A1, although we distinguish them in Equation 4. Thus, Equation A1 is weaker than 

Equation 4. Note, however, that Equation A1 is stronger than the partial exchangeability condition in 

Equation 1, that is, a sufficient and necessary condition for no confounding (i.e., 0Y E  or 

1 3max( , )C C E ). 

Conversely, when the unexposed group is the target population, C3 represents an irrelevant set of 

covariates for no confounding because sufficient cause 3 (i.e., 3C E ) can never complete when the 

individual is exposed. Thus, we need to consider the comparability of only C1 and C2 between the exposed 

and the unexposed groups. If we compare distributions of the number of relevant susceptible background 

factors between the two groups, we can obtain a sufficient condition of covariate balance for no 

confounding as follows: 
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     

 

          

1 2 1 2

1 2

1 2 1 2 3 4 5 6 3 4 5 6

| 1 | 0 0,1,2

, [Eq. A2]

P C C c E P C C c E c

C C E

s s t t s s s s t t t t

       

 

           

 

which is weaker than the partial covariate balance in Equation 5 (i.e., 1 2( , )C C E ). Note that Equation 

A2 is stronger than the partial exchangeability condition in Equation 2, that is, a sufficient and necessary 

condition for no confounding (i.e., 1Y E  or 1 2max( , )C C E ). 

Finally, when the target is the total population, we need to consider distributions of the number of 

susceptible background factors among sufficient causes 1 and 2 between the total population and the 

exposed group, as well as distributions of the number of susceptible background factors among sufficient 

causes 1 and 3 between the total population and the unexposed group. This yields a sufficient condition of 

covariate balance for no confounding as: 

      

      

   

         

         

1 2 1 2

1 3 1 3

1

1 2 1 2 3 4 5 6 3 4 5 6

1 3 1 3 2 4 5 7 2 4 5 7

| 1 0,1,2

| 0 0,1,2

2,3 , [Eq. A3]k

P C C c P C C c E c

P C C c P C C c E c

C C E k

s s t t s s s s t t t t

s s t t s s s s t t t t

      

       

  

               
               

 

which is weaker than the covariate balance in Equation 6 (i.e., 1( , ) ( 2,3)kC C E k  ). Note that Equation 

A3, which is simply a product of Equations A1 and A2, is stronger than the exchangeability condition in 

Equation 3, that is, a sufficient and necessary condition for no confounding (i.e., ( 0,1)eY E e   or 

1max( , ) ( 2,3)kC C E k  ). 

In the main text, we refer to the complete comparability of risk status types between the exposed and the 

unexposed groups (i.e., 1 2 3( , , )C C C E  or 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8( , , , , , , , ) ( , , , , , , , )s s s s s s s s t t t t t t t t ) as full 

covariate balance. If we compare distributions of the number of relevant susceptible background factors 

between the exposed and the unexposed groups, a corresponding condition can be given as 

 1 3 1 2( ), ( )C C C C E  , which is stronger than Equations A1 to A3. Note that, in the corresponding 

condition, we do not distinguish those who are at risk of only sufficient cause 1 (i.e., 1 2 3( , , ) (1,0,0)C C C   

or risk status type 4) from those who are at risk of only sufficient causes 2 and 3 (i.e., 1 2 3( , , ) (0,1,1)C C C   

or risk status type 5). Therefore, the corresponding condition can be written using the proportions of risk 

status types as: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8( , , , ( ), , , ) ( , , , ( ), , , )s s s s s s s s t t t t t t t t   , which shows that it is weaker than 

the full covariate balance. Note, however, that the corresponding condition is stronger than the full 

exchangeability condition. Equations A1 to A3 are neither stronger nor weaker than the full 

exchangeability condition. 

We summarize the relationship between exchangeability, the weaker conditions of covariate balance, 
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and covariate balance in Online Table 3. 

 

Online Appendix 3: Alternative conditions of marginal covariate balance 

In the main text, we show conditions of covariate balance by comparing joint distributions of relevant 

background factors between the exposed and the unexposed groups (see Equations 4 to 6). Alternatively, 

one may compare marginal distributions of each of the relevant background factors between the exposed 

and the unexposed groups. Here we show alternative conditions of marginal covariate balance and their 

implications. 

Recall that, when the exposed group is the target population, we do not have to consider the 

comparability of C2 between the exposed and the unexposed groups. In other words, C2 represents an 

irrelevant set of covariates when considering covariate balance. Thus, we need to consider the 

comparability of only C1 and C3 between the exposed and the unexposed groups. If we compare their 

marginal distributions between the two groups, we can obtain a condition of covariate balance as: 

           

 

          

1 1 1 1 3 3 3 3 1 3

1 2 3 4 1 2 3 4 1 3 5 7 1 3 5 7

| 1 | 0 | 1 | 0 , 0,1

1,3 , [Eq. A4]k

P C c E P C c E P C c E P C c E c c

C E k

s s s s t t t t s s s s t t t t

           

 

               

 

which is weaker than the partial covariate balance in Equation 4 (i.e., 1 3( , )C C E ). Note, in the first 

equation of Equation A4, the left-hand side represents a proportion of subjects who are at risk of sufficient 

cause 1 (i.e., C1) in the exposed group, whereas the right-hand side represents the corresponding proportion 

in the unexposed group. More strictly speaking, these subjects potentially become at risk of sufficient 

cause 1 during the follow-up period. Thus, when the first equation is met, the exposed and the unexposed 

groups are comparable in terms of susceptibility to sufficient cause 1. An analogous discussion applies to 

the second equation with regard to sufficient cause 3 (i.e., 3C E ). 

Conversely, when the unexposed group is the target population, C3 represents an irrelevant set of 

covariates when considering covariate balance, and we need to consider the comparability of C1 and C2 

between the exposed and the unexposed groups. If we compare their marginal distributions between the 

two groups, we can obtain a condition of covariate balance as: 

           

 

          

1 1 1 1 2 2 2 2 1 2

1 2 3 4 1 2 3 4 1 2 5 6 1 2 5 6

| 1 | 0 | 1 | 0 , 0,1

1,2 , [Eq. A5]k
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 
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which is weaker than the partial covariate balance in Equation 5 (i.e., 1 2( , )C C E ). 

Finally, when the target is the total population, we need to consider the comparability of C1 and C2 

between the total population and the exposed group, as well as the comparability of C1 and C3 between the 

total population and the unexposed group. If we compare their marginal distributions, we can obtain a 
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condition of covariate balance as: 
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P C c P C c E P C c P C c E

P C c P C c E P C c P C c E c c c

C E k

s s s s t t t t s s s s t t t t

s s s s t t t t

          

            

 

                
 
         

 

which is weaker than the covariate balance in Equation 6 (i.e., 1( , ) ( 2,3)kC C E k  ).  

In the main text, we show that covariate balance is a sufficient, but not a necessary, condition for no 

confounding, irrespective of the target population. In other words, although confounding implies the 

presence of covariate imbalance, the presence of covariate imbalance does not necessarily induce 

confounding. If one uses the alternative conditions of marginal covariate balance, however, covariate 

balance is neither a necessary condition nor a sufficient condition for no confounding, and vice versa. To 

illustrate, we use two numerical examples below. 

First, consistent with the findings in the main text, we may observe no confounding even in the presence 

of covariate imbalance if one uses the alternative conditions. Online Table 4 shows a numerical example 

when the prevalence of exposure in the total population is 0.2. Note that Equations 1 to 3 are all met, and 

there is no confounding irrespective of whether we use the exposed group, the unexposed group, or the 

total population as the target population. If we use risk difference as a measure of interest, the associational 

risk difference in Online Table 4 is calculated as:    1 2 1 3 0.05p p q q     , which is equal to the causal 

risk difference in the exposed group, the unexposed group, and the total population. However, the marginal 

distributions of C1, C2, and C3 are not comparable between the exposed and the unexposed groups. In the 

exposed group, proportions of subjects who are at risk of C1, C2, and C3 are 0.40, 0.40, and 0.55, 

respectively, and the corresponding proportions in the unexposed group are 0.35, 0.45, and 0.50, 

respectively. Thus, Equations A4 to A6 are not met, which implies the presence of covariate imbalance 

irrespective of the target population. Therefore, if one uses the alternative conditions, no confounding is 

not a sufficient condition for covariate balance, which is consistent with the findings in the main text. 

Meanwhile, if one uses the alternative conditions of marginal covariate balance, even if there is 

covariate balance, confounding may occur in some situations. Online Table 5 also shows a numerical 

example when the prevalence of exposure in the total population is 0.2. Note that the marginal 

distributions of C1, C2, and C3 are comparable between the exposed and the unexposed groups in Online 

Table 5; proportions of subjects who are at risk of C1, C2, and C3 are 0.35, 0.40, and 0.45, respectively, in 

the two groups. Thus, Equations A4 to A6 are all met, and there is covariate balance irrespective of 

whether we use the exposed group, the unexposed group, or the total population as the target population. 

However, Equations 1 to 3 are not met. Thus, contrary to intuitive expectations, there is confounding (or 

strictly speaking, confounding in distribution) irrespective of the target population. If we use risk 
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difference as a measure of interest, the associational risk difference in Online Table 5 is calculated as: 

   1 2 1 3 0.05p p q q     , whereas the causal risk differences in the exposed group, the unexposed 

group, and the total population are 0.00, 0.10 , and 0.08 , respectively. (Note that confounding in 

distribution does not necessarily imply confounding in measure when the target is the total population 

[4-6].) Therefore, if one uses the alternative conditions, covariate balance is not a sufficient condition for 

no confounding, which is inconsistent with the findings in the main text.  

Although this may seem a subtle point, it is a consequence of comparing marginal distributions of each 

of the three background factors between the exposed and the unexposed groups. If instead we compare 

joint distributions of the relevant background factors between the exposed and the unexposed groups, this 

point does not occur. Equations 4 to 6 in the main text are not met in Online Table 5, which implies the 

presence of covariate imbalance irrespective of the target population. In other words, this numerical 

example shows that, covariate balance is a sufficient, but not a necessary, condition for no confounding, 

irrespective of the target population. This would fit with the frequently used argument that covariate 

balance is a key feature to control confounding. In conclusion, it would be appropriate to conceptualize the 

concept of covariate balance by comparing not marginal but joint distributions of relevant background 

factors between the exposed and the unexposed groups. In Online Table 3, we summarize the relationship 

between covariate balance and marginal covariate balance. 

 

Online Appendix 4: A more subtle conceptualization of covariate balance 
When considering the link between the sufficient-cause model and the counterfactual model in the main 

text, we focused on the correspondence between the four response types and the eight risk status types to 

simplify our discussion. Accordingly, we obtained sufficient conditions of covariate balance for no 

confounding (i.e., Equations 4 to 6), assuming that individuals can be “at risk” of sufficient causes even 

after they experience the outcome. In other words, Equations 4 to 6 are based on the comparability of 

potential completion of each sufficient cause. This would practically work well when one considers disease 

incidence as an outcome of interest if its latent period (i.e., the time from irreversible disease occurrence to 

detection) is relatively long (e.g., cancer). In this case, it would be admissible to conceptualize background 

factors in sufficient causes that complete after the disease occurrence as set of covariates. However, the 

assumption does not hold in some situations; for example, when considering all-cause mortality as an 

outcome of interest, the deceased cannot be “at risk” of sufficient causes, and thus it would be unnatural to 

use the assumption. In this Online Appendix, we aim to show a more subtle conceptualization of covariate 

balance by taking into account the potential completion time of each sufficient cause [7]. 

We let d , ed , and ed  denote the potential completion times of sufficient causes C1, C2E, and 3C E  

at which outcome would occur in an individual, respectively. We also let d1 and d0 denote the potential 

outcome occurrence time of an individual when exposed (E = 1) and unexposed (E = 0), respectively. In 

other words, we denote 1 min( , )ed d d  and 0 min( , )ed d d . Further, h denotes a maximum follow-up 

time for an individual. Note that the potential outcomes of Y can be described as: 1 1( )Y I d h   and 

0 0( )Y I d h  . Further, the background factors can be described as: 1 ( )C I d h  , 2 ( )eC I d h  , and 
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3 ( )eC I d h  . We assume that each potential completion time is different. Furthermore, we let 1d    if 

the outcome would never occur for an individual when E = 1, and similarly define 0d   . Thus, when 

considering a binary exposure and a binary outcome, individuals can be classified into 24 (i.e., 4!) 

sequence types (Online Table 6) [7]. We let vj, wj, and xj, j = 1–24, be proportions of sequence type j in the 

exposed group, the unexposed group, and the total population, respectively. Note that xj can be calculated 

as: [ 1] [ 0]j jv P E w P E     . In some cases, we may assume that d1 is always less than or equal to d0 

for all individuals, that is, 1 0d d  for all individuals. Suzuki et al. [7] referred to this assumption as “no 

preventive sequence”, which excludes sequence types 5, 6, 10, 14, 17, 18, 23, and 24. 

By considering the 24 sequence types, we can relax the assumption used in the main text. To develop a 

more subtle conceptualization of covariate balance, we focus on the comparability of background factors 

contained in the first completed sufficient cause between groups. Recall that, when the exposed is the 

target population, we need to consider the comparability of joint distributions of C1 and C3 between the 

exposed and the unexposed groups. Thus, we can obtain a more subtle sufficient condition of covariate 

balance for no confounding as:  
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which is stronger than Equation 4. Recall that, when (C1, C3) = (1, 1) in the first equation of Equation 4, 

we consider the comparability of subjects who are at risk of sufficient causes 1 and 3 (i.e., C1 and 3C E , 

respectively) between the exposed and the unexposed groups. Among these subjects of risk status types 1 

and 3, both sufficient causes 1 and 3 potentially complete by the end of follow-up time. In the first two 

equations of Equation A7, however, we “decompose” the first equation of Equation 4 by taking into 

account the potential completion times of sufficient causes 1 and 3. For example, in the first equation of 
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Equation A7, the left-hand side represents a proportion of subjects who would have experienced the 

outcome because of sufficient cause 1 during the follow-up period (though sufficient cause 3 potentially 

completes by the end of follow-up time) in the exposed group had they been unexposed, whereas the 

right-hand side represents the corresponding proportion in the unexposed group. Note that the former 

quantity is, by definition, unobservable or counterfactual. The latter quantity is, though theoretically 

observable or actual, unable to be estimated unless we can understand the “etiology” of the cases [7]. 

Among these subjects of sequence types 1, 2, 3, and 9, the potential completion time of sufficient cause 1 

is shorter than that of sufficient cause 3, both of which potentially complete by the end of follow-up time. 

An analogous discussion applies to the second equation of Equation A7. To summarize, when Equation A7 

is met, the exposed and the unexposed groups are comparable in terms of the “etiologic mechanism” 

because of sufficient causes 1 and 3. 

Conversely, when the unexposed group is the target population, we need to consider the comparability 

of joint distributions of C1 and C2 between the exposed and the unexposed groups, which yields a more 

subtle sufficient condition of covariate balance for no confounding as: 

 

 

 

 

 

| 1 | 0

| 1 | 0

| 1 | 0

| 1 | 0

| 1 | 0

| 1 | 0

e e

e e

e e

e e

e e

e e

P d d h E P d d h E

P d d h E P d d h E

P d h d E P d h d E

P d h d E P d h d E

P h d d E P h d d E

P h d d E P h d d E

 

 

 

 

 

 

            

             

             

             

             

           
 

 

 

 

 

 

1 2 5 7 1 2 5 7

3 4 6 8 3 4 6 8

9 10 11 12 9 10 11 12

13 14 15 16 13 14 15 16

17 19 20 23 17 19 20 23

18 21 22 24 18 21 22 24 , [Eq. A8]

v v v v w w w w

v v v v w w w w

v v v v w w w w

v v v v w w w w

v v v v w w w w

v v v v w w w w

 

       

       

       

       

       

         

which is stronger than Equation 5. Note that, in the first two equations of Equation A8, we “decompose” 

the first equation of Equation 5 when (C1, C2) = (1, 1), by taking into account the potential completion 

times of sufficient causes 1 and 2 (i.e., C1 and C2E, respectively). When Equation A8 is met, the exposed 

and the unexposed groups are comparable in terms of the “etiologic mechanism” because of sufficient 

causes 1 and 2. 

Finally, when the target is the total population, we need to consider the comparability of joint 
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distributions of C1 and C2 between the total population and the exposed group, as well as the comparability 

of joint distributions of C1 and C3 between the total population and the unexposed group. Thus, we can 

obtain a more subtle sufficient condition of covariate balance for no confounding as: 
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

  

which is stronger than Equation 6. Note that Equation A9 is simply a product of Equations A7 and A8. 

It is worth mentioning that Equations A7, A8, and A9 can be conceived as “decomposition” of Equations 

4, 5, and 6 in the main text, respectively. This point can be readily shown by rewriting Equations 4, 5, and 

6 using the potential completion times of sufficient causes as: 
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e e

e e

e e

e e

P d d h E P d d h E

P d h d E P d h d E

P d h d E P d h d E

P h d d E P h d d E

 

 

 

 

          

             

             

           
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and 

 

 

 

 

 

max( , ) max( , ) | 1

| 1

| 1

min( , ) min( , ) | 1

max( , ) max( , ) | 0

e e

e e

e e

e e

e e

P d d h P d d h E

P d h d P d h d E

P d h d P d h d E

P h d d P h d d E

P d d h P d d h E

P d

 

 

 

 

 

           
              
 

             
 

            

         




 

 

 

| 0
, [Eq. A12]

| 0

min( , ) min( , ) | 0

e e

e e

e e

h d P d h d E

P d h d P d h d E

P h d d P h d d E

 

 

 

 
 
             
 

             
 

            

 

respectively. Furthermore, Equations 4, 5, and 6 can be also conceived as “decomposition” of Equations 

A1, A2, and A3 in Online Appendix 2, respectively. This point can be readily shown by rewriting 

Equations A1, A2, and A3 using the potential outcome occurrence time as: 

 

 

 

max( , ) | 1 max( , ) | 0

min( , ) max( , ) | 1 min( , ) max( , ) | 0

min( , ) | 1 min( , ) | 0 , [Eq. A13]

e e

e e e e

e e

P d d h E P d d h E

P d d h d d E P d d h d d E

P h d d E P h d d E

 

   

 

          

             

           

 

 

 

 

max( , ) | 1 max( , ) | 0

min( , ) max( , ) | 1 min( , ) max( , ) | 0

min( , ) | 1 min( , ) | 0 , [Eq. A14]

e e

e e e e

e e

P d d h E P d d h E

P d d h d d E P d d h d d E

P h d d E P h d d E

 

   

 

          

             

           

  

and 
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 

 

 

 

max( , ) max( , ) | 1

min( , ) max( , ) min( , ) max( , ) | 1

min( , ) min( , ) | 1

max( , ) max( , ) | 0

min

e e

e e e e

e e

e e

P d d h P d d h E

P d d h d d P d d h d d E

P h d d P h d d E

P d d h P d d h E

P

 

   

 

 

           
              
 

            

         

  

 

( , ) max( , ) min( , ) max( , ) | 0 , [Eq. A15]

min( , ) min( , ) | 0

e e e e

e e

d d h d d P d d h d d E

P h d d P h d d E

   

 

 
 
             
 

            

 

respectively. Finally, Equations A1, A2, and A3 can be conceived as “decomposition” of Equations 1, 2, 

and 3 in the main text, respectively. This point can be readily shown by rewriting Equations 1, 2, and 3 

using the potential outcome occurrence time as: 

   

 

 

0 0| 1 | 0

min( , ) | 1 min( , ) | 0

min( , ) | 1 min( , ) | 0 , [Eq. A16]

e e

e e

P d h E P d h E

P d d h E P d d h E

P h d d E P h d d E

 

 

    

           

           

 

   

 

 

1 1| 1 | 0

min( , ) | 1 min( , ) | 0

min( , ) | 1 min( , ) | 0 , [Eq. A17]

e e

e e

P d h E P d h E

P d d h E P d d h E

P h d d E P h d d E

 

 

    

           

           

 

and 

         

 

 

 

 

1 1 0 0| 1 | 0

min( , ) min( , ) | 1

min( , ) min( , ) | 1

min( , ) min( , ) | 0

min( , ) min( , ) | 0

e e

e e

e e

e e

P d h P d h E P d h P d h E

P d d h P d d h E

P h d d P h d d E

P d d h P d d h E

P h d d P h d d E

 

 

 

 

        

           
            

          


          

, [Eq. A18]


 
 
 

 

respectively. Recall that d1 and d0 are defined as min( , )ed d  and min( , )ed d , respectively. Comparison 

of these rewritten equations would facilitate understanding of the more subtle conceptualization of 

covariate balance in this Online Appendix. 

In conclusion, by considering potential completion time of each sufficient cause, we have developed a 

more subtle conceptualization of covariate balance. Even under this conceptualization, covariate balance is 

a sufficient, but not a necessary, condition for no confounding, irrespective of the target population. This 
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point applies even under the assumption of no preventive sequence. Given that our main conclusions do 

not vary, we do not consider the sequence types to simplify our discussion in the main text. 
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Online Table 1. Behavior type and occurrence of coronary heart disease in the Western Collaborative Group Study, 1960–1969 

  Type A Type B Total 

CHD 178 79 257 

No CHD 1,411 1,486 2,897 

Total 1,589 1,565 3,154 

Abbreviation: CHD; coronary heart disease 



 
 

Online Table 2. A possible distribution of response types and risk status types in the Western Collaborative Group Study a 

Response types 
 

Risk status types 

Type 
Potential 

outcomes  
Proportion of types in b 

 
Type 

Background 

factors  
Proportion of types in b 

  Y1 Y0   

Exposed 

(type A) 

Unexposed 

(type B) 

Total 

population 
    C1 C2 C3   

Exposed 

(type A) 

Unexposed 

(type B) 

Total 

population 

1 1 1 
 

p1 = 0.045 q1 = 0.036 r1 = 0.041 
 

1 1 1 1 
 

s1 = 0.010 t1 = 0.005 u1 = 0.008 

        
2 1 1 0 

 
s2 = 0.005 t2 = 0.010 u2 = 0.007 

        
3 1 0 1 

 
s3 = 0.010 t3 = 0.005 u3 = 0.008 

        
4 1 0 0 

 
s4 = 0.010 t4 = 0.010 u4 = 0.010 

        
5 0 1 1 

 
s5 = 0.010 t5 = 0.006 u5 = 0.008 

2 1 0 
 

p2 = 0.067 q2 = 0.011 r2 = 0.039 
 

6 0 1 0 
 

s6 = 0.067 t6 = 0.011 u6 = 0.039 

3 0 1 
 

p3 = 0.050 q3 = 0.015 r3 = 0.033 
 

7 0 0 1 
 

s7 = 0.050 t7 = 0.015 u7 = 0.033 

4 0 0   p4 = 0.838 q4 = 0.938 r4 = 0.888   8 0 0 0   s8 = 0.838 t8 = 0.938 u8 = 0.888 

a See Table 1 for notations. 

b As shown in Online Table 1, rj can be calculated as: 1,589 3,154 1,565 3,154j jp q   . Likewise, uj can be calculated as: 

1,589 3,154 1,565 3,154j js t   . Proportions in the total population do not add to 1 due to rounding. 



 

Online Table 3. The relationship between exchangeability, weaker covariate balance, covariate balance, and marginal covariate balance a 

Target population Counterfactual model  Sufficient-cause model 

 Exchangeability  Exchangeability in terms of background factors Weaker covariate balance b Covariate balance Marginal covariate balance c 

Exposed group 0Y E    1 3max( , )C C E   1 3( )C C E    1 3( , )C C E   ( 1,3) kC E k   

Unexposed group 1Y E    1 2max( , )C C E   1 2( )C C E    1 2( , )C C E   ( 1, 2) kC E k   

Total population ( 0,1)eY E e     1max( , ) ( 2,3) kC C E k   1( ) ( 2,3)  kC C E k   1( , ) ( 2,3) kC C E k   ( 1,2,3) kC E k   

       

 

0 1( , )Y Y E


 

 

1 3 1 2(max( , ),max( , ))



 C C C C E
  

1 3 1 2(( ), ( ))



  C C C C E
 

1 2 3( , , )C C C E




  

a See Table 1 for notations. 
b See Online Appendix 2. 
c See Online Appendix 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Online Table 4. A numerical example of no confounding when there is covariate imbalance a 

Response types 
 

Risk status types 

Type 
Potential 

outcomes  
Proportion of types in b 

 
Type 

Background 

factors  
Proportion of types in b 

  Y1 Y0   Exposed Unexposed 
Total 

population 
    C1 C2 C3   Exposed Unexposed 

Total 

population 

1 1 1 
 

p1 = 0.60 q1 = 0.50 r1 = 0.52 
 

1 1 1 1 
 

s1 = 0.10 t1 = 0.05 u1 = 0.06 

        
2 1 1 0 

 
s2 = 0.05 t2 = 0.10 u2 = 0.09 

        
3 1 0 1 

 
s3 = 0.15 t3 = 0.10 u3 = 0.11 

        
4 1 0 0 

 
s4 = 0.10 t4 = 0.10 u4 = 0.10 

        
5 0 1 1 

 
s5 = 0.20 t5 = 0.15 u5 = 0.16 

2 1 0 
 

p2 = 0.05 q2 = 0.15 r2 = 0.13 
 

6 0 1 0 
 

s6 = 0.05 t6 = 0.15 u6 = 0.13 

3 0 1 
 

p3 = 0.10 q3 = 0.20 r3 = 0.18 
 

7 0 0 1 
 

s7 = 0.10 t7 = 0.20 u7 = 0.18 

4 0 0   p4 = 0.25 q4 = 0.15 r4 = 0.17   8 0 0 0   s8 = 0.25 t8 = 0.15 u8 = 0.17 

a We consider a binary exposure E (1 = exposed, 0 = unexposed) and a binary outcome Y (1 = outcome occurred, 0 = outcome did not occur). 

See Table 1 for notations. 

b We consider a situation in which the prevalence of exposure in the total population is 0.2. Thus, rj can be calculated as: 0.2 0.8j jp q   . 

Likewise, uj can be calculated as: 0.2 0.8j js t   . 



 
 

Online Table 5. A numerical example of confounding when there is covariate balance under the alternative conditions a 

Response types 
 

Risk status types 

Type 
Potential 

outcomes  
Proportion of types in b 

 
Type 

Background 

factors  
Proportion of types in b 

  Y1 Y0   Exposed Unexposed 
Total 

population 
    C1 C2 C3   Exposed Unexposed 

Total 

population 

1 1 1 
 

p1 = 0.55 q1 = 0.50 r1 = 0.51 
 

1 1 1 1 
 

s1 = 0.10 t1 = 0.10 u1 = 0.10 

        
2 1 1 0 

 
s2 = 0.05 t2 = 0.10 u2 = 0.09 

        
3 1 0 1 

 
s3 = 0.10 t3 = 0.05 u3 = 0.06 

        
4 1 0 0 

 
s4 = 0.10 t4 = 0.10 u4 = 0.10 

        
5 0 1 1 

 
s5 = 0.20 t5 = 0.15 u5 = 0.16 

2 1 0 
 

p2 = 0.05 q2 = 0.05 r2 = 0.05 
 

6 0 1 0 
 

s6 = 0.05 t6 = 0.05 u6 = 0.05 

3 0 1 
 

p3 = 0.05 q3 = 0.15 r3 = 0.13 
 

7 0 0 1 
 

s7 = 0.05 t7 = 0.15 u7 = 0.13 

4 0 0   p4 = 0.35 q4 = 0.30 r4 = 0.31   8 0 0 0   s8 = 0.35 t8 = 0.30 u8 = 0.31 

a We consider a binary exposure E (1 = exposed, 0 = unexposed) and a binary outcome Y (1 = outcome occurred, 0 = outcome did not occur). 

See Table 1 for notations. 

b We consider a situation in which the prevalence of exposure in the total population is 0.2. Thus, rj can be calculated as: 0.2 0.8j jp q   . 

Likewise, uj can be calculated as: 0.2 0.8j js t   . 



 

 

Online Table 6. Correspondence between response types, risk status types, and sequence types under a binary exposure and a binary outcome a 

Response types 
 

Risk status types 
 

Sequence types 

Type 
Potential 

outcomes  
Proportion of types in b 

 
Type 

Background 

factors  
Proportion of types in b 

 
Type 

Sequence of potential 

completion time 

Potential outcome 

occurrence time 
  Proportion of types in b 

  Y1 Y0   Exposed Unexposed 
Total 

population 
    C1 C2 C3   Exposed Unexposed 

Total 

population 
      d1 d0   Exposed Unexposed 

Total 

population 

1 1 1 
 

p1 q1 r1 
 

1d 1 1 1 
 

s1 t1 u1 
 

1 e ed d d h      d   d  
 

v1 w1 x1 

                 
2 e ed d d h      d  d  

 
v2 w2 x2 

                 
3 e ed d d h     ed  d  

 
v3 w3 x3 

                 
4 e ed d d h     ed  ed  

 
v4 w4 x4 

                 
5e e ed d d h     d  ed  

 
v5 w5 x5 

                 
6e e ed d d h     ed  ed  

 
v6 w6 x6 

        
2 1 1 0 

 
s2 t2 u2 

 
7 e ed d h d      d  d  

 
v7 w7 x7 

                 
8 e ed d h d     ed  d  

 
v8 w8 x8 

        
3d 1 0 1 

 
s3 t3 u3 

 
9 e ed d h d      d  d  

 
v9 w9 x9 

                 
10e e ed d h d     d  ed  

 
v10 w10 x10 

        
4 1 0 0 

 
s4 t4 u4 

 
11 e ed h d d      d  d  

 
v11 w11 x11 

                 
12 e ed h d d      d  d  

 
v12 w12 x12 

        
5d 0 1 1 

 
s5 t5 u5 

 
13 e ed d h d     ed  ed  

 
v13 w13 x13 

                 
14e e ed d h d     ed  ed  

 
v14 w14 x14 

2 1 0 
 

p2 q2 r2 
 

6 0 1 0 
 

s6 t6 u6 
 

15 e ed h d d     ed  d  
 

v15 w15 x15 

                 
16 e ed h d d     ed  ed  

 
v16 w16 x16 

3c 0 1 
 

p3 q3 r3 
 

7d 0 0 1 
 

s7 t7 u7 
 

17e e ed h d d     d  ed  
 

v17 w17 x17 

                 
18e e ed h d d     ed  ed  

 
v18 w18 x18 

4 0 0 
 

p4 q4 r4 
 

8 0 0 0 
 

s8 t8 u8 
 

19 e eh d d d    d  d  
 

v19 w19 x19 

                 
20 e eh d d d    d  d  

 
v20 w20 x20 

                 
21 e eh d d d    ed  d  

 
v21 w21 x21 

                 
22 e eh d d d    ed  ed  

 
v22 w22 x22 

                 
23e e eh d d d    d  ed  

 
v23 w23 x23 

                
  24e e eh d d d    ed  ed    v24 w24 x24 

a We consider a binary exposure E (1 = exposed, 0 = unexposed) and a binary outcome Y (1 = outcome occurred, 0 = outcome did not occur). We consider two potential outcomes, Ye, for an individual. We consider three 

different types of sufficient causes for outcome Y along with certain binary background factors as follows: C1, C2E, and 3C E , where we let E  denote the complement of E. We let d , ed , and ed  denote the potential 

completion times of sufficient causes C1, C2E, and 3C E  at which outcome would occur in an individual, respectively. We also let d1 and d0 denote the potential outcome occurrence time of an individual when exposed and 

unexposed, respectively. In other words, we denote 1 min( , )ed d d  and 0 min( , )ed d d . Further, h denotes a maximum follow-up time of an individual. 
b Note that rj can be calculated as: [ 1] [ 0]j jp P E q P E     , where [ ]P E e  represents the prevalence of E = e in the total population. Likewise, uj can be calculated as: [ 1] [ 0]j js P E t P E     , and xj can be 

calculated as: [ 1] [ 0]j jv P E w P E     . 
c Under the assumption of (counterfactual) positive monotonicity (i.e., 0 1Y Y  for all individuals), this response type is excluded.  
d Under the assumption of no preventive action, or sufficient-cause positive monotonicity (i.e., 3 0C   for all individuals), these risk status types are excluded. 
e Under the assumption of no preventive sequence (i.e., 1 0d d  for all individuals), these sequence types are excluded. 
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