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Activity of transcription factors is normally regulated through interaction with other
transcription factors, chromatin remodeling proteins and transcriptional co-activators. In
distinction to these well-established transcriptional controls of gene expression, we have
uncovered a unique activation model of transcription factors between tyrosine kinase ABL
and RUNX2, an osteoblastic master transcription factor, for cancer invasion. We show
that ABL directly binds to, phosphorylates, and activates RUNX2 through its SH2 domain
in a kinase activity-dependent manner and that the complex formation of these proteins is
required for expression of its target gene MMP13. Additionally, we show that the RUNX2
transcriptional activity is dependent on the number of its tyrosine residues that are
phosphorylated by ABL. In addition to regulation of RUNX2 activity, we show that ABL
transcriptionally enhances RUNX2 expression through activation of the bone
morphogenetic protein (BMP)-SMAD pathway. Lastly, we show that ABL expression in
highly metastatic breast cancer MDA-MB231 cells is associated with their invasive
capacity and that ABL-mediated invasion is abolished by depletion of endogenous
RUNX2 or MMP13. Our genetic and biochemical evidence obtained in this study
contributes to a mechanistic insight linking ABL-mediated phosphorylation and
activation of RUNX2 to induction of MMP13, which underlies a fundamental invasive
capacity in cancer and is different from the previously described model of
transcriptional activation.

Keywords: ABL - Abelson murine leukemia viral oncogene homolog, Runx2 (runt-related transcription factor 2),
tyrosine, phosphorylation, invasion

INTRODUCTION

Tyrosine kinase signaling networks are required for multiple cellular functions including growth,
survival and angiogenesis during tumorigenesis (1). It has been shown by the Cancer Genome Atlas
(TCGA) and other studies that the ABL kinase (Abelson murine leukemia viral oncogene homolog
1) is amplified and/or overexpressed in various invasive solid tumors including breast, lung, colon,
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and kidney carcinoma as well as melanoma (1-3), though the
role of ABL in oncogenic activity remains to be determined.

Metastasis is a multistep process by which tumor cells
disseminate from a primary tumor to distant secondary organs.
During the process of metastasis, tumor cells interact with the
extracellular matrix (ECM), produce matrix metalloproteinases
(MMPs), degrade the ECM and displace the normal tissue with
the expanded tumors as a consequence of invasion (4-11).
Expression of MMPs in cancer cells is strongly associated with
their invasive capacity, leading to poor prognosis (12-14).
However, regulation of MMPs by transcription factors during
metastasis has yet to be elucidated.

RUNX2, also known as core-binding factor 1 (Cbfal), has
been revealed to be a master transcription factor required for
osteoblast differentiation since studies showed that mice lacking
RUNX2 fail to undergo bone ossification due to defective
osteoblastogenesis (15, 16). In our previous study, we showed
that ABL potentiates the assembly and activation of the critical
transcriptional complex of RUNX2 and TAZ (transcriptional co-
activator with PDZ-binding motif) and drives osteocalcin
expression and development of the osteoblast lineage (17).
Activity of transcription factors is thus normally regulated
through interaction with other transcription factors, chromatin
remodeling proteins and transcriptional co-activators in a variety
of distinct physiologic states (18-23).

In distinction to these well-established transcriptional
controls of gene expression, we have uncovered a unique
activation model of transcription factors between tyrosine
kinase ABL and RUNX2 required for cancer invasion. We
found that ABL directly binds to, phosphorylates, and activates
RUNX2 through its SH2 domain in a kinase activity-dependent
manner. We also found that the complex formation of these
proteins is required for expression of its target gene MMP13.
Additionally, we found that the RUNX2 transcriptional activity
is dependent on the number of its tyrosine residues that are
phosphorylated by ABL. In addition to regulation of RUNX2
activity, we found that ABL transcriptionally enhances RUNX2
expression through activation of the bone morphogenetic
protein (BMP)-SMAD pathway. Lastly, we found that ABL
expression in highly metastatic breast cancer MDA-MB231
cells is associated with their invasive capacity and that ABL-
mediated invasion is abolished by depletion of endogenous
RUNX2 or MMP13.

These findings contribute to a mechanistic insight linking
ABL-mediated phosphorylation and activation of RUNX2 to
induction of MMP13, which underlies a fundamental invasive
capacity in cancer and is different from the previously described
model of transcriptional activation.

MATERIALS AND METHODS

Mice

We purchased BALB/c-nu/nu female mice from Charles River
Laboratories. All of the mice were housed in groups of 3-5 per
cage and maintained at 22°C under a 12:12 h light/dark cycle

with free access to water and standard laboratory food (MF diet,
Oriental Yeast Co., Tokyo, Japan). Animal experiments were
conducted in accordance with institutional and NIH guidelines
for the humane use of animals.

Cell Cultures

All cultures were maintained in a 5% CQO, environment at 37°C.
HEK 293T cells (ATCC) were cultured in DMEM (GIBCO)
supplemented with 10% fetal bovine serum (FBS) (Sigma).
MDA-MB231 cells (ATCC) were cultured in o.-MEM (Nacalai
Tesque) supplemented with 10% FBS. MDA-MB231 cells stably
expressing luciferase were cultured in DMEM/F12 (Gibco)
supplemented with 10% FBS. Saos-2 cells (ATCC) were
cultured in McCoy’s 5A Modified Medium (GIBCO)
supplemented with 15% FBS.

Invasion Assay With Matrigel

Cell invasion was assayed using the Boyden chamber method with
filter inserts (pore size, 8 um) pre-coated with Matrigel in 24-well
plates (BD Biosciences, Franklin Lakes, NJ) as described
previously (24). Cells (8 x 10* cells/insert) were seeded with o.-
MEM containing 0.5% FBS on the top chamber, and the bottom
chamber was filled with o-MEM containing 10% FBS. After
incubation for 24h, cells that passed through the filter were
fixed and stained by H&E staining. Invading cells were
quantified by cell counting in five non-overlapping fields at x10
magnification and presented as the average from three
independent experiments.

In Vivo Metastasis Assays

For in vivo imaging, MDA-MB231 cells stably expressing
luciferase were infected with an shGFP- or shABL-expressing
vector, and 1 x 10° cells were injected into the lateral tail veins of
BALB/c-nu/nu female mice. After 4 weeks, the presence of
metastases was detected using the IVIS Imaging System
(Xenogen, Alameda, CA) following intraperitoneal luciferin
injection (150 mg/kg). Regions of interest from displayed
images were identified and quantified as total photon counts or
photons/s using Living Image® software 4.0 (Xenogen).

Histology
Lung tissues from mice were fixed in 10% neutral formalin,
embedded in paraffin, sectioned, and stained with H&E.

Reagents and Antibodies

Unless stated otherwise, all chemicals were purchased from
Sigma. Antibodies were obtained from the following sources:
anti-pABL (Y245) (Cell Signaling Technology), anti-ABL (BD
Pharmingen), anti-Flag M2 (Sigma), anti-Actin (Santa Cruz
Biotechnologies), anti-RUNX2 (MBL International) and anti-
pTyr (4G10) (EMD Millipore) antibodies. Halt'"" Protease and
Phosphatase Inhibitor Cocktail was from Thermo
Fisher Scientific.

Plasmids
ABL (WT, PP or KD), TAZ and RUNX2 (WT or YF) plasmids
were constructed as described previously (17). RUNX2 (add
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back) plasmids were generated by overlap extension PCR using
primers with the desired mutations and cloning into the Xbal site
of pEF Bos.

RNA Extraction and Quantitative
Real-Time PCR (qPCR) Analysis

Total cellular RNA was extracted using an RNeasy Plus Mini Kit
(QIAGEN). A High-Capacity cDNA Reverse Transcription kit
(Applied Biosystems) was used for reverse transcription, and
qPCR was performed on a Step One Plus Real-Time PCR System
(Applied Biosystems) using TagMan Gene Expression assays
(Applied Biosystems) for Gapdh (Hs02786624_gl), MMP2
(Hs01548727_m1), MMP9 (Hs00957562_m1) and MMPI3
(Hs00942584_m1). The relative expression of each mRNA was
calculated by the ACt method.

Expression of an FKBP-ABL

Retroviral Vector

An FKBP-ABL retroviral vector was constructed as described
previously (25). HEK293T cells were co-transfected with an
empty vector control (Mock) or pMx-FKBP-ABL with pSV
and pVSVG using the CalPhos Mammalian Transfection Kit
(Clontech). Saos-2 cells were infected as described
previously (25).

Lentiviral Transduction

pLKO.1 lentiviral vectors expressing short hairpin RNAs
(shRNAs) targeting RUNX2 (shRUNX2), ABL (shABL),
MMP13 (shMMP13) or a nonspecific GFP sequence (shGFP)
were co-transfected into HEK293T cells with pPAX2 and
pVSVG (Addgene) using X-tremeGENE 9 transfection reagent
(Roche). The virus was collected 48 hours after transfection, and
cells were infected as described previously (25).

Western Blot Analysis and
Co-Immunoprecipitation

Cells were lysed with Nonidet P-40 (NP-40) buffer (20 mM Tris
[pH 8.0], 137 mM NaCl, 1% NP-40, 2 mM EDTA) or RIPA
buffer (50 mM Tris [pH 7.5], 150 mM NacCl, 1% NP40, 0.1% SDS,
0.25% sodium deoxycholate, 1 mM EDTA) supplemented with
protease and phosphatase inhibitors. Lysates were cleared by
centrifugation for 10 minutes at 14,000 rpm and 4°C.
Immunoprecipitation was performed at 4 °C with the indicated
antibodies, and the products were collected on Dynabeads®
Protein A or G (Life Technologies) as described previously (26,
27). For Western blotting, proteins in whole cell lysates (WCL)
were resolved by SDS-PAGE and transferred to PVDF
membranes (Immobilon; Millipore). The membranes were
blocked in 5% BSA or 5% nonfat dried milk in PBST (PBS +
0.1% Tween-20). The images presented are representative of
three independent experiments. The relative integrated density
of each protein band was digitized by NIH image J.

Transient Transfection
HEK293T cells were transiently co-transfected with RUNX2
plasmid with or without TAZ and ABL constructs using

Lip0D293TM DNA In Vitro Transfection Reagent
(SignaGen Laboratories).

Statistics

All results are shown as means + SEM of data from at least three
separate experiments. The data were subjected to ANOVA with
Tukey-Kramer’s post hoc test or unpaired t-test with JMP® 7
(SAS Institute Inc, USA) to determine differences. P values < 0.05
were accepted as statistically significant.

Study Approval
All animal studies were approved by the Animal Research
Council at Okayama University, Okayama, Japan.

RESULTS

ABL Kinase Activity Is Required for
RUNX2-Mediated MMP13 Expression

Several MMPs have been reported to be transcriptionally
regulated by RUNX2 in different physiologic states including
tumorigenesis and bone metabolism (18, 28-30). We previously
reported that ABL forms the RUNX2-TAZ transcriptional
complex that is required for osteocalcin expression and
osteoblast differentiation (17) and we hypothesized that
RUNX2-mediated expression of MMPs lies downstream of the
same regulatory system composed of TAZ and ABL observed in
osteoblasts. We first confirmed that RUNX2 enhanced mRNA
expression of MMP13 but not that of MMP2 or 9 in a 293T cell
overexpression system (Figures 1A, S1A). However, in contrast
to osteocalcin, co-expression of RUNX2 with the constitutively
active form of ABL [ABL (PP)], but not TAZ, enhanced the
expression level of MMP13 by tenfold (Figures 1B, S1B). The
protein expression levels of RUNX2 were similar in the presence
or absence of ABL (PP) (Figure 1C), indicating that the
enhancing effect of ABL on RUNX2-mediated MMP13
expression was through elevation of RUNX2 transcriptional
activity. Additionally, the kinase dead version of ABL [ABL
(KD)] did not show this effect (Figures 1D, E and S1C).
Lastly, we observed that the ABL kinase inhibitor imatinib
rescued the level of RUNX2-mediated MMP13 expression
activated by ABL (PP) to normal levels (Figures 1F, S1D).
These findings demonstrate that ABL kinase activity, but not
TAZ, is required for RUNX2-mediated MMP13 expression that
is different from the control of osteocalcin expression
by RUNX2.

ABL Binds to, Phosphorylates, and

Activates RUNX2 Through Its SH2 Domain
We next investigated the mechanism by which ABL regulates
RUNX2-mediated MMP13 expression. We previously found that
ABL interacted with and phosphorylated RUNX2, which was
required for osteocalcin expression in osteoblasts (17).
Consistent with this finding, ABL (PP) formed a complex with
and tyrosine-phosphorylated wild-type RUNX2 [RUNX2 (WT)]
but not the all tyrosine to phenylalanine mutant RUNX2 (YF)
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FIGURE 1 | ABL kinase activity is required for RUNX2-mediated MMP13 expression. (A) Quantitative PCR analysis of MMP2, 9, and 13 mRNA expression in
HEK293T cells transfected with RUNX2. n = 3. (B) Quantitative PCR analysis of MMP13 mRNA expression in HEK293T cells co-transfected with RUNX2 with or
without TAZ or ABL (PP). n = 3. (C) HEK293T cells were co-transfected with RUNX2 with or without TAZ or ABL (PP). Whole cell lysates were probed with the
indicated antibodies for Western blot analysis. (D) Quantitative PCR analysis of MMP13 mRNA expression in HEK293T cells co-transfected with RUNX2 with or
without ABL (WT, PP or KD). n = 3. (E) HEK293T cells were co-transfected with RUNX2 with or without ABL (WT, PP or KD). Whole cell lysates were probed with
the indicated antibodies for Western blot analysis. (F) Quantitative PCR analysis of MMP13 mRNA expression in HEK293T cells co-transfected with RUNX2 with or
without ABL (PP) and cultured in the presence or absence of 10 uM imatinib for 24 hours. n = 3. P values were determined by the unpaired t-test (A) or ANOVA with
Tukey-Kramer's post hoc test (B-F). Data are presented as means + SEM. *P < 0.05.
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in the 293T overexpression system (Figures 2A, B). Interestingly,
we observed that the RUNX2 (YF) mutant poorly formed a
complex with ABL compared to RUNX2 (WT) and was
transcriptionally inactive (Figures 2C, D, S2A), suggesting that
a tyrosine residue(s) of RUNX2 is required for formation of the
ABL-RUNX2 complex. To confirm this possibility, we generated a
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truncated form of the ABL-SH2 domain that binds to
phosphorylated tyrosines of its substrate and observed the
complex formation of RUNX2 and the SH2 domain (Figure
2E). These findings demonstrate that ABL controls the RUNX2
transcriptional activity for MMP13 expression through direct
interaction and its tyrosine phosphorylation.
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FIGURE 2 | ABL binds to, phosphorylates, and activates RUNX2 through its SH2 domain. (A-C) HEK293T cells were co-transfected with wild-type (WT) or all
tyrosine to phenylalanine mutant (YF) RUNX2 with or without ABL (PP). RUNX2 immune complexes were probed with an anti-phosphotyrosine (4G10), anti-
pY245ABL, anti-ABL or anti-RUNX2 antibody. Whole cell lysates (WCL) were probed with the indicated antibodies for Western blot analysis. (D) Quantitative PCR
analysis of MMP13 mRNA expression in HEK293T cells co-transfected with RUNX2 (WT or YF) with or without ABL (PP). n = 3. (E) HEK293T cells were co-
transfected with RUNX2 with or without GFP-ABL (SH2). GFP-ABL (SH2) immune complexes were probed with an anti-RUNX2 or anti-GFP antibody. P values were
determined by ANOVA with Tukey—Kramer’s post hoc test. Data are presented as means + SEM. *P < 0.05.
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RUNX2 Transcriptional Activity Is
Dependent on the Number of Its Tyrosine
Residues Phosphorylated by ABL

We next investigated the molecular mechanism by which ABL
activates RUNX2 through its phosphorylation. RUNX2
contains fifteen tyrosines (Y150-507) (Figure 3A), and we

first created one tyrosine to phenylalanine mutant variants or
one tyrosine add-back variants to the RUNX2 (YF) mutant
(Figure 3A) to determine which tyrosine or tyrosines are
sufficient to mediate RUNX2 activation. Neither one tyrosine
mutant variants nor one tyrosine add-back variants showed
reduction (Figures 3B, S3A) or restoration (Figures 3C, S3B)
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FIGURE 3 | RUNX2 transcriptional activity is dependent on the number of its tyrosine residues phosphorylated by ABL. (A) Schematic models of RUNX2 (WT) and
RUNX2 (YF). (B-D, F) Quantitative PCR analysis of MMP13 mRNA expression in HEK293T cells co-transfected with the indicated constructs. n = 3. (E) HEK293T
cells were co-transfected with the indicated constructs and RUNX2 immune complexes were probed with an anti-4G10 or anti-RUNX2 antibody. P values were
determined by ANOVA with Tukey-Kramer’s post hoc test. Data are presented as means + SEM. *P < 0.05. ns, no significance.
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of RUNX2-mediated MMP13 expression compared to RUNX2
(WT), suggesting that more than one tyrosine is required for
RUNX2 transcriptional activity. We therefore created a variant
in which half of the fifteen tyrosines were added back to the
RUNX2 (YF) mutant (F404-507Y). To identify minimum
tyrosines required for RUNX2-mediated MMP13 expression,
we created several tyrosine add-backs to the RUNX2 (YF)
mutant and found that not only the RUNX2 (F404-507Y)
mutant but also five tyrosines add-back RUNX2 (Y404-432)
were sufficient to restore RUNX2 activation and
phosphorylation mediated by ABL (Figures 3D, E and S3C).
Lastly, we queried whether the RUNX2 transcriptional activity
is dependent on the number of its tyrosine residues that are
phosphorylated by ABL. We created two variants in which five
of the fifteen tyrosines were added back to the RUNX2 (YF)
mutant [F150-292Y (far left) and F430-507Y (far right)] and
observed that the transcriptional activities for MMP13
expression of these variants as well as RUNX2 (F404-432Y)
were similarly increased compared to that of RUNX2 (YF)
(Figures 3F, S3D). These findings suggest that the number of
tyrosine residues phosphorylated by ABL may be important for
its transcriptional activity for MMP13.

ABL Regulates RUNX2 Expression
Through Control of the

BMP-SMAD Pathway

Interestingly, we found in the present study that the ABL kinase
enhances not only RUNX2 transcriptional activity but also its
protein expression. We used an FKBP chimeric form of ABL for
which activity is enhanced by the small molecule FK1012 (17)
and we observed that FKBP-ABL but not Mock or FKBP
potentiated the expression of RUNX2 in a human
osteosarcoma cell line, Saos-2 (Figure 4A). We queried
whether active ABL accelerated the RUNX2 protein expression
level through activation of the BMP-SMAD signaling pathway
that transcriptionally targeted RUNX2 and we observed that
SMAD1/5/8 was activated in Saos-2 cells expressing FKBP-ABL
(Figure 4B). Additionally, the increased levels of RUNX2 protein
as well as MMP13 transcripts in FKBP-ABL-expressing Saos-2
cells were abolished in cells in which endogenous BMP receptor
type IA (BMPR1A) was depleted (Figures 4C, D and Figure
S4A). Lastly, we observed that the RUNX2 protein expression
level was reduced in MDA-MB231 cells in which endogenous
ABL was depleted (Figure 4E). These findings demonstrate that
ABL enhances RUNX2 expression through activation of the
BMP-SMAD signaling pathway, forms a complex with
RUNX2, and accelerates its transcriptional activity through
tyrosine phosphorylation that is required for MMP13 expression.

ABL-Mediated RUNX2 Expression and
Phosphorylation Regulate Breast

Cancer Invasion

High expression levels of MMPs are associated with the capacity
of invasion and metastasis in various cancer cells (12-14). In the

present study, we showed that expression and tyrosine
phosphorylation of RUNX2 mediated by ABL regulate MMP13

expression. Previous studies showing that MMP13 is required for
invasion and metastasis of breast cancer cells prompted us to
query whether the ABL-RUNX2 transcriptional complex
potentiated breast cancer invasion. Consistent with our results
in 293T cells, depletion of ABL or RUNX2 reduced MMP13
expression in MDA-MB231 cells (Figure S5A). To determine
whether the ABL-RUNX2 complex controls metastasis, we
performed an in vitro invasion assay and observed that
depletion of these proteins inhibited the ability of invasion
(Figure S5B)

We next queried whether the ABL-RUNX2 complex
controlled metastasis to distant organs in mice. The lung was
the first organ to which intravenously injected breast cancer cells
metastasized due to being trapped by pulmonary capillary vessels
(31). As shown in Figures S5C, D, we observed that mice
injected with ABL-depleted MDA-MB231 cells had a smaller
number of lung metastases than those in mice injected with
control cells, suggesting that ABL-mediated RUNX2 expression
and activity regulate the invasive capacity as well as seeding and
growth of breast cancer cells in lung metastasis.

Invasive Activity Accelerated by ABL Is
Rescued in RUNX2- or MMP13-Depleted
Breast Cancer Cells

We finally determined whether the ability of active ABL to
enhance invasive capacity was contingent on RUNX2 and
MMP13. In contrast to the results of ABL depletion shown in
Figure S5B, overexpression of ABL enhanced the ability of
invasion in MDA-MB231 cells compared to control cells
(Figures 5A, S6A). On the other hand, knockdown of RUNX2
or MMP13 abolished the invasive ability enhanced by ABL in
MDA-MB231 cells (Figures 5B, C and S6B, C). These findings
conclusively demonstrate that ABL controls RUNX2 expression
and activation through its tyrosine phosphorylation, which is
required for MMP13 expression and the invasive program.

DISCUSSION

Tyrosine Phosphorylation of RUNX2 by
ABL Is Required for Its Transcriptional
Activity and Invasive Capacity in

Breast Cancer

It is well established that RUNX2 activity is controlled by various
factors including other transcription factors and transcriptional
co-activators. The hippo pathway component TAZ and RUNX2
form a transcriptional complex, which drives development of the
osteoblast lineage, while TAZ coordinately represses PPARY-
dependent gene transcription that is important for adipocyte
lineage commitment (32). In our previous study, we showed that
ABL potentiates RUNX-TAZ complex formation that is
required for osteocalcin expression and osteoblast
differentiation (17). ABL and TAZ are reciprocally stabilized
through exclusion of their respective E3-ubiquitin ligases,
SMURF1 and B-TrCP (17). Stabilized ABL phosphorylates
TAZ and enhances its interaction with RUNX2 and TEADI,
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FIGURE 4 | ABL regulates RUNX2 expression through control of the BMP-SMAD pathway. (A, B) Saos-2 cells were infected with an empty vector control or an
FKBP-ABL- or FKBP-expressing retroviral vector. Whole cell lysates were probed with the indicated antibodies for Western blot analysis. (C) Saos-2 cells were
infected with an empty vector control or an FKBP-ABL-expressing retroviral vector in the presence of shGFP or shBMPR1A. Whole cell lysates were probed with the
indicated antibodies for Western blot analysis. (D) Quantitative PCR analysis of MMP13 mRNA expression in cells in (C). n = 3. (E) MDA-MB231 cells were infected
with an shGFP-, shABL- or shRUNX2-expressing vector. Whole cell lysates were probed with the indicated antibodies for Western blot analysis. P values were
determined by ANOVA with Tukey-Kramer’s post hoc test. Data are presented as means + SEM. *P < 0.05.

leading to osteoblast differentiation and expansion, respectively ~ generally controlled by transcriptional co-activators, regulates
(17). On the other hand, the TAZ paralog YAP has been  cellular identity in mesenchymal origin cells.

reported to be phosphorylated by SRC, leading to suppression In distinction to these regulatory mechanisms of the
of RUNX2 activity (33). Thus, RUNX2 activity, which is  transcription factors, we have uncovered a previously
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FIGURE 5 | Invasive activity accelerated by ABL is rescued in RUNX2- or MMP13-depleted breast cancer cells. (A) MDA-MB231 cells co-transfected with or
without ABL were subjected to a Matrigel invasion assay, and invading cells in five independent regions were counted. Representative photographs were taken at
10 x magnification. (B) MDA-MB231 cells co-transfected with or without ABL were infected with an shGFP- or shRUNX2-expressing vector and subjected to a
Matrigel invasion assay. Invading cells in five independent regions were counted. Representative photographs were taken at 10 x magnification. (C) MDA-MB231

cells co-transfected with or without ABL were infected with an shGFP- or shMMP13-expressing vector and subjected to a Matrigel invasion assay. Invading cells in
five independent wound regions were counted. Representative photographs were taken at 10 x magnification. P values were determined by the unpaired t-test (A)
or ANOVA with Tukey-Kramer’s post hoc test (B,C). Data are presented as means + SEM. *P < 0.05.

undescribed model showing that ABL, but not TAZ or other
factors, directly binds to, phosphorylates, and activates RUNX2
through its SH2 domain in a kinase activity-dependent manner.
ABL-RUNX2 complex formation is required for expression of its
target gene MMP13 and subsequent invasive capacity in
metastatic breast cancer cells. Additionally, we found the
RUNX2 transcriptional activity is dependent on the number of
its tyrosine residues that are phosphorylated by ABL. Although
the PY motif (PPxY) in RUNX2 (Y412) is critical for interaction
with the WW domain-containing proteins TAZ and YAP (34,
35), neither one tyrosine mutant variants (Y412F in RUNX2
WT) nor one tyrosine add-back variants (F412Y in RUNX2 YF)
affected RUNX2-mediated MMP13 expression in our study
(Figures 3B, C), indicating that phosphorylation of several
tyrosines in RUNX2 by ABL is linked to its transcriptional
activity through different mechanisms. It was shown in
previous studies that multiple tyrosine phosphorylation of the
BIK1 tyrosine kinase controls its kinase activity (36) and that
tyrosine phosphorylation of the cytoplasmic domain of CD79a/b
changes its helical propensity and structure (37). The results of

our study and those previous studies suggest that the RUNX2
transcriptional activity is dependent on the number of
phosphorylated tyrosine residues that could change its
formation and interaction with the transcriptional coactivator
and/or the target genes.

This study has provided evidence showing that tyrosine
phosphorylation is directly involved in activation of the
transcription factor and has provided an insight linking the
ABL-RUNX2 transcriptional complex to the regulation of
invasive capacity during metastasis. Further studies will be
required to examine the roles of the phospho-switch for
activation of RUNX2.

ABL Controls RUNX2 Expression Through
Regulation of the BMP-SMAD Pathway

In addition to control of RUNX2 transcriptional activity, ABL
transcriptionally increases RUNX2 expression through
activation of the BMP-SMAD pathway. Overexpression of ABL
increased phosphorylation of SMAD1/5/8 and subsequent
RUNX2 expression, while depletion of BMPRI1A abolished this
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effect, leading to suppression of MMP13 expression. It has been
reported that activation of the non-canonical BMP-ERK
pathway leads to p16"™** upregulation and cell senescence in
ABL”" mesenchymal osteoprogenitor cells (38). Our findings
provide a new mechanistic insight into the role of ABL for the
BMP-SMAD pathway in cancer cells and expand the concept
that BMPs and their target genes lie downstream of the tyrosine
kinase ABL in multiple lineages.

ABL-RUNX2-MMP13 Axis in Cancer and
Other Physiologic States

In the present study, we uncovered a new regulatory mechanism
of cancer invasion by linking ABL to RUNX2 and MMP13. We
showed that RUNX2-mediated MMP13 expression lies
downstream of ABL and that depletion of ABL in breast
cancer cells inhibits invasive ability. Additionally, invasive
capacity accelerated by ABL was abolished by depletion of
RUNX2 or MMP13, demonstrating that the regulation of
invasion and metastasis by ABL is at least in part through the
control of RUNX2 and MMP13 expression. It has been reported
that ABL phosphorylates proliferating cell nuclear antigen
(PCNA), a component of DNA replication and maintenance,
and controls tumorigenesis (39). It has also been reported that
ABL kinases protected tumor cells from apoptosis induced by
TNF-related apoptosis-inducing ligand (TRAIL) (40) and that a
high expression level of RUNX2 is associated with poor
prognosis in patients with osteosarcoma (41). Interestingly,
ABL-mediated phosphorylation of RUNXI, another member of
the Runt-related transcription factor family, inhibited RUNX1-
mediated megakaryocyte maturation through the control of its
transcriptional activity (42). The results of those previous studies
and the present study suggest that the ABL-RUNX2-MMP13
axis is involved in the metastatic program in some patients with
breast cancer expressing ABL and/or RUNX2 and that the use of
ABL-specific inhibitors may be a new therapeutic strategy in
those patients.

In addition to the oncogenic effects of these proteins, RUNX2
has been shown to be associated with cartilage degradation in
patients with osteoarthritis and with osteoclast recruitment in
bone remodeling (29, 30). Furthermore, MMP13 is known to be
associated with tissue destruction in rheumatoid arthritis (43).
The present study suggests that RUNX2-mediated MMP13
expression controlled by ABL may lie downstream of not only
cancer biology but also other physiologic pathways. Further
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