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Abstract: Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of
cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that
disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously,
other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was
discovered, it has been used to treat many cancer patients and has become one of the most extensively
used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle
in clinical applications and is one of the major causes of death correlated with treatment failure.
Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies.
Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review
promising combinations.
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1. Introduction

Cancer is usually characterized by unlimited growth and insensitivity to the growth-
preventing signals from other tissues, resulting in invasion into surrounding tissues and
metastasis to distant organs and/or tissues [1,2]. Cancer tissues contain several distinct
cellular subpopulations reflecting the heterogeneity arising from a rare population of cells,
which are hypothesized to be cancer stem cells (CSCs) with the abilities of tumorigen-
esis, self-renewal, and differentiation [3–5]. The ratio of CSCs to non-CSCs in a tumor
correlates with poor clinical prognosis [6]. CSCs are chemo-resistant, not only surviv-
ing after chemotherapy [7–13] but also causing recurrence and metastasis [14,15], while
chemotherapy usually eradicates the bulk population of non-CSC tumor cells. In this con-
text, promising novel strategies to treat cancers inhibiting the ability of CSC to self-renew,
invade, and metastasize are urgently needed [16,17].

PTX is found in the bark extract of the Pacific Yew tree, Taxus brevifolia. The isolation
and identification of PTX were achieved by Wall and Wani [18]. PTX exhibited not only
strong cytotoxic activities against the growth of human cervical cancer cell line HeLa cells
at nanomolar concentrations but also cell-cycle arrest in the mitotic (M) phase without
disturbing the synthesis (S) phase [19,20]. PTX has been demonstrated as an effective
anticancer agent against lung, breast, ovarian, leukopenia, and liver cancer in various
studies [21–26]. Thus, PTX was approved by the FDA in 1992 [27].

In addition to targeting tubulin-inducing cell-cycle arrest, PTX appears to play a role
in enhancing signaling factors in the treatment of cancer [28–36]. For example, PTX is
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also known to induce the production of IL-12 p40, which is the homodimer of the soluble
receptor in the macrophages of tumor-bearing hosts, significantly down-regulating tumor
growth [37]. PTX also reduces glycolysis in melanoma cells [38]. PTX seems feasible for the
treatment of cancer even if the target cells are resistant to chemotherapy.

Several chemotherapeutic attempts have been demonstrated to evaluate the combina-
tion of conventional drugs as a CSC-targeting strategy [6,39]. However, the heterogeneity of
cancer tissue, high plasticity of CSCs, and complexity of the targeting molecules due to the
diversity of cancers have only amplified the challenges in identifying suitable drugs [40].
PTX has again been approved by the FDA to be used in combination with other anticancer
drugs to treat a wider range of different types of cancers [41]. In this review, we describe
the availability of PTX in mono- and combinatorial use in the treatment of different types
of cancers.

2. Definition of CSCs

CSCs are cancer cells with stem properties of self-renewal, differentiation potential,
and malignancy [42–47]. CSCs were first recognized and categorized in the bone marrow of
AML patients in 1997. They contribute to the heterogeneity in cancer tissue via intra- and
inter-tumoral communications between the cells in the microenvironment. Many reports
from clinical and laboratory studies support the role of CSCs in drug resistance and cancer
metastasis. Poor therapeutic prognosis has been experienced in patients with pancreatic,
prostate, liver, breast, and brain tumors linked to CSCs [6,48–50].

CSCs generate the original lineage of the cancer cells in addition to the normal stem
cells which generate their progeny. Interestingly, some evidence indicates that CSCs occa-
sionally exhibit the ability to transdifferentiate into vascular endothelial cells [51] and other
cancer-associated phenotypes [52–54]. This demonstrates their ability to transdifferentiate
into other lineages of cells endorsing tumor growth and metastasis, not only those provid-
ing stromal tissues. This variety of this transdifferentiation is responsible for the hierarchy
of the cells, establishing the microenvironment maintaining the cancer tissue. Although
many aspects still remain elusive, the transdifferentiation of CSCs into tumor-related cells
in the stroma delivers a new aspect of tumor heterogeneity [55]. Stemness properties in
proliferation and differentiation are highly dysregulated through different cytoplasmic
signaling pathways in CSCs due to genetic and epigenetic changes [47].

3. Mechanisms of Resistance in CSCs

CSCs exhibit therapeutic resistance during chemotherapy, recolonizing residual tu-
mors [14]. Ionizing radiation induces the upregulation of CSC markers such as CD133 in
glioblastoma xenografts [56] and breast cancer [57], enriching the CSC population. The
evidence of CSC enrichment has also been demonstrated by its acquired resistance to
one specific drug resulting in cross-resistance to another [58–60]. Generally, CSCs evade
chemotherapy by expressing multidrug resistance (MDR) transporters via enhanced DNA
repair capability, resulting in more effective protection compared to the rest of the tumor
cells [61]. The resistance of CSCs to therapy is mediated by strong response and repair
pathways against DNA damage. Another special protection mechanism incorporated in
them is the regulation and elongation of the G1 phase, allowing CSCs sufficient time for
the repair of DNA damage. Moreover, DNA is much more secured in CSCs by the strong
scavenging efficiency of reactive oxygen species (ROS).

The factors and/or pathways essential for CSCs to survive and keep growing can
enhance the cellular insensitivity to normal chemotherapy. Numerous clinical trials de-
signed to eliminate CSCs are currently ongoing [45]. Nevertheless, CSCs are not of a
single-cell phenotype, but rather they are composed of heterogeneous phenotypes, making
it enormously hard to predict whether a specific CSC-targeting therapy would be efficient
for an individual patient [39,62]. In order to facilitate the development of tailored therapies,
it is necessary to identify CSC-specific markers or the regulatory pathways of CSCs in some
specific combinations in different phenotypes of cancer cells [63].
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The therapeutic resistance of CSCs involves different regulatory mechanisms which
make drug combinations more effective by targeting different components and signal
pathways, such as drug-efflux pumps, the microenvironment, the quiescent state, and the
induction of apoptosis [64].

4. Targeting Strategy against CSCs

Although chemotherapy usually eradicates the majority of non-CSC tumor cells, CSCs
are not only chemo-resistant but also enriched after chemotherapy [7–13]. This is because
chemotherapy usually targets proliferating cells, while CSCs are often dormant, evading
therapy and leading to cancer relapse and metastasis [14,15]. Collectively, CSCs are able to
play essential roles in cancer initiation, development, and recurrence [47].

The heterogeneity and high plasticity in cancer due to the presence of non-CSC tumor
cells and CSCs have hindered efforts to detect appropriate targets for diverse cancers and
establish a CSC-targeting strategy [40]. Therefore, the combination of traditional anticancer
drugs with CSC-targeting agents has been evaluated (Figure 1) [6,39]. Nevertheless, plas-
ticity still helps non-CSCs transdifferentiate into CSCs, hindering CSC-specific targeting.
The identification of novel CSC-specific molecules and/or pathways taking plasticity into
consideration is necessary [63]. The characteristics of CSCs should be investigated in more
detail for the advancement of effective therapies targeting CSCs.
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Figure 1. Combination therapy between traditional cytotoxic drugs with cancer stem cell (CSC)-
targeting agents. (Path A) Chemotherapeutic and molecular-targeted drugs can attack most cancer
cells, but CSCs can avoid these agents, leading to tumor regrowth. (Path B) Combination therapy
between traditional drugs and CSC-targeting agents is predicted to be more effective.

5. Pharmacology and the Mechanism of Action of Paclitaxel

The profound and unique properties of PTX have been previously studied [36]. PTX
has been used in the treatment of various cancers such as breast cancer, colorectal cancer,
squamous cell carcinoma in the urinary bladder, head and neck cancers, non-small-cell
lung cancers (NSCLCs), and AIDS [65]. PTX is used to treat not only cancers but also
other diseases, such as coronary heart disease, skin disorders, renal and hepatic fibrosis,
inflammation, and axon regeneration, including degenerative brain diseases [66]. PTX is
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a member of the taxane family of anticancer drugs, along with docetaxel [67]. PTX is a
tricyclic diterpenoid compound with a molecular formula of C47H51NO14, the chemical
structure of which is shown in Figure 2. Due to its extraordinary hydrophobic character,
PTX is most likely integrated into the hydrophobic space of the lipid bilayers of the cellular
membrane, penetrating into the cytoplasm [18,68].
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PTX stabilizes the assembly of tubulin into microtubules and prevents the dynamism
of microtubules prohibiting cell cycle progression and blocking mitosis [69–71]. Once
it enters into the cytoplasm, PTX binds to beta-tubulin and stabilizes microtubules by
promoting the assembly of alpha- and beta-tubulin subunits, which are the building blocks
of microtubules [69,72–74]. The drug reduces the critical dynamics of tubulin required
for cell division [20]. Cell division halted at the G2 or M phase induces apoptosis due to
the mitotic checkpoint. Calcium and low temperatures will maintain the dynamics of the
microtubules, reducing the affinity of PTX for tubulin [36,69,75].

PTX cytotoxicity in vitro depends on its concentration [68,76,77]. The proliferation of
human lung carcinoma cell line A549 cells, as well as human breast cancer cell line MCF-7
cells, was arrested at G2/M via the treatment with PTX at concentrations of approximately
3 to 12 nM, resulting in programmed cell death. A low dose of PTX was independently
assessed for cancer cell invasiveness [78]. In this in vitro study, while 10 nM PTX was a non-
anti-mitotic concentration in human breast cancer cell line MDA-MB-231 cells, the trans-
well invasion of the cells was reduced at this dose by regulating the expression of voltage-
dependent sodium channels. Additionally, low doses of PTX at 20 nM upregulated the
expression of E-cadherin and downregulated that of β-catenin, leading to the suppression
of tumor growth, metastasis, and angiogenesis in breast cancer when combined with a Wnt
signaling inhibitor XAV939 [79].

While PTX mainly induces the apoptosis targeting tubulin, PTX has been found
to target mitochondria and inhibit the function of the apoptotic inhibitor protein B-cell
Leukemia 2 (Bcl-2) [67]. However, there is a controversial situation arising regarding
the phosphorylation of Bcl-2 affected by PTX. Some researchers have reported that the
cytotoxicity of PTX retained its ability to cause Bcl-2 hyperphosphorylation, while others
reported that the dephosphorylation of Bcl-2 coincided with apoptosis (Figure 3) [80–82].
Apoptosis does not immediately occur after exposure to PTX, while the duration of the
exposure and constant Bcl-2 phosphorylation appeared to contribute to the drug’s cyto-
toxicity [83]. On the other hand, phosphorylated Bcl-2 was independently proven not to
dimerize with BAX. In this context, the unassociated BAX is responsible for apoptosis
on the phosphorylation of Bcl-2 [81]. Furthermore, there is an indication that PTX may
block the cell cycle at G1 (Figure 3), activating the mitogen-activated protein/microtubule-
associated protein (MAP) kinase, increasing the production of tumor necrosis factor and
activating liposaccharide-inducible genes [84,85]. The transcriptional upregulation of the
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interleukin-1 upon treatment with PTX also has been reported, and is probably associated
with its ability to activate nuclear factor κB (NF-κB) [86,87]. PTX induced the expression of
the tumor suppressor protein p53 and the cyclin-dependent kinase inhibitor in the presence
of a functional c-raf-1 (an upstream regulator of MAP kinase) [88].
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Figure 3. The mechanisms of PTX cytotoxicity in the cell. PTX can act through different mechanisms. After entering
the cell, PTX can act as an antimicrotubular agent, leading to two actions: (1) cell cycle arrest, producing tetraploid cells
containing 4×, in which unstable tetraploid cells undergo cell death; (2) disbalanced microtubule formation affects the
protein traffic into the nucleus, especially the transcription factors necessary for cell survival or proliferation. PTX can also
affect metabolism in mitochondria, elevating ROS levels, which inhibits Bcl-2 inducing apoptosis.

6. Paclitaxel in Drug Resistance

The development of drug resistance is one of the major limitations in anticancer
therapies. Specifically, PTX has been found to enhance multidrug resistance (MDR) through
three different procedures (Figure 4). The first is the overexpression of the MDR-1 gene,
which is considered to be one of the adenosine triphosphate (ATP)-binding cassette (ABC)
genes. MDR-1 encodes P-glycoprotein (P-gp), which is known as the drug transporting
transmembrane ATP-dependent drug efflux pump. The MDR-1 gene is expressed in a wide
variety of tumors and normal tissues [89–94].

PTX is reported to be a substrate of P-gp, of which overexpression results in the
induction of PTX resistance. Because PTX accumulated in the brain and gut of P-gp
knockout mice, it was determined that P-gp prevents PTX from passing through the
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blood–brain barrier and stops biliary elimination from the gut [90,95]. The quantitative
polymerase chain reaction (PCR) proved a correlation between MDR-1 expression and
the sensitivity to several drugs in the National Cancer Institute (NCI) anticancer drug
screening panel. Sensitivity to PTX had a high negative correlation coefficient (−0.896)
with MDR-1 expression [96].

Many studies have shown that there are increased levels of either MDR-1 mRNA [97–99]
or P-gp itself in PTX-resistant cell lines [77,100,101]. However, the blocking of P-gp is par-
tially sufficient to re-establish sensitivity to PTX, and this method was not remarkably
effective in clinical trials [89,91].
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Figure 4. The representative figure shows different mechanisms of drug resistance caused by PTX. Drug resistance can occur
due to the overexpression of multidrug resistance mutation 1 (MDR-1), mutations in the PTX binding site, or alterations
in the functions or expression of different proteins that facilitate apoptosis. The drug-resistant cells are selected via drug
treatment, and lead to cancer recurrence.

The second is the alterations in the binding affinity of PTX to β-tubulin by the mu-
tations in tubulin genes, which form a large multigene family encoding multiple tubulin
isotypes with several posttranslational modifications. These mature proteins are considered
to be the targets of anti-microtubule drugs [90]. The alterations in α and β tubulins, which
have been described in PTX-resistant cell lines in vitro [102], are not yet known in every
patient-derived tumor. There is still a possibility that PTX resistance is mediated in vivo by
alterations in the levels of tubulin expression, or in the dynamics of tubulin polymerization
adapted to the drug. Investigations on the differences in β-tubulin isotype expression
and mutations in the β-tubulin genes in clinical samples to predict the response to PTX
chemotherapy are technically very difficult and lead to different results [90]. An increase of
the isotypes βI, βIII, and βIVa in epithelial tumors in the ovary was reportedly resistant to
PTX via PCR with specific oligonucleotide primers [103]. Because the β-tubulin subtypes
could alter microtubule dynamics in vitro [104], isotype composition may be a general
mechanism of resistance to PTX [105]. The alterations in tubulins in several PTX-resistant
cells are summarized in Table 1.



Biomedicines 2021, 9, 500 7 of 17

Table 1. PTX-resistant cell lines with modifications and alternations in tubulins.

Cell Line Cancer/Tissue Type Affected Tubulin Modification PTX Resistance Reference

1A9PTX10 &1A9PTX22 Ovarian cancer βI mutation accelerating [106]
A549 Non-small-cell lung cancer βIVa, βIII, βI Altered expression accelerating [103]

H69/Txl Small-cell lung cancer α-tubulin acetylation accelerating [107]
Pac 10 Prostate carcinoma βIII, βIVa Altered expression accelerating [108]
KPTA5 Leukemia βIVa Altered expression accelerating [109]

MES-SA Sarcoma βIII, βIVa Altered expression reducing [110]

The last is the attenuation of apoptosis by proteins such as p53 and Bcl-2. Mutations
in tumor suppressor gene (TSG) p53 are frequently found in human tumors, disturbing
cells from growth arrest to induce apoptosis [111]. Mouse tumor cells conveying wild
type p53 were significantly more sensitive to direct treatment with PTX than p53-deficient
tumor cells [112]. In contrast, primary embryo fibroblasts with mutant p53 exhibited a
significant increase in sensitivity to PTX [113]. Although the mechanism of sensitivity to the
chemotherapeutic agents responsible for p53 genes is unknown, the inactivation of TSG p53
by DNA damage possibly appears to keep cells growing, resulting in drug resistance. In
another study, Bcl-2 overexpression was shown to be oncogenic, increasing the resistance to
drugs that induced apoptosis in some human cancer cells [114]. The overexpression of Bcl-2
is frequently found in prostate cancer and is considered to be associated with resistance
to chemotherapy and hormonal therapy [115]. MAPs are also likely to be involved in the
mechanism of resistance to drug-induced apoptosis. The expression of MAP4, which is
negatively regulated by wild type p53, has been shown to increase sensitivity to PTX [116].

7. Combinatorial Therapy

Various studies have concentrated on the effect of PTX to enhance results among
patients. Although PTX is one of the most effective and frequently used drugs for the
treatment of different cancers, its efficiency is limited due to drug resistance. Therefore,
PTX in combination with other therapeutic materials is considered. Radiation therapy
is used in combinations in order to improve the therapeutic ratio for patients. Based
on the early finding that radiation sensitivity occurs just before DNA replication begins,
PTX was then theorized to be a potent radio-sensitizing agent due to its ability to arrest
cells in the G2/M phase of the cell cycle, and it was further investigated for its ability
to synergistically act with radiation [91,117,118]. The effect of drug–radiation therapy
on human astrocytoma cell line G18 cells was successfully demonstrated by Tishler and
colleagues, who reported that the sensitizer enhancement ratio was approximately 1.8, with
10% survival at 10 nM PTX [118]. Chemoradiotherapy with PTX improved the therapeutic
outcome according to further studies both in vitro and in vivo [119,120]. However, Erlich
and colleagues simultaneously revealed that gamma radiation during the G2/M phases
showed radio-sensitization by PTX at 10 nM for the relatively radioresistant human cervical
cancer cell line MS751, and C-33A was small when compared without PTX using radiation
doses of a conventional fraction size [121,122]. The sensitizer enhancement ratio (SER)
averaged 1.1 and 1.3 for the C-33A and MS751 cell lines, respectively [121].

Liebmann and colleges investigated the radio-sensitization properties of PTX in hu-
man breast cancer cell line MCF-7, lung carcinoma cell line A549, ovarian cancer cell line
OVG-1, and pancreatic adenocarcinoma cell line PC-Sh using clonogenic assays and flow
cytometry [123]. All of the cell lines were arrested at the G2/M phase after exposure to
PTX ranging from 0 to 10 µM. However, the degree of radiosensitization by PTX varied
depending on the human cancer cell line. The SER of PTX at 10% survival was 1.8, 1.6, and
1.5 in the MCF-7, OVG-1, and PC-Sh cells, respectively, while the pancreatic non-cancer
cells did not show a radiosensitization response to PTX. On the other hand, PTX was
unable to enhance the radiation sensitivity of the A549 cells at any concentration, even
when combined with a protein synthesis inhibitor, cycloheximide. Considering that A549
cells are resistant to PTX, radio sensitization may not always improve the result via PTX
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combination. Including this point, the results reported by Erlich and colleagues could be
revisited with respect to radio sensitization.

Many trials have been carried out to determine the combinatorial benefits of PTX with
Thymoquinone (TQ), which shows significant evidence of anticancer effects. The treatment
with the TQ–PTX combination differentially induced the expression of genes involved in the
apoptosis cascade, p53 signaling, and JAK-STAT signaling in a triple-negative breast cancer
cell line [124]. In an independent study, the anticancer effect of PTX against MCF-7 cells
was shown to be effective when PTX was encapsulated together with TQ in nanoparticles
in breast cancer treatment [125]. Very recently, the TQ–PTX combination was investigated
against MCF-7 and T47D breast cancer cell lines [126]. This combination significantly
increased the apoptotic/necrotic cell death percentages in T47D, and significantly induced
autophagy in MCF-7 cells. In these cases, TQ appears to maintain PTX at a low dose,
reducing the side-effect, but the mutual effect has not been investigated to date.

The combination treatment of the cells with salinomycin (SM) and PTX resulted in
the marked cleavage of PARP and the induction of apoptosis, which was not observed fol-
lowing the treatment of the cells with either drug alone [127]. Nanoparticles encapsulating
SM prevented metastasis in an orthotopic transplant model of breast cancer and, more
significantly, improved the survival of mice when combined with PTX nanoparticles [128].
HA-decorated nanoparticles encapsulating SM and PTX successfully amplified the effect
of chemotherapy, blocking CD44-positive CSCs [129,130].

Treatment with a combination of dasatinib and PTX not only decreased the propor-
tion of breast CSCs in the tumor tissue, suppressing their self-renewal capacity, but also
synergistically reduced the cell viability of PTX-resistant cells [131]. In vivo studies further
demonstrated the effectiveness of the dasatinib-PTX combination in the inhibition of breast
tumor growth.

In combination with a weekly dose of PTX 80 mg/m2, the maximum tolerant dose of
dasatinib was raised to 120 mg/m2 [132]. The side-effects of the combination are consistent
with prior experience of the monotherapy with each agent. Preliminary evidence of the
antitumor effect of this combination was observed in patients with metastatic breast cancer,
including patients with prior exposure to taxane. All of these data suggest that dasatinib is
a promising agent for anti-breast cancer stem cells, and that it may overcome the resistance
to chemotherapy in triple-negative breast cancer when combined with PTX.

Dasatinib combined with PTX also enhanced the inhibition of the colony formation of
pancreatic cancer cells when compared with single-agent monotherapy. This combination
effectively inhibited the phosphorylation of SRC, STAT3, AKT, and/or ERK in these pan-
creatic cancer cells. Therefore, the combination of dasatinib and PTX may be conceivable
as a therapeutic approach for human pancreatic cancer. [133].

The combination of sorafenib (Sor) and PTX was demonstrated to have a positive
effect on anti-angiogenesis in vivo in metastatic breast cancer [134]. A triple combination
of radiation, Sor, and PTX has been reported to be effective on breast cancer cell lines [135].
Further investigation for the effects of radiation and the combination of Sor and PTX on
CSCs will be interesting as CSCs are resistant to radiation therapy. Nawara et al. showed
that the Sor-PTX combination enhanced the efficiency when compared to the monotherapy,
demonstrating the combinatorial effects on CSCs [52,136] found in a synergistic or an
additive manner. In this study, the Sor–PTX combination in low concentrations was
evaluated to target CSCs, and significant suppression of the CSCs’ properties was found.
These results pose a novel approach for targeting CSCs with anticancer drugs in low doses,
which could effectively reduce the toxic side effects of chemotherapy [137].

Silibinin (SBN) has conventionally been applied for the treatment of liver diseases.
The combination of SBN and PTX has been shown to be more efficient than the exclusive
application of PTX or SBN in the treatment of human ovarian cancer cell line SKOV-3
cells [138]. Their results also strongly suggest that SBN inhibits the proliferation of SKOV-3
cells, and that the combination of SBN-PTX is more effective than PTX alone. The expression
of p53 and p21 as apoptosis genes were simultaneously studied, showing that the genes
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were upregulated in the cells treated with the SBN–PTX combination when compared to
those in the non-treated group.

The SBN–PTX combination also exhibited major anti-neoplastic effects in a diversity
of cancer models such as skin, breast, colon, prostate, and kidney carcinomas [139]. SBN
was available to reduce the side effects of PTX because SBN was a nontoxic antitumor
agent, while PTX induced apoptosis [140–145].

Liu et al. in 2016 studied the effects of curcumin and PTX. The combined treatment of
human oral squamous carcinoma cell line CAL 27 cells significantly inhibited cell growth
and induced apoptosis via the decrease of the expression of Bcl-2 coupled with the increase
of the expression of Bax, resulting in the increase of the relative ratio of Bcl-2/Bax to activate
caspase-3. Thus, curcumin and PTX significantly inhibited cell growth and mediated cell
apoptosis when compared to the results obtained from either single treatment [146].

Many studies have indicated that the combination of PTX and curcumin was quite
effective for the treatment of cervical cancer in preclinical trials [147–151]. Curcumin has
been demonstrated to sensitize PTX-induced apoptosis, enhancing the expression of p53
to activate caspase −3, −7, −8, and −9, to cleave poly (ADP-ribose) polymerase (PARP),
and to release cytochrome c via Western blot analysis [147,149]. The combination of PTX
and curcumin blocked cell cycle arrest at G2/M in human bladder cancer cells [152], and
also synergistically enhanced PTX-induced apoptosis in lung cancer H1299 cells, inhibiting
cell growth at low IC50 values via the combination when compared to PTX or curcumin
alone [153].

Although PTX is approved and widely used for the clinical treatment of breast and
ovarian cancers, various studies have reported that the combination of PTX and curcumin
is more effective on breast, ovarian, brain, prostate and liver cancers than the exclusive use
of PTX or curcumin, suggesting a synergistic effect [152–168].

The combination of PTX and curcumin, as well as either agent alone, was found to
reduce lung metastasis in vivo [169]. On the other hand, PTX induced the expression of
NF-kB in vitro, whereas curcumin suppressed it. With a relatively less-effective dose of
PTX, the addition of curcumin resulted in effective antimetastatic therapy.

In another combination treatment, PTX and quercetin (Que) were used to treat prostate
cancer. This combination exhibited the drastic inhibition of cell proliferation, cell cycle
arrest at the G2/M phase, the inhibition of cell migration, and increased apoptosis and
ROS generation. Quercetin increased the cancer-cell-killing effects of PTX, with nearly no
side effects compared to the monotherapy of the PTX group [170]. This combination is
expected to exert the most useful therapeutic effects.

Min et al. (2018) demonstrated the efficacy of the combination of caffeic acid (CA) with
PTX as a cooperative anticancer action, the effect of which is probably determined by the
MAPK signaling pathway and caspases. As a result, this synergistic effect was recognized as
a strong inhibitory effect against the growth of non-small-cell lung cancer cell (NSCLC) line
H1299 cells in vitro and in vivo. After CA treatment, cells were arrested in the intermediate
phase between G1 and S phase, increasing the activities of both caspase-3 and caspase-9,
leading to the enhancement of apoptosis. Furthermore, CA increased in vitro the events
induced by PTX, such as the activation of Bax, Bid, and the downstream of Poly (ADP-ribose)
polymerase-1 (PARP-1) cleavage, and the phosphorylation of extracellularly regulated kinase
(Erk) 1/2 and c-Jun N-terminal protein kinase (JNK) 1/2. The combined treatment with CA
and PTX exerted a more effective suppressive effect in vivo on the tumor growth of H1299
cell xenografts without significant adverse effects. Taken together, PTX treatment with a low
dose of CA would result in a strong suppressive effect on the growth of NSCLC [171].

The effects of PTX in combination with withaferin A (WFA) on the growth, pro-
liferation, migration, and invasion of human NSCLC cells have also been proposed by
Kyakulaga and his colleagues. PTX and WFA synergistically inhibited colony formation,
migration, and invasion whilst also increasing the induction of apoptosis in H1299 and
A549 cells. Importantly, PTX was effective with WFA on PTX-resistant A549 cells, as well as
PTX-sensitive A549 cells both in vitro and in vivo. Thus, the sensitivity of H1299 and A549
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cells to the treatment was shown to be greater in the combination of PTX with WFA than in
the single use of either PTX or WFA alone. These findings validate the use of WFA alone
or with PTX in NSCLC cells and justify the further testing of clinically relevant models
with the combination of PTX and WFA of advanced NSCLC as an alternative to current
therapeutic strategies [172].

A successful translation of an alternate dosing strategy combining palbociclib and
PTX in patients with advanced breast cancer was shown to be feasible and safe without
evidence of additive toxicity. However, this combination requires further study in a larger
randomized clinical trial with a direct comparison to single-agent PTX to determine whether
or not this strategy finally improves outcomes for patients with advanced breast cancer [173].

The combination of PTX and doxorubicin (DOX) has been widely clinically used
despite its serious toxicity. Yu and colleagues have successfully synthesized a prodrug
PTX-S-DOX (PSD), the cytotoxicity of which has been demonstrated in vitro in comparison
to the mixture of free PTX and DOX. PSD is favorable to enhance the anti-cancer effect
and decrease harmful effects, improving the pharmacokinetics and anti-tumor properties.
Because copper ions (Cu2+) could be organized in the anthracene nucleus of DOX, the
prodrug PSD is hypothesized to be loaded into liposomes by the Cu2+ gradient. Therefore,
combination chemotherapy was designed with the liposomes encapsulating PSD (PSD
LPs) for controlled release. The PSD LPs enhance the accumulation of PSD in the tumor,
showing more anti-tumor effects than that of the non-liposomal formulation of PSD [174].

Many clinical trials are still investigating the potential effects of paclitaxel for the
treatment of different stages of cancers, as a monotherapy or in combination with a wide
range of other treatments. In a clinical trials database, by 2021, there were more than
3700 registered clinical trials using paclitaxel for cancer. Among these trials, 43 reached
or passed phase 4, while 700 were in phase 3. Some of these clinical trials are presented
in Table 2. Collectively, various combinations with PTX could exert synergistic anticancer
effects, demonstrating a promising regimen for the treatment of different types of cancer.

Table 2. Clinical trials involving PTX.

Combination Phase Cancer Type Clinical Trial Identifier

Napabucasin and Gemcitabine 3 Metastatic pancreatic cancer NCT03721744

Bevacizumab 3 Metastatic breast cancer NCT00028990

Fruquintinib 3 Gastric cancer NCT03223376

NovoTTF-100L 3 Ovarian cancer NCT03940196

Atezolizumab 3 Triple negative breast cancer NCT02425891

Cisplatin plus radiotherapy 4 Non-small-cell lung cancer NCT00686322

Chemotherapy (Carboplatin) 4 Her-2 negative breast cancer NCT03799692

RAD001 and Carboplatin 4 Carcinoma, large cell Neuroendocrine tumors NCT01317615

Bevacizumab and Carboplatin 4 Ovarian cancer NCT01706120

Bevacizumab 4 Triple negative breast cancer NCT01094184

Vantictumab 1 Metastatic breast cancer NCT01973309

Cisplatin 2 Esophageal cancer NCT01444547

Lapatinib 2 Urothelial cancer and bladder cancer NCT01700010

Reparixin 2 Metastatic breast cancer NCT02370238

Tegafur, Oxaliplatin and Capecitabine 3 Stomach cancer NCT04135781

DHP107 2 Recurrent or metastatic breast cancer NCT03326102

Lenalidomide 1 Prostate cancer NCT00933426

LDE225 1 Recurrent ovarian cancer NCT02195973

Cirmtuzumab 1 Breast neoplasms NCT02776917
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Collectively, various combinations with PTX could exert a synergistic anticancer effect
and could be a promising regimen for the treatment of different types of cancer.

8. Conclusions

Combinations of different anticancer agents will be one solution for improving the
efficacy of conventional chemotherapy, reducing side effects and avoiding MDR. Given the
hierarchical complexity due to cancer stem cells, a strategy involving combination therapy
could be useful to simultaneously target both the bulk of differentiated cancer cells and
the minor population of cancer stem cells. In this context, the presence of cancer stem
cells should be taken into consideration in order to evaluate the drug effects in search of
more efficient drugs. Combination therapy may yield novel chemotherapy strategies in
the future.
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