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Abstract: Tolvaptan is a recently available diuretic that blocks arginine vasopressin receptor 2 in the
renal collecting duct. Its diuretic mechanism involves selective water reabsorption by affecting the
water reabsorption receptor aquaporin 2. Given that liver cirrhosis patients exhibit hyponatremia
due to their pseudo-aldosteronism and usage of natriuretic agents, a sodium maintaining agent, such
as tolvaptan, is physiologically preferable. However, large scale studies indicating the patients for
whom this would be effective and describing management under its use have been insufficient. The
appropriate management of cirrhosis patients treated with tolvaptan should be investigated. In the
present review, we collected articles investigating the effectiveness of tolvaptan and factors associated
with survival and summarized their management reports. Earlier administration of tolvaptan before
increasing the doses of natriuretic agents is recommended because this may preserve effective arterial
blood volume.

Keywords: tolvaptan; liver cirrhosis; ascites

1. Introduction

Liver cirrhosis and related complications are still regarded as unresolved issues.
Although the prevalence of hepatitis C has decreased with the development of anti-hepatitis
C virus (HCV) direct anti-viral agents (DAAs), the incidence of alcohol-related and non-
alcoholic steatohepatitis (NASH)-related cirrhosis is increasing [1].

The management of ascites and edema is one of the main themes in the treatment of cir-
rhosis. Diuretics are the first and main agents to control water retention [2]. Spironolactone
is the first diuretic used for the management of cirrhotic ascites, followed by furosemide.
However, both agents block sodium reabsorption; thus, hyponatremia and a reduction of
effective arterial blood volume (EABV) commonly occur as side effects [3]. The arginine
vasopressin (AVP) receptor is another target for hydration [4,5]. Terlipressin, an AVP
analog with a high affinity for vasopressin-1 (V1) receptors, has been shown to be effective
via dilated splanchnic vascular vasoconstriction [4]. Another agent that acts on AVP is
tolvaptan, which is a highly selective AVP V2 receptor antagonist [5]. The effectiveness of
terlipressin has long been shown, while studies on tolvaptan have been insufficient [2].

We would like to focus on the clinical impact of tolvaptan and the management of
patients under tolvaptan administration by reviewing recently published articles.

2. Methods

We summarized the mechanisms underlying the development of ascites in cirrhosis,
and the management of ascites with diuretics other than tolvaptan, according to textbooks
and cirrhosis management guidelines [2,3,6–9]. We found articles investigating the effect of
tolvaptan in cirrhotic ascites via Pubmed, using these search terms: ‘cirrhosis x tolvaptan’,
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‘cirrhosis ascites tolvaptan’, and ‘cirrhosis x hyponatremia x tolvaptan’. In Section 4.2.2, we
summarized the articles we found and our findings concerning the mechanisms of action,
and discussed how to manage cirrhotic ascites under add-on administration of tolvaptan.

3. The Mechanisms of Ascites in Cirrhosis

The pathogenesis of Na+ and water retention in cirrhosis is related not to an intrinsic
abnormality of the kidneys, but rather to extra-renal mechanisms, as kidneys from patients
with end-stage liver disease could work appropriately if they are transplanted to patients
with normal liver function. Various factors are involved in the appearance of ascites
in cirrhosis (Figure 1). Portal hypertension is initiated by increased hepatic resistance
to portal blood flow, caused by the distortion of the vascular architecture [10]. Hepatic
sinusoidal cellular alterations induce constriction of the sinusoids. Perisinusoidal chronic
inflammatory cell infiltration and hepatic stellate cell (HSC) activation induce sinusoidal
constriction via cytokines and cell-cell direct contact. Furthermore, vasodilation and
vasoconstriction balance are very complex in cirrhosis patients. The splanchnic vascular
bed is dilated and hyporesponsive to vasoconstrictors, while several vasoactive molecules
are unbalanced. The overflow and underfilling hypothesis is a hypothesized mechanism of
ascites formation in cirrhotic patients [11].
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Figure 1. A schematic diagram of the mechanisms of ascites development in cirrhosis. RAAS,
renin-angiotensin aldosterone system; SNS, sympathetic nerve system.

In the overflow hypothesis, increased hepatic vascular resistance and sinusoidal pres-
sure induce non-volume-dependent renal Na+ retention. Hepatic venous and sinusoidal
constriction resulting from liver fibrosis increase hepatic afferent nerve activity. This is
followed by the adenosine-mediated hepatorenal reflex. Given that an adenosine A1 recep-
tor antagonist inhibited Na+ retention in a cirrhotic rat model, the fibrosis related-reflex is
believed to be an important initiator of ascites [12]. This non-volume dependent renal Na+

retention can result in total plasma volume expansion and an increase in portosplanchnic
bed pressure to overflow ascites. Increased volume of ascites might induce compression of
the renal vein, resulting in congestive renal failure [13].

In the underfilling hypothesis, increased hepatic vascular resistance and hypoalbu-
minemia induce transudation of fluid clinically shown to be ascites, resulting in hypo-
volemia. Given that plasma volume expansion requires effective oncotic pressure, the



Int. J. Mol. Sci. 2021, 22, 5582 3 of 14

overflow pathology is usually evident in the early cirrhotic stage in those who maintain
serum albumin levels. As cirrhosis progresses, the underfilling pathology would become
evident. Factors that cause underfilling of the circulation include various factors other than
hepatic vascular resistance and hypoalbuminemia, as cirrhosis is a complex multi-organ
disease. Additional factors include: (1) peripheral vasodilation and a blunted vasocon-
strictor response to reflex, chemical, and hormonal influences; (2) arteriovenous shunts;
(3) impairment of the left ventricular function, called cirrhotic cardiomyopathy; (4) occult
gastrointestinal bleeding; (5) volume loss caused by an excessive use of diuretics. The
peripheral vasodilation is associated with renal vasoconstriction. Initially, vasodilation
occurs in the splanchnic vascular bed; later, it occurs in the systemic circulation, leading to
arterial underfilling [14].

The vasoconstrictor/antinatriuretic (antidiuretic) systems and the vasodilatory/natriuretic
systems are both involved in cirrhotic vascular changes. Representative vasoconstrictors include
endothelin, eicosanoids, the renin-angiotensin aldosterone system (RAAS), arginine vasopressin
(AVP) (antidiuretic hormone [ADH]), the sympathetic nervous system, and vasodilators (e.g.,
nitric oxide [NO], glucagon, carbon monoxide [CO], prostacyclin, and endocannabinoids). The
vasoconstrictor response occurs as complemental activation due to the underfilling status. The
RAAS system is activated from an early stage of cirrhosis via the local wound healing response,
and angiotensin II has been shown to be increased in the plasma of cirrhosis patients [15].
RAAS inhibition with angiotensin converting enzyme inhibitors (ACEi) or angiotensin II type
1 receptor blockers (ARBs) has been shown to be effective in the attenuation of liver fibrosis in an
experimental model and in clinical trials [16,17]. However, RAAS inhibitors are contraindicated
in decompensated cirrhosis because of the risk of hypotension and hepatorenal syndrome [18].
They would be an important treatment option to attenuate the progression of early-stage
cirrhosis. NO has been shown to be deeply involved in the pathogenesis of cirrhosis, including
hyperdynamic circulation, Na+ and water retention, hepatopulmonary syndrome, and cirrhotic
cardiomyopathy [19]. Arterial vasodilation leads to a reduction in renal EABV, followed by
renal functional deterioration, and hyponatremia.

4. Management of Ascites

The first step of ascites management is nutritional support, especially dietary salt re-
striction [9,20]. However, if salt restriction is too strict (e.g., <5 g/day), then this may result
in hyponatremia and related renal impairment [21]. Moderate salt restriction (5–6.5 g/day)
is recommended; however, care should be taken to avoid reducing the daily caloric intake,
given that the restriction of salt could be correlated with the reduction of the daily caloric
intake [22]. As a next step, diuretics are adopted, as follows.

4.1. Ascites Management with Spironolactone and Furosemide

The first diuretic agent used for the management of cirrhotic ascites is spironolactone,
which is a specific aldosterone antagonist. Given that cirrhotic patients have secondary
aldosteronism due to RAAS activation via defected EABV, spironolactone is superior to
furosemide in managing cirrhosis [23]. Spironolactone was demonstrated to be more
effective (response rate 95%) than furosemide (response rate 52%) in one study [24]. When
patients are refractory to spironolactone, furosemide may be added as a next step. However,
given that both spironolactone and furosemide are sodium reabsorption restricting agents,
severe hyponatremia may occur.

Hyponatremia is a common pathologic status in cirrhosis. Systemic vasodilation and
arterial underfilling play a key role in the development of hyponatremia. As explained
in the overload theory, sinusoidal obstruction-related sodium and water retention induce
volume overload and—as explained in the underfilling theory—RAAS activation induces
the same phenomenon. In addition, AVP-induced water retention affects hyponatremia.
The majority of cirrhosis patients (90%) show hypervolemic dilutional hyponatremia [25].
The administration of spironolactone and furosemide induces additional hyponatremia,
resulting in a more severe state. The severity of hyponatremia has been shown to be
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correlated with mortality [26]. The addition of spironolactone and furosemide results in a
worsening of hyponatremia.

4.2. Ascites Management with AVP Targeting Agents

AVP is a nonapeptide synthesized by the neurosecretory cells in the supraoptic nucleus
and the paraventricular nucleus of the hypothalamus [27]. These nuclei have axons that
terminate in the neural lobe of the posterior pituitary gland (neurohypophysis) where
AVP is released. AVP is released into the systemic circulation in response to extracellular
hyperosmolarity, and induces vasoconstriction and antidiuretic action. AVP is also released
into the central nervous system (CNS) and acts as neuromodulator that affects many
psychiatry functions, such as anxiety, social behavior, learning, and memory [28]. There
are three known AVP receptors: V1a, V1b, and V2. These receptors belong to the large
rhodopsin-like class-A G-protein-coupled receptor family. V1a receptor is located on the
vascular smooth muscle cells to induce vasoconstriction. V1a receptor is also expressed in
the CNS to influence a wide variety of brain functions, such as social interaction, anxiety-
like behavior, depression, and the circadian rhythm. V1b receptor is expressed in multiple
brain regions and peripheral tissues, including the kidney, thymus, heart, lung, and spleen.
V2 receptor is located on the basolateral membrane of the distal tubule and collecting ducts
in the kidney. The activation of V1a receptors results in vascular constriction, while the
activation of V2 receptors results in free water reabsorption in the principal collecting duct
cells of the kidneys [29]. After AVP binds to the V2 receptors, intracellular concentration of
cyclic AMP (cAMP) increases via adenylyl cyclase activation. Cytoplasmic vesicles carrying
the water channel aquaporin 2 (AQP2) are fused to the luminal membrane and increase its
permeability to water, resulting in water re-absorption [29]. AVP is increased in cirrhosis,
especially in individuals who are hypo-responsive to water load, as assessed by water
excretion via urine [30]. Reduced EABV resulting from arterial vasodilation stimulates the
secretion of AVP by baroreceptor-mediated non-osmotic stimulation [31].

4.2.1. Terlipressin

Terlipressin (Na-tryglycl-8-lysine-vasopressin) is a synthetic vasopressin analogue that
shows vasoconstrictor activity in the splanchnic and systemic vasculature [32]. It is a pro-
drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). Terlipressin
has a substitution of lysine for arginine at the eighth position of natural AVP and also has
three glycyl residues at the amino terminus [32]. Terlipressin, and especially LVP show high
affinity for the V1a receptor (Figure 2). However, terlipressin and LVP also show definite
V2 receptor binding affinity. This means that in cirrhosis, terlipressin and its metabolite
LVP constrict pathogenic dilated splanchnic vessels, resulting in renal EABV recovery.
However, the V2 receptor binding and the activating collecting duct AQP2 pathway induce
water reabsorption.

Terlipressin is now recognized as effective in controlling acute kidney injury by
hepatorenal syndrome (HRS-AKI), especially with the concomitant use of albumin infusion,
as prescribed in the EASL clinical practice guidelines [2]. Beyond the standard AKI, such
as pre-renal, intra-renal, and post-renal, cirrhosis-related renal dysfunction is known
as HRS. HRS is defined as renal dysfunction due to reduced EABV, or overactivity of
vasoactive agents (e.g., AVP) [33]. HRS-AKI has been newly defined based on the following
criteria [34].
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Figure 2. A schematic illustration of the mechanisms underlying the effects of terlipressin in cirrhosis.
Splanchnic vascular dilatation is one characteristic of the vascular status in cirrhosis. Terlipressin,
a synthetic arginine/vasopressin (AVP) analogue, constricts these dilated vessels and improves
effective arterial blood volume (EABV). Although the activation of V2 receptors by vasopressin and
terlipressin induces water reabsorption via the water channel aquaporin (AQP)-2 receptor, terlipressin
is acknowledged to be a supportive agent for the management of acute kidney injury in cirrhosis.

HRS has been classified into two clinical types: types 1 (HRS-1) and 2 (HRS-2). HRS-1
is defined as the rapid progression of renal dysfunction with a doubling of the initial
creatinine to >2.5 mg/dL or a 50% reduction in the initial 24 h creatinine clearance to
<20 mL/min in less than 2 weeks. HRS-2 is defined as slowly progressive renal dysfunction
in which refractory ascites is the main clinical finding.

Recently, the International Club of Ascites (ICA) renamed HRS-1 as HRS-AKI and HRS-2
as HRS-NAKI, according to the new definition of AKI in The Kidney Disease: Improving Global
Outcomes (KDIGO) guidelines [34]. HRS-AKI is defined by the following criteria: (a) absolute
increase in creatinine of ≥0.3 mg/dL within 48 h; and/or (b) urinary output of ≤0.5 mL/kg
body weight at ≥6 h; or (c) a ≥ 50% increase in creatinine, using the last available value of
outpatient creatinine within 3 months as the baseline value. HRS-AKI is precipitated by bacterial
infection, gastrointestinal hemorrhage, large-volume paracentesis without the administration of
albumin, or an acute exacerbation of alcoholic liver injury [35–37].

Several placebo-controlled studies of terlipressin have shown a significant effect on
recovery of HRS [38,39]. The effectiveness is definite; however, terlipressin induced several
adverse events, including severe respiratory failure. In the newest prospective study,
respiratory failure was predominant in the terlipressin group; the incidence was nearly
three times that in the placebo group [39]. This effect must be in part associated with the
activation of the V2 receptor by terlipressin, followed by increased water reabsorption.

4.2.2. Tolvaptan

Tolvaptan is a highly selective antagonist of the AVP V2 receptor [27]. It was first
shown to be effective in body weight reduction and in recovering low sodium levels in
patients with hyponatremic chronic heart failure [40]. It was later shown to be effective in
controlling the syndrome of inappropriate antidiuretic hormone (SIADH), and autosomal
dominant polycystic kidney disease (ADPKD). It has been approved in many countries
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for the treatment of hyponatremia in heart failure, SIADH, and ADPKD [5]. Although
tolvaptan definitely prevented an increase in the size of the ADPKD kidney, a higher
discontinuation rate was clearly observed due to adverse events (AEs), including increased
transaminase [41]. At doses of 60–120 mg/day in early-stage ADPKD (estimated creatinine
clearance ≥ 60 mL/min), a significant increase was observed in the transaminase level in
the experimental group compared with the placebo group (4.9% vs. 1.2%) [41]. In later-
stage ADPKD (estimated glomerular filtration rate 25–65 mL/min/1.73 m2 in 18–55 years
of age, 25–44 mL/min/1.73 m2 in 56–65 years of age), the administration of tolvaptan was
also associated with a higher transaminase level in comparison with the administration
of a placebo (5.6% vs. 1.2%) [42]. Based on these reports, US-FDA limits the duration
of tolvaptan use to not more than 30 days and to patients with underlying liver disease.
However, in Japan, tolvaptan was shown to be effective against cirrhotic ascites without
severe AEs at low doses of 7.5 mg/day, and has received national health insurance coverage
from 2013 [5]. Accumulating evidence suggests that it can even improve the prognosis
of liver cirrhosis, and it is now recognized as an effective agent for the management of
cirrhotic ascites [43].

The Mechanisms of Tolvaptan

Vaptans are non-peptide vasopressin receptor antagonists, which include V1 receptor
antagonists and V2 receptor antagonists [27]. V1 receptor antagonists, such as relcovaptan,
have been shown to be effective in controlling Raynaud’s disease, dysmenorrhea, and
tocolysis. When first produced in 1992 (when water diuresis in humans was limited), the
V2 receptor antagonist mozavaptan was the first vaptan demonstrated to be effective for
increasing the serum sodium level [44]. Tolvaptan was shown to be effective for water
diuresis in 1998 [45]. In addition to these agents, the use of lixivaptan and satavaptan
have also been reported as effective in improving hyponatremia and/or ascites [27,29].
Given that the V2 receptor is located on the principal collecting duct cells of the kidneys, its
effects are believed to be specific for renal water reabsorption (Figure 3). Tolvaptan induces
electrolyte-free water excretion without changing the total level of electrolyte excretion [46].
In addition to these water-balance-related mechanisms, tolvaptan has been shown to
activate antioxidant pathway Nrf2/HO-1 and to restore a damaged renal collecting duct
cell line [47]. Given that oxidative stress has been shown to induce renal damage in cirrhosis,
the anti-oxidant function might be preferable for the kidneys in cirrhosis patients [48].

The Clinical Efficacy of Tolvaptan in Cirrhosis

Tolvaptan (7.5-30 mg/day for 7 days) has been shown to have add-on effects to
conventional diuretics on ascites in Japanese multicenter randomized control trials (RCTs)
(Table 1) [49,50]. Significant body weight loss was also reported in a Chinese multicenter
RCT [51]. The effectiveness of tolvaptan has been defined differently in different studies.
Recently, a Japanese multicenter study reported that body weight loss of 1.5 kg/week most
accurately reflected a reduction of symptoms [52].
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Table 1. Summary of placebo-controlled trials for cirrhotic edema with tolvaptan.

Hypothesis Cohort Intervention Outcomes Reference No.

determine the
effects of
tolvaptan

164 cirrhosis

Multicenter, double-blind,
placebo-controlled. 7-day trial

placebo (n = 80),
add-on tolvaptan 7.5 mg/day

(n = 84)

Tolvaptan decreased the
body weight

(−1.95 kg in tolvaptan vs.
−0.44 kg in placebo)

47

determine the
optimal dose of

tolvaptan
104 cirrhosis

Multicenter, double-blind,
placebo-controlled. 7-day trial

placebo (n = 27),
add-on tolvaptan

7.5 mg/day (n = 26),
15 mg/day (n = 25),
30 mg/day (n = 26)

Tolvaptan at 7.5 mg/day
induced a maximum

decrease in body weight
with preferable tolerability
(−2.31 kg in 7.5 mg/day vs.
−1.88 kg in 15 mg/day vs.
−1.67 kg in 30 mg/day vs.
−0.36 kg/day in placebo)

48

determine the
effects of
tolvaptan

530 cirrhosis

Multicenter, double-blind,
placebo-controlled. 7-day trial

placebo (n = 76),
add-on tolvaptan

7.5 mg/day (n = 153)
15 mg/day (n = 301)

Tolvaptan decreased the
body weight

(−2.0 kg in 7.5 mg/day,
−2.2 kg in 15 mg/day
vs. −1.2 kg in placebo)

49

Given that the effect of tolvaptan has been shown to be around 60%, factors pre-
dicting its effect have been reported from several institutions. A prospective multicenter
non-interventional, post-marketing surveillance study of 340 Japanese patients showed
that body weight reduction was predominant in younger patients with a preserved re-
nal function with low creatinine levels and a high estimated glomerular filtration rate
(eGFR) [53]. A preserved renal function, as reflected by the eGFR or creatinine level, was
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shown to be important in several other reports and should therefore be considered a crucial
factor predicting the effect of tolvaptan [54–57]. While even in chronic kidney disease
(CKD) patients (eGFR < 45 mL/min/1.73 m2), urinary volume increased and body weight
decreased; however, the effect was somewhat lower than in non-CKD patients [58]. A bad
renal function is not a contraindication for tolvaptan.

Another later large-scale study with 1098 Japanese patients revealed that a lower serum
urea nitrogen (UN) level (<22.4 mg/dL) was the only factor predicting an early tolvaptan
response [59]. UN has also been shown to be a predictor of the tolvaptan response in several
reports, including a Chinese RCT study with 530 patients [51,53,55,56,60]. Given that a high
UN reflects dehydration or decreased renal EABV, maintaining EABV is crucial for drawing the
tolvaptan response. UN and/or creatinine have been shown to be important markers in several
studies; other markers also have been evaluated.

Low serum sodium levels have been shown to predict a non-response to tolvaptan
in several studies [58,61]. The main factor responsible for hyponatremia is the increased
production of AVP due to nonosmotic hypersecretion in cirrhosis [29]. In patients with high
AVP levels, the standard doses of tolvaptan might be too low to achieve a clinical response.
Given that hyponatremia is associated with an increased risk of mortality in cirrhosis [62],
the administration of tolvaptan should be considered before severe hyponatremia occurs.

Patients with severe portal hypertension have also been reported to show a low re-
sponse to tolvaptan. A high hepatic venous pressure gradient and serum hyaluronic acid
levels have been shown to predict a low response to tolvaptan [63].

The spot urine Na/K ratio has been reported as a predictor in several studies [56,64].
Urinary sodium excretion has been shown to be useful for the evaluation of standard na-
triuretic agents. Urinary sodium excretion of <78 mmol/day with high-dose diuretic agents
resulted in no weight loss in patients with refractory ascites [65]. The urinary Na/K ratio
has been shown to be the best candidate marker for defining the daily urinary excretion of
sodium [66]. The urinary spot Na/K ratio has been shown to be a marker for predicting
the effectiveness of natriuretic agents [67]. A spot urine Na/K ratio of ≥2.5 prior to the
administration of tolvaptan has been shown to predict a positive response [64]. Another
study showed that a spot urine Na/K ratio of >3.09 indicated a response and that, in
combination with a serum urea nitrogen/creatinine ratio of <17.5, predicted a response to
tolvaptan in 100% of cases [68].

A greater rate of decrease in urinary osmolality at 4 h after the administration of
tolvaptan has been shown to predict a response in several studies [56,58]. Urinary osmolal-
ity is maintained with dissolved substances, such as creatinine, urea, urea nitrogen, and
sodium. When tolvaptan is effective and the water content in urine increases, urinary
osmolality should decrease. This marker is mechanistically sound; however, it does not
predict a response prior to the administration of tolvaptan.

In addition to low creatinine levels, a high serum concentration of a vascular tonus-
related marker, namely asymmetric dimethylarginine (ADMA), has been shown to be
a significant marker in one study [57]. ADMA is a vascular function-related marker
reflecting reactive oxygen species (ROS) related vasoconstriction. As shown in Figure 4,
ADMA is an endogenous inhibitor of endothelial nitric oxide synthase (NOS) and inhibits
acetylcholine-induced vasodilation in endothelial cells [69]. A high serum ADMA has
been shown to be correlated with the progression of vascular diseases such as cerebral
endothelial damage and cardiovascular diseases [70,71]. ADMA is one of the molecules
included in the oxidative stress-related vasoconstriction pathway. The concentration of
ADMA levels is regulated by dimethylaminohydrolase (DDAH) activity [71]. DDAH
inactivates ADMA via hydrolyzing ADMA to citrulline and dimethylamines. One of
the two isoforms of DDAH, DDAH-2 mainly exists in endothelial cells and is extremely
sensitive to intracellular ROS [72]. ROS can inhibit DDAH-2 activity, resulting in increased
ADMA, which is followed by a reduction of vascular endothelial dilation-related NOS.
The ROS-DDAH-ADMA-NOS pathway regulates NO production and endothelial motility.
Although high serum ADMA is a marker of an advanced condition of a cerebrovascular
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disease, it predicts a positive response to tolvaptan. The vasoconstrictive status seems to
be included in the tolvaptan-sensitive mechanism. This mechanistic analysis indicates that
cirrhosis patients with higher serum ADMA levels might have a vasoconstrictive status
with a large EABV and which is sensitive to tolvaptan. Tolvaptan might be effective in
non-responsive patients with low ADMA levels when administered in combination with a
vasoconstrictor, such as terlipressin.
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Long-Term Survival after Tolvaptan Administration

Long-term survival after tolvaptan administration has been shown in several reports.
A tolvaptan-treated group showed better survival rates than patients who did not receive
tolvaptan, although these data were from historical cases [73]. A recent large scale retro-
spective cohort study using a Japan-wide hospital-based administrative claims database
reported that the probability of survival was higher in patients who received tolvaptan [74].
Other diuretics, especially furosemide, have been suggested to be correlated with a poor
survival rate along with retardation of the renal function [73]. A positive response to
tolvaptan has been shown to predict a patient’s prognosis [68,75–78]. This is convincing,
because cirrhosis patients with hyponatremia or an impaired renal function show a poor
prognosis [79], and tolvaptan is able to recover these bad conditions.

Several studies have shown that the administration of tolvaptan had no effect on
survival [57,80,81]. These studies showed prognostic factors, such as complications with
HCC and low fractional excretion of sodium (FENa) [57], complications with HCC and
Child-Pugh class C [80], and a rapid and early decrease in a bioimpedance analysis (defined
by intracellular water at 6 h after the first dose of tolvaptan) [81]. These factors are
also convincing.

HCC and Child-Pugh class C are both clear factors that predict poor survival [74]. The
impact of HCC on survival is affected by the stages of the disease and this might influence
the different results of reports on HCC.

FENa is calculated by (urine Na x serum creatinine)/(serum Na x urine creatinine),
which reflects the sodium reabsorption status. Although the spot urine mineral concen-
tration is affected by the urine concentration, FENa is relatively constant throughout the
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day because urinary sodium is adjusted by creatinine excretion [11]. Low FENa is usually
a marker of pre-renal low EABV-related AKI because renal Na+ and water reabsorption
is induced in such situations. A reduced EABV, which indicates low FENa, reflects an
advanced cirrhosis-related vascular disorder, which predicts a poor survival probability. A
low FENa level has been reported to be a predictor of a poor probability of survival before
tolvaptan became available [82]. One means of achieving a better survival rate in patients
with low FENa levels might be obtaining a recovery of EABV. Therefore, the administration
of terlipressin or the infusion of albumin might be potentially effective approaches to im-
prove EABV. For the management of cirrhosis, continuous human albumin administration
has been shown to be effective for achieving long-term survival. The administration of
human albumin (40 g twice weekly for 2 weeks, and then 40 g weekly) has been shown
to be associated with an improved survival rate in comparison with standard medical
treatment [83]. Such an approach would also result in a reduction in UN, which would
complement the treatment of tolvaptan in non-responsive patients with high UN values,
potentially inducing a response followed by long-term survival.

5. Conclusions

Since the approval of tolvaptan as a second-line diuretic for cirrhosis in Japan, many
investigations of the response to tolvaptan and its effects on survival have been reported.
Given that phenomena related to high UN and low EABV values predict a patient’s
response to tolvaptan, and because a positive response is correlated with a good survival
rate, the maintenance of appropriate EABV values is critical for cirrhosis patients who
receive tolvaptan. The addition of albumin is a recommended approach for maintaining
EABV, and terlipressin might be a candidate for combination therapy.
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