
Web Access Monitoring Mechanism for Android WebView
Yuta Imamura

Hiroyuki Uekawa
Graduate School of Natural Science
and Technology, Okayama University

Okayama, Japan

Yasuhiro Ishihara
Faculty of Engineering,
Okayama University
Okayama, Japan

Masaya Sato
Toshihiro Yamauchi

Graduate School of Natural Science
and Technology, Okayama University

Okayama, Japan
yamauchi@cs.okayama-u.ac.jp

ABSTRACT
In addition to conventional web browsers, WebView is used to
display web content on Android. WebView is a component that
enables the display of web content in mobile applications, and is
extensively used. As WebView displays web content without hav-
ing to redirect the user to web browsers, there is the possibility
that unauthorized web access may be performed secretly via Web-
View, and information in Android may be stolen or tampered with.
Therefore, it is necessary to monitor and analyze web access via
WebView, particularly because attacks exploiting WebView have
been reported. However, there is no mechanism for monitoring
web access via WebView. In this work, the goals are to monitor web
access via WebView and to analyze mobile applications using Web-
View. To achieve these goals, we propose a web access monitoring
mechanism for Android WebView. In this paper, the design and
implementation of a mechanism that does not require any modifi-
cations to the Android Framework and Linux kernel are presented
for the Chromium Android System WebView app. In addition, this
paper presents evaluation results for the proposed mechanism.

CCS CONCEPTS
• Security and privacy → Network security; Mobile platform
security;

KEYWORDS
Android, WebView, Web access monitoring

1 INTRODUCTION
In addition to traditional web browser apps, Android applications
(or “Android apps”) can display web content in themselves. A com-
ponent called WebView is used to display web content into an
Android app without redirecting users to web browser apps. Mobile
app developers heavily use WebView for displaying web content
in their apps. A previous study shows that WebView is used by
approximately 86% of the Android apps in the Android app store
managed by Google, as of 2011 [1]. Additionally, as of June 2014, it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5436-3/18/01. . . $15.00
https://doi.org/10.1145/3167918.3167942

was reported that 85% of Android apps use WebView [2]. We have
also studied how many Android apps are using WebView as of June
2017. We scanned for the WebView-related description in the Java
code of 32 Android apps in Google Play. As a result, we estimate
that approximately 97% of Android apps use WebView, indicating
that WebView is used extensively.

Monitoring web access via WebView is necessary because We-
bView may be used for the attacks. JavaScript downloaded from
an external site via WebView can be executed, and it could be used
for the attacks. In addition, although the attacks using JavaScript
and countermeasures for these attacks have been reported, to the
best of our knowledge, there is no mechanism for monitoring web
access via WebView. Therefore, there is no means to understand
what kind of access via WebView is performed. Moreover, in the
attacks using JavaScript described above, we cannot understand
what kind of communication is done. Thus, the mechanism that
can monitor communication via WebView is necessary.

Web access on Android can be monitored by using HTTP proxies
or packet capture tools. However, these methods cannot distinguish
web access via WebView from other web access options on Android.
There is no prior study that identifies WebView communication.
Moreover, these methods cannot analyze the communication con-
tents of web access encrypted by TLS/SSL because they cannot
decrypt the communication contents.

In this paper, we propose a web access monitoring mechanism
for Android WebView, and describe its design and implementation.
The proposed mechanism can monitor all web access via WebView
on Android. In addition, this mechanism does not require any mod-
ification of the Android Framework and the Linux kernel, so that
there is advantage it can be introduced by just replacing WebView
with a modified version. Furthermore, we describe the evaluation
results for the proposed mechanism.

In summary, we made the following contributions:

- We have pointed out the problem that there is no web access
monitoring mechanism for WebView despite of the necessity.
In addition, we have reported that there is no previous study
that analyze Android apps using WebView based on WebView
communication logs, in our survey.

- We have designed the web access monitoring mechanism for
Android WebView, which addresses the above problems. This
makes it possible to distinguish web access via WebView from
other access and to monitor it. Moreover, the proposed mech-
anism can acquire various information, specifically the com-
munication contents of encrypted web access and the package
name of the Android app.

https://doi.org/10.1145/3167918.3167942

ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Y. Imamura et al.

������� ���

������� ���

	
���

�����������

������
�

�����������

������
��

������
��

���������		���
�������������

���������		�������������

Figure 1: Method of displaying web content on Android

- We have reported the effectiveness of the proposed mechanism
and its performance overhead. Operation experiment showed
that the proposed mechanism can acquire the information nec-
essary for analysis. The performance measurement showed that
the overheads in acquiring the information at sending the HTTP
request, receiving the HTTP response header, and receiving the
HTTP response body are 0.234 ms, 0.099 ms, and 1.978 ms, re-
spectively. Moreover, this measurement showed that the data
size of the acquired information are 0.62 KB, 0.35 KB and 225.28
KB, respectively. These results are reasonable, because above
overheads respectively depend on the data size of the informa-
tion acquired by each processing. In addition, the total overhead
of each processing is approximately 2.3 ms, which is very short.

2 BACKGROUND
2.1 WebView
WebView is a component that makes it possible to display web
content on Android apps without having to redirect the user to
web browser apps. Figure 1 shows two methods of displaying web
content on Android. As shown in Figure 1, when an Android app
that does not use WebView attempts to display web content, the
user is redirected to a web browser app, where the web content is
displayed. Moreover, the Android app using WebView can display
the web content without redirecting to a web browser app.

WebView has used different browser engines in each Android
version. WebView implementation from Android 4.1 to Android
4.3 uses WebKit [3], whereas since Android 4.4 uses Chromium [4],
which is called Chromium WebView.

WebView up to Android 4.4 was implementedwithin the Android
Framework. On the other hand, WebView since Android 5.0 has
been separated from the Android Framework and is implemented
as the Android System WebView app. This change allows us to
update WebView from Google Play without updating Android.

2.2 Network Stack of ChromiumWebView
Figure 2 (cited from [5]) shows the network stack of a Chromium-
based web browser. The Chromium project provides a web browser
for many platforms. Although web browsers developed by the
Chromium project differ in terms of front end and presence/absence

Figure 2: ChromiumWebView [5]

of functions, etc., the implementation such as communication pro-
cessing exhibits almost no differences among platforms. The im-
plementation is shared and composed of class diagrams as shown
in Figure 2. Moreover, all web access by Chromium-based web
browsers start with the URLRequest class in Figure 2.

Additionally, ChromiumWebView has been developed byChromium
project. Therefore, web access by Chromium WebView similarly
starts with the URLRequest class. ChromiumWebView is developed
using Java and C++, and it consists of the Java layer and the C++
layer. The C++ layer in WebView is equivalent to implementation
of a network stack in the Chromium-based web browser.

2.3 Processing flow of Web access via WebView
Figure 3 shows the processing flow of web access via WebView, and
its details are described below.
(1) Call methods for web access

An Android app that uses WebView calls a method for web
access. Here, the methods loadUrl(), loadData(), loadDataWith-
BaseURL(), and postURL() are used for web access [6].

(2) Call C++ layer method in WebView using JNI
The method called in step (1) calls C++ layer method in We-
bView (which uses JNI), which then calls the method for the
URLRequest class. The method called in step (1) only displays
theWeb content of the specified URL, andweb access processing
is done in the C++ layer in WebView.

(3) Issue a system call
For web access, the C++ layer method in WebView issues a
system call.

2.4 Security Issues
As mentioned in Section 1, WebView is used in many Android
apps, while there is security issues in WebView. WebView is pro-
vided with various APIs. SetJavaScriptEnabled API enables the
execution of JavaScript downloaded within WebView. In addition,
addJavaScriptInterface API registers Java objects to WebView. This
make it possible to all the public methods in these Java objects
can be called by JavaScript from inside WebView. In [1, 6–8], the
attacks that steal the information in Android by using the add-
JavaScriptInterface API have been reported. In [8–10], cross-site
scripting attacks targeting Android apps using WebView have also

Web Access Monitoring Mechanism for Android WebView ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

���������		

����

�������

�

�

�

�

�

�

�

�

�

�����

��������

������ ���

������

�!"

���� ��

��#��
�������

$������%

���� ���������

	�� ����&

���� �����	����

	�� ����&

����'

(���

�
"�
"

)*+

),+

)-+)-+

Figure 3: Process of Web access via WebView

been reported. In addition, reference [11] reports the attacks that
steal a user’s confidential information from an Android app by
using AdSDK. From above, if a malicious Android app uses Web-
View, it is possible that the information in Android will be taken
or tampered with by an unauthorized entity. Moreover, because
JavaScript downloaded from an external site can be executed, there
is possibility that users will be damaged by a malicious JavaScript
execution.

Some countermeasures based on access control have been pre-
sented for the attacks exploiting WebView. In [12], the authors
present an access control mechanism that restricts access to de-
vice resources based on the user‘s judgement for mitigating app-
repackaging attacks and cross-site scripting attacks. In [6], the
authors provide uniform and fine-grained access control for web
code running on Android apps using WebView. Moreover, in [13],
the authors propose an access control on security-sensitive APIs at
the Java object registered within WebView using addJavaScriptIn-
terface.

Although these countermeasures have been presented, to the
best of our knowledge, there is no report that focuses on the com-
munication contents of web access via WebView and no web access
monitoring mechanism for WebView. Web access on Android can
be monitored by using a HTTP proxy or a packet capture tool. How-
ever these methods cannot monitor access of WebView and others
with the communication distinguished. Moreover, these methods
cannot also analyze the communication contents encrypted by
TLS/SSL. Thus, in order to address above problem, the web access
monitoring mechanism which can distinguish WebView communi-
cation from others and analyze encrypted communication contents
is necessary.

3 WEB ACCESS MONITORING MECHANISM
FOR ANDROIDWEBVIEW

3.1 Purpose and Concept
We propose a web access monitoring mechanism for Android We-
bView as a means of monitoring web access via WebView. The
proposed mechanism focuses on web access via WebView exclusive

���������		

����

�������

�

�

�

�

�

�

�

�

�

�����

��������

������ ���

������

�!"

���� ��

��#��

�������

$������%

���� ���������

	�� ����&

���� �����	����

	�� ����&

����'

(���

�
"�
"

���������

	�
����	

���������

	�
����	

Figure 4: Overview of the proposed mechanism

of other web access mechanisms available on Android and aims to
monitor the web access.

In order to realize the proposed mechanism, we need to add a
function to monitor web access during the processing of web access
via WebView. The following can be considered as points at which
the function can be added:
(1) Android Framework
(2) WebView
(3) Linux kernel
In this work, our goals are to analyze Android apps using WebView
and verify the security of WebView based on WebView commu-
nication logs collected by the proposed mechanism. To achieve
our goals, we introduce the proposed mechanism into numerous
Android devices, and need to collect much data. Therefore, we need
to consider ease of introduction. Among the above points, when
adding the monitoring function to the Android Framework and
the Linux kernel, it is necessary to modify the Android Framework
and the Linux kernel for each Android device. On the other hand,
when adding the monitoring function to WebView, it is possible
to introduce the proposed mechanism by just replacing WebView
with a modified one. However, when introducing a new version of
WebView containing the proposed mechanism, it is necessary to
gain root access on Android. Based on the above considerations,
we implemented the monitoring function to WebView.

3.2 Design
Figure 4 shows an overview of the proposed mechanism. As de-
scribed in Section 2.3, web access via WebView is performed by
web access request processing and web access response processing
in the C++ layer in WebView. Therefore, we add the monitoring
function to web access request and response processing to imple-
ment the proposed mechanism. This makes it possible to monitor
web access via WebView without changing the processing flow.

3.3 Challenges
To implement the proposed mechanism, the following challenges
must be considered.

ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Y. Imamura et al.

C1 Information to be acquired
The purpose of this work is to analyze Android apps using We-
bView based on WebView communication logs collected by the
proposed mechanism. Therefore, we consider the information
that we need to acquire in order to analyze Android apps using
WebView.

C2 Storage format and location of the acquired information
In order to achieve the purpose of this work, we need to consider
the storage format and location of the information considered
in C1.

3.4 Information to be acquired
We acquire the following information to analyze an Android app
using WebView.

(i) HTTP request and HTTP response
Transfer of the data between the web browser and the web
server uses HTTP. Additionally, WebView also uses HTTP for
data transfer. Therefore, it is possible to acquire the communi-
cation contents of web access via WebView by acquiring the
data which is HTTP format. In view of the above, the HTTP
request and HTTP response is acquired.

(ii) Time stamp
In web access viaWebView, the instance, which sends the HTTP
request and receives the HTTP response, is created. Moreover,
this access is performed asynchronously. Therefore, it is impossi-
ble to figure out the correspondence between the HTTP request
and the HTTP response. In order to grasp this correspondence,
it is necessary to get the information that can distinguish each
instance, which sends and receives the HTTP message. Thus,
a time stamp is acquired in each this instance and used as an
identifier.

(iii) Android app package name
When analyzing an Android app that uses WebView, it is nec-
essary to specify the Android apps which accesses the web
content via WebView. Therefore, to identify the Android app,
the package name of the Android app is acquired.

(iv) URL
From the scheme name, host name, and path name included
in the HTTP request header, the URL of the access destination
can be acquired. However, considering analyzing the Android
app using WebView, it is better to acquire the URL of the access
destination. Therefore, we acquire the URL of the web content
as request information.

(v) IP address
The IP address of the communication destination as request
information is acquired.
In attacks exploiting web content, some attacks make it diffi-
cult to take countermeasures with blacklists by causing the IP
address or domain name of an attack site to transition within a
short period of time. Therefore, when analyzing an attack site
based only on (i) HTTP request and response, it is difficult to
identify the attack site, as there is a high possibility that the DNS
registration information of the domain of the attack site has
changed. In order to identify the attack site, it is necessary to
acquire the IP address before the DNS registration information
is changed. From the above, by acquiring the IP address of the

communication destination, then even if the DNS registration
information is changed, the possibility of identifying the true
attack site is increased.

(vi) Port number of the web server
For TCP and UDP in the network layer, port numbers are used as
identifiers for designating end points of inter-host communica-
tion. In web access using HTTP, normally port 80 is used, while
in web access using HTTPS, port 443 is used. In this manner,
the port number used for each protocol is different. Therefore,
by acquiring the port number of the web server, it is possible to
determine which protocol is used for web access.

(vii) Connection error during socket connection
In attacks exploiting web content, there is an attack that makes
the attack site’s IP address or domain name transition within
a short period of time. For this reason, there is the possibility
of a connection error occurring when accessing the attack site.
Therefore, we also acquire connection error information on the
socket connection. This increases the possibility of tracing the
falsified web content from the legitimate web site to the attack
site.

3.5 Storage format and location of the acquired
information

In web access via WebView, the instance, which sends and receives
the HTTP message, is created each Request/Response, which is
a pair of HTTP request and response. Additionally, the commu-
nication via WebView is performed asynchronously. Therefore,
it is not possible to figure out the correspondence between the
HTTP request and the HTTP response. In order to analyze the
Android app that uses WebView, it is necessary to understand this
correspondence. Thus, to address the above problem, the proposed
mechanism saves communication logs each Request/Response. In
order to save the acquired information each Request/Response,
the proposed mechanism uses the time stamp at generation of the
HTTP request header as the file name each Request/Response. This
makes it possible that the proposed mechanism acquires the infor-
mation described in Section 3.4 and saves these information to the
file for each Request/Response. In addition, the proposed mecha-
nism acquires the information in a unique format considering ease
of analysis and lightweight of preservation and saves the informa-
tion into internal storage. When analyzing an Android app using
WebView, we convert communication logs to JSON format on the
analytical computer. Furthermore, the proposed mechanism saves
communication logs in the data area allocated for each Android
app. This makes it possible to collect communication logs for each
Android app using WebView.

3.6 Flow of the Proposed Mechanism
Figure 5 shows the processing flow of web access via WebView
applying the proposed mechanism. Table 1 shows the processing
of the proposed mechanism and the process timing. As shown in
the Figure 5, the proposed mechanism monitors web access via
WebView as follows:

(1) When establishment of a connection by the connect() system
call fails, the proposed mechanism acquires a connection error

Web Access Monitoring Mechanism for Android WebView ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

Table 1: Processing of the proposed mechanism

The proposed mechanism Processing Information to be acquired Process timing

Web access request processing

(1) Connection error during socket con-
nection

Immediately after the connect() system
call processing completion

(2)

Time stamp
Android application package name
HTTP request header
URL
IP address
Port number of the web server

Immediately after generation of the
HTTP request header

(3) HTTP request body Before sending the HTTP request body

Web access response processing
(4) HTTP response header After reception of the HTTP response

header

(5) HTTP response body After reception of the HTTP response
body

�����

�����	

��������

����������������

��������

����������������

��������

���������	�
����	

��������		

������������	�����

 ������	�������

��		��
����

���
��������� ��!�� ���!��

���������	�
����	

��� ������ ��� �	�

�����

�����	

Figure 5: Processing flow ofWebView applying the proposed
mechanism

at the socket connection and saves in the internal storage of
Android.

(2) Immediately after generating the HTTP request header, the
proposedmechanism acquires the time stamp, the package name
of the Android app, the HTTP request header, the URL, the
IP address and port number of web server, and saves these
information to internal storage.

(3) When using the POST method, the proposed mechanism ac-
quires the HTTP request body before sending the HTTP request
body and save it in internal storage of the Android device.

(4) After receiving the HTTP response header through the read()
system call, the proposed mechanism acquires the HTTP re-
sponse header and save it in internal storage.

(5) After receiving the HTTP response body through the read() sys-
tem call, the proposed mechanism acquires the HTTP response
body and save it in internal storage.

3.7 Effect
By introducing the proposed mechanism, the following become
feasible.

E1 Monitoring of web access via WebView
In order to realize the proposed mechanism, we add the mon-
itoring function to the C++ layer in WebView. This makes it
possible to monitor web access via WebView on Android.

E2 Analysis of Android apps using WebView based on WebView
communication logs
The proposed mechanism saves the information described in
Section 3.4 to the internal storage of Android for each Android
app using WebView. In addition, the proposed mechanism ac-
quires the information in a unique format considering ease of
analysis and lightweight of preservation and saves the infor-
mation into internal storage. This makes it possible to analyze
the Android app that uses WebView by focusing on WebView
communication logs every Android app using WebView. Addi-
tionally, the following case can be considered as the use case of
gathered data:
· Analysis of the Android app that uses WebView
We can analyze the Android app using WebView based on
WebView communication logs. Thus, we can analyze whether
WebView accesses malicious contents, and verify the threat
due to accessing the contents.

· Detection of malicious communication and attacks
We can analyze characteristics of malicious communication
and attacks by using gathered data. Thus, we can detect the
malicious communication and the attacks based on the anal-
ysis results.

Moreover, the proposed mechanism is designed insideWebView.
The proposed mechanism can analyze the communication on
inside WebView, and might intercept malicious communica-
tion. Thus, the proposed mechanism may prevent malicious
JavaScript execution and attacks.

E3 Analyzing communication contents encrypted by TLS/SSL
HTTPS is a protocol that protects the HTTP of the application
layer, which encrypts communication between the web browser
orWebView and the web server by TLS/SSL, and prevents eaves-
dropping and tampering of communication contents. The pro-
posed mechanism can acquire the HTTP request and HTTP
response encrypted by TLS/SSL as a plain text. This is because

ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Y. Imamura et al.

the proposed mechanism acquires the HTTP request before
encrypted and the HTTP response after decrypted. Therefore,
WebView executes the encryption processing and the decryp-
tion processing of the HTTP message.

4 IMPLEMENTATION AND EVALUATION
4.1 Implementation
We implemented the proposed web access monitoring mechanism
on Chromium WebView 60.0.3094.2. To implement the proposed
mechanism, we modified the following two classes of the C++ layer
in WebView.
(1) HttpStreamParser class
(2) SocketPosix class

(1) The HttpStreamParser class generates the data in the format
of HTTP/1.0 or HTTP/1.1, and performs web access request and
response processing. However, the HttpStreamParser class cannot
monitor web access using HTTP/2.0. Therefore, monitoring web
access viaWebView that uses HTTP/2.0 by the proposedmechanism
is considered future work.

The proposed mechanism can acquire the HTTP message en-
crypted by TLS/SSL as a plain text. In WebView, the HTTP request
is encrypted before sending it and the HTTP response is decrypted
after receiving it. Moreover, in HttpStreamParser class, the unen-
crypted HTTP message can be acquired. Thus, we just added the
processing in Table 1 to the HttpStreamParser class; that is, adding
the processing to decrypt the HTTP message is not necessary.

Immediately after an HTTP request in the form of HTTP/1.0
or HTTP/1.1 is generated, the proposed mechanism acquires the
time stamp at the time of generating the HTTP request header, the
package name of the Android app, the HTTP request header, the
URL, the IP address and the port number of the web server, and then
saves these information in internal storage (processing (2) in Figure
5). Among this information, the URL, the IP address and the port
number of the web server are acquired from instances of another
class. Additionally, when sending data to the web server using the
POST method, the HTTP request body is acquired before sending
it and then is saved in the internal storage of Android (processing
(3) in Figure 5).

The HTTP response header is acquired after completing recep-
tion of the HTTP response header and then is saved in internal
storage (processing (4) in Figure 5). However, when acquiring the
HTTP response header, it is necessary to calculate the offset of the
HTTP response header. This is because when receiving the HTTP
response header from the web server, the HTTP response header
and part of the HTTP response body are received. The offset of the
HTTP response header is calculated by the FindAndParseRespon-
seHeaders() method.

When the size of the HTTP response body is large, it is transmit-
ted from the Web server in sections. Therefore, after completing
reception of each HTTP response body, the HTTP response body
is acquired and then is saved in internal storage (processing (5) in
Figure 5).

(2) SocketPosix class issues a system call for web access. The
proposed mechanism acquires the return value of the connect()
system call and then saves it in internal storage (processing (1) in
Figure 5). However, an error (Operation now in progress) is returned

Table 2: Evaluation environment of Android Emulator

OS Ubuntu 16.04 LTS
CPU Intel(R) Xeon E5-2609V4 (8 cores)
Memory 64 GB
Kernel Linux 4.4.0-92-generic (64 bit)
Android Emulator Android 6.0

Table 3: Evaluation environment of an Android device
(Nexus 6P)

OS Android 6.0.1
CPU Snapdragon 810 2.0 GHz (octa core)
Memory 3 GB

immediately after issuing the connect() system call. This is because
web access via WebView is performed asynchronously. Therefore,
it is necessary to acquire the return value of the connect() system
call again immediately after the connect processing is completed.

4.2 How to introduce WebView applying the
proposed mechanism

The existing WebView is installed as an Android system app. When
introducing the modified WebView to Android device, it is neces-
sary to uninstall the existing WebView. Here, when uninstalling
the Android system app, it is necessary to gain root access on An-
droid. Gaining root access on Android allows users administrative
privileges. Moreover, it is necessary to set the package name of
WebView with the proposed mechanism to
“com.google.android.webview”. This is because the package name
of the Android app to be used as WebView requires this name.

4.3 Evaluation
4.3.1 Content and Environment. In order to clarify the effective-

ness and overhead of the proposed mechanism, this paper evaluates
the following items.
(1) Experiment to test the operation of the proposed mechanism

Using Android Emulator, we compare the information acquired
by the proposed mechanism and tcpdump. Then from the com-
parison results, we verify whether the proposed mechanism can
acquire the information necessary for analysis. Additionally,
this paper shows the effectiveness of the proposed mechanism
based on the comparison results.

(2) Performance measurement of the proposed mechanism
We introduced WebView applying the proposed mechanism to
Android device and measured the overhead.
The evaluation environment is shown in Table 2 and Table 3. For

the evaluation, we used our own test app. This app uses WebView
and displays the top page of Okayama University’s web site.

4.3.2 Experiment to test the operation of the proposedmechanism.
We evaluated whether the proposed mechanism can monitor web
access via WebView by comparing the information acquired by
the proposed mechanism and tcpdump. Additionally, based on the

Web Access Monitoring Mechanism for Android WebView ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

Table 4: Comparison results of communication logs

Proposed
mechanism tcpdump

Communication contents
using HTTP Acquired Acquired

Communication contents
using HTTPS Acquired Acquired

(encrypted)
Time stamp Acquired Acquired
The package name of the
Android app Acquired Not acquired

URL Acquired Acquired
IP address Acquired Acquired
Port number Acquired Acquired

comparison results, we validate the proposed mechanism. Note that
this evaluation is performed using Android Emulator.

In this evaluation, we started only the test app and extracted
communication logs of the test app which is collected by tcpdump.
To extract communication logs of the test app, we retrieved the
“X-Requested-With” header included in the HTTP request header
of the test app by using Wireshark’s search function.

Table 4 shows the comparison results of communication logs
acquired by the proposed mechanism and tcpdump. “Acquired” in
Table 4 means that the information could be acquired, and “Not ac-
quired” means that the information could not be acquired. Addition-
ally, although tcpdump can acquire the communication contents
using HTTPS, the acquired information is encrypted (Acquired
(encrypted) in table 4). From Table 4, the evaluation results show
that the proposed mechanism operates as designed and can acquire
communication logs via WebView.

We evaluated the number of requests in the test app. As the
results, tcpdump could monitor 24 web access by HTTP and 21
access by HTTPS. The proposed mechanism could monitor the
same number of times web access as tcpdump. Thus the proposed
mechanism can acquire the information necessary for analysis
described in Section 3.4 without omission. Additionally, tcpdump
cannot analyze the communication contents encrypted by TLS/SSL.
The proposed mechanism can acquire the HTTP request and HTTP
response encrypted by TLS/SSL as a plain text. This is because the
proposed mechanism acquires the HTTP request before encrypted
and the HTTP response after decrypted.

In summary, the proposed mechanism has following advantage:
· The proposed mechanism can acquire the package name of the
Android app. This makes it possible to specify and analyze the
Android app which accesses web content via WebView.

· In the case of the acquired information is encrypted when an-
alyzing the Android app using WebView, it is necessary to de-
crypt the contents. The proposed mechanism can acquire the
HTTP message encrypted by HTTPS as a plain text. This makes
it possible to analyze the communication contents via WebView
without decryption.

4.3.3 Performance measurement of the proposed mechanism. To
evaluate the performance of the proposed mechanism, we started

Table 5: Average overheads and the acquired data size of the
proposed mechanism per Request/Response

Processing (2) (4) (5)
Overheads of the process-
ing(unit: ms) 0.234 0.099 1.978

Data size of the information ac-
quired by each processing
(unit: KB)

0.62 0.35 225.28

the test app and we measured the processing overheads and the
acquired data size per Request/Response of (2), (4), and (5) shown
in Table 1.
Processing (2): This processing is executed immediately after gen-

eration of the HTTP request header.
Processing (4): This processing is executed after reception of the

HTTP response header.
Processing (5): This processing is executed after reception of the

HTTP response body.
Then we performed this process repeatedly five times, and cal-

culated the average overhead results. This paper does not measure
the processing (1) and (3) of Table 1 because they are not executed
in the test app.

Table 5 shows the measurement results. From Table 5, the pro-
cessing time of (5) is larger than the processing time of (2) and (4),
and the processing time of (2) is larger than the processing time of
(4). Additionally, the data size of the information acquired by pro-
cessing (5) is larger than this one by processing (2) and (4). The data
size of the information acquired by processing (2) is larger than this
one by processing (4). Thus it can be inferred that each processing
time depends on the data size of the information acquired in each
processing operation.

It seems reasonable to suppose that the overhead of the pro-
cessing (5) is larger than that of the other processing. The HTTP
response body may be divided and transmitted multiple times when
the data size is large. When the HTTP response body is transmit-
ted in multiple times, on every reception of this information, the
proposed mechanism executes processing (5). Thus, the number
of executions of processing (5) may be greater than the number of
executions of processing operations (2) and (4), and the processing
time becomes longer.

The result that the overhead of the processing (2) is larger than
that of the processing (4) is reasonable. The processing (2) acquires
the time stamp, the Android app package name, URL, IP address
and port number besides the HTTP request header and saves these
information in the internal storage. The processing (4) just acquires
and saves the HTTP response header. Therefore as the results in
Table 5 show, it is evident that the data size of the information
acquired by the processing (2) is larger than that of the processing
(4). Moreover, the number of the method invocations to acquire
the information of the processing (2) is greater than that of the
processing (4). Thus, the process time of the processing (2) is longer
than that of the processing (4).

In our future work, we will measure the overheads of other
Android apps in Google Play.

ACSW 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Y. Imamura et al.

5 CONCLUSION
In order to monitor web access via WebView, this paper proposed
a web access monitoring mechanism for Android WebView. The
proposed mechanism monitors all web access via WebView. We
implemented the proposed mechanism on Chromium WebView
version 60.0.3094.2, and evaluated this mechanism. Additionally,
the proposed mechanism makes it possible to analyze the behavior
of malware and malicious Android apps. Moreover, the proposed
mechanism can acquire the communication contents encrypted by
TLS/SSL as a plain text.

We experimented with the operation of the proposed mechanism
on an Android app. This evaluation results show that the proposed
mechanism can acquire the information necessary for analysis.
Moreover, there are advantages that the proposed mechanism can
acquire unencrypted HTTP message even with the communication
using HTTPS and the package name of the Android app. In the
performance evaluation, we measured the overhead and the ac-
quired data size of the proposed mechanism per Request/Response.
The results of performance evaluation infer that each processing
time of the proposed mechanism depends on the data size of the
information acquired by each processing operation. Moreover, the
total overhead of each processing is approximately 2.3 ms, which
is very short.

Gathering the communication logs via WebView and analysis of
the Android apps that use WebView are our future work.

ACKNOWLEDGMENTS
The research results have been achieved by “WarpDrive: Web-based
Attack Response with Practical and Deployable Research InitiatiVE”,
the Commissioned Research of National Institute of Information
and Communications Technology (NICT), JAPAN.

REFERENCES
[1] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, Attacks on WebView in the An-

droid system, In Proceedings of the 27th Annual Computer Security Applications
Conference. ACM, pp. 343–352, 2011.

[2] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, A Large-Scale Study
of Mobile Web App Security, In Proceedings of the Mobile Security Technologies
Workshop (MoST), 2015.

[3] WebKit, Open Source Browser Engine. https://webkit.org/.
[4] The Chromium project, https://www.chromium.org/.
[5] The Chromium project, NetworkStack, https://www.chromium.org/developers/

design-documents/network-stack/.
[6] G. S. Tuncay, S. Demetriou, and C. A. Gunter, Draco: A System for Uniform and

Fine-grained Access Control for Web Code on Android, In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM,
pp. 104–115, 2016.

[7] M. Neugschwandtner, M. Lindorfer, and C. Platzer, A View to a Kill: WebView
Exploitation, In Proceeding of the 6th USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), 2013.

[8] T. Luo, W. Du, and Y. Wang, ATTACKS AND COUNTERMEASURES FOR WEB-
VIEW ON MOBILE SYSTEMS, Ph.D. Dissertation. Syracuse University, 2014.

[9] A. B. Bhavani, Cross-site Scripting Attacks on Android WebView, arXiv preprint
arXiv:1304.7451, 2013.

[10] W. Bao, W. Yao, M. Zong, and D. Wang, Cross-site Scripting Attacks on Android
Hybrid Applications, In Proceedings of the 2017 International Conference on
Cryptography, Security and Privacy. ACM, pp. 56–61, 2017.

[11] S. Son, D. Kim, and V. Shmatikov, What Mobile Ads Know About Mobile Users,
In Proceedings of the Network and Distributed System Security Symposium (NDSS
2016), 1–15, 2016.

[12] N. Kudo, T. Yamauchi, and T. H. Austin, Access Control for Plugins in Cordova-
based Hybrid Applications, In the 31st IEEE International Conference on Advanced
Information Networking and Applications (AINA–2017), pp. 1063–1069, 2017.

[13] J. Yu and T. Yamauchi, Access Control to Prevent Malicious JavaScript Code
Exploiting Vulnerabilities of WebView in Android OS, IEICE Transactions on

Information and Systems, vol. E98-D, no. 4, pp. 807–811, 2015.

https://www.chromium.org/developers/design-documents/network-stack/.
https://www.chromium.org/developers/design-documents/network-stack/.

	Abstract
	1 Introduction
	2 BackGround
	2.1 WebView
	2.2 Network Stack of Chromium WebView
	2.3 Processing flow of Web access via WebView
	2.4 Security Issues

	3 Web Access Monitoring Mechanism for Android WebView
	3.1 Purpose and Concept
	3.2 Design
	3.3 Challenges
	3.4 Information to be acquired
	3.5 Storage format and location of the acquired information
	3.6 Flow of the Proposed Mechanism
	3.7 Effect

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 How to introduce WebView applying the proposed mechanism
	4.3 Evaluation

	5 Conclusion
	Acknowledgments
	References

