2	Staged Repair of Tetralogy of Fallot: A Strategy for Optimizing Clinical and Functional Outcomes
3	
4	Running Head:
5	Staged Repair of Tetralogy of Fallot
6	
7	Authors:
8	Yasuyuki Kobayashi, MD ¹ ; Yasuhiro Kotani, PhD ^{1,*} ; Yosuke Kuroko, PhD ¹ ; Takuya Kawabata, PhD ¹ ;
9	Shunji Sano, PhD ² ; Shingo Kasahara, PhD ¹
10	
11	Institutions and Affiliations:
12	¹ Cardiovascular Surgery, Okayama University Hospital, Japan
13	² Pediatric Cardiothoracic Surgery, University of California, San Francisco
14	
15	
16	
17	*Corresponding Author:

- 18 Yasuhiro Kotani
- 19 2-5-1 Shikatacho, Kitaku, Okayama, Japan 700-8558
- 20 Tel: +81-86-235-7359
- 21 Fax: +81-86-235-7431
- 22 Email: <u>yasuhiro.kotani@cc.okayama-u.ac.jp</u>
- 23

24 Word Count:

25 4478 words

26 ABSTRACT

27 Background: This study evaluated the impact of a staged surgical strategy incorporating a modified 28 Blalock-Taussig shunt (BTS) for tetralogy of Fallot (TOF) on pulmonary valve annulus (PVA) growth, 29 the rate of valve-sparing repair (VSR) at the time of intracardiac repair (ICR), and long-term functional 30 outcomes. 31 Methods: This retrospective study included 330 patients with TOF who underwent ICR between 1991 32 and 2019, including 57 patients (17%) who underwent BTS. The mean follow-up period was 15.0±7.3 33 years. We compared the data of patients who underwent BTS and those who did not undergo BTS before 34 ICR. 35 Results: The median age and body weight before BTS were 71 (28–199) days and 4.3 (3.3–6.8) kg 36 respectively. There were no in-hospital or interstage deaths after BTS. The PVA Z-scores of patients 37 with BTS revealed significant growth after BTS (from -4.2 \pm 1.8 to -3.0 \pm 1.7, P<0.001). VSR was 38 eventually performed in 207 (63%) patients, including 26 (46%) patients who underwent staged repair. 39 The overall freedom from pulmonary regurgitation-related reintervention were 99.7%, 99.1%, and 40 95.8% at 1, 5, and 20 years, respectively.

41 Conclusions: A staged surgical strategy incorporating BTS as the first palliation for symptomatic
 42 patients resulted in no mortality. BTS may have contributed to the avoidance of primary transannular

- patch repair (TAP) and facilitated PVA growth; therefore, approximately half of the symptomatic
 neonates and infants were recruited for VSR. Staged repair may have led to functionally-reliable
 delayed TAP, thereby resulting in less surgical reinterventions.
- 47 (238 words)
- 48 _____

50 <u>Glossary of Abbreviations</u>

ICR	=	intracardiac repair
РА	=	pulmonary artery
PR	=	pulmonary regurgitation
PV	=	pulmonary valve
PVA	=	pulmonary valve annulus
PVA(Z)	=	pulmonary valve annulus Z score
RVOT	=	right ventricular outflow tract
RVOTS	=	right ventricular outflow tract stenosis
ТАР	=	transannular patch repair
TOF	=	tetralogy of Fallot
VSD	=	ventricular septal defect
VSR	=	valve-sparing repair

54	Tetralogy of Fallot (TOF), the most common cyanotic heart defect, can be surgically-treated with low
55	perioperative mortality ¹ . However, residual post-surgical structural lesions have adverse consequences,
56	including exercise intolerance, arrhythmia, heart failure, and sudden cardiac death ² . These late
57	complications were almost uniformly manifested in adult survivors after intracardiac repair (ICR)
58	during eras when transannular patch repair (TAP) use was ubiquitous ^{3,4} .
59	Six to 12 months was proposed as the ideal age for elective ICR in the 1990s ⁵ . During the past two
60	decades, however, early primary ICR has been extended to cyanotic neonates and small infants ^{6,7} . The
61	potential disadvantages of early ICR are longer intensive care unit stays, increased risk of
62	reinterventions, and more frequent TAP use ⁸ .
63	Our strategy is to delay ICR by using a Blalock-Taussig shunt (BTS) in symptomatic neonates and
64	infants as initial palliation. Despite being a successful strategy adopted by many institutions, there are
65	limited data regarding its long-term functional outcomes ⁸⁻¹¹ . Therefore, this study aimed to determine
66	whether an initial BTS procedure aids in recruiting symptomatic neonates and infants for valve-sparing
67	repair (VSR) and to evaluate long-term outcomes stratified by ICR type.

53 INTRODUCTION

69 PATIENTS AND METHODS

70 This retrospective, nonrandomized, single-institution study included 330 patients with isolated TOF 71 who underwent ICR at Okayama University Hospital between January 1991 and July 2019, including 72 57 patients who underwent BTS. Patients with pulmonary atresia, absent pulmonary valve, 73 atrioventricular septal defect, and any associated anomalies were excluded. This study was approved 74by the Institutional Review Board of the hospital, and the requirement for written informed consent was 75 waived due to the observational nature of the study. A thorough review of medical records was 76 conducted, and preoperative, intraoperative, postoperative, and follow-up data were collected. 77 The criteria for primary ICR included a pulmonary artery (PA) index $>150 \text{ mm}^2/\text{m}^2$, left ventricular 78 end-diastolic volume >80% of the normalized value, age older than 6 months, and body weight >5 kg. 79 For symptomatic neonates and small infants who did not fulfill the criteria, BTS was performed as the 80 first palliation. Prostaglandin, oral beta-blockers, and more feedings were administered to suspend any 81 interventions during the neonatal period as possible. Because of the long waiting list, most of the eligible 82 candidates were approximately 6 to 8 kg when ICR was finally performed. 83 Our institutional approach involves VSR for patients with a preoperative pulmonary valve annulus 84 (PVA) Z score $[PVA(Z)] \ge -2.0$ and TAP for patients with a preoperative PVA(Z) <-4.0; the quality and 85 number of the PV leaflets and coronary anatomy are also considered A monocusp fashioned from a 0.1

86	mm polytetrafluoroethylene membrane was utilized for TAP. For patients with a marginal pulmonary
87	valve (PV) [-4.0≤PVA(Z)<-2.0], infundibular muscle resection and pulmonary valvotomy were first
88	attempted before trying to pass Hegar probes through the annulus of those with $PVA(Z) \ge -2.0$. If Hegar
89	probes of adequate size could not pass or if the final intraoperative right ventricle:left ventricle pressure
90	was >0.6, then TAP was eventually performed. Because ventricular septal defect (VSD) closure and
91	muscle resection were routinely performed through the tricuspid valve, isolated right ventriculotomy
92	was not performed.
93	Criteria for right ventricular outflow tract stenosis (RVOTS)-related reintervention included peak
94	pressure gradient > 50 mmHg or right ventricle:left ventricle pressure >2/3. Criteria for PR-related
95	reintervention were moderate or greater PR and severe RV dilatation (RV end-diastolic volume index
96	$\geq 160 \text{ mL/m}^2 \text{ or RV}$ end-systolic volume index $\geq 80 \text{ mL/m}^2$).
97	
98	PV Measurements
99	All recordings of two-dimensional, M-mode, and Doppler images were obtained according to the
100	American Society of Echocardiography guidelines, and Z scores were generated ¹² . The PVA was
101	measured during systole in the parasternal long-axis or short-axis view (whichever best-demonstrated
102	the valve hinge points). The right ventricular outflow tract (RVOT) at the narrowest point and VSD

- 103 were measured during systole in the parasternal short-axis view. The RVOT and VSD index values were
- 104 calculated and divided by the body surface area.
- 105 For patients undergoing prior BTS, echocardiography was performed before BTS and before ICR to
- 106 determine whether PVA increments occurred. If PVA(Z) was greater before ICR, then the PVs were
- 107 defined as "grown PV". Patients with grown PV who achieved VSR were defined as "recruited" patients,
- 108 and the impact of BTS on VSR was analyzed.
- 109
- 110 Statistical analysis

111 Continuous variables were reported as median (interquartile range) for skewed data or mean (standard 112 deviation) for normally distributed data. Categorical variables were reported as absolute frequency 113 (percentage). Continuous variables were compared using Student's t-test or Mann-Whitney U test based on the normality of data. Categorical variables were compared using Pearson's χ^2 test. Predictable 114 115 factors for time-related outcomes were tested using Cox regression analysis. Univariate analysis was 116 performed to identify variables with P < 0.10 that were entered in a stepwise fashion into a multivariate 117 Cox proportional hazards regression model to determine the independent predictors of outcomes. The 118 hazard ratio (HR) and 95% confidence interval (CI) were reported for significant multivariate risk 119 factors. Estimates of freedom from reintervention were made by the Kaplan-Meier method. The level

- 120 of statistical significance was set at P < 0.05. All statistical analyses were performed with SPSS version
- 121 22 (Chicago, IL).

123 **RESULTS**

- 124 Demographics
- 125 Demographics are summarized in Table 1. The median age and weight at ICR were 449 (317–631)
- 126 days and 8.6 (7.5–9.9) kg respectively. Neither neonates nor small infants <3.0 kg underwent primary
- 127 ICR. Patient characteristics were compared between those who underwent BTS as the first palliation
- 128 (staged repair group) and those who did not undergo BTS (primary ICR group) (Table 1). Age and
- 129 weight at ICR were not different between groups. The PVA(Z) before ICR was significantly lower in
- 130 the staged repair group than in the primary ICR group (-3.0 \pm 2.1 vs. -2.1 \pm 1.9, P=0.004). Of the 330
- 131 patients, 207 (63%) underwent VSR.
- 132 No in-hospital death occurred. One patient who underwent ICR died of post-transfusion hepatitis two
- 133 months after discharge; the overall mortality was 0.3%.

- 135 Functional outcomes of the VSR and TAP groups
- 136 The stratified patient characteristics based on surgical approach are summarized in Table 2. The

137 PVA(Z) was significantly higher in the VSR group (-1.5±1.7 vs. -3.5±1.5, P<0.001).

138	The follow-up duration was 15.0±7.3 years. Overall, 8% underwent surgical reintervention. Freedom
139	from surgical reintervention at 1, 10, and 20 years were 99.5%, 96.9%, and 93.5% in the VSR group
140	and 97.6%, 91.6%, and 85.8% in the TAP group, respectively (P=0.023) (Figure 1A). PR-related
141	reintervention was only required by patients in the TAP group (VSR: 0%; TAP: 8%). There was no
142	difference in the frequency of RVOTS-related reintervention between groups (VSR: 4%; TAP: 2%).
143	Freedom from PR-related reintervention at 1, 10, and 20 years were 100%, 100%, and 100% in the VSR
144	group, and 99.2%, 97.5%, and 91.7% in the TAP group, respectively (P=0.001) (Figure 1B). Freedom
145	from RVOTS-related reintervention at 1, 10, and 20 years were 100%, 97.3%, and 94.0% in the VSR
146	group, and 99.2%, 97.4%, and 97.4% in the TAP group, respectively (<i>P</i> =0.306) (Figure 1C).
147	Long-term follow-up echocardiography was available for 282 patients (86%) (Table 2). Moderate or
148	greater PR was more prevalent in the TAP group (VSR: 13%; TAP: 61%). Freedom from moderate or
149	greater PR at 1, 10, and 20 years were 98.9%, 87.8%, and 78.5% in the VSR group, and 71.2%, 53.4%,
150	and 35.4% in the TAP group, respectively ($P < 0.001$) (Figure 1D).
151	
152	BTS and its impact

153 Fifty-seven patients (17%) underwent BTS as the first palliation. The median age and weight at BTS

154	were 71 (28-199) days and 4.3 (3.3-6.8) kg respectively (Table 3). There were no in-hospital or
155	interstage deaths after BTS. PVA growth was evident through BTS [PVA: from 5.2 (4.3-6.1) to 8.1
156	(7.0–9.0) mm, <i>P</i> <0.001; PVA(Z): from -4.2±1.8 to -3.0±1.7, <i>P</i> <0.001]. Additionally, the proportion of
157	patients with a tiny PVA [PVA(Z)<-4] decreased significantly (from 54.4% to 31.6%, P <0.001).
158	Eventually, 46% of patients who had staged repair underwent VSR.
159	Patients who underwent staged repair were further divided into two groups: those who underwent
160	VSR with grown PV (recruited group, n=20) and others (non-recruited, n=37) (Table 3). The PVA(Z)
161	before BTS (-3.6±1.4 vs4.5±1.9, P=0.063), change in PVA (Z) (1.1±1.7 vs. 0.5±2.0, P=0.006), and
162	VSD index [37.2 (32.3–42.7) vs. 30.8 (26.2–37.9) mm ² /m ² , $P=0.119$] were greater in the recruited group.
163	The conduit index did not differ between groups [18.1 (14.0–19.3) vs. 17.7 (14.6–19.1) mm^2/m^2 ,
164	P=0.842]. An intervention for BTS was only required in the non-recruited group (5 vs. 0, $P=0.085$).
165	The PVA(Z) before BTS and before ICR in the staged repair group were plotted and stratified by the
166	ICR type. Twenty-six (46%) of the 57 staged repair patients eventually achieved VSR (Figure 2A).
167	Although 31 patients had to undergo TAP, 21 (68%) had a grown PV; this contributed to a functionally-
168	reliable TAP with a monocusp (Figure 2B).
169	From the multivariate analysis, PVA(Z)>-5 (HR: 8.91; 95% CI: 1.73–45.8, <i>P</i> =0.009), VSD index >30
170	(HR: 6.09; 95% CI: 1.24–30.0, P=0.026), and RVOT index >10 (HR: 4.36; 95% CI: 1.10–17.3,

171 *P*=0.036) were anatomical factors associated with recruitment (Table 4).

172

173 COMMENT

17	74	Our study	demonstrated that	symptomatic	neonates and	l small infants,	who com	prised 17%	6 of the
		<i>.</i>		J 1		,			

- 175 cohort, underwent BTS without any significant mortality. This staged surgical strategy incorporating
- 176 BTS contributed to PVA growth in a majority of the patients and allowed a switch to VSR in
- approximately half of them. Avoiding early primary ICR and switching to VSR as much as possible

178 led to a reduction of PR-related reinterventions (only 3% at 20 years after surgery).

```
180 VSR vs. TAP
```

181	The overall temporal trend of TAP use has been 23% to 50% during the past 50 years ¹³ . TAP
182	application damages the PV integrity, leading to an increased risk of PR and long-term morbiditiy ^{2,14} .
183	The adverse consequences of chronic PR raised interest in techniques and indications for sparing PV.
184	In the present study, VSR was mostly performed when $PVA(Z) \ge -4^{15}$. As RVOTS-related
185	reintervention did not differ between the VSR and TAP groups, our cut-off PVA(Z) for VSR was
186	reasonable. PR-related reintervention occurred in the TAP group only, which supported our strategy of
187	facilitating PVA growth and subsequently achieving VSR as much as possible. Recent studies

188	demonstrated that early primary ICR at \sim 3 months was associated with increased TAP use and
189	inadequate RVOTS release, resulting in more frequent late reinterventions ^{15,16} . In contrast, we observed
190	satisfactory freedom from PR-related reintervention in the TAP group (91.7% at 20 years) despite the
191	high follow-up rate. This outcome was based on a delayed ICR strategy involving the suspension of
192	ICR until the patients were \geq 5 kg irrespective of ICR type and initial management. Isolated right
193	ventriculotomy was not performed for muscular RVOTS release with either technique (VSR or TAP).
194	The transannular incision should be minimized in TAP cases to help maintain RV function and
195	subsequently achieve good results.
196	
197	Initial management of symptomatic neonates
197 198	Initial management of symptomatic neonates The ideal staged repair approach for cyanotic neonates has remained a topic of discussion influenced
197 198 199	<i>Initial management of symptomatic neonates</i> The ideal staged repair approach for cyanotic neonates has remained a topic of discussion influenced by regional history and institutional experience. Some institutions favor BTS ⁸⁻¹¹ , whereas others favor
197 198 199 200	Initial management of symptomatic neonates The ideal staged repair approach for cyanotic neonates has remained a topic of discussion influenced by regional history and institutional experience. Some institutions favor BTS ⁸⁻¹¹ , whereas others favor RVOT stenting or patent ductus arteriosus (PDA) ¹⁷ . RVOT stenting is an effective and safe technique
197 198 199 200 201	Initial management of symptomatic neonates The ideal staged repair approach for cyanotic neonates has remained a topic of discussion influenced by regional history and institutional experience. Some institutions favor BTS ⁸⁻¹¹ , whereas others favor RVOT stenting or patent ductus arteriosus (PDA) ¹⁷ . RVOT stenting is an effective and safe technique that increases the pulsatile forward flow of systemic venous blood to the PAs. The preferences is to not
197 198 199 200 201 202	Initial management of symptomatic neonates The ideal staged repair approach for cyanotic neonates has remained a topic of discussion influenced by regional history and institutional experience. Some institutions favor BTS ⁸⁻¹¹ , whereas others favor RVOT stenting or patent ductus arteriosus (PDA) ¹⁷ . RVOT stenting is an effective and safe technique that increases the pulsatile forward flow of systemic venous blood to the PAs. The preferences is to not cross the PVA; however, another study showed that only one patient (8%) underwent stent implantation
 197 198 199 200 201 202 203 	Initial management of symptomatic neonates The ideal staged repair approach for cyanotic neonates has remained a topic of discussion influenced by regional history and institutional experience. Some institutions favor BTS ⁸⁻¹¹ , whereas others favor RVOT stenting or patent ductus arteriosus (PDA) ¹⁷ . RVOT stenting is an effective and safe technique that increases the pulsatile forward flow of systemic venous blood to the PAs. The preferences is to not cross the PVA; however, another study showed that only one patient (8%) underwent stent implantation limited to the infundibulum and the others eventually underwent TAP ¹⁸ . This procedure poses the risk

205	another alternative method. However, certain ductal anatomies might not be appropriate for PDA
206	stenting, and this group included only patients who had technically successful stent placements ¹⁷ .
207	Furthermore, there are technical challenges during subsequent surgical procedures and unique
208	procedural complications ¹⁷ .
209	In this study, there was no mortality among patients who underwent BTS. Additionally, no unplanned
210	reintervention was required. This outcome supports our strategy of selecting BTS as the first palliation
211	for symptomatic neonates and infants.
212	
213	Impact of BTS on PVA growth
214	PVA growth after BTS has been reported previously ^{8,10,11} . In this study, PVA outgrowth with BTS
215	placement over somatic growth was demonstrated, and approximately half of the patients with tiny PVA
216	[PVA(Z)<-4] who were candidates for primary TAP benefited from our staged strategy. Even if PVA
217	growth is insufficient for VSR because the initial PVA is too small, TAP would be technically easier
218	than that performed in neonates, thus contributing to less reinterventions.
219	The mechanism of PVA growth is not yet fully understood; however, PVA growth is thought to be due
220	to increased pulmonary blood flow through the PV from the VSD ¹⁰ . Because the lumen sizes of the
221	peripheral PAs were smaller than those of the main PA, PVA enlargement was presumed to be difficult

222	without increased transvalvular forward flow ¹⁰ . Nakajima et al. observed that blood flow through VSD
223	from the dilated LV generated straight flow toward the PV after BTS ¹⁰ . This finding supported our
224	assumption of predictable factors for recruitment (i.e., relatively larger VSD and RVOT as favorable).
225	
226	Ultimate goal of TOF treatment
227	The goal of TOF treatment is the prevention of reinterventions. The current methods of TOF treatment
228	have well-established excellent survival rates. Ultimately, the question lies with the type of surgical
229	strategy to choose in order to achieve VSR that promises better functional outcomes. Performing VSR
230	in neonates and small infants is considered ideal as it offers normal blood circulation during early life
231	and incurs less medical expenses. However, studies have demonstrated that early primary repair, even
232	with VSR, resulted in a high incidence of reinterventions ^{7,16} . Although it is technically feasible to
233	perform ICR in a 3 kg neonate, it does not align with the ultimate goal for TOF patients. Our institutional
234	policy is to perform VSR in a sophisticated manner to avoid any significant PR and RVOTS. Therefore,
235	we believe that staged strategy should be selected, whenever necessary, for anatomic (small PVA) and
236	physiologic (severe cyanosis) reasons, and that ICR for infants weighing approximately 6 to 8kg results
237	in the best functional outcomes and minimizes the chance of subsequent reinterventions, thereby
238	resulting in a better quality of life and incurring less lifetime medical expenses.

240 <i>Limitations</i>	
------------------------	--

241	The current study assumes the typical limitations of any retrospective study: selection bias and lack
242	of randomization. Changes in perioperative management during the study period may have affected
243	the results.Our study had a slightly unusual cohort distribution compared to other studies (i.e., few
244	neonates). Furthermore, the multiple variables analyzed might reflect the development of different
245	surgical approaches regarding the initial palliative versus primary total repair.
246	
247	Conclusions
248	A staged surgical strategy incorporating BTS as the first palliation for symptomatic patients resulted
249	in no mortality. BTS not only contributed to primary TAP avoidance but also facilitated PVA growth,
250	recruited approximately half of symptomatic neonates and infants for VSR, and warranted functionally-
251	reliable delayed TAP at the time of ICR, thereby leading to less surgical reinterventions as a whole.
252	Reasonable PVA(Z) [PVA(Z)>-5], larger VSD, and larger RVOT may be predictors for adequate PVA
253	growth leading to VSR. Further studies are necessary to validate this hypothesis.
254	

255 ACKNOWLEDGEMENTS AND DISCLOSURES

- 256 <u>Conflicts of Interest:</u> The authors declare no conflicts of interest.
- 257 <u>Funding Sources:</u> This research was not funded by any specific grant from funding agencies in the
- 258 public, commercial, or not-for-profit sectors.

260 **REFERENCES**

- 261 1. Cavalcanti PEF, Sá MPBO, Santos CA, et al. Pulmonary valve replacement after operative repair of
- tetralogy of Fallot: meta-analysis and meta-regression of 3,118 patients from 48 studies. J Am Coll
- 263 *Cardiol.* 2013;62:2227-2243.
- 264 2. Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late
- after repair of tetralogy of Fallot: a multicentre study. *Lancet* 2000;356:975-981.
- 266 3. Knowles R, Veldtman G, Hickey EJ, et al. Functional health status of adults with tetralogy of Fallot:
- 267 matched comparison with healthy siblings. *Ann Thorac Surg.* 2012;94:124-132.
- 268 4. Frigiola A, Redington AN, Cullen S, Vogel M. Pulmonary regurgitation is an important determinant
- 269 of right ventricular contractile dysfunction in patients with surgically repaired tetralogy of Fallot.
- 270 *Circulation* 2004;110:II153-II157.
- 5. Walsh EP, Rockenmacher S, Keane JF, Hougen TJ, Lock JE, Castaneda AR. Late results in patients
- with tetralogy of Fallot repaired during infancy. *Circulation* 1988;77:1062-1067.
- 273 6. Tamesberger MI, Lechner E, Mair R, Hofer A, Sames-Dolzer E, Tulzer G. Early primary repair of
- tetralogy of Fallot in neonates and infants less than four months of age. Ann Thorac Surg. 2008;86:1928-
- 1935.
- 276 7. Balasubramanya S, Zurakowski D, Borisuk M, et al. Right ventricular outflow tract reintervention

- 277 after primary tetralogy of Fallot repair in neonates and young infants. J Thorac Cardiovasc Surg.
- 278 2018;155:726-734.
- 8. Kanter KR, Kogon BE, Kirshbom PM, Carlock PR. Symptomatic neonatal tetralogy of Fallot: repair
- 280 or shunt? Ann Thorac Surg. 2010;89:858-863.
- 9. d'Udekem Y, Galati JC, Konstantinov IE, Cheung MH, Brizard CP. Intersurgeon variability in long-
- term outcomes after transatrial repair of tetralogy of Fallot: 25 years' experience with 675 patients. J
- 283 Thorac Cardiovasc Surg. 2014;147:880-886.
- 284 10. Nakashima K, Itatani K, Oka N, et al. Pulmonary annulus growth after the modified Blalock-Taussig
- shunt in tetralogy of Fallot. Ann Thorac Surg. 2014;98:934-940.
- 286 11. Chong BK, Baek JS, Im YM, Park CS, Park JJ, Yun TJ. Systemic-pulmonary shunt facilitates
- the growth of the pulmonary valve annulus in patients with tetralogy of Fallot. Ann Thorac Surg.
- 288 2016;102:1322-1328.
- 289 12. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the
- 290 performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group
- 291 of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am
- 292 Soc Echocardiogr. 2010;23:465-495.
- 293 13. Romeo JLR, Etnel JRG, Takkenberg JJM, et al. Outcome after surgical repair of tetralogy of Fallot:

294	a systematic review and meta-analys	sis. J Thorac (Cardiovasc Surg.	2020;159:220-236.
			• • • • • • • • • • • • • • • • • • • •	,

295	14. Hickey EJ, Veldtman G, Bradley TJ, et al. Late risk of outcomes for adults with repaired tetralogy
296	of Fallot from an inception cohort spanning four decades. Eur J Cardiothorac Surg. 2009;35:156-164.
297	15. van den Bosch E, Bogers AJJC, Roos-Hesselink JW, et al. Long-term follow-up after transatrial-
298	transpulmonary repair of tetralogy of Fallot: influence of timing on outcome. Eur J Cardiothorac Surg.
299	2020;57:635-643.
300	16. Wilder TJ, van Arsdell GS, Benson L, et al. Young infants with severe tetralogy of Fallot: early
301	primary surgery versus transcatheter palliation. J Thorac Cardiovasc Surg. 2017;154:1692-1700.
302	17. Glatz AC, Petit CJ, Goldstein BH, et al. Comparison between patent ductus arteriosus stent and
303	modified Blalock-Taussig shunt as palliation for infants with ductal-dependent pulmonary blood flow:
304	insights from the congenital catheterization research collaborative. Circulation. 2018;137:589-601.
305	18. Valderrama P, Garay F, Springmüller D, et al. Initial Experience in Chile with stent implantation in
306	the right ventricle outflow tract in high-risk patients with tetralogy of Fallot. Pediatr Cardiol.
307	2020;41:837-842.

Table 1. Demographics of ICR (n=330)											
Characteristics	CharacteristicsOverall (n=330)Staged groupPrimary repairP-value										
			((n=57)	group (n=273)						
Male	192	(58)	30	(53)	162	(59)	0.350				
Age at ICR (day)	449	(317–631)	631	(477–852)	421	(290–574)	0.707				
Neonates	0	(0)	0	(0)	0	(0)	-				
Weight at ICR (kg)	8.6	(7.5–9.9)	8.9	(8.0–10.2)	8.5	(7.4–9.8)	0.449				
Echocardiographic											
data before ICR											
PVA size (mm)	8.5	(7.5–9.9)	8.1	(7.1–9.0)	8.5	(7.6–10.0)	0.024				
PVA Z score	-2.3	± 2.0	-3.0	± 2.1	-2.1	± 1.9	0.004				
Catheterization data	1	n=213		n=53	n	=160					
before ICR											
PA index (mm/m ²)	278	(230–336)	281	(230–336)	277	(230–335)	0.635				
Operative data											
Valve-sparing	207	(63)	26	(46)	181	(66)	0.003				
repair											
Trans-RA and -PA	292	(88)	54	(95)	238	(87)	0.104				
approach											
Bicuspid valve	258	(78)	51	(89)	107	(39)	0.023				
Aortic cross-clamp	85	± 26	104	± 32	81	± 22	< 0.001				
time (min)											
Hospital mortality	0	(0)	0	(0)	0	(0)	-				
Late mortality	1	(0)	1	(1)	0	(0)	0.173				
Data presented as medi	ian (inte	rquartile rang	ge) or n ((%) or mean ((±SD). ICR	, intracardiac r	epair; PA,				
pulmonary artery; PVA	A, pulmo	onary valve a	nnulus;	RA, right atr	ium; RVOI	, right ventrice	ular outlet				
tract.											

Table 2. VSR vs. TAP (n=330)							
Characteristics	Overall (n=330)		VSR (n=207)		TAP (n=123)		<i>P</i> -value
Age at ICR (day)	449	(317–631)	428	(317–570)	527	(331–714)	0.081
Weight at ICR (kg)	8.6	(7.5–9.9)	8.4	(7.4–9.6)	9.0	(7.9–10.3)	0.018
Echocardiographic data before ICR							
PVA size (mm)	8.5	(7.5–9.9)	8.9	(8.1–10.2)	7.7	(6.5-8.5)	< 0.001
PVA Z score	-2.3	±2.0	-1.5	±1.7	-3.5	±1.5	< 0.001
Previous BTS	57	(17)	26	(13)	31	(25)	0.003
Bicuspid valve	258	(78)	153	(74)	105	(85)	0.012
Interval from ICR (year)	15.0	±7.3	12.1	±7.1	16.5	±6.5	< 0.001
Reintervention							
Catheter reintervention	29	(9)	11	(5)	18	(15)	0.004
Balloon dilatation for branch PA	28	(8)	10	(5)	18	(15)	0.001
Surgical reintervention	26	(8)	9	(4)	17	(14)	0.002
PR-related	10	(3)	0	(0)	10	(8)	< 0.001
RVOTS-related	11	(3)	8	(4)	3	(2)	0.485
branch PA-related	4	(1)	1	(0)	3	(2)	0.116
residual VSD-related	1	(0)	0	(0)	1	(1)	0.194
Long-term follow-up Echocardiography	n=	282	n	=181	n	=101	

Interval from ICR (year)	13.0	±7.3	11.4	±7.2	15.7	±6.6	< 0.001
Pulmonary regurgitation grade							
None	9	(3)	9	(5)	0	(0)	0.023
Trivial	52	(18)	49	(27)	3	(3)	< 0.001
Mild	135	(48)	99	(54)	36	(36)	0.002
Moderate	74	(26)	22	(12)	52	(51)	< 0.001
Severe	12	(4)	2	(1)	10	(10)	< 0.001
RVOT pressure gradient (mmHg)	21	±14	22	±14	18	±13	0.018
Data presented as median (interquartile range) of	r n (%) or mean ((±SD). BTS, Bla	alock-Taussig s	shunt; ICR, intra	cardiac repair;	PA, pulmonary	artery; PR,
							•

pulmonary regurgitation; PVA, pulmonary valve annulus; RVOT, right ventricular outlet tract; RVOTS, right ventricular outlet tract stenosis; TAP, transannular patch repair; VSD, ventricular septal defect; VSR, valve-sparing repair.

Table 3. Demographics of BTS (n=57)							
Characteristics	Overall (n=57) Recru		uited (n=20)	Non-recruited (n=37)		<i>P</i> -value	
Male	30	(53)	12	(60)	18	(49)	0.413
Age at BTS (day)	71	(28–199)	105	(36–210)	60	(28-189)	0.620
Neonates	15	(26)	5	(25)	10	(27)	0.868
Weight at BTS (kg)	4.3	(3.3–6.8)	4.6	(3.3–7.0)	4	(3.3-6.0)	0.770
Echocardiographic data before BTS							
PVA size (mm)	5.2	(4.3–6.1)	5.3	(4.7–6.9)	5.0	(4.0-6.0)	0.276
PVA Z score	-4.2	±1.8	-3.6	±1.4	-4.5	±1.9	0.063
VSD size (mm)	8.6	(7.2–10.4)	9.2	(8.4–10.7)	8.0	(6.7–9.6)	0.108
VSD index (mm/m ²)	33.3	(27.7–40.0)	37.2	(32.3–42.7)	30.8	(26.2–37.9)	0.119
RVOT size (mm)	2.5	(1.9–3.5)	2.8	(2.0-4.6)	2.5	(1.9–3.1)	0.281
RVOT index (mm/m ²⁾	10.0	(8.0–13.2)	10.6	(8.1–13.0)	10.0	(8.0–13.2)	0.313
Catheterization data before BTS							
PA index (mm ² /m ²)	155	(123–230)	180	(135–235)	155	(123–199)	0.292
Qp/Qs	0.52	(0.40–0.60)	0.50	(0.49–0.77)	0.55	(0.38–0.56)	0.378
LVEDV (%N)	77	(66–83)	77	(67–82)	80	(63–85)	0.754
Echocardiographic data before ICR							
PVA size (mm)	8.1	(7.0–9.0)	9.0	(8.5–9.6)	7.2	(6.9–8.2)	0.002
PVA Z score	-3.0	±1.7	-1.8	±1.2	-3.8	±1.6	< 0.001

Change in PVA Z score	0.9	±1.9	1.1	±1.7	0.5	±2.0	0.006
Catheterization data before ICR							
PA index (mm ² /m ²)	281	(230–336)	304	(282–361)	255	(225–303)	0.156
Qp/Qs	0.98	(0.83–1.25)	1.22	(0.96–1.39)	0.93	(0.79–1.09)	0.084
LVEDV (%N)	116	(100–136)	125	(104–166)	112	(97–127)	0.045
Conduit size							
3.0 mm	1	(2)	1	(5)	0	(0)	0.170
3.5 mm	6	(11)	2	(10)	4	(11)	0.810
4.0 mm	33	(58)	11	(55)	22	(59)	0.745
5.0 mm	17	(30)	6	(30)	11	(30)	0.983
Conduit index (mm/m ²)	18.0	(14.5–19.3)	18.1	(14.0–19.3)	17.7	(14.6–19.1)	0.842
On bypass	9	(16)	3	(15)	6	(16)	0.904
Incision type							
Sternotomy	21	(37)	9	(45)	12	(32)	0.421
Thoracotomy	36	(63)	11	(55)	25	(68)	0.421
Mortality	0	(0)	0	(0)	0	(0)	-
Time to repair (day)	569	±306	569	± 392	569	±254	0.995
Intervention for BTS before repair	5	(9)	0	(0)	5	(14)	0.085
Grown pulmonary valve	43	(75)	20	(100)	23	(62)	0.002
Valve-sparing repair	26	(46)	20	(100)	6	(16)	< 0.001

Data presented as median (interquartile range) or n (%) or mean (±SD). BTS, Blalock-Taussig shunt; ICR, intracardiac repair; LVEDV, left ventricular end-diastolic volume; PA, pulmonary artery; PVA, pulmonary valve annulus; VSD, ventricular septal defect; Qp/Qs, pulmonary blood flow/systemic blood flow ratio; RVOT, right ventricular outlet tract.

Characteristics	<i>P</i> -value	HR (95% CI); <i>P</i> -value
	(Univariate)	(Multivariate)
PVA(Z) > -4	0.218	
PVA(Z) >-5	0.047	8.91 (1.73–45.8); <i>P</i> =0.009 ^a
PVA(Z) > -6	0.199	
VSD index >30	0.070	6.09 (1.24–30.0); <i>P</i> =0.026 ^a
RVOT index > 10	0.075	4.36 (1.10–17.3); <i>P</i> =0.036 ^a

outlet tract; VSD, ventricular septal defect. Only variables with P < 0.10 in the univariate analysis are displayed and entered into the multivariate Cox regression model.

^a *P*<0.05 (multivariate)

315 FIGURE LEGENDS

- 316 Figure 1. Freedom from (A) all surgical reintervention, (B) PR-related reintervention, (C) RVOTS-
- 317 related reintervention, and (D) moderate or greater PR.
- 318 Figure 2. Transition of PVA (Z) in the staged repair patients stratified by ICR type. PVA(Z) of patients
- 319 who underwent (A) VSR and (B) TAP were plotted.