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1 Introduction

In spatial data analysis, it is very important to know ”where the problem is occurring”
in the analysis target area, and for that purpose, it is necessary to clearly understand the

data structure (Cressie, 1993; Kurihara, 2000 , 2004). In the field of spatial epidemiology,

it is necessary to spatially grasp the outbreak situation and evaluate it appropriately by

using indicators such as mortality risk and disease morbidity risk. For example, indicators

focusing on age composition and population differences between comparison target areas

(Tango et al., 2007) are often used. Furthermore, in recent years, a spatial hotspot cluster

detection has been conducted to evaluate the state of accumulation of risks in a specific

area (Kulldorff, 1997; Kurihara, 2003; Ishioka and Kurihara, 2012; Tango et al., 2012). By

this test, it is possible to obtain information on whether or not various risks that could

not be judged only by the index value are statistically accumulated in a certain area.

By analyzing with these methods used in the field of spatial epidemiology and utilizing

the information obtained from the results, it is expected that measures will be taken to

identify regional risk sources and eliminate them. For example, in the mid-19th century,

John Snow thought the cause of the cholera epidemic in London was polluted water in

wells and maped the residences and well locations of dead residents. As a result, it was

clarified that the number of cholera patients was particularly high around a specific well.

Based on the results obtained from the disease map, the end of cholera was seen when the

water in the well was banned. In this example, if spatial hotspot cluster could be detected,

it would have been possible to easily find a place where the risk of cholera mortality was

significantly high, and it would have been possible to perform a more detailed analysis.

The software that can be applied to the analysis of spatial epidemiology is as follows.

EcheScan (Kurihara et al., 2020), DMS (Tango and Imai, 2013), SaTScan (Kulldorff et

al., 2020), EBPoiG (Takahashi, 2006). However, each of these tools is independent, and

it is not possible to analyze risk index calculation, spatial hotspot cluster detection, and

disease map output corresponding to those results in a series of flows. Therefore, it is

necessary to use several independent tools individually to derive individual results, but

the process is complicated because the specifications differ for each software. However, in

the field of spatial epidemiology, it is common to carry out these analyzes in a series of

steps, and we think that tools are needed to easily carry out these analyzes. Therefore, in

this research, we construct an environment for comprehensively performing these series

of analyzes using statistical software R.

As mentioned above, research to detect areas with statistically significantly higher

values in spatial data analysis is very important. On the other hand, it is also an important
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research field to grasp the distribution and structure of the obtained data and evaluate

the complexity of the spatial data structure of the analysis target area. Spatial data has

a data structure, and the data structure differs depending on the area to be analyzed, the

type of data, the time when the data is aggregated, and so on. If the data structure can

be grasped in detail, the spatial characteristics of the area can be known. Moreover, if the

data structure can be evaluated quantitatively, the data structure can be compared and

examined between regions and eras. This makes it possible to evaluate the characteristics

of the data, which may help to find clues for research to investigate the causes of data

structures that change with the times. In this way, what can be obtained from research on

the structure of spatial data is considered to be very meaningful, but there are few such

researches (Kurihara and Ishioka, 2007, Kurihara et al., 2000), and there is no concrete

method or evaluation method. The purpose of this study is to define indicators for

assessing the structural complexity of spatial data. We will use the Echelon dendrogram

generated by the Echelon analysis as a way to visually grasp the complexity of the spatial

data structure. By confirming the structure of the generated dendrogram, it is possible

to grasp the difference in the data structure and its change. However, there are various

shapes in the Echelon dendrogram, and it is very difficult to grasp the differences and

changes in the data structure just by looking at the shapes. In addition, no index that

can be evaluated quantitatively is defined.

Therefore, in this study, we proposed an index that can evaluate the complexity of

spatial data and defined the ”stage” of dendrograms to compare the complexity of spatial

data. First, the dendrogram is quantitatively expressed according to a certain rule, and

the shape of the dendrogram is patterned. In the previous study, five indexes were defined

for the dendrogram pattern, but in this paper, we proposed the index LV for judging more

complicated shapes. By calculating these index values, it has become possible to evaluate

the complexity of the dendrogram. Next, based on the idea of Echelon profiles of Echelon

tree, we considered the complexity of the dendrogram from four scales and an index

showing the structure called Cycle. Furthermore, we focused on the growth process of

dendrogram complexity and defined the concept of dendrogram ”stage”. This makes it

possible to evaluate changes in the structure of spatial data due to aging. However, the

Echelon dendrogram used to grasp the structure of spatial data has the problem that the

structure becomes very complicated as the number of regions increases. Therefore, we

defined the ”merge of peaks” that can simply express the structure while retaining the

structural features of the dendrogram.

In this paper, Chapter 2 we introduce typical indicators of mortality risk(SMR, EB-

SMR). Chapter 3 introduces Echelon analysis, which is useful for studying the topological

structure of the surface of spatial data in a systematic and objective way. Chapter 4

describes how to detect hotspot clusters and how to scan them. Chapter 5 describes
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how to use the developed software using specific examples. In Chapter 6 describes the

indicators and methods for evaluating the complexity of the dendrogram. In Chapter 7,

we will use actual data to confirm changes in the data structure over time. In Chapter

8 introduces the ”merge of peaks” of dendrogram and considers its evaluation as a coun-

termeasure when the number of regions is large and the spatial data structure becomes

very complicated.
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2 Indicators of mortality risk

2.1 SMR(Standardized Mortality Ratio)

In the field of spatial epidemiology, indicators calculated based on specific rules are

often used when expressing the risk of illness or death. Furthermore, the situation can

be grasped by visualizing the data using a disease map and spatially grasping the point

of occurrence. Mortality is widely known as an indicator of mortality risk, but it is not

always a suitable indicator when trying to compare regions. This is because it does not

take into account the differences in population and age composition between the regions

to be compared. In such cases, SMR(Standardized Mortality Ratio), which is an index

that considers the influence of age composition, is often used.

Now, when the analysis target area consists of m areas in total, the SMR of the i-th

area is given by the following equation;

SMRi =
di
ei

(i = 1, 2, . . . ,m). (2.1)

Where, di represents the number of observed deaths in region i, and ei represents the

expected number of deaths in region i. In particular, the expected number of deaths ei

can be obtained by the following method considering the difference in age composition;

ei =
K∑
k=1

nikPk (k = 1, 2, . . . , K). (2.2)

Where, nik represents the population of the k-th age group in the i region, Pk represents

the mortality rate of the k-th age group of the expected population, and K represents the

number of age groups. The SMR obtained in this way can be used for comparison between

regions as an index considering the difference in age composition. However, although SMR

is an index that takes into account differences in age composition, it has been pointed

out that it is not appropriate to compare regional differences because it does not take

into account differences in population between regions (Tango et al., 2007). Therefore,

I will explain Empirical Bayes estimate of SMR (EBSMR) considering the instability of

less populated areas.

2.2 EBSMR(Empirical Bayes estimate of SMR)

The EBSMR in region i is given by the following equation using α and β estimated

from the data.

EBSMRi =
β + di
α + ei

(2.3)

– 4 –



Moment estimates or more precise maximum likelihood estimates are used for α and β.

The EBSMR is explained in detail below.

Let di be the number of deaths in region i(i = 1, 2, . . . ,m), let ei be the expected

number of deaths, and let θi be the unknown standardized mortality ratio. In general,

the number of deaths is assumed to follow the Poisson distribution. In this case, the

expected number of deaths multiplied by the standardized mortality ratio is considered

to be the following Poisson distribution with θiei as the expected value.

di ∼ Poisson(θiei), (di = 0, 1, 2, . . .) (2.4)

At this time, if θi is considered as a parameter, its maximum likelihood estimator is

derived as follows.

SMRi = θ̂i =
di
ei

(i = 1, 2, . . . ,m) (2.5)

This is SMR. However, as mentioned earlier, SMR varies widely when the population

is small, and it cannot be said to be an appropriate index when comparing regional

differences. Therefore, to adjust for regional disparities in the population, we assume

that (θ1, θ2, . . . , θm) is a random variable that follows a continuous distribution, and each

θi is considered a variable. The density function of the prior distribution is represented

by g(θ|η), where η is a parameter that defines this distribution.

Since the number of deaths di follows the Poisson distribution, the probability density

function of di is as follows.

f(di|θi, ei) =
(θiei)

di exp(−θiei)

di!
(2.6)

E(di) = θiei, V (di) = θiei

Therefore, using Bayes’ theorem, the posterior distribution of θi is as follows.

h(θi|ei, di, η) =
g(θi|η)f(di|θi, ei)∫∞

0
g(θi|η)f(di|θi, ei)dθ

(2.7)

Therefore, the estimated value of SMR is as follows when the expected value from the

posterior distribution is adopted.

θ̂i ≒ E(θi|ei, di, η) =
∫ ∞

0

θh(θi|ei, di, η)dθ =

∫∞
0

θg(θi|η)f(di|θ, ei)dθ∫∞
0

g(θi|η)f(di|θ, ei)dθ
(2.8)

Where, the problem is the estimation of the prior distribution parameters. One way

to solve this is empirical Bayesian estimation based on the marginal likelihood of the

following deaths di.

m∏
i=1

Pr{di|ei, η} =
m∏
i=1

∫ ∞

0

g(θ|η)f(di|θ, ei)dθ (2.9)
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Where, we assume a Gamma distribution with η = (α, β) as the prior distribution of θ.

That is, it becomes as follows.

g(θ|α, β) = α(αθ)β−1 exp(−αθ)

Γ(β)
(2.10)

E(θ) =
β

α
, V (θ) =

β

α2

The reason why the Gamma distribution is often used for prior distribution is that the

Gamma distribution is a prior distribution that is conjugate to the Poisson distribution.

Therefore, from Bayes’ theorem,

h(θi|ei, α, β) = g(θ|β + di, α + ei) (2.11)

and posterior distribution are also gamma distributions, which is very convenient to calcu-

late. This model is called the Poisson-Gamma model. In this case, the marginal likelihood

of the number of deaths di has the following negative binomial distribution.

Pr{di|ei, α, β} =
Γ(β + di)

Γ(β)di!

(
α

α + ei

)β (
ei

α + ei

)di

(2.12)

E(dk) =
eiβ

α
, V (dk) =

ei(ei + α)β

α2

The moment estimator of (α, β) is as follows.

E

{
1

m

m∑
i=1

di
ei

}
=

β

α
(2.13)

E

{
1

m

m∑
i=1

(
di
ei

− β

α

)2
}

=
β

α2
(2.14)

Therefore, it is necessary to solve the following α and β.

sample mean of SMR =
β

α

sample variance of SMR =
β

α2

The maximum likelihood estimator finds the α and β values (α̂ and β̂) that maximize

the following log-likelihood function.

l(α, β) = log
m∑
i=1

Pr{di|ei, α, β}

=
m∑
i=1

di−1∑
s=0

log(β + s) +mβ logα− β

m∑
i=1

log(α + ei) +
m∑
i=1

{di log ei − di log(α + ei)}

(2.15)
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Therefore, it is necessary to solve the following likelihood function.

∂l

∂α
=

∂l

∂β
= 0 (2.16)

This likelihood function can be solved using the Newton-Raphson method. Specifically,

it is as follows.

[
α̂

β̂

]
(k+1)

=

[
α̂

β̂

]
(k)

−


∂2l

∂2α

∂2l

∂α∂β
∂2l

∂α∂β

∂2l

∂2β


−1

(k)

 ∂l

∂α
∂l

∂β


(k)

(2.17)



∂l

∂α
= m

β

α
−

m∑
i=1

β + di
α + ei

∂l

∂β
=

m∑
i=1

di∑
s=0

1

β + s
−

m∑
i=1

log(1 +
ei
α
)

∂2l

∂2α
= −mβ

α2
+

m∑
i=1

β + di
(α + ei)2

∂2l

∂2β
= −

m∑
i=1

di−1∑
s=0

1

(β + s)2

∂2l

∂α∂β
=

m

α
−

m∑
i=1

1

α + ei

For the initial value, use the following that can be calculated from E(θ) = β
α
, V (θ) = β

α2 .

α =
E(θ)

V (θ)
, β =

E(θ)2

V (θ)

Using the α̂ and β̂ estimated in this way, the EBSMR of the i region can be calculated

by the following equation.

EBSMRi =
β̂ + di
α̂ + ei

(2.18)

By transforming this equation as follows, the following features can be found.

EBSMRi =
β̂ + di
α̂ + ei

=
ei

α̂ + ei

di
ei

+
α̂

α̂ + ei

β̂

α̂
(2.19)

1. EBSMR in populated areas approaches SMR(= di/ei) due to the higher expected

number of deaths ei.

2. EBSMR in less populated areas approaches the regional average (= β̂/α̂) because

the expected number of deaths ei is smaller.

From these characteristics, it can be said that EBSMR is an index that is not easily

affected by differences in population.

– 7 –



2.3 Comparison of SMR and EBSMR

In this section, the SMR and EBSMR introduced so far are visually expressed and

evaluated. The data used here is Sudden Infant Death Syndrome (SIDS) in North Car-

olina, United States. This data will be explained in detail in Chapter 5. Figures 2.1 are

map plots of SMR and EBSMR values. Areas with higher risk are painted red, and the

lower the risk, the lighter the color. In addition, the Figures 2.2 are plots of the common

logarithmic values of population on the horizontal axis and the risk values of SMR and

EBSMR on the vertical axis, respectively. From these results, it can be seen that even

with the same data, the magnitude relationship between the mortality risk value and the

value between regions has changed. Furthermore, EBSMR can consider regions with a

small population, and it can be seen that there is little variation in risk values between re-

gions. Therefore, when dealing with mortality risk indicators, it is necessary to accurately

capture and use data and regional characteristics.

Figure 2.1: Disease map of SMR and EBSMR.
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Figure 2.2: Scatter plot of SMR and EBSMR.
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3 Echelon analysis

This chapter introduces Echelon analysis. Echelon analysis (Myers et al., 1997) are

useful techniques to study the topological structure of a surface in a systematic and

objective manner. The Echelon dendrogram generated by the analysis expresses the

surface topology and is useful in a wide range of fields. Now we consider the grid data

of a fixed subset D of d-dimensional Euclidean space. Lattice data is observed over the

entire spatial region, such as the cancer incidence in each region and the acquisition of

the earth’s surface by pixel remote sensing via satellite. Let s ∈ Rd be the data position

in d-dimensional Euclidean space and H(s) be the random quantity of space position

s. Therefore, the location s produces a multivariate random field {H(s) : s ∈ D} on

a fixed non-random set D ⊂ Rd. Observations are expressed by {h(s) : s ∈ D}. One-

dimensional lattice data has a position (x ∈ R1) on the horizontal line and a value (h(x))

on the vertical line. For regularly divided lattice data in NL, these have an interval

si = l1(i) = [i − 0.5, i + 0.5], i = 1, 2, . . . , NL. This lattice specifies an identifying set

D1 = {xi|i = 1, 2, . . . , NL} using an index for a real seat xi = i. Table 3.1 shows the

intervals for NL = 15 from A to O, their values being h(i).

Table 3.1: One dimensional spatial lattice data.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ID A B C D E F G H I J K L M N O
h(i) 1 2 3 4 3 4 5 4 3 2 3 2 1 2 1

Figure 3.1: Topological subset on the surface.

Figure 3.1 shows the hypothetical topological subset on the surface level of one-

dimensional lattice data. A total of seven numbered parts with the same topological
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Figure 3.2: Hierarchical relation of echelons.

structure are in these hillforms. These classified parts are called echelons (Myers et al.,

1997), which consist of peaks, foundation, and root. Echelons 1, 2, 3, and 4 are the peaks

of hillforms. Echelon 5 is the foundation of two peaks. Echelons 6 and 7 are the foun-

dations of foundation and peak. Echelon 7, which is the foundation of everything, is

also called the route. The arrangement of echelons is recorded as a variation on parent

and child relations. The family for an echelon consists of children of children through

all overlying generations. Figure 3.2 shows a hierarchical representation of the topology

structure given by the dendrogram. Specific numerical analyzes by Echelon analysis have

already been proposed in various papers (Kurihara et al., 2000, 2004, 2006; Ishioka et al.,

2007, 2012; Tomita et al., 2008). Tables 1 and 2 show Algorithm 1 for finding peaks and

Algorithm 2 for finding foundations in Echelon analysis. Algorithms 1 and 2 can find the

echelons of the peaks and foundations with output values for input values in Table 3.2

and Table 3.3.

Table 3.2: Input and output values of Algorithm 1.

I / O Name Elements Notes　
I LCT { i | i = 1, 2, . . . , NL} Counter of lattice

I H(i) { h | h is the value of lattice i} Given

I NB(i) { k | k is the neighbor of lattice i} Given

O NP Number of echelons (peaks) 1st-order echelon

O EN(i) { k | k belongs to the i-th echelon} Lattice index

O NB(EN(j)) { k | k is the neighbor of the j-th echelon} Lattice index

= ∪l∈EN(j)NB(l)− EN(j)
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Algorithm 1 To find the i-th echelon EN(i) of peak

Ensure: Find peaks
i ⇐ 0
while LCT ̸= ϕ do
i ⇐ i+ 1
EN(i) ⇐ ϕ
M(i) ⇐ arg max

j∈LCT
H(j)

while H(M(i)) > max
j∈{NB(M(i))−EN(i)}

H(j) do

EN(i) ⇐ EN(i) ∪ {M(i)}
LCT ⇐ LCT − {M(i)}
M(i) ⇐ arg max

j∈NB(EN(i))
H(j)

end while
LCT ⇐ LCT − {M(i)}
if EN(i) = ϕ then
i ⇐ i− 1

end if
NP ⇐ i

end while

Algorithm 2 To find the i-th echelon EN(i) of foundation

Ensure: Find foundations
i ⇐ NP
while LCT ̸= ϕ do
i ⇐ i+ 1
EN(i) ⇐ ϕ
M(i) ⇐ arg max

j∈LCT
H(j)

CN ⇐ {j | NB(M(i)) ∩ FM(EN(j)) ̸= ϕ, j ∈ ECT}
FM(EN(i)) ⇐ ∪j∈CNFM(EN(j)) ∪ {M(i)}
ECT ⇐ ECT ∪ {i} − CN
while {NB(FM(EN(i)))− FM(EN(i))} ̸= ϕ do
while H(M(i)) > max

j∈{NB(FM(EN(i)))−FM(EN(i))}
H(j) do

LCT ⇐ LCT − {M(i)}
EN(i) ⇐ EN(i) ∪ {M(i)}
M(i) ⇐ arg max

j∈{NB(FM(EN(i)))∩LCT}
H(j)

FM(EN(i)) ⇐ FM(EN(i)) ∪ {M(i)}
end while

end while
if LCT ̸= ϕ then
FM(EN(i)) ⇐ FM(EN(i))− {M(i)}

end if
NE ⇐ i

end while
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Table 3.3: Input and output values of Algorithm 2.

I / O Name Elements Notes　
I NP Number of peaks Obtained by Algorithm 1

I LCT { i | i = 1, 2, . . . , NL} − ∪NP
j=1EN(j) Counter of lattice

I ECT { i | i = 1, 2, . . . , NP} Counter of echelon

I H(i) { h | h is the value of lattice i} Given

I NB(i) { k | k is the neighbor of lattice i} Given

I NB(EN(j)) { k | k is the neighbor of the j-th echelon} Input and output

= ∪l∈EN(j)NB(l)− EN(j)

I FM(EN(j)) EN(j) Initial set for peaks

I NB(FM(EN(j))) { k | k is the neighbor of the j-th family} Initial set for family

= ∪l∈FM(EN(j))NB(l)− FM(EN(j))

O NE Number of echelons Peaks and foundations

O EN(i) { k | k belongs to the i-th echelon} Lattice index

O NB(EN(j)) { k | k is the neighbor of the j-th echelon} Lattice index

= ∪l∈EN(j)NB(l)− EN(j)

O FM(EN(j)) { k | k is the family of the j-th echelon} Lattice index
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4 Hotspot cluster detection

4.1 Hotspot cluster

From the results of disease maps drawn using indicators such as SMR and EBSMR, it

is possible to spatially grasp the outbreak situation. However, it is very difficult to judge

whether or not areas showing high index values are concentrated in a certain area. In

general, there are always areas where the index value is relatively high, and it is possible

that the high and low of the index value may be the result of observation within a chance

range. In this chapter, we describe a method for identifying areas (hotspot clusters) where

statistically significantly higher values are accumulated by the spatial hotspot cluster test.

4.2 Spatial scan statistics

Spatial scan statistic is a test method using a statistic based on the likelihood ratio

proposed by Kulldorff (1997). Now, let Z be the area that is a candidate for the hotspot

cluster, and let G be the entire area to be analyzed. Furthermore, let the mortality rate

of Z is p(Z), and the mortality rate of Zc is p(Zc). Where, the hypothesis for detecting

whether Z is a hotspot cluster is as follows.
H0 : p(Z) = p(Zc)

H1 : p(Z) > p(Zc)
(4.1)

Let d(Z) be the number of deaths inside Z, d(G) be the number of deaths in the entire

area, n(Z) be the population inside Z, and n(G) be the population of the entire area.

The probability of deaths d(G) in all regions is expressed as follows based on the Poisson

distribution.

(p(Z)n(Z) + p(Zc)n(Zc))d(G)

d(G)!
exp(−(p(Z)n(Z) + p(Zc)n(Zc))) (4.2)

In addition, the density f(x) of the number of deaths at point x in all areas is as follows.

f(x) =


p(Z)n(x)

p(Z)n(Z) + p(Zc)n(Zc)
if x ∈ Z

p(Zc)n(x)

p(Z)n(Z) + p(Zc)n(Zc)
if x ∈ Zc

(4.3)
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Therefore, the likelihood function is given as follows.

L(Z, p(Z), p(Zc)) =
(p(Z)n(Z) + p(Zc)n(Zc))d(G)

d(G)!
exp(−(p(Z)n(Z) + p(Zc)n(Zc)))

×
∏
x∈Z

p(Z)n(x)

p(Z)n(Z) + p(Zc)n(Zc)

∏
x∈Zc

p(Zc)n(x)

p(Z)n(Z) + p(Zc)n(Zc)

=
1

d(G)!
exp(−(p(Z)n(Z) + p(Zc)n(Zc)))p(Z)d(Z)p(Zc)d(Z

c)
∏
x

n(x)

(4.4)

In order to maximize this likelihood function, we solve the maximum likelihood function

in the situation given the region Z.

Substituting the maximum likelihood estimators p̂(Z) = d(Z)
n(Z)

and p̂(Zc) = d(Zc)
n(Zc)

into

formula (4.4) gives the following.

L(Z) =
1

d(G)!
exp (−d(G))

(
d(Z)

n(Z)

)d(Z) (
d(Zc)

n(Zc)

)d(Zc) ∏
x

n(x) (4.5)

On the other hand, substituting maximum likelihood estimators p̂(Z) = p̂(Zc) = d(G)
n(G)

under H0 gives the following equation.

L0 =
1

d(G)!
exp (−d(G))

(
d(G)

n(G)

)d(G) ∏
x

n(x) (4.6)

Therefore, when d(Z)
n(Z)

> d(Zc)
n(Zc)

, the likelihood ratio test amount λ is as follows.

λ(Z) =
L(Z)

L0

=

(
d(Z)

n(Z)

)d(Z) (
d(Zc)

n(Zc)

)d(Zc)

(
d(G)

n(G)

)d(G)
,

(
d(Z)

n(Z)
>

d(Zc)

n(Zc)

)
(4.7)

Where, using the age-adjusted expected value e, from e(G) = d(G), equation (4.7) is

expressed as follows when d(Z) > e(Z).

λ(Z) =

(
d(Z)

e(Z)

)d(Z) (
d(Zc)

e(Zc)

)d(Zc)

(4.8)

At this time, the region Z that maximizes the likelihood ratio λ(Z) is considered as a

candidate for the hotspot cluster. The significance of hotspot clusters is evaluated by the

Monte Carlo test.

4.3 Scan method

In order to detect hotspot cluster, it is necessary to find the region group Z that

maximizes the likelihood ratio λ(Z) in formula (4.8) (this is called scanning region group

Z). However, unless the number of regions is extremely small, it is generally impossible

to scan all the patterns of region group Z when the number of regions becomes too large.

Where, we introduce the following two methods proposed to scan Z efficiently.
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4.3.1 Echelon scan method

The Echelon scan method is a scan method that finds hotspot cluster using Echelon

analysis (Myers, 1997). This method scans the area based on the structure of the spatial

data obtained by the Echelon dendrogram. As a feature, non-circular hotspot cluster

can also be identified, and since scanning is performed from the top of the hierarchical

structure of the data, the calculation cost can be suppressed. Therefore, it can be applied

to large-scale data (Kurihara, 2003; Ishioka and Kurihara, 2012; Ishioka et al., 2019). The

algorithm of the echelon scan technique is proposed in Algorithm 3 with output values

for input values in Table 4.1.

Algorithm 3 To find the maximum log λ(Z) based on Echelon scan

Ensure: Find maximum LLR(log λ(Z))
MAXLLR ⇐ −∞
MAXZ ⇐ ϕ
i ⇐ 1
while i ≤ NE do
j ⇐ 1
while j ≤ N(i) and HE(i, j) > MAXHV do
if LLR(HE(ZE(i, j))) > MAXLLR then
MAXLLR ⇐ LLR(HE(ZE(i, j)))
MAXZ ⇐ ZE(i, j)

end if
j ⇐ j + 1

end while
i ⇐ i+ 1

end while

4.3.2 Circular scan method

Kulldorff (1997) proposed a circular scan method that scans concentrically as a method

for determining candidate Z for hotspot cluster. In this method, one representative point

of a certain area i (location of government office, center of gravity of the area, etc.) is

determined, and a concentric circle with radius r is drawn around that point. When the

representative points of the region j( ̸= i) are included in the circle, i and j are merged

to obtain hotspot cluster candidate Z = {i, j}. The radius r is expanded until it reaches

a certain critical value (the total population in Z, the length of r, the number of regions

included in Z, etc.) predetermined by the analyst. In the entire set of Z scanned, Z that

maximizes the value of λ(Z) is detected as a hotspot cluster. It has been pointed out that

this method is excellent in detecting circular hotspot cluster because it scans in a circular

shape, but is not suitable for detecting non-circular hotspot cluster.
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Table 4.1: Input and output values of Algorithm 3.
I O Name Elements Notes　
I NE Number of echelons Obtained by Algorithms 1 and 2

I NP Number of peaks Obtained by Algorithm 1

I N(i) Number of lattice elements for the i-th echelon NL =
NE∑
i=1

N(i)

I HE(i, j) Value of the j-th element of i-th echelon Given

HE(i, 1) > · · · > HE(i, N(i))

I MAXHV Value of the [NL/2]-th lattice in order Specified value

I ZE(i, j) Scan window of the upper j lattices for the i-th echelon Scan window for peak

∪j
k=1{(EN(i), k)} i = 1, . . . , NP , j = 1, . . . , N(i)

I ZE(i, j) Scan window of the upper j lattices for the i-th echelon Scan window for foundation

ZE(CH(i), CH(N(i))) ∪j
k=1 {(EN(i), k)} i = NP + 1, . . . , NE, j = 1, . . . , N(i)

where ZE(CH(i), CH(N(i)))

= ∪EN(j)∈CH(EN(i)) ∪N(j)
k=1 {(EN(j)), k)}

I HE(ZE(i, j)) Value of upper j lattices for the i-th echelon Value for peak and foundation

window ZE(i, j) i = 1, 2, . . . , NE, j = 1, 2, . . . , N(i)

O MAXLLR Log likelihood for the candidate of hotspot cluster log LR(Z)

O MAXZ Window for the candidate of hotspot cluster

– 17 –



5 Software development using R Shiny

In this paper, we constructed the software that can perform the series of analysis

described so far using the R package shiny. There are three reasons for using shiny.

1. The user interface (UI) for web application development can be flexibly designed.

2. The only means by which the Echelon scan method can be performed is the R

echelon package (Ishioka, 2020).

3. We are in a position to use the source code of the echelon package, so we are in

an environment where data input, parameter setting, analysis result output, etc.

necessary for executing the echelon scan method can be implemented on shiny.

Regarding (1) the UI of shiny can interactively change various parameters set for analysis

using slider bars and text boxes, so the result of recalculation with a simple operation can

be output.

With conventional software, it was necessary to perform calculation of risk indicators

such as SMR and EBSMR, detection of spatial hotspot cluster, map drawing etc in in-

dependent environments. However, in the field of spatial epidemiology, it is desirable to

perform these as a series of analyzes. In addition, most of the map drawing uses the map

information prepared in the software in advance, and few can use the map information

(shapefile, etc.) of an arbitrary analysis target area requested by the user. The software

developed in this research can execute these series of analyzes on the web for any area

given by the user using a shapefile. This makes it possible to easily check the geographical

information of the analysis target area, such as whether or not the high-risk area is in the

city center and the condition of the transportation network around it. In addition, it is

expected that displaying the results of hotspot cluster on a map will help to find clues for

investigating the cause of cluster occurrence.

The beta version of the developed software is available at the following URL(https:/

/fishi.ems.okayama-u.ac.jp/kajinishi/ver0.1/). The analysis example shown in this paper

can be reproduced with the example data on the top page of the above site. This chapter

describes the software.

5.1 Shiny

Shiny is a package that allows you to create interactive web applications. Shiny has

the following features.
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1. You can build a web application with just a few lines of code that does not require

JavaScript.

2. You can dynamically draw a spreadsheet table like Excel.

3. All UI can be built with R, and more flexible with HTML, CSS, and JavaScript.

4. You can use R’s integrated development environment (R Console, RGui for Windows

or Mac, RStudio, etc.).

5. Widgets (parts) for displaying inputs such as sliders and buttons and outputs such

as charts are prepared as R objects.

5.2 Structure of data required for analysis

This software can perform analysis using data arbitrarily prepared by the analyst.

Table5.1 shows the input contents required for the software, and Table 5.2 shows the

output contents.

The shapefile is a map data file consisting of topographical information and attribute

information proposed by ESRI, and is composed of multiple files. This software uses

four files consisting of ”shp(main file to store feature geometry)”, ”shx(index file that

stores the index of feature geometry)”, ”dbf(dBASE table that stores feature attribute

information)”, and ”prj(file that stores coordinate system information)”. In addition,

observation data (Case data) and population data (Population data) will be prepared in

CSV format. The structure of the data using in the analysis is the first column consists

of IDs that can identify the area, and the second and subsequent columns consist of

observed data as shown in Figure 5.1. Select one from the attribute information given in

the shapefile and describe it in the ID of the first column. For example, the number or

area name given to each area. The method of checking the attribute information in the

shapefile will be described in the next section. The data in Figure 5.1 shows a part of the

data on the number of male suicides in the Chugoku region in 2016. The first column of

the data is the city code given by city, and the second and subsequent columns are the

number of suicides by age group in each area. In this example, it is divided into eight

age groups in total, but it is also possible to give data that is not divided by age group.

However, the age groups of the observational data and the population data must be the

same.

5.3 Analysis example using software

In this section, we will introduce an example of analysis using software. The first case

shows data that is not divided by age group, and the second case shows an example that

– 19 –



Table 5.1: Input content.
Input Input content

Shapefile shp, shx, dbf, prj files
Area id ID
Area name Region name
Case data Observation data(file format：csv)
Population data Population data(file format：csv)

Table 5.2: Output content.
Tab Output content(External file output format)

SMR & EBSMR
Disease map
Result table(csv)

Echelon scan
Disease map
Result table(csv)
Echelon dendrogram(png, pdf, eps)

Circular scan
Disease map
Result table(csv)

Figure 5.1: Structure of data to prepare.
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uses data that is divided into eight age groups.

5.3.1 Analysis of data not classified by age group

We use data from Sudden Infant Death Syndrome (SIDS) in North Carolina, United

States. This data is a compilation of the number of sudden infant deaths in each region

of North Carolina from July 1974 to June 1978, and is not classified by age group. This

is the case when K = 1 in the formula (2.2).

The analysis procedure of this software using this data is shown below.

(Procedure1) Access the page of this software and click ”Browse” of [Shapefile] on the

left side of the screen as shown in Figure 5.2 to load the four files that make up the

shapefile shown in Section 5.2 at the same time. The attribute information in the read

shapefile can be confirmed as shown in Figure 5.3 by clicking [Check].

Figure 5.2: Screen when software is started and shapefile is read.

Figure 5.3: Screen when attribute information is displayed from [Check].

(Procedure2) Select Area id and Area name from the attribute information (Figure 5.3)

of the shapefile as shown in Figure 5.4. For [Area id], select the variable name corre-

sponding to the ID in the first column of the prepared observation data and population

data (here, select CRESS ID). For [Area name], select the area name you want to display

in the software (here, select NAME).
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Figure 5.4: Screen with Area id and Area name selected.

(Procedure3) Read the prepared data. Enter observation data in [Case data] and pop-

ulation data in [Population data].

(Procedure4) Click the [RUN] button at the bottom of the page to start the analysis.

The display of the result can be switched by the [SMR & EBSMR], [Echelon scan], and

[Circular scan] tabs at the bottom of the map.

Figure 5.5 shows the disease map displayed on the [SMR & EBSMR] tab by pressing

the [RUN] button. Table 5.3 shows the parameters that can be changed on the [SMR

& EBSMR] tab. The parameters can be changed interactively. For example, the color

density can be from 0 (= transmittance 100%) to 1 (= transmittance 0%), and the color

coding can be from 3 to a maximum of 10 and the color coding method is quantile (equal

classification), equal (equally spaced classification), fisher (natural class classification),

pretty (visually easy-to-understand classification) can be selected. The results for SMR

and EBSMR can be confirmed in the table at the bottom of the page as shown in Figure

5.6. This analysis result can be output to an external file (csv format) from [Download].

Table 5.4 shows the details of each item in the result table output in Figure 5.6.

Table 5.3: Parameter description on the [SMR & EBSMR] tab.
Parameter name Contents Changeable range Parameter type

Polygons Fill polygon ON / OFF Checkbox
Legend Displaying the legend ON / OFF Checkbox
Shade of color Color intensity 0 ∼ 1(0, 0.1, . . . , 1) Slider bar
SMR&EBSMR Which index to color SMR / EBSMR Select box
Class interval Color coding method quantile，equal，fisher，pretty Select box
Number of class of color Number of color coded divisions 3 ∼ 10(3, 4, . . . , 10) Slider bar

Figure 5.7 shows the situation when the [Echelon scan] tab is selected. The hotspot

cluster detected by Echelon scan are displayed on the map. In the [Echelon scan] tab as
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Figure 5.5: Screen immediately after pressing the [RUN] button.

Figure 5.6: Result table on the [SMR & EBSMR] tab.
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Table 5.4: Item description of [SMR & EBSMR] result table.
Item name Contents

ID Regional number
city Region name
SMR Value of SMR
EBSMR Value of EBSMR
case Number of observations
Expectedcase Expected number of observations
population Population

well, various parameters can be changed dynamically as shown in Figure 5.8. The details

of the parameters are shown in Table 5.5.

Figure 5.7: Screen when the Echelon scan tab is executed.

Information on the detected hotspot cluster is displayed at the bottom of the param-

eters. Similar to the table on the [SMR & EBSMR] tab, the results can be output to an

external file. The explanation of each item in this result table is as shown in Table 5.6. In

this table, the log λ(Z) of the formula (4.8) is output in descending order. Furthermore,

on the [Echelon scan] tab, you can see the Echelon dendrogram that represents the struc-

ture of the data topologically, as shown in Figure 5.9. Table 5.7 shows the details of the

parameters related to the dendrogram. For example, by adjusting the x−axis and y−axis

ranges, the structure of the entire dendrogram can be confirmed, and even the parts that

are dense and difficult to confirm in detail can be enlarged and displayed in detail. Den-

drogram can be output to an external file in png, pdf, eps format. The [Circular scan]
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Figure 5.8: Screen of various parameters and scan result table.

Table 5.5: Echelon scan parameter description.
Parameter name Contents Changeable range Parameter type

Polygons Fill polygon ON / OFF Check box
Legend Displaying the legend ON / OFF Check box
Significant level Acceptable p value 0.01∼0.99 Select box
Maximum Spatial Cluster size Maximum range to scan 0.1∼0.9 Select box
Shade of color Color intensity 0.1 ∼ 1(0.1, 0.2, . . . , 1) Slider bar
Monte Carlo repications Number of simulations 999 / 9999 Select box
Neighbor infomation Definition of neighborhood information Object boundary, Distance, Delaunay triangle Select box
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tab has the same specifications as the [Echelon scan] tab, and analysis can be performed

with various settings by changing various parameters.

Table 5.6: Item description of Echelon scan result table.
Item name Contents

Hotspot Hotspot cluster ranking
Hotspot regions included Region name detected as hotspot cluster
Population Population in hotspot cluster
Number of case Number of observations in hotspot cluster
Expected case Expected number of observations in hotspot cluster
Cluster SMR SMR in hotspot cluster
LLR Log likelihood ratio
Monte Carlo rank Monte Carlo ranking
P-value P value

Figure 5.9: Screen displaying dendrogram.

5.3.2 Analysis of data by age group

We will analyze the number of male suicides in the Chugoku region in 2016. This data

is divided into eight age groups, and is the case of K = 8 in the formula (2.2). In this

data, we show an example of analyzing the following two cases with different age groups.

1. When not considering the number of age groups (K = 1)
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Table 5.7: Parameter description in the Echelon dendrogram.
Parameter name Contents Changeable range Parameter type

SMR or EBSMR Index to draw dendrogram SMR or EBSMR Select box
xRange Changeable horizontal axis range 0～1 Slider bar
yRange Changeable vertical axis range 0～Maximum value of data Slider bar
Region Names Display of region name ON/OFF Checkbox
Symbol Display of symbols ON/OFF Checkbox
font size Character size 0～1(0.1, 0.2, . . . ,1) Slider bar
Download figure Dendrogram download format eps, pdf, png Checkbox

2. When considering the number of age groups (K = 8)

Figure 5.10 and 5.11 show the calculation results of the mortality risk output by the soft-

ware for ”when age group is not considered (K = 1)” and ”when age group is considered

(K = 8)”, respectively. As is clear from these figures, the expected number of deaths

ei for formula (2.2) changes depending on whether or not the age group is taken into

consideration, so the SMR results for formula (2.1) also change. As a result, the two den-

drograms (Figure 5.12 and Figure 5.14) created based on each SMR differ in their shape

and the regions that make up each hierarchy. Differences also appear in the hotspot clus-

ter detected by Echelon scan (Figure 5.13 and Figure 5.15). Considering the age group,

three regions were excluded from the hotspot cluster. These areas have a large population

in the age group with a large number of suicides, unlike the population composition ratio

of the entire analysis target area. Therefore, it is considered that the SMR in these three

regions became relatively small, resulting in such a result.

Figure 5.10: Results of SMR and EBSMR when age group is not considered (K = 1).
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Figure 5.11: Results of SMR and EBSMR when age group is considered (K = 8).

Figure 5.12: Echelon dendrogram when the age group is not considered (K = 1).
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Figure 5.13: Map corresponding to the detected hotspot cluster area when the age group
is not considered (K = 1).

Figure 5.14: Echelon dendrogram when the age group is considered (K = 8).
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Figure 5.15: Map corresponding to the detected hotspot cluster area when the age group
is considered (K = 8).
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6 Assessment of dendrogram complexity

6.1 Patterning the Echelon dendrogram

The Echelon dendrogram generated by the Echelon analysis is a graph that accurately

represents the structure of spatial data. By visually expressing the structure of data,

various information possessed by spatial data can be obtained and features can be found.

However, when trying to compare data structures between regions and eras, it is not

possible to evaluate them because there are no clear evaluation criteria. Moreover, as

the number of regions to be analyzed increases, the shape of the dendrogram becomes

complicated, and it is very difficult to compare them. This is because the number of

regions, neighborhood information, and the values of each region differ depending on the

data to be analyzed, so that the positional relationship and height of the dendrogram

peak and foundation also change. That is, it is extremely rare that a dendrogram having

exactly the same shape is formed, and it is not possible to evaluate the data structure

with clear evaluation criteria.

Therefore, we ”pattern” the Echelon dendrogram according to certain rules and gen-

eralize the shape of the dendrogram without compromising the characteristics of the

dendrogram. Dendrogram patterning has been proposed as an approach for the simplic-

ity and complexity of data structures (Kurihara and Ishioka, 2007). The patterning is

determined by finding the hierarchical structure of the Echelon dendrogram and using

indicators such as the total number of layers and the total number of peaks of the shape

pattern. For example, the three dendrograms shown in Figure 6.1 are ”patterned” into the

shape shown in Figure 6.2. The reason why these three dendrograms are unified into one

shape is that when viewed from the root echelon, the first foundation has two branches,

one of which forms a peak. On the other hand, the other is because the dendrogram is

formed by repeating bifurcation at the next foundation again. A ”patterned” dendrogram

is represented by aligning the heights of all peaks and keeping the spacing between each

foundation constant. Next, the flow of dendrogram patterning will be introduced using

an example of 3 by 3 mesh data as shown in Figure 6.3.

Consider a situation where the data is randomly given to a 3 by 3 mesh so that values

1 to 9 do not overlap. Where, there are 11 possible patterns of dendrograms, as shown

in Figure 6.4. Five indicators are defined for the patterning of the Echelon dendrogram

(Kurihara and Ishioka, 2007), and the characteristics of the dendrogram are extracted

using these indicators. There are five indicators: NE, NP, MF, MP, and LU. The details

of the five indicators are as follows.
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Figure 6.1: Three dendrograms with different shapes.

Figure 6.2: Dendrogram resulting from patterning the three dendrograms in Figure 6.1.
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Figure 6.3: 3 by 3 mesh data.

� NE: Number of Echelons

� NP: Number of Peaks

� MF: Largest clan excluding root

� MP: Maximum number of Children

� LU: Total Peaks − Number of Peaks with Common Parents + Number of Parents

(Parents with all their own children peaking)

The five indicators in the case of Figure 6.2 are NE = 7, NP = 4, MF = 5, MP = 2,

and LU = 3. In addition, the five indicators of the dendrogram of the 11 patterns in

Figure 6.4 are shown in Table 6.1. The five indicators were defined to discriminate the

dendrogram, but these indicators were defined only for the 3 by 3 mesh data mentioned

above. Therefore, it was confirmed that when the number of regions increases and the

dendrogram becomes more complicated than this, it becomes difficult to distinguish with

the five indicators. For example, it can be seen that the shape of the dendrogram pattern

is different even though the five indicators of the four patterned dendrograms shown in

Figure 6.5 is exactly the same. The patterns of these dendrograms areNE = 12, NP = 7,

MF = 10, MP = 3, LU = 5, and the five indicators are exactly the same, so it is not

possible to judge the difference in shape. Therefore, in this study, LV was defined as the

sixth index. LV is the number given to each layer of the Echelon dendrogram multiplied by

the number of peaks. For example, in the case of Figure 6.2, LV = 3×2+2×1+1×1 = 9.

Using this LV , as shown in Table 6.2, it can be seen that it was possible to discriminate

the patterns of the four dendrograms that could not be discriminated by the five indexes.
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Figure 6.4: 11 dendrogram patterns generated from 3 by 3 mesh data.
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Table 6.1: 5 indicators for each of the 11 patterns of dendrograms.
NE NP MF MP LU

Pattern 1 1 1 0 1 1
Pattern 2 3 2 1 2 1
Pattern 3 4 3 1 3 1
Pattern 4 5 3 3 2 2
Pattern 5 6 4 4 3 2
Pattern 6 7 4 5 2 3
Pattern 7 6 4 3 3 3
Pattern 8 7 4 3 2 2
Pattern 9 8 5 6 3 3
Pattern 10 7 5 4 3 3
Pattern 11 5 4 1 4 1

Figure 6.5: Dendrogram pattern with the same 5 values.
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Table 6.2: 6 indicators of 4 dendrograms.
NE NP MF MP LU LV

Top left of Figure 6.5 12 7 10 3 5 21
Top right of Figure 6.5 12 7 10 3 5 25
Bottom left of Figure 6.5 12 7 10 3 5 22
Bottom right of Figure 6.5 12 7 10 3 5 20

6.2 Echelon tree

This section describes a method for evaluating complexity by focusing on the hier-

archical structure of dendrograms and their relationships. Although it is possible to

classify dendrograms using the six indicators calculated with the dendrogram patterning

introduced in section 6.1, there is no clear indicator for assessing the complexity of den-

drograms. Therefore, in considering the complexity of the dendrogram, we use the idea

of the Echelon tree (Kurihara et al., 2000). As shown in Figure 6.6 to Figure 6.8, the

Echelon tree focuses only on the relationship between each node of the dendrogram and

expresses only the relationship of the spatial data structure. In addition, the Echelon

Figure 6.6: Flow of Echelon tree creation (1).

tree is polarized into a ”Vine tree” and a ”Binary tree” as shown in Figure 6.9 and Figure

6.10, and each tree has the following characteristics.
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Figure 6.7: Flow of Echelon tree creation (2).

Figure 6.8: Flow of Echelon tree creation (3).
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Figure 6.9: Vine tree.

Figure 6.10: Binary tree.
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� Vine tree . . . There are multiple peaks between the 1st peak and the root.

� Binary tree . . . There is a mountain containing multiple peaks.

Echelon profiles are defined as a structural analysis of the Echelon tree (Kurihara et

al., 2000). The Echelon profiles are obtained by the following method by decomposing

the tree based on the pruning process in pattern recognition. First, as a pretreatment,

”limb” is extracted from the Echelon tree. Count the number of nodes from all peaks to

the root, and let the node group with the largest number of common nodes be the 1st

limb.

1. Let the node generated from the 1st ”limb” be ”bough”.

2. Decompose each ”bough” into ”limb” and ”bough” in the same way as 1. A 2nd

limb and a new bough are generated from the bough.

3. After that, repeat until no bough is generated. The number of times limb is detected

is defined as cycle. The larger the number of cycles, the more complicated the spatial

data structure.

In addition, the following four scales are defined in the Echelon tree.

Di(i) =

∑
limb(i)

total nodes

Sc(i) =

∑
cells of limb(i)

total cells

Bu(i) =
bough(i)

total peaks

St(i) =

∑
peaks of limb(i)

total peaks

Divergence (Di)

Represents the proportion of limb nodes in each cycle. The lower this rate, the more

stable the number of limb nodes.

Scope (Sc)

Represents the percentage of cells in the limb of each cycle. It indicates whether

the surface complexity is concentrated in a particular sector.

Bunching (Bu)

Represents the ratio of bough to all peaks in each cycle. The lower this rate, the

closer to the binary tree.
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Stacking (St)

Represents the percentage of peaks in the limb of each cycle. Echelons that share a

common foundation indicate whether they tend to have the same degree.

In addition, the four scales are calculated for each cycle according to the flow shown

below.

STEP1

Divide the tree into limb and bough based on the Pruning process.

STEP2

Calculate four scales using limb and bough.

Figure 6.11 and Figure 6.12 shows that the vine tree and binary tree in Figure 6.9 and

Figure 6.10 are divided into limb and bough in each cycle, and four scales are calculated.

Figure 6.13 shows an example of calculating the four scales of Echelon profiles and

Figure 6.11: Progress of Cycle in Vine tree.

showing their values in a graph. From this graph, it is possible to grasp the state of

the dendrogram at each cycle. In Cycle 1, Scope is about 0.6 and Bunching is about

0.45, so a dendrogram including about 60% of the entire analysis target area is formed,

and it can be seen that there is a tendency of a binary tree type. The value of Echelon

profiles will eventually be 1 for Divergence, Scope, Stacking and 0 for Bunching. In Cycle

2, Divergence is about 0.58, so we can see that the limb node exceeds 50% of the total.

Also, since Scope is about 0.8, it can be seen that the dendrogram includes 80% of the

entire region. Furthermore, since Stacking is about 0.4, it can be seen that nearly 40%

of all peaks are included. After that, the number of Cycles increased, and in Cycle 4,

which is one before the last cycle, the values are almost the same as Cycle 5, and it can

be seen that the dendrogram can be almost explained. In Cycle 5, Divergence, Scope,

– 40 –



Figure 6.12: Progress of Cycle in Binary tree.

Figure 6.13: Calculation results and their graphs for four scales.
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and Stacking are 1 and Bunching is 0. It has been proposed to use the number of cycles

to represent the complexity of the Echelon tree (Kurihara et al., 2000). Since the number

of cycles represents the number of detections of limb and bough in the Echelon tree, it

can be an index expressing the complexity of the dendrogram. However, it is considered

that there is some complexity that cannot be evaluated only by the number of cycles. For

example, in the case of two tree as shown in Figure 6.14.

Figure 6.14: Echelon tree with the same cycle.

When trying to compare Figure 6.14 left and right, Figure 6.14 right seems to be more

complicated than left, but from the viewpoint of the number of cycles, left and right are

both have 3 cycles. Assessing the complexity of a dendrogram using the number of cycles

may differ from the apparent complexity. Although the number of cycles is one index

showing complexity, it cannot be said to be sufficient as an evaluation index because

of the problems mentioned above. Therefore, in section 6.3, we define the concept of

”stage” of the dendrogram, and consider an index that can evaluate the complexity of

the dendrogram pattern by considering it together with the information on the number

of cycles.

6.3 Stage of dendrogram

In this section, we define the concept of ”stage” to evaluate the complexity of the

dendrogram. In the 4 by 4 mesh data, if you try to arrange the numbers 1 to 16 so that

they do not overlap, it will be as 16!(= 2.092279e+ 13), and there are a huge number of

combinations. Since it is unrealistic to generate all the data, this time we will randomly

generate 1 million kinds of data from this combination of data. Echelon analysis was

performed on the generated data to create a dendrogram. When the patterns of this

dendrogram were examined, 181 patterns were detected as shown in Table 6.3, and 6
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indexes were calculated. Next, the results of principal component analysis are shown in

Figure 6.15. In this figure, the horizontal axis represents the first principal component and

the vertical axis represents the second principal component, and the principal component

scores are plotted. The cumulative contribution rate up to the second principal

Table 6.3: Value of 6 indicators of 181 generated dendrograms.
NE NP MF MP LU LV

1 11 7 9 4 4 22
2 5 3 3 2 2 5
3 9 5 7 2 4 14
4 7 4 3 2 2 8
5 7 4 5 2 3 9
...

...
179 13 8 10 3 6 26
180 13 8 6 3 6 20
181 12 7 10 3 4 19

component is 86.98%. Looking at this result, it can be seen that it is roughly divided into

four groups, it is expected that the MP value has a large effect on the second principal

component on the vertical axis. In addition, it can be seen that the horizontal axis of the

first principal component is influenced by the number of peaks in dendrograms such as

NE and NP and the number of echelons. Furthermore, when compared with the results

of the cluster analysis in Figure 6.16, it can be seen that the clustering is performed as

shown in Figure 6.17. Here, we focus on the dendrogram pattern of the MP = 4 group.

When the patterns of these dendrograms were confirmed in detail, it was found that the

shape of the dendrogram tended to change as shown in Figure 6.18. Looking at the shape

of the dendrogram pattern, a simple dendrogram is placed on the left side, and it seems

that the shape becomes more complicated as it goes to the right side in order. When

we confirmed the six patterned indicators for these dendrograms, we found that if the

number of NP and NE was large, as shown in Figure 6.18, they tended to be placed on

the right side of the figure. From these results, it is considered that the complexity of the

patterned dendrogram is greatly influenced by the value of NE, so we consider an index

focusing on the size of NE.

In this paper, we define the ”stage” of the dendrogram from the viewpoint of the

growth of the data structure considering the increase and decrease of NE. The stage

focuses on the growth process of the dendrogram, and the stage goes up as it becomes

more complicated. Specifically, the stage is determined according to the NP (number of

peaks). The stage progresses in one of two ways as shown in Figure 6.19 and Figure 6.20.
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Figure 6.15: Results of principal component analysis.
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Figure 6.16: Results of cluster analysis.

1. The area that constitutes the peak becomes the foundation, and another peak ap-

pears.

2. Another peak appears from the common foundation.

The stage I dendrogram is the simplest shape with NE = 1, but it becomes more compli-

cated as the stage progresses. Figure 6.21 shows how the stage progresses comprehensively

from the stage I dendrogram. By defining the stage, it is possible to evaluate the den-

drogram with the same number of cycles, and even within the same stage, it is possible

to evaluate the complexity from the difference in the number of cycles. Dendrogram

”stage” was defined to evaluate data whose data structure changes over time. For exam-

ple, assume data that changes over time, such as population, population ratio, pollutant

concentration, and plant reproduction. The purpose of analysis using ”stage” is to eval-

uate whether or not the structure of data has changed to a complex one. In the next

chapter, we will introduce an example in which the spatial data structure changes with

time using actual data, and consider the results.
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Figure 6.17: Results of principal component analysis corresponding to the results of cluster
analysis.
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Figure 6.18: Breakdown of dendrogram with MP = 4.

Figure 6.19: Stage progress pattern (1). Figure 6.20: Stage progress pattern (2).
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Figure 6.21: The figure which comprehensively expressed the stage progress of a dendro-
gram (up to stage 5).
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7 Analysis example with actual data

In this chapter, we evaluate the complexity of the spatial structure of actual data using

the ”staged” evaluation criteria defined in section 6.3 and consider its usefulness. The

data used are data on the proportion of the population aged 65 and over in the 23 wards

of Tokyo from 1985 to 2018. The results obtained from this data are shown in Figures

7.1 to 7.12, and the contents of each figure are as follows. The figure on the upper left is

a color-coded map in descending order of the proportion of the population aged 65 and

over. The figure on the upper right is the dendrogram generated as a result of the Echelon

analysis. The bottom left figure shows the shape of the patterned dendrogram. The figure

at the bottom right shows a color-coded map for each dendrogram pattern hierarchy.

In 1985, it can be seen that areas with high values tend to be concentrated near the

center of Tokyo’s 23 wards. On the other hand, at first, areas with high values tended to

concentrate in the center of the 23 wards, but as time passed, it can be seen that areas

with high values were shifting to the outside of the areas. From these results, it can be

seen that the proportion of the population aged 65 and over in the 23 wards of Tokyo

has changed from a structure concentrated in the city center to a structure concentrated

outside the 23 wards as time changes. In addition, the pattern of the Echelon dendrogram

is simple because the number of regions is not large, but the shape of the dendrogram has

changed over time in stages I to IV. From 1994 to 2000, it is the simplest stage I, and it

can be seen that the data structure has changed since this period. The first stage and the

last stage are both dendrograms of III, but the order of the regions that make up them is

very different. You can see this clearly in the map (bottom right) painted for each layer

of the Echelon dendrogram.

Looking at the map painted for each dendrogram level, the tendency to move from

near the center to the outside with time is similar to the map painted according to the

proportion of the population. However, from the point of view of the data hierarchy, it

can be seen that there is a different tendency. Around 2018, the map of the population

ratio does not show a very high value in the southern region, but from the viewpoint of

the hierarchical structure of the data, it can be seen that the southern region of Tokyo’s

23 wards is in a high hierarchy. From this, it is currently showing a low value, but since

it is a peak, it may become a high value in the future. Therefore, it will be necessary to

carefully observe the progress in the future. In addition, it is thought that it will lead to

grasping the regional characteristics that areas with high values or areas that are expected

to increase in the future are waiting, and to find an opportunity to take measures from

that tendency.

– 49 –



Figure 7.1: Analysis results (using 1985 data).
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Figure 7.2: Analysis results (using 1988 data).
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Figure 7.3: Analysis results (using 1991 data).
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Figure 7.4: Analysis results (using 1994 data).
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Figure 7.5: Analysis results (using 1997 data).
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Figure 7.6: Analysis results (using 2000 data).
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Figure 7.7: Analysis results (using 2003 data).
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Figure 7.8: Analysis results (using 2006 data).
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Figure 7.9: Analysis results (using 2009 data).
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Figure 7.10: Analysis results (using 2012 data).
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Figure 7.11: Analysis results (using 2015 data).

– 60 –



Figure 7.12: Analysis results (using 2018 data).
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It is probable that the following factors were behind the transition of such a data

structure. According to Suzuki et al. (2011) the 23 wards of Tokyo were densely populated

residential areas (200 / ha or more) from the outer circumference of the Yamanote Line to

the Kannana-Dori Avenue until 1995, but the range decreased from 1985 to 1995. At the

same time, a large amount of hollowing out occurred in the three central wards (Chiyoda,

Chuo, and Minato wards), and the population living in the city center decreased. On

the other hand, since 2000 to 2005, the population growth of the three central wards

and Koto ward has been increasing steadily. According to Satoh et al. (2011) many

baby boomers have moved into suburban residential areas in the Tokyo metropolitan area

since 1960. In addition, the baby boomer generation has retired and is now an elderly

person. Furthermore, in recent years, there has been a tendency to rent in the city center

without acquiring a home. According to Oshiro et al. (2009) many of the housing estates

where the elderly currently live were built during the period of high economic miracle. In

recent years, a number of high-rise condominiums have been built in the city center, and

the population is returning to the city center. In addition, there are many child-rearing

generations in the marginal areas of Tokyo’s 23 wards, and the number of people aged 20

to 24 is large in the western part of Tokyo’s 23 wards. Furthermore, Chiyoda Ward and

Chuo Ward have tended to rejuvenate since 1995, and some of Taito Ward and Sumida

Ward located in the northeastern part of the city center show signs of rejuvenation.

Since 1990, the number of high-rise condominiums in central Tokyo and coastal areas has

increased. In the western part of Tokyo’s 23 wards, there are areas where young people

expand throughout the period, and in the central part and northeastern part of the wards,

the aging of the population has progressed, but in recent years there has been a tendency

for rejuvenation. This tendency is especially strong in central Tokyo.

In other words, although the structure of the densely populated city center caused a

temporary hollowing out, it has returned to the city center in recent years and is on a

recovery trend. In addition, the population of Tokyo as a whole is increasing. Further-

more, from the perspective of demographic composition, the baby boomer generation and

their children’s generation tend to acquire homes without the premise of migration, and

tend to have housing in the suburbs in terms of land prices, child-rearing, and commuting

convenience. In addition, that generation is now elderly. In recent years, there has been

little tendency to acquire homes, and many residential facilities have been built in and

around the city center, and the number of younger generations is increasing in the city

center by raising children there. Due to changes in living style, it is considered that the

in-migration of the population has become relatively active in recent years. In addition,

it is thought that the current population composition is due to the fact that many gener-

ations acquired their own homes in the suburbs when hollowing out occurred in the past.

Considering this background, it is possible to infer the cause of the change in the spatial

data structure due to changes in the times, as shown in Figures 7.1 to 7.12.
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In this chapter, we evaluated changes in the proportion of the population aged 65 and

over in the 23 wards of Tokyo from the perspective of the complexity of the spatial data

structure. However, if the number of regions is too large, the shape of the dendrogram

becomes very complicated, and the numbers of patterns and stages tend to be too large.

Therefore, it becomes difficult to evaluate the complexity of the shape of the dendrogram.

Therefore, in the next chapter, we will consider merging the peaks of the dendrogram,

leaving the tree up to a shape that can explain the characteristics of the spatial data

structure to some extent, and merging the leaf parts that form the rest and evaluate.
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8 Merging of dendrogram peaks

This chapter defines the ”merging of peaks” in the dendrogram. ”Merging of peaks”

aims to facilitate the evaluation of overly complex dendrograms by simplifying the den-

drogram. The problem with the Echelon dendrogram is that if the number of areas to

be analyzed becomes too large, the generated dendrogram will have a very complicated

shape, making it difficult to understand its structure and regional relationships. When

trying to evaluate a complex dendrogram, the six indicators and the number of stages

in the dendrogram patterning described so far become very large, making it difficult to

judge. Therefore, we consider stopping the growth until the part where the shape of the

dendrogram can be sufficiently expressed, and evaluating the complexity by the shape up

to that stage. As a specific example, we use data on the number of homicides (1960, 1970,

1980, 1990) in 3085 regions of each state in the United States. After calculating SMR

from this data and performing Echelon analysis, an Echelon dendrogram (Figure 8.1) was

created. The six indicators when this dendrogram was patterned are shown in Table 8.1,

and the number of cycles in the Echelon tree was 5. Moreover, the number of stages can

be found to be 433 from the value of NP. In addition, the calculation results of the four

indicators of Echelon profiles (Table 8.2) and their graphs (Figure 8.2) are shown.

Table 8.1: 6 indicators of the 1960 dendrogram.
NE NP MF MP LU LV
812 433 753 34 351 32963

Table 8.2: Dendrogram Cycle and 4 Scales (1960).
Cycle1 Cycle2 Cycle3 Cycle4 Cycle5

Divergence 0.203 0.600 0.899 0.990 1
Scope 0.594 0.812 0.954 0.995 1
Bunching 0.478 0.520 0.166 0.018 0
Stacking 0.000 0.360 0.822 0.982 1

As is clear from these results, it is difficult to judge the complexity of the data struc-

ture because the dendrogram with a large number of regions and a complicated data

structure has a large number of patterns, stages, and cycles. Scope is an index show-

ing what percentage of the total area is included in the dendrogram at the time of each

cycle. Looking at Table 8.2, in this data, the Scope value exceeds 90% as of Cycle 3.

Therefore, considering that this dendrogram contains 90% of the total as of Cycle 3, it is
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Figure 8.1: Dendrogram in SMR of 1960.

considered that the complexity of the data structure can be fully explained. As a method

of generating a dendrogram up to an arbitrary cycle in this way, ”merging of peaks” of

the dendrogram was defined. Until the dendrogram reaches a fully explained cycle, the

regions that make up the peaks with a common parent are adjacent to each other, and

the peaks in the upper hierarchy are merged in order to reduce the number of peaks. By

merging the peaks, not only is it easier to evaluate complex dendrograms, but it is also

possible to remove outliers, so it is expected that robust evaluation will be possible. The

procedure for ”merging of peaks” is shown below.

1. Detect the peak of the maximum cycle.

2. Find the peak located at the highest level in step 1.

3. Of the peaks in step 2, the peaks having a common parent are placed adjacent to

each other, and the Echelon analysis is performed again.

4. Repeat steps 1 to 3 until the target cycle reaches the maximum cycle.

Figure 8.3 shows the result of merging the peaks of the dendrogram of Figure 8.1 until

Cycle 3. In addition, the four scales of profiles at that time are as shown in Table 8.3,

and the transition is as shown in Figure 8.4. Table 8.4 shows the six indicators calculated

during patterning after merging. Comparing the Table 8.1 and Table 8.4, it can be seen
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Figure 8.2: Graph in Table 8.2.
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that the number of stages decreased from 433 to 378. Table 8.5 shows the results of

merging peaks in the data aggregated for each year. Looking at the tables before and

after the merger, it can be seen that the magnitude relationship between the number

of stages has changed. Also, in this example, the merge operation did not show a very

large decrease in the stages, but the larger the number of data, the greater the decrease

is expected. By merging the peaks in this way, the evaluation can be performed in a

state where the dendrogram can be fully explained. In addition, since the dendrogram

excluding abnormal values can be evaluated, it is considered that the results show a

difference between before and after the merging. Performing ”merging of peaks” is useful

when evaluating a data structure because it can be expressed simply while grasping the

characteristics of the data structure. However, there is no index as to how much the value

of Scope is enough to explain the data structure, and it is necessary for the analyst to

make a judgment in consideration of the characteristics of the data.

Figure 8.3: Dendrogram in SMR of 1960 after merging.

Figure 8.5 show the transition of the four scales of echelon profiles calculated each

time the peaks are merged from Cycle 5 to Cycle 3 and Figure 8.6 shows how much

the six indicators used in the patterning are reduced from the original dendrogram. In

Figure 8.5, it can be seen that the values of the four indicators increase until the Cycle

decreases, and when the Cycle decreases by one, the values also decrease significantly.

Since the recalculation is performed every time the peaks are merged, it can be seen that
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Figure 8.4: Graph in Table 8.3.

Table 8.3: Dendrogram Cycle and 4 Scales (1960) after merging.
Cycle1 Cycle2 Cycle3

Divergence 0.233 0.686 1
Scope 0.594 0.811 1
Bunching 0.548 0.587 0
Stacking 0.000 0.413 1

Table 8.4: 6 indicators of the 1960 dendrogram after merging.
NE NP MF MP LU LV
707 378 648 34 323 28291

Table 8.5: NE values before and after merging from 1960 to 1990.
1960 1970 1980 1990

Before merging 433 454 439 449
After merging 378 395 391 384
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the value changes each time. In addition, Figure 8.6 does not show a large change, and it

can be seen that the ratio tends to decrease when the peaks are merged. The criteria for

stopping merging should be determined according to the characteristics of the data, such

as when the values of the metrics that characterize the data structure change significantly

during the merge operation. However, this is not defined in this paper. In this paper, the

standard was determined from the value of Scope, but in the future it will be required to

define a clear one as needed.

Figure 8.5: Transition of 4 scales aggregated for each merge operation.
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Figure 8.6: Transition of 6 indicators used for patterning aggregated for each merge
operation.
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9 Summary

In this paper, we introduced SMR and EBSMR, which are widely used in the field of

spatial epidemiology and we described the details of Echelon analysis for useful for study-

ing the topological structure of the surface of spatial data in a systematic and objective

way. After that, the detection of spatial hotspot cluster using spatial scan statistics was

described, and the scanning method for detecting hotspot cluster was described. In ad-

dition, we introduced the Web application that can perform Echelon analysis that has

already been developed. We also developed a Web application that can implement these

series of analyzes in a unified framework using the R package shiny. The developed soft-

ware can be analyzed using the map information and data of any analysis target area

prepared by the analyst. In addition, since parameter settings can be easily performed,

quick recalculation and analysis can be performed with arbitrary settings. Since the in-

terpretation of the analysis results differs depending on the characteristics and methods

of the data to be handled, appropriate judgment is required.

Later in this paper, we defined indicators that can evaluate complexity in spatial data.

The spatial data was visually grasped by utilizing the Echelon dendrogram generated

during the Echelon analysis. In addition, by ”patterning” dendrograms with various

shapes, the shapes are unified, and by calculating 6 indexes including the LV defined in

this paper, even in dendrograms with complicated shapes, to quantitatively evaluated

the complex shapes of the dendrograms. Furthermore, by using the Cycle required when

calculating the four indicators of echelon profiles and the ”stage” of the dendrogram

defined in this paper, we were able to compare and examine the data structure that

changes with time. After that, its usefulness was confirmed using data on the proportion

of the population aged 65 and over in the 23 wards of Tokyo. Finally, in order to solve the

problem of the Echelon dendrogram, which has a large number of regions and becomes too

complicated, we defined the ”merging of peaks” of the dendrogram and evaluated it when

the dendrogram could be fully explained. We also confirmed the usefulness of merging of

peaks using data on the number of crimes in the United States in 3,085 regions. It is also

expected that the dendrogram with the merged peaks will be used for the hotspot cluster

detection. Therefore, it is necessary to newly define the concept of cluster detection and

the concept of neighborhood information. In addition, there is ample room for research

on the structural analysis of spatial data, and it is necessary to establish more appropriate

indicators and evaluation criteria.
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EcheScan

Software overview

This appendix introduces the software dedicated to Echelon analysis called EcheScan

that has already been developed in Kurihara (2020). EcheScan can constructs the echelons

from input data files which consists of univariate values and neighbors for each lattice

and visualizes the result of a dendrogram. In addition, by inputting the information

of the observed value and its expected value, the hotspot cluster based on the Poisson

distribution can be detected by using the Echelon scan method. This software is built in

the R shiny environment and published on the website (https://fishi.ems.okayama-u.

ac.jp/echescan), so anyone can easily analyze it. Table 1 is a summary of information

required for input and information that can be output. Next, the files required for input

will be described in detail.

Table 1: Input and output files of EcheScan.

I O File Contents Notes　

I Neighborhood information
Neighbor information

of each lattice

I Univariate Value (h) of each lattice

I Case & expectation
Observed(c) and expected(λ)

values of each lattice

For hotspot detection

based on Poisson model

O Echelon table Details of echelons File format: csv

O Lattices forming echelon
Lattice information

within each echelon
File format: csv

O Echelon dendrogram
Graphical representation

of echelons
File format: png, pdf, eps

O Hotspot table Details of detected hotspots File format: csv

O Echelon dendrogram with scanning
Graphical representation

of echelon scan technique
File format: png, pdf, eps

Neighborhood information file

The neighborhood information file provides the name and neighborhood of each

area. The first column of each row is the area name, and the numbers entered after

the next column are the row numbers of the adjacent areas.
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Univariate file

Univariate files provide the values for each lattice in one column.

Case & Expected file

The Case & Expected Value file is a two-column file that provides observations and

expectations for each region to detect hotspot clusters.

The Univariate file and Case & Expectation file must be in the same order of the regions

provided in the Neighborhood information file. Also, the number of lines in these three

files must be the same as the total number of areas.

example 1 : One dimensional lattice

We will introduce how to use EcheScan using the data introduced in Table 3.1.

This example uses the neighborhood information file (dim1nb.txt) and the univariate

file (dim1h.txt) shown in Figure 1 and Figure 2. The information in the neighborhood file

in Figure 1, for example, shows that the lattice ”C” (third line) is adjacent to the second

line (B) and the fourth line (D). Figure 3 shows the software start screen. First, select

dim1nb.txt from [Brows] in ”Neighborhood Information” on the left side of the screen. If

there is no problem with the file, ”Univariate” is displayed and selsect dim1h.txt. Then

click Run to perform the Echeron analysis and the results will be displayed on the Echeron

dendrogram tab (Figure 4). The table at the top of Figure 4 provides detailed information

for each hierarchy.

Figure 1: Neighborhood information
file for the one dimensional lattice data.

Figure 2: Univariate
file for the one dimensional lattice data.

This table will be described in detail. The first field is echelon number (EN). The

second field is Order, which gives an integer value greater than or equal to 1; ”1” means

a peak, ”2” means a foundation of order 1s, ”3” means a foundation of order 2s, and
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Figure 3: Screen when software start.

so on. The third field is Parent, which gives the echelon number of the parent. The

forth field is Maxval, which gives the maximum value. The fifth field is Minval, which

gives minimum value. The sixth field is Length, which is the length of Maxval - parent′
sMaxval. The seventh field is Cells, which gives the number of lattices. The eighth field

is Progeny, which gives the number of ascendants (children) for the echelon. The nineth

field is Family, which gives the number of echelons in the family. The final field is Level,

which gives the number of echelons in the ancestor. These information and dendrogram

of echelons can also be output as a file. The details of V ariable are shown in the papers

of Myers et al. (1997) and Kurihara et al. (2000).

example 2 : Hotspot cluster detection example (Lung

cancer data in New Mexico)

As a second use case, we apply echelon analysis and the echelon scan method to lung

cancer data in New Mexico available on the SaTScan web site(https://www.satscan.

org/datasets/nmlung/). The data consists of the number of cases of malignant lung

cancer from 1973 to 1991 and the number of populations in 32 areas. A total of 9,254

cancer cases and a population of 25,604,291 were recorded during this period, consisting

of the following category covariates: 18 age groups (group1 = ages < 5, group2 = ages5−
9, group3 = ages10 − 14, . . . , group17 = ages80 − 84, group18 = ages85+) and gender (1

= male, 2 = female).

Introduce an example of using EcheScan to detect hotspot clusters in this data. First,

as show Figure 5, 6 and 7, prepare the neighborhood information file (NMnb.txt), the

univariate file (NMsmr.txt), and the case & expected value file (NMCasExp.txt) for cal-

culating the spatial scan statistics. When you read the neighborhood information file and

the univariate file, ”Case & Expectation” is displayed, so load the case & expectation file

(NMCasExp.txt). Then select the Echelon scan tab and select RUN to start the analy-

sis. Figure 8 shows the execution result when setting the significance level = 0.05, the
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Figure 4: Execution result of Echelon analysis for the one dimensional lattice data.
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maximum hotspot size = 30, and the Monte Carlo replications = 999. You can zoom

in or out the dendrogram display by changing the“ Vertical range:”and“ Horizontal

range:”settings at the bottom of the screen. Figure 9 is an enlarged view of the echelons

recognized as the hotspot cluster. The log λ(Z) value of equation (4.8) in the detected

hotspot cluster was 93.883 and the p-value was 0.001.

Figure 5: Part of the contents of neighborhood informationfile for lung cancer data in
New Mexico.
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Figure 6: Part of the contents of univariate
file for lung cancer data in New Mexico.

Figure 7: Part of the contents of case & ex-
pectation
file for lung cancer data in New Mexico.
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Figure 8: Execution result of hotspot cluster detection using the Echelon scan method
for lung cancer data in New Mexico.
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Figure 9: Enlarged view of the hierarchy of detected hotspot cluster areas.
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