Title:		
In vitro effectiveness of biapenem against IMP-producing Enterobacteriaceae		
Running Title:		
Biapenem for IMP-producing CRE		
Authors:		
Kazuyoshi Gotoh ¹⁾ , Makoto Miyoshi ¹⁾ , I Putu Bayu Mayura ¹⁾ , Koji Iio ²⁾ , Osamu Matsushita ¹⁾ ,		
Fumio Otsuka ³⁾ and Hideharu Hagiya ³⁾		
Departmental and institutional affiliations:		
1) Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry		
and Pharmaceutical Sciences, Okayama, 700-8558, Japan		
2) Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, 700-		
8558, Japan		
3) Department of General Medicine, Okayama University Graduate School of Medicine,		
Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan		

 $\mathbf{2}$

 $\mathbf{5}$

 $\mathbf{7}$

18	Corresponding author: Hideharu Hagiya
19	Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry
20	and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
21	Tel: +81-86-235-7342
22	Fax: +81-86-235-7345
23	E-mail: hagiya@okayama-u.ac.jp
24	
25	Author disclosure statement
26	The authors confirm that there are no conflicts of interest to declare.
27	
28	Key words: Antimicrobial Resistance; Biapenem; Carbapenem; Carbapenem-resistant
29	Enterobacteriaceae; Carbapenemase-producing Enterobacteriaceae
30	

31 Abstract

32The options available for treating infections with carbapenemase-producing Enterobacteriaceae 33 (CPE) are limited; with the increasing threat of these infections, new treatments are urgently 34needed. Biapenem (BIPM) is a carbapenem, and limited data confirming its in vitro killing effect against CPE are available. In this study, we examined the minimum inhibitory concentrations 3536 (MIC) and minimum bactericidal concentrations (MBC) of BIPM for 14 IMP-1-producing 37Enterobacteriaceae strains isolated from the Okayama region in Japan. The MICs against almost all the isolates were lower than 0.5 µg/mL, indicating susceptibility to BIPM, while about half of 3839 the isolates were confirmed to be bacteriostatic to BIPM. However, initial killing to the 99.9% 40 reduction were observed in 7 out of 8 strains as a result of time-killing assay. Despite the small 41 data set, we concluded that the *in vitro* efficacy of BIPM suggests that the drug could be a new 42therapeutic option against infection with IMP-producing CPE.

44 Introduction

45	The emergence and global spread of antimicrobial resistance, especially that of
46	carbapenem-producing Enterobacteriaceae (CPE), is a major public health concern. ^{1,2}
47	Carbapenemases are diverse in nature and comprise the bla_{NDM} , bla_{KPC} , bla_{IMP} , bla_{VIM} , and bla_{OXA-}
48	48 families, ² which complicate diagnostic and therapeutic approaches. Among the various genetic
49	types, strains producing metallo-beta-lactamases (MBL), such as bla_{NDM} , bla_{IMP} , and bla_{VIM} , show
50	higher resistance to carbapenems, and only limited treatment options are available for infections
51	with these strains. ³ However, because of the lack of research funding and the difficulty of
52	searching for research seeds, hardly any new antibiotics have been developed in recent times.
53	Therefore, in this era of antibiotic shortage, it is necessary to seek for alternative strategies to
54	manage CPE infections, and an exploration for effective drugs among the existing antibiotics will
55	be useful for developing new therapeutic strategies.

56

57 Presently, there are five carbapenem-class intravenous antimicrobials available for use 58 in clinical settings in Japan: imipenem, meropenem (MEPM), doripenem, panipenem, and 59 biapenem (BIPM). Among them, BIPM was developed in the 1990s as a pharmacokinetically 60 stable agent with high resistance to hydrolysis by renal dehydropeptidase-I (DHP-I) and that has

61	in vitro antibacterial activity against gram-negative, gram-positive, and anaerobic bacteria at
62	levels comparable to other carbapenems. ⁴ Later reports suggested that in vivo and in vitro
63	efficacies of BIPM against Pseudomonas aeruginosa were possibly superior to those of MEPM
64	and imipenem.5,6 A biochemical study suggested that the low electrostatic polarity of the
65	molecular residual group in BIPM helps drug permeation into bacterial cells via the outer
66	membrane porin. ⁷ An enzymology study demonstrated a low kcat/Km ratio for MBLs, including
67	IMP-1, VIM-2, and NDM-1 type β -lactamases, pertaining to BIPM. ⁸ Although BIPM seems a
68	good therapeutic candidate for the management of CPE infections, data about its in vitro
69	effectiveness data are lacking. In this study, we aimed to investigate the <i>in vitro</i> killing efficiency
70	of BIPM against IMP-producing Enterobacteriaceae, which are predominant in Japan.9-12
71	
72	Methods
73	Bacterial strain
74	As shown in Table 1 , we exposed bla_{IMP-1} -harboring Enterobacteriaceae isolated from
75	Okayama University Hospital (1 Klebsiella pneumoniae, 2 Klebsiella oxytoca, and 5 Enterobacter
76	cloacae complex) and Tsuyama Chuo Hospital (7 Klebsiella pneumoniae and 1 Enterobacter
77	kobei) in Okayama, Japan, to BIPM.

79	Minimum inhibitory concentrations (MIC) and Minimum bactericidal concentrations (MBC)
80	MICs of MEPM and BIPM were determined by a broth microdilution method using
81	round-bottomed 96-well microtiter plates based on the Clinical and Laboratory Standards Institute
82	(CLSI) document M07-A10 (Dry Plate Eiken, Eiken Chemical Co., Ltd.). The MIC was defined
83	as the lowest concentration of an antimicrobial agent that inhibits bacterial growth after 18 hours
84	incubation. The MBCs of BIPM were further determined by subculturing broth dilutions at or
85	above the MIC onto Muller-Hinton agar plates. The MBC was defined as the lowest broth dilution
86	of the antimicrobial that formed no colony on the plate. A bactericidal effect was defined as the
87	MBC being no more than four times the MIC. When the MBC was more than that, it was
88	considered a bacteriostatic effect.
89	

90 Time-kill assay

78

91 To further confirm the antimicrobial activity of BIPM, a time-killing assay was 92 performed using eight isolates from OUH. Test tubes with a volume of 10 mL were used for 93 growth control and individual antimicrobials (1 μ g/mL each of MEPM and BIPM) in a final 94 volume of 4 mL. The initial inoculum was set at 1-5 × 10⁵ colony-forming unit (CFU)/mL and

95	performed incubation using the BBL TM Muller-Hinton II broth (Becton, Dickinson and Company,
96	Sparks, MD, USA). After shaking culture at 130 rpm and 37°C in ambient air, aliquots were
97	obtained from each tube and inoculated on Muller-Hinton agar plates by plating serial 10-fold
98	dilutions at 2, 4, 6, 8, and 24 hours after drug supplementation. The plates were incubated
99	overnight in ambient air at 37°C, and the number of viable colonies was counted. The lower
100	limitation for the assay was 20 CFU/mL. Efficacies were evaluated whether or not the viable
101	bacterial count reduced below 99.9% compared to the initial bacterial count at each examined
102	point. Every time-killing test was performed in triplicate.
103	
104	Results

105 The MIC values for MEPM among the 14 strains of IMP-1–producing 106 Enterobacteriaceae ranged from 2 to >16 µg/mL. For 13 out of the 14 strains (92.9%), the MIC 107 of BIPM was $\leq 0.5 \mu$ g/mL, indicating susceptibility, based upon the information in the guideline 108 established by the Japanese Society of Chemotherapy¹³ (**Table 1**). Cumulative curves show an 109 apparent difference in the MIC distribution between MEPM and BIPM (**Fig. 1**). No isolate was 110 susceptible to MEPM according to the CLSI breakpoint values. Of 14 isolates, 6 strains (42.9%) 111 showed the bacteriostatic effect; those of 8 isolates were undetermined due to a limitation of MIC

112 measurement range.

114	The time-killing assay was then performed to evaluate whether BIPM actually exhibited
115	practical efficiency against these bacteriostatic strains. Eight isolates from OUH including 4
116	bacteriostatic strains to BIPM revealed that $1.0 \ \mu g/mL$ BIPM showed 99.9% reduction within first
117	6 hours in seven isolates, excepting strain OUH016 (Fig. 2). Among the seven strains with the
118	rapid killing, six regrew after 24 hours, while strain OUH023 was completely eradicated. On the
119	other hand, 1.0 μ g/mL MEPM did not achieve the 99.9% reduction in any of the isolates.
120	
121	Discussion
122	In this study, we demonstrated that the distribution of MICs of BIPM was lower than
123	those of MEPM in the bacteria population among IMP-producing Enterobacteriaceae, suggesting
	mose of MErM in the bacteria population among IMF-producing Enterobacteriaceae, suggesting
124	the potential effectiveness of BIPM. The time-killing assay corroborated the <i>in vitro</i> superiority
124 125	
	the potential effectiveness of BIPM. The time-killing assay corroborated the <i>in vitro</i> superiority
125	the potential effectiveness of BIPM. The time-killing assay corroborated the <i>in vitro</i> superiority of BIPM over MEPM, although bactericidal efficacy may not be expected. In this era of

129	The potential utility of BIPM against CPE has been suggested in the past decade,
130	although not extensively. Livermore et al. reported that compared to the MICs of MEPM,
131	imipenem, and doripenem, BIPM had lower MIC levels for NDM-, VIM-, and IMP-producing
132	Enterobacteriaceae, mainly isolated from the United Kingdom. ⁸ In addition, BIPM, as a substrate
133	for IMP-1, VIM-2, and NDM-1 MBL, has a lower hydrolysis rate than do the other three
134	carbapenems, which was explained by its comparably lower $k_{\text{cat}}/K_{\text{m}}$ values. ⁸ Further, BIPM
135	administration at a clinically available concentration (3.0 μ g/mL) was confirmed to be effective
136	against these isolates when combined with ME1071, a suicide inhibitor.8 A pharmacokinetics
137	study showed that administration of 300 mg of BIPM every 8 hours can result in a serum
138	concentration at 24.7 \pm 4.97 $\mu g/mL.^{14}$ This value was practically compatible with the use of 1.0
139	$\mu g/mL$ BIPM in this study. On the basis of previously published data and data from our current
140	study, we believe that BIPM can be applied for clinical use in treating CPE infections.
141	

This study has several limitations. First, the small sample size and regionally localized subjects for the study may limit the generalization of the results. Second, we solely focused on IMP-producing organisms, and the *in vitro* effects of BIPM against other types of MBLs were not evaluated. For clinical use, further evaluation of the antimicrobial potential of BIPM in *in vivo*

Gotoh *et al*.

```
146 settings is necessary.
```

147

148 Conclusion

149	In summary, BIPM, a forgotten carbapenem class antimicrobial, showed in vitro
150	effectiveness against IMP-type CPE. We suggest that BIPM has potential as a new therapeutic
151	option for managing infections with IMP-1-producing CPE and could be a candidate for a recycle
152	use of existing antimicrobials to combat against emerging antimicrobial resistant pathogens.
153	

154 Acknowledgment

155 We would like to thank Editage (www.editage.jp) for English language editing.

156

157 Author Contribution

- 158 All authors meet the ICMJE authorship criteria: K. Gotoh and H. Hagiya were the principal
- 159 investigators; The contributors O. Matsushita, F. Otsuka were in charge of the organizations and
- 160 coordination of the study; H. Hagiya created the study design; K. Gotoh M. Miyoshi, B. Mayura,
- 161 and K. Iio carried out the measurements; K. Gotoh and H. Hagiya were in charge of data analysis;
- 162 K. Gotoh drafted the manuscript and all authors contributed to writing the final manuscript.

Gotoh *et al*.

163			
164			
165	Fundi	ing	
166	This work did not receive any specific grant from funding agencies in the public, commercial, or		
167	not-for-profit sectors.		
168			
169	Refer	ences	
170	[1]	Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new	
171		antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.	
172		Lancet Infect Dis 2018;18:318-327.	
173	[2]	Logan LK, Weinstein RA. The epidemiology of Carbapenem-resistant	
174		Enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis	
175		2017;215:S28-S36.	
176	[3]	Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What	
177		remains against carbapenem-resistant Enterobacteriaceae? Evaluation of	
178		chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin,	
179		temocillin and tigecycline. Int J Antimicrob Agents 2011;37:415-419.	

180	[4]	Hikida M, Kawashima K, Yoshida M, Mitsuhashi S. Inactivation of new carbapenem
181		antibiotics by dehydropeptidase-I from porcine and human renal cortex. J Antimicrob
182		Chemother 1992;30:129-134.
183	[5]	El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa
184		pneumonia. J Antimicrob Chemother 2009;64:229-238.
185	[6]	Curcio D. Multidrug-Resistant Gram-Negative Bacterial Infections: Are you Ready for
186		the Challenge? Curr Clin Pharmacol 2013;9:27-38.
187	[7]	Tran QT, Pearlstein RA, Williams S, Reilly J, Krucker T, Erdemli G. Structure-kinetic
188		relationship of carbapenem antibacterials permeating through E. coli OmpC porin.
189		Proteins Struct Funct Bioinforma 2014;82:2998–3012.
190	[8]	Livermore DM, Mushtaq S, Morinaka A, Ida T, Maebashi K, Hope R. Activity of
191		carbapenems with ME1071 (disodium 2,3-diethylmaleate) against Enterobacteriaceae
192		and Acinetobacter spp. with carbapenemases, including NDM enzymes. J Antimicrob
193		Chemother 2013;68:153–158.
194	[9]	Ohno Y, Nakamura A, Hashimoto E et al. Molecular epidemiology of carbapenemase-
195		producing Enterobacteriaceae in a primary care hospital in Japan, 2010-2013. J Infect
196		Chemother 2017;23:224-229.

197	[10]	Yano H, Ogawa M, Endo S et al. High frequency of IMP-6 among clinical isolates of
198		metallo-β-lactamase-producing <i>Escherichia coli</i> in Japan. Antimicrob Agents Chemother
199		2012;56:4554-4555.
200	[11]	Shigemoto N, Kuwahara R, Kayama S et al. Emergence in Japan of an imipenem-
201		susceptible, meropenem-resistant Klebsiella pneumoniae carrying bla _{IMP-6} . Diagn
202		Microbiol Infect Dis 2012;72:109-112.
203	[12]	Hayakawa K, Miyoshi-Akiyama T, Kirikae T et al. Molecular and epidemiological
204		characterization of IMP-type metallo-β-lactamase-producing <i>Enterobacter cloacae</i> in a
205		Large tertiary care hospital in Japan. Antimicrob Agents Chemother 2014;58:3441-3450.
206	[13]	Saito A, Inamatsu T, Okada J, et al. Report of the review board on antimicrobial agent
207		sensitivity measuring method, the Japan Soc. of Chemotherapy. Breakpoint in
208		respiratory organ infection and septicemiaNew antimicrobial agents and
209		supplemental information for some agents already released (1997). Jpn J Chemother
210		1997;45:757–761. Japanese.
211	[14]	Karino F, Deguchi N, Kanda H et al. Evaluation of the efficacy and safety of biapenem
212		against pneumonia in the elderly and a study on its pharmacokinetics. J Infect
213		Chemother 2013 ;19:98-102.

Gotoh *et al*.