2	Circulatory Death Model: An Experimental Study
3	
4	Abstract
5	Background: Few reports on a biventricular working heart model with ex vivo
6	perfusion exist owing to the complexity of establishing a circuit. Hence, we investigated
7	it for donation after circulatory death.
8	Material and Methods: The heart in six juvenile pigs (~20 kg) was arrested by
9	asphyxiation. After 30 min of global ischemia, the heart was harvested, reperfused with
10	normoxemic blood cardioplegia for 20 min, and subsequently perfused with hyperxemic
11	blood. After 70 min of controlled reperfusion, the system was switched to the
12	biventricular working mode. Cardiac function was assessed before anoxia and during
13	the biventricular mode.
14	Results: Left and right ventricular functions worsened during the biventricular mode, as
15	compared to those before anoxia (dP/dt _{max} , 673 ± 120 vs. 283 ± 95 and 251 ± 35 vs. 141
16	\pm 21 mmHg/s, respectively; <i>P</i> < 0.001). Systemic (resistance/100 g net heart weight)
17	and pulmonary vascular resistance indexes during the biventricular mode were similar

Ex Vivo Evaluation of the Biventricular Cardiac Function for Donation After

18	to those before anoxia (829 ± 262 vs. 759 ± 359 , $P = 0.707$, and 167 ± 57 vs. 158 ± 83
19	dynes \cdot sec \cdot cm ⁻⁵ - 1-100-g net heart weight, $P = 0.859$, respectively).
20	Conclusion: The biventricular working heart model with <i>ex vivo</i> perfusion was feasible,
21	exhibiting stable hemodynamics, and has the potential to be a powerful tool for direct
22	cardiac function assessment.
23	
24	Keywords: Donation after circulatory death, Ex vivo, Heart function tests, Heart
25	transplantation, Myocardial reperfusion
26	
27	Background
28	An increasing number of patients remain in need of heart transplantation. Consequently,
29	donation after circulatory death (DCD) is reconsidered for these patients in order to
30	increase the donor pool. DCD heart transplantation has not been regularly performed
31	due to concerns about the severity of injury sustained during hypoxemic cardiac arrest
32	and the warm ischemic standoff period that ethically define death. Considering that the
33	heart is particularly susceptible to ischemia, DCD heart transplantation has not yet

34	achieved widespread clinical application, despite estimations that the use of DCD hearts
35	has the capacity to increase the number of heart transplantations by $17-30\%$ [1-3].
36	In the nascent stages of heart transplantation, strategies for donor organ preservation are
37	limited. Cold storage has been found to be simple, inexpensive, and reproducible and
38	could be relatively easily undertaken in the clinical setting. Although universally
39	adopted, cold ischemic storage is recognized to have limitations, including low levels of
40	anaerobic metabolism continuing in the background with subsequent depletion of
41	adenosine triphosphate stores and an increase in acidosis [4]. Continuous machine
42	perfusion using hypothermic preservation solutions has been attempted and shown to
43	provide superior systolic function with preserved adenosine triphosphate levels, as
44	compared to that of cold storage [5]. Several experimental studies have described
45	alternative techniques for organ preservation [5–8]. Nonetheless, there is a concern that
46	the diastolic function may be impaired owing to the development of significant
47	myocardial edema [9]. The main challenge in adopting this technique for poorly
48	contracting donor hearts is that there is currently no means of functional assessment
49	during preservation. Furthermore, as right ventricular (RV) failure frequently occurs
50	after cardiopulmonary bypass or heart transplantation, RV systolic and diastolic

51	function assessment is essential in any prospective model [10,11]. Without the
52	reassurance of ex vivo assessment following organ retrieval, there will be continued
53	reluctance to any further expansion of the donor pool.
54	The significance of initial controlled reperfusion and acute post-transplant graft function
55	using a 30-min warm ischemic porcine DCD model has been described [12,13].
56	However, there exist few reports on a biventricular (BV) working heart model with ex
57	vivo perfusion owing to the complexity of setting up a circuit. The present study aimed
58	to investigate a novel method of <i>ex vivo</i> functional evaluation based on the BV working
59	mode using a porcine DCD model.
60	
61	Material and Methods
62	Animal preparation
63	All experimental animals were cared for in accordance with the institutional guidelines
64	and the Guide for the Care and Use of Laboratory Animals provided by the Institute of
65	Laboratory Animal Resources and published by the National Institutes of Health (NIH
66	Publication No. 86-23, revised 1996). The experimental protocol was approved by the

67 experimental animals committee at our university. Six female Yorkshire pigs (mean

68	weight: 20 ± 3 kg) were used. Another pig was used for blood collection in each
69	experiment. Following premedication with an intramuscular injection of ketamine
70	hydrochloride (10 mg/kg), an ear vein was cannulated. Anesthesia was induced with
71	thiamylal sodium (50 mg) and atropine sulfate (0.5 mg) and was maintained with
72	isoflurane inhalation (0.5–2.0%) and pancuronium (0.2 mg/kg). An endotracheal tube
73	was inserted through a tracheotomy, and mechanical ventilation was commenced with a
74	tidal volume of 10 mL/kg. Heparin (500 U/kg) was intravenously administered after
75	median sternotomy was performed. Hemodynamics, including the heart rate, aortic root
76	pressure (AoP), pulmonary arterial pressure (PAP), left atrial pressure (LAP), and right
77	atrial pressure (RAP), were monitored. A 7-Fr pressure-tip catheter and a conductance
78	catheter (CD Leycom, Hengelo, the Netherlands) were inserted from the apex of the LV
79	and RV. Cardiac function was assessed before the induction of anoxia as the control.
80	

81 Experimental protocol

The experimental timeline is illustrated in Figure 1. Cardiac arrest was induced by
turning off the ventilator. The heart was excised and weighed after it was arrested. At 30
min after asphyxiation, a perfusion cannula was inserted into the aortic root, and

85	isolated continuous myocardial perfusion was initiated by cardiopulmonary bypass with
86	blood cardioplegic solution at 20 °C, with a perfusion pressure of 40 mmHg for 20 min
87	(Figure 2). This solution included leukocyte-depleted normoxemic oxygenated blood
88	mixed with modified St. Thomas' Hospital solution (100 mL of 20% D-mannitol, 19
89	mEq of sodium bicarbonate, 18.5 mEq of potassium chloride, and 37 mEq of
90	magnesium sulfate in 1 L of 5% glucose) in a 4:1 ratio. Subsequently, myocardial
91	perfusion was converted to leukocyte-depleted hyperxemic oxygenated blood at 20 °C,
92	with a perfusion pressure of 40 mmHg (i.e., initiation of blood reperfusion). After 20
93	min, the perfusion pressure was increased to 60 mmHg, while the temperature was
94	gradually increased to 37 °C for 30 min. MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-
95	one), a hydroxyl radical scavenger with antioxidant effects, was administered from the
96	reperfusion for 30 min (i.e., until 10 min after the initiation of blood reperfusion). The
97	appropriate infusion duration and doses of MCI-186 based on our dose-response study
98	of this agent in reperfusion injury were used [13].
99	After 70 min of controlled reperfusion, i.e., the non-working heart mode, the system
100	was gradually switched into the LV working mode over the next 60 min (Figure 3). The
101	LV working mode was easily switched to the BV working mode by clamping a tube

102	(asterisk in Figure 3) connecting the reservoir to a damping chamber and unclamping
103	the tubes (double asterisk in Figure 3) of both the inflow of the right atrium (RA) and
104	the outflow of the RV. Cannulas were inserted into the left atrium, descending aorta,
105	superior vena cava, and main pulmonary artery. Continuous epinephrine infusion (0.1
106	μ g/kg/min) was initiated. Subsequently, the working mode was commenced by
107	gradually filling both ventricles. First, the clamp occluding the inflow line of the left
108	atrium was opened and the left atrium was gradually filled by the pump until LAP
109	reached the same pressure as that measured before cardiac arrest. Second, the outflow
110	line of the descending aorta was accurately regulated with the pinchcock until AoP
111	reached the same pressure as that measured before cardiac arrest. The right heart ex vivo
112	system was then established, while the RAP and PAP were monitored. After establishing
113	the BV working mode, both LV and RV functions were evaluated with the conductance

- 114 catheter.
- 115
- 116 Cardiac function, lactate level, and myocardial edema
- 117 The maximum and minimum of the first derivative of both ventricular pressures
- 118 (dP/dt_{max} and dP/dt_{min}, respectively) were attained from a pressure curve acquired from

119	a micromanometer catheter. Calibration for blood conductivity was performed just
120	before each measurement. The LV end-systolic pressure-volume relationship (LV-
121	ESPVR) and LV end-diastolic pressure-volume relationship (LV-EDPVR) were
122	calculated using the pressure-volume relation curves obtained by changing the volume
123	<i>via</i> inferior vena cava occlusion prior to the induction of anoxia or <i>via</i> a reduction in the
124	flow of the pump during the BV working mode. The RV end-systolic pressure-volume
125	relationship (RV-ESPVR) and RV end-diastolic pressure-volume relationship (RV-
126	EDPVR) were calculated similarly. Blood samples were collected from the aortic root
127	and coronary sinus to measure lactate concentrations at 5 min after reperfusion was
128	initiated and every 10 min thereafter until the end of controlled reperfusion. Blood gas
129	analysis was performed, and lactate concentrations were measured using an i-STAT
130	analyzer (Abbott Inc., Abbott Park, IL). The oxygen and lactate extraction ratios (E)
131	were calculated using the following equation: E (%) = (A - V)/A × 100, where A is the
132	concentration of the arterial substrate and V is the concentration of the coronary sinus
133	substrate. Myocardial edema was evaluated using the wet weight of the heart, including
104	

- 136 measured by calculating the amount of coronary effluent.
- 137

```
138 Resistance
```

- 139 Systemic vascular resistance (SVR) was calculated using the following equation: SVR
- 140 = (AoP RAP)/cardiac output (CO). On the other hand, pulmonary vascular resistance
- 141 (PVR) was calculated using the following equation: PVR = (PAP LAP)/CO. To
- 142 provide a proper afterload, SVR index (SVRI) and PVR index (PVRI) were defined as
- 143 each value divided by the wet weight of the heart after recovery of the organ,
- 144 respectively.
- 145
- 146 Statistical analysis
- 147 Continuous variables are reported as means (± standard deviation) and were compared
- 148 using the Wilcoxon signed-rank test. The statistical significance level was set at P <
- 149 0.05. All statistical analyses were performed using SPSS version 22 (Chicago, IL).

151 **Results**

152 Procedural variables

153 The mean agonal period (time from turning off the ventilator to cardiac arrest) was 8 ± 1 154 min, the mean warm ischemic time was 22 ± 1 min, and the mean heart weight was 196 155 \pm 38 g. The percentage change in heart weight at the end of the protocol, as compared to 156 that after recovery of the heart, was $10.6 \pm 5.8\%$. 157 158 *Controlled reperfusion* 159 The myocardial perfusion rate is shown in Figure 4. The flow rate decreased gradually 160 and reached the lowest value at 30 min (i.e., 10 min after blood reperfusion; P = 0.015). 161 After the perfusion pressure was increased to 60 mmHg, the flow rate returned to the 162 initial level. 163 The oxygen extraction course is shown in Figure 5. Approximately 30% of oxygen 164 delivered to the myocardium was consumed during the first 5 min of controlled 165 reperfusion. However, the high extraction rate immediately decreased to 15% at 30 min 166 after reperfusion (P = 0.009). 167 The lactate extraction course is presented in Figure 6. A massive release of lactate was 168 observed at the beginning of controlled reperfusion; nevertheless, the difference in

transmyocardial lactate decreased gradually and reached negligible levels at 30 min

170 after the initiation of controlled reperfusion (P = 0.002).

171

172 Hemodynamics and cardiac function

173 The baseline hemodynamic values measured before anoxia and during the BV mode are 174 summarized in Table 1, whereas the catheterization data are presented in Table 2. The 175 LV function (dP/dt_{max}, ESPVR, and EDPVR) during the BV mode was significantly 176 lower than that before anoxia (LV-dP/dt_{max}: 673 ± 120 vs. 283 ± 95 mmHg/s, P < 0.001; 177 LV-ESPVR: 1.81 ± 0.46 vs. 1.09 ± 0.27 mmHg/mL, P = 0.008; LV-EDPVR: 0.22 ± 0.11 178 vs. 0.57 ± 0.33 mmHg/mL, P = 0.031, respectively). Similarly, the RV function during 179 the BV mode was significantly lower than that before anoxia (RV-dP/dt_{max}: 251 ± 35 vs. 180 $141 \pm 21 \text{ mmHg/s}, P < 0.001; \text{ RV-ESPVR}: 1.35 \pm 0.35 \text{ vs}. 0.81 \pm 0.29 \text{ mmHg/mL}, P =$ 181 0.017; RV-EDPVR: 0.27 ± 0.12 vs. 0.49 ± 0.09 mmHg/mL, P = 0.005, respectively). 182 SVRI and PVRI during the BV mode were not significantly different compared to those 183 before anoxia $(829 \pm 262 \text{ vs.} 759 \pm 359 \text{ dynes} \cdot \text{sec} \cdot \text{cm}^{-5} - 1-100\text{-g net heart weight}, P =$ 184 0.707; 167 ± 57 vs. 158 ± 83 dynes · sec · cm⁻⁵ - l-100-g net heart weight, P = 0.859,

185 respectively) (Table 3).

187 **Discussion**

188 DCD donors may have the potential to be an additional source of organs for heart 189 transplantation. A reliable method for the evaluation of donor heart viability prior to 190 transplantation is essential before the donor heart can be utilized clinically. In the 191 present study, we employed a large animal model of DCD to investigate the heart's 192 tolerance to normothermic global ischemia. Both LV and RV systolic and diastolic 193 functions during the BV mode deteriorated, as compared to those before anoxia. SVRI 194 and PVRI during the BV mode did not differ through ex vivo perfusion, indicating the 195 feasibility of the ex vivo BV assessment of the marginal donor hearts. Taken together, 196 this study showed that the assessment of the BV function was feasible with a simple ex 197 vivo perfusion system under the appropriate setting of preload and afterload, suggesting 198 that this novel heart preparation has the potential of being a powerful tool for direct RV 199 function assessment.

200

201 BV working mode

202	Demmy et al. first reported an isolated BV working mode using rats in 1992 [14], and
203	Abicht et al. described the procedure using pigs in 2018 [15]. In the meantime, no
204	reports on the BV working mode were published because of its complex circuit and
205	difficulty in adjusting the preload and afterload. Our ex vivo perfusion system of porcine
206	hearts has been developed with several important features. First, a separate reservoir for
207	the left atrium was not equipped, arranging our circuit in series. Alternatively, the flow
208	to the left atrium was directly controlled by the pump connected to the outflow of the
209	RV (Figure 3). We matched the CO of both LV and RV equivalent leads to mimic the <i>in</i>
210	vivo conditions, but it differed from most other BV working mode heart models, which
211	use two univentricular systems—one for each side of the heart. Second, the LV working
212	mode can be easily switched to the BV working mode by clamping a tube connecting
213	the reservoir to a damping chamber and unclamping both the inflow of the RA and the
214	outflow of the RV (Figure 3). Monitoring each pressure allows the adjustment of proper
215	preload and afterload for both ventricles in this system, thereby resulting in achievement
216	of conditions comparable to the SVRI and PVRI during in vivo conditions. In a clinical
217	situation, the assessment of cardiac function before retrieval would not be practical in

218 DCD cases unlike in donation after brainstem death. However, considering the

219	characteristics of DCD hearts that potentially have severe myocardial damage from
220	hypoxic myocardial perfusion during the agonal period and subsequent warm ischemic
221	injury, an elaborate evaluation of the DCD hearts is indispensable prior to heart
222	transplantation.
223	
224	<i>RV failure</i>
225	Several studies have reported impaired LV function with DCD hearts using the
226	univentricular working mode [8, 12–14]. RV failure in heart transplant recipients is
227	attributable to multiple factors. Most commonly, it results from coupling of a donor
228	heart that is not adapted to the elevated pulmonary artery pressure and resistance to the
229	increased afterload due to pulmonary hypertension and increased pulmonary resistance
230	in the recipient [16]. Additionally, the cardiac function of the donor heart may be
231	impaired by ischemia and reperfusion injury. Raina et al. described that combining the
232	parameters, such as preoperative lower RV fractional area change and higher estimated
233	RAP, allowed prediction of RV failure after LV assist device placement, which affected
234	the PVR [11]. White et al. reported the transition in RV pressure and volume of DCD
235	hearts using conductance catheter examination and magnetic resonance imaging during

236	the agonal period [17]. A rapid decrease in arterial oxygen partial pressure coincided
237	with an increase in RV systolic pressure and in diastolic and systolic functions, leading
238	to a decline in the RV function and an eventual extension in the RV end-diastolic phase.
239	This observation suggests that DCD hearts may not be compatible for recipients with
240	elevated PVR. Therefore, an RV functional assessment during ex vivo perfusion must be
241	carried out prior to transplantation, particularly for the marginal heart such as in DCD
242	donor heart transplantation.
243	
244	Significance of controlled reperfusion
245	Myocardial metabolic products play a key role in the evolution of ischemic damage.
246	Increased lactate levels and the associated increase in cytosolic reduced nicotinamide
247	adenine dinucleotide were shown to inhibit glycolysis and reduce anaerobic adenosine
248	triphosphate production [18]. Iyer et al. investigated the lactate concentration course in
249	the coronary circulation of DCD hearts and concluded that the lactate profile applied
250	during <i>ex vivo</i> perfusion was a valid marker of DCD cardiac allograft viability [8].
251	Neely et al. demonstrated that the decrease in the contractile force of the ischemic hearts
252	was associated with increased tissue lactate and that the onset of irreversible damage

253	was also related to the continued presence of high lactate levels [19]. Thus, adequate
254	washout of increased tissue lactate concentrations during reperfusion may be an optimal
255	goal to obtain better functional recovery. Furthermore, the adequacy of perfusion is
256	principally based on oxygen supply, and a viable myocyte extracts oxygen very
257	efficiently compared to other cells in the body (myocytes: 70%; other body cells: 40%)
258	[20]. Once the oxygen supply meets the myocardial tissue demand, a steady state is
259	attained, and further increase in the oxygen supply does not result in additional oxygen
260	uptake. In the present study, a massive release of lactate was observed at the beginning
261	of controlled reperfusion; subsequently, the difference in transmyocardial lactate
262	gradually decreased and reached negligible levels by 30 min. Similarly, oxygen
263	extraction has been shown to rapidly attain peak levels at 5 min and to gradually return
264	to baseline levels by 30 min. This result was comparable to the finding in a previous
265	study [12]. The results indicate that initial controlled reperfusion for 20 min results in
266	greater preservation of the cardiac function, thus preventing myocardial edema.
267	Therefore, lactate extraction, oxygen extraction, or both would be effective indicators
268	during ex vivo heart perfusion and should accordingly be monitored.

270 Limitations

271	The present study has some limitations. First, the sample size was small, which can
272	potentially skew the results of statistical analysis. Second, heart transplantation was not
273	performed. Hemodynamics and the value of the afterload appeared similar to the
274	condition before anoxia; however, it is unclear whether the measurement during our ex
275	vivo perfusion was the same as that after the transplantation. Finally, the cardiac
276	function was only evaluated during the acute phase; hence, it should be evaluated after
277	the transplantation.
278	
279	Conclusions
280	The BV working heart model with ex vivo perfusion was established with stable
281	hemodynamics. Resuscitation of porcine DCD hearts is viable by virtue of continuous
282	myocardial perfusion instead of cardioprotective pretreatment. Pretransplant assessment
283	of DCD hearts using the <i>ex vivo</i> perfusion system can be an effective tool in the clinical
284	setting, particularly with marginal hearts.

Disclosure

287 The authors declare no conflict of interest.

288

```
289 References
```

- [1] Singhal AK, Abrams JD, Mohara J, Hasz RD, Nathan HM, Fisher CA, et al.
- 291 Potential suitability for transplantation of hearts from human non-heart beating donors:
- 292 Data review from the Gift of Life Donor Program. J Heart Lung Transplant.

293 2005;24:1657-64.

- [2] Noterdaeme T, Detry O, Hans MF, Nellessen E, Ledoux D, Joris J, et al. What is the
- 295 potential increase in the heart graft pool by cardiac donation after circulatory death?
- 296 Transpl Int. 2013;26:61-6.
- [3] Messer S, Lannon J, Wong E, Hopkinson C, Fielding S, Axell R, et al. The potential
- 298 of transplanting hearts from donation after circulatory determined death (DCD) donors
- within the United Kingdom. J Heart Lung Transplant. 2015;34:S275.
- 300 [4] Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N.
- 301 Studies of the effects of hypothermia on regional myocardial blood flow and
- 302 metabolism during cardiopulmonary bypass: I. The adequately perfused beating,
- 303 fibrillating, and arrested heart. J Thorac Cardiovasc Surg. 1977;73:87-94.

- 305 preservation using continuous ex vivo perfusion improves viability and functional
- 306 recovery. Circ J. 2007;71:153-9.
- 307 [6] Collins MJ, Moainie SL, Griffith BP, Poston RS. Preserving and evaluating hearts
- 308 with ex vivo machine perfusion: an avenue to improve early graft performance and
- 309 expand the donor pool. Eur J Cardiothorac Surg. 2008;34:318-25.
- 310 [7] Rosenbaum DH, Peltz M, Merritt ME, Thatcher JE, Sasaki H, Jessen ME. Benefits
- 311 of perfusion preservation in canine hearts stored for short intervals. J Surg Res.
- 312 2007;140:243-9.
- 313 [8] Iyer A, Gao L, Doyle A, Rao P, Cropper JR, Soto C, et al. Normothermic ex vivo
- 314 perfusion provides superior organ preservation and enables viability assessment of
- hearts from DCD donors. Am J Transplant. 2015;15:371-80.
- 316 [9] Messer S, Ardehali A, Tsui S. Normothermic donor heart perfusion: current clinical
- 317 experience and the future. Transpl Int. 2015;28:634-42.

- 319 surgery, a perioperative perspective: I. anatomy, physiology, and assessment. Anesth
- 320 Analg. 2009;108:407-21.
- 321 [11] Raina A, Seetha Rammohan HR, Gertz ZM, Rame JE, Woo YJ, Kirkpatrick JN.
- 322 Postoperative right ventricular failure after left ventricular assist device placement is
- 323 predicted by preoperative echocardiographic structural, hemodynamic, and functional
- 324 parameters. J Card Fail. 2013;19:16-24.
- 325 [12] Osaki S, Ishino K, Kotani Y, Honjo O, Suezawa T, Kanki K, et al. Resuscitation of
- 326 non-beating donor hearts using continuous myocardial perfusion: the importance of
- 327 controlled initial reperfusion. Ann Thorac Surg. 2006;81:2167-71.
- 328 [13] Kotani Y, Ishino K, Osaki S, Honjo O, Suezawa T, Kanki K, et al. Efficacy of MCI-
- 329 186, a free-radical scavenger and antioxidant, for resuscitation of nonbeating donor
- hearts. J Thorac Cardiovasc Surg. 2007;133:1626-32.
- 331 [14] Demmy TL, Magovern GJ, Kao RL. Isolated biventricular working rat heart
- 332 preparation. Ann Thorac Surg. 1992;54:915-20.
- 333 [15] Abicht JM, Mayr TA, Jauch J, Guethoff S, Buchholz S, Reichart B, et al. Large-
- animal biventricular working heart perfusion system with low priming volume-

- comparison between in vivo and ex vivo cardiac function. Thorac Cardiovasc Surg.
- 336 2018;66:71-82.
- 337 [16] Stobierska-Dzierzek B, Awad H, Michler RE. The evolving management of acute
- 338 right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol.
- 339 2001;38:923-31.
- 340 [17] White CW, Ali A, Hasanally D, Wang F, Xiang B, Mundt P, et al. Right ventricular
- 341 distension in donor hearts following cardiocirculatory death: implications for post-
- transplant function. J Heart Lung Transplant. 2013;32:S95.
- 343 [18] Rovetto MJ, Lamberton WF, Neely JR. Mechanisms of glycolytic inhibition in
- ischemic rat hearts. Circ Res. 1975;37:742-51.
- 345 [19] Neely JR, Rovetto MJ, Whitmer JT, Morgan HE. Effects of ischemia on function
- and metabolism of the isolated working rat heart. Am J Physiol. 1973;225:651-8.
- 347 [20] Quader M, Toldo S, Torrado J, Mishra S, Mauro AG, Mezzaroma E, et al.
- 348 Determination of optimal coronary flow for the preservation of "donation after
- 349 circulatory death" in murine heart model. ASAIO J. 2018;64:225-31.

- 351 Tables
- 352 **Table 1**
- 353 Hemodynamic variables

	Pre	Post	P-value
Heart rate (beats/min)	78 ± 11	95 ± 7	0.018
Mean arterial pressure (mmHg)	44 ± 8	38 ± 11	0.260
Mean pulmonary arterial pressure (mmHg)	12 ± 3	13 ± 2	0.591
Left atrial pressure (mmHg)	4 ± 3	7 ± 2	0.115
Right atrial pressure (mmHg)	3 ± 2	7 ± 3	0.059

354 All values are expressed as mean \pm SD. Pre: before anoxia; post: during biventricular

355 mode.

356 **Table 2**

357 Catheterization data

LV	Pre	Post	<i>P</i> -value
dP/dt _{max} (mmHg/s)	673 ± 120	283 ± 95	< 0.001
dP/dt _{min} (mmHg/s)	739 ± 136	287 ± 99	< 0.001
ESPVR (mmHg/mL)	1.81 ± 0.46	1.09 ± 0.27	0.008
EDPVR (mmHg/mL)	0.22 ± 0.11	0.57 ± 0.33	0.031
RV	Pre	Post	<i>P</i> -value
dP/dt _{max} (mmHg/s)	251 ± 35	141 ± 21	< 0.001
dP/dt _{min} (mmHg/s)	258 ± 66	135 ± 28	< 0.001
ESPVR (mmHg/mL)	1.35 ± 0.35	0.81 ± 0.29	0.017
EDPVR (mmHg/mL)	0.27 ± 0.12	0.49 ± 0.09	0.005

358 All values are expressed as mean \pm SD. Pre: before anoxia; post: during biventricular

359 mode; LV: left ventricle; RV: right ventricle; dP/dt_{max}: maximum of the first derivative

360 of both ventricular pressures; dP/dt min: minimum of the first derivative of both

361 ventricular pressures; ESPVR: end systolic pressure-volume relationship; EDPVR: end

362 diastolic pressure-volume relationship.

363 Table 3

PrePostP-valueSystemic vascular resistance index 829 ± 262 759 ± 359 0.707(dynes · sec · cm - 5 - 1-100-g net heart weight) 167 ± 57 158 ± 83 0.859(dynes · sec · cm - 5 - 1-100-g net heart weight) 167 ± 57 158 ± 83 0.859

364 Adjustment of systemic and pulmonary vascular resistance

365 All values are expressed as mean \pm SD. Pre: before anoxia; post: during biventricular

366 mode

367 Figure Legends

- 368 Figure 1. Experimental timeline
- 369 Red arrow: blood gas analysis was performed at regular intervals.
- 370 MCI-186, hydroxyl radical scavenger.

371

- 372 Figure 2. Controlled reperfusion
- 373 LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.

374

- 375 Figure 3. Biventricular working mode
- 376 The LV working mode can be easily switched to the BV working mode by clamping a
- tube (*) connecting the reservoir to a damping chamber and unclamping tubes (**) of
- both the inflow of the RA and the outflow of the RV. BV, biventricular; LA, left atrium;
- 379 LV, left ventricle; RA, right atrium; RV, right ventricle.
- 380
- 381 Figure 4. Myocardial perfusion speed at 5 and 10 min, and every 10 min to the end of
- 382 controlled reperfusion. *P = 0.015

Figure 5. Oxygen extraction ratio at 5 and 10 min, and every 10 min to the end of

385 controlled reperfusion. *P = 0.009

386

387 Figure 6. Lactate extraction ratio at 5 and 10 min, and every 10 min to the end of

388 controlled reperfusion. *P = 0.002