1	Masaomi Yamane ¹ and Shinichi Toyooka ¹
2	Role of surgery in a novel multimodal therapeutic approach towards complete cure of advanced
3	lung cancer: current and future prospects
4	
5	1 Departments of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama
6	University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
7	
8	Corresponding author: Masaomi Yamane, MD, PhD, Associate Professor
9	General Thoracic Surgery and Breast and Endocrinological Surgery,
10	Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences,
11	2-5-1, Shikata-cho, Okayama City Kita-ku, Okayama 700-8558, JAPAN
12	
13	
14	Email: <u>yamane-m@cc.okayama-u.ac.jp</u>
15	
16	Article type: Review Article
17	
18	Keywords: lung cancer, perioperative therapy, surgery

2 3		
4 5		
6 7 8	19	Abstract
9 10 11	20	Non-small cell lung cancer (NSCLC), particularly locally advanced or nodal spread disease with a poor
12 13	21	prognosis, is considered to be potentially curable by multimodal therapy in a subset of patients.
14 15 16	22	Guidelines recommend perioperative chemotherapy with platinum-based regimens, with or without
17 18 19	23	radiotherapy, as the standard treatment modality for high-risk resectable NSCLC. Although the classical
20 21 22	24	regimens of adjuvant chemotherapy have been platinum-based doublet or oral agents such as
23 24 25	25	tegafur/uracil, in recent decades, some molecular targeted therapeutic agents and immune checkpoint
26 27 28	26	inhibitors have been developed with an expected favorable effect. Recent trials of perioperative therapy
29 30 31	27	using these agents have shown favorable anticancer efficacy for resectable NSCLC with an acceptable
32 33 34	28	adverse events profile.
35 36 37	29	The ideal timing of perioperative therapy administration, before or after surgery, is still controversial.
38 39 40	30	Because some speculation and concepts have arisen from basic research, several trials are ongoing to
41 42 43	31	clarify the efficacy of newly developed agents in the adjuvant or neoadjuvant setting. This review
44 45 46	32	discusses the role of surgery in the new era and analyzes when and which optimal perioperative
47 48 49	33	multimodal therapy including chemotherapy, radiotherapy, molecular-targeted therapy, and
50 51 52	34	immunotherapy should be administered for resectable or potentially resectable NSCLC to possibly
53 54 55	35	provide complete cure.
56 57 58	36	

37	
38	Introduction
39	
40	In the field of thoracic oncology, recent clinical trials on multimodal therapy combined with newly
41	developed agents, including molecular targeted therapy and immunotherapy, have shown a high rate of
42	pathological response, implying the possibility of complete cure in advanced non-small cell lung cancer
43	(NSCLC) [1-3]. Locally advanced disease is associated with the possibility of micrometastases to distant
44	sites, which is often the cause of early disease recurrence, and the rationale for the administration of
45	systemic therapy, typically resulting in a poor outcome. In contrast, among them, patients with so-called
46	oligometastasis are included [4, 5]. Precision medicine in the form of optimal multimodal therapy,
47	combining radiation and systemic therapy, with optimal timing of surgical resection may help achieve
48	complete cure in some of these patients.
49	Currently, the application of surgical excision is more beneficial in early-stage NSCLC; however, when
50	combined with multimodality therapy, complete cure can be achieved in advanced-stage NSCLC. Recent
51	guidelines from The Japan Lung Cancer Society for NSCLC have suggested trimodality therapy for
52	locally advanced resectable lesions [6]. Perioperative therapy has been added to surgical resection to
53	attain complete cure; currently, neoadjuvant therapy is also accepted worldwide as a standard therapy for
54	advanced NSCLC. In recent decades, as represented by epidermal growth factor receptor (EGFR) tyrosine

((Surgery Today))

kinase inhibitor (TKI), newly developed drugs for NSCLC with driver oncogenes such as EGFR, ALK (anaplastic lymphoma kinase), ROS-1 (reactive oxygen species-1), BRAF (v-raf murine sarcoma viral oncogene homolog B1), and tumor cell expression of PD-L1 (Programmed cell death ligand 1) have provided additional therapeutic options with evidence from clinical studies; for example, EGFR TKI [7-9]. Immune checkpoint inhibitors (ICIs), which have currently gained focus, will undoubtedly be added to the new multimodality regimens of perioperative treatment [1, 2, 10]. We herein provide an overview of the current and future treatment strategies involving perioperative therapy and the role of surgical PR resection in advanced lung cancer. Adjuvant therapy with platinum-based regimens Guidelines recommend additional treatment modalities including routine chemotherapy consisting of platinum-based doublet (PT/DC) for patients with stage III disease. In Japan, the Lung Cancer Guidelines 2019 Edition recommended cisplatin (CDDP)-combined chemotherapy as an adjuvant therapy post-complete resection of stage II/IIIA NSCLC (strength of recommendation: 1, evidence of Strength: A, agreement rate: 95%) [6]. This is based on the results of a meta-analysis by the NSCLC Collaborative Group in 1995 comparing the surgery alone group with the postoperative adjuvant chemotherapy group,, and it revealed that postoperative adjuvant chemotherapy with CDDP reduced the relative mortality risk

2
ر ۷
т 5
6
7
, 8
9
10
11
12
13
14
15
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
17
18
19
20
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
22
23
24
25
26
27
28
29
30
31
32 33
34 35
35
36 37 38
3/
38 39
40 41
42 43
45 44
44
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

73by 13% [11]. A meta-analysis of 8,447 cases from 34 clinical trials demonstrated that postoperative 74adjuvant chemotherapy showed a significant survival benefit for stage II/IIIA NSCLC after complete 75resection [12]. In terms of combining drugs with platinum agents, a randomized phase III study (JIPANG) 76 of PEM/CDDP vs. vinorelbine/CDDP for stage II-IIIA non-squamous NSCLC was conducted [13]. 77Although the JIPANG study failed to demonstrate the superiority of PEM/CDDP, this regimen showed 78better tolerability as adjuvant chemotherapy (Table 1). However, subgroup analysis in terms of EGFR 79mutation revealed that the disease free survival (DFS) in the VNR/CDDP group was superior to that in the PEM/CDDP group [13]. Regardless, PT/DC adjuvant therapy historically remains the recommended 80 81 option with surgical resection for a certain subset of patients with stage II-III NSCLC at present, and few 82 clinical phase III trials examining cisplatin-based perioperative therapy are being conducted after the Ziez 83 development of new drug regimens. 84 85 Adjuvant therapy with uracil and tegafur regimens 86 The combination of uracil and tegafur (a prodrug of 5FU) is used as an adjuvant therapy for relatively 87 early-stage NSCLC based on multiple positive phase III trials in Japan [14]. A meta-analysis of 2003

- patients also showed a significant improvement in survival at 5 and 7 years (77.2% to 81.8% and 69.5%
- to 76.5%, respectively, hazard ratio [HR]: 0.74, and 95% confidence interval [CI]: 0.61 to 0.88, p=0.001)
- 90 [15]. An adjuvant study was conducted in patients with stage IB-IIIA disease after complete resection of

((Surgery Today))

3
4
5
6
0 7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
51
55
56
57
58
59

60

91 NSCLC by a simple direct comparison between UFT and carboplatin doublets to assess whether there 92was a difference between the two (SLCG0401) (Table 1) [16]. Overall survival (OS) and DFS of UFT vs. 93 carboplatin doublets were as follows: OS at 5 years: 70% versus 73% and RFS: 56% versus 57%, 94 respectively. Carboplatin-based adjuvant therapy did not improve survival when compared with UFT; 95 however, toxicity was milder in the UFT arm than in the carboplatin arm [16], suggesting that adjuvant 96 UFT with the two-year oral treatment after surgery is a potential optional treatment for stage IB-IIIA 97 NSCLC. More recent studies in this field have explored the use of S-1, an oral agent composed of tegafur mixed 98 99 with the fluorouracil metabolism inhibitors gimeracil and oteracil, which was expected to have higher 100effectiveness than UFT. We previously conducted a randomized feasibility study (SLCG 0701) to 101 confirm the milder toxicity of S-1 (80-120 mg/body/day) as an adjuvant therapy (consisting of either the 1024-week S-1 administration followed by a 2-week rest, or the 2-week administration and a 1-week rest) for 103NSCLC patients with stage IA (tumor diameter, 2-3 cm) [17]. Additionally, a randomized phase III trial 104(JCOG0707, UMIN000015732) evaluated the efficacy of S-1 and compared it with UFT adjuvant therapy 105for patients with stage I NSCLC. However, in the 963 patients enrolled in this study, S-1 adjuvant therapy 106was not superior to UFT therapy (5-year OS in UFT versus S-1 group; 88.8% versus 89.7%)[18]. A 107 recent study (SLCG 1001, UMIN 000005041) for relatively advanced NSCLC (stage II-IIIA) showed the 108 feasibility of adjuvant chemotherapy with S-1 plus carboplatin followed by 2 weeks rest and 1-year S-1

((Surgery Today))

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1

109 maintenance with a 2-year OS of 85.1% [19]. This regimen had modified the LETS study showing lower 110 toxicity and higher dose intensity than the conventional paclitaxel plus carboplatin [20]. An ongoing 111 phase III trial, LOGIK-1702, conducted by another group in Japan examined S-1 versus cisplatin plus 112vinorelbine for stage IB-IIIA NSCLC after complete resection in an adjuvant setting (Table 1). The 113primary endpoint was 2-year relapse-free survival, while the secondary endpoints were quality of adjusted 114life years as well as 5-year OS, 2-year OS, and rate of adverse events. Recent studies thus appear to be 115trying to avoid the relatively high toxicity of traditional platinum doublet regimens by evaluating new 116regimens containing S-1. 117Adjuvant therapy with newly developed agents, TKIs and ICIs 118119 In the past decade, a promising therapy has been developed for advanced NSCLC patients with driver 120 mutations in the form of EGFR-targeted drugs like EGFR-TKIs [7]. However, to date, clinical trials in an 121adjuvant setting comprising EGFR-targeted agents have failed to show obvious benefits in NSCLC 122patients after surgical resection [21-23]. In Japan, a randomized phase III trial of adjuvant gefitinib vs. 123placebo (PBO) was conducted in patients with completely resected stage IB-IIIA NSCLC, regardless of 124the EGFR gene status [21]. This trial, which was the first to investigate the usefulness of EGFR-TKIs as 125an adjuvant therapy, was suspended after enrollment of only 38 patients (initially expected to recruit 670

126 patients) because 23 of the 38 patients were excluded from the study due to several reasons including

((Surgery Today))

2
5
4
5
6
7
8
0
9
10
11
12
13
14
15
16
17
17
18
19
20
21
3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 6 7 8 9 10 11 23 24 25 6 27 28 9 30 31 23 34 35 36 37 8 9 30 31 23 34 35 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 34 35 36 37 8 9 30 31 32 33 32 33 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37
23
24
27
25
26
27
28
29
30
31
37
JZ 22
22
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

127	retraction of informed consent and onset of adverse events. Therefore, the Japanese Guideline 2019
128	recommends that EGFR-TKI should not be used postoperatively regardless of the EGFR mutation status.
129	The randomized RADIANT trial (NCT00373425) of adjuvant erlotinib versus PBO for NSCLC with
130	EGFR expression confirmed by immunohistochemistry or FISH (fluorescence in situ hybridization) has
131	also been conducted (Table 1) [22]. Although adjuvant erlotinib did not significantly prolong DFS,
132	according to the subgroup analyses of 102 EGFR mutation-positive patients out of a total of 973 patients,
133	DFS favored erlotinib without significant differences (median DFS, 46.4 vs. 28.5 months; HR, 0.61; 95%
134	CI, 0.38 to 0.98; $P = 0.039$) [22]. Similarly, a phase III study (BR19, NCT00049543) failed to show OS
135	benefit from gefitinib in patients with completely resected tumor harboring EGFR mutation (only 15 of
136	359 patients, 4%), and patients with wild-type EGFR [23]. These results implied the importance of patient
137	selection in maintaining a balance between adverse events due to treatment and promising benefits of
138	targeted therapy according to the driver oncogenes.
139	The SELECT trial (NCT00567359) selected 100 patients with NSCLC harboring an EGFR gene mutation
140	and showed that the 2-year DFS by stage was 96% for patients with stage I, 78% for stage II, and 91% for
141	stage IIIA (Table 1) [24]. Although the median DFS and OS have not yet been reached, patients were
142	evaluated for the primary endpoint of 2-year DFS, which was 88% (95% CI, 80% to 93%) and was
143	significantly higher than the historical control of 76% (P = 0.0047). A recent randomized phase III
144	(ADJUVANT, NCT01405079) study of gefitinib versus vinorelbine plus cisplatin as an adjuvant

((Surgery Today))

2		
3		
4		
5		
6	145	treatment
7		
8		
9	146	[25]. In th
10		
11		
12	147	results der
13 14		
14		
	148	adverse ev
16 17		
18 19	149	difference
20		
20		
21	150	targeting 1
22		
23		
25	151	EGFR mu
26		
27		
28	152	immature
29		
30		
31	153	versus 53%
32		
33		
34	154	a 79% red
35		
36		
37	155	adjuvants
38		
39		
40	156	agent in a
41		
42		
43	157	mutation N
44		
45	150	A
46	158	Another c
47		
48	159	coordinate
49	109	coordinate
50		
51	160	Lung Can
52	100	Lung Can
53		
54	161	NCT02595
55	101	11010237.
56		
57	162	three inte
58	104	
59		
60		

5	treatment for stage II-IIIA (N1-N2) harboring EGFR-mutant NSCLC was conducted in China (Table 1)
6	[25]. In this study, 483 patients were screened as EGFR-mutant and 222 were randomized. Although the
7	results demonstrated a benefit from adjuvant gefitinib treatment because of increased DFS and reduced
8	adverse events, immature data due to relatively short follow-up periods have not yet shown a significant
9	difference in OS. In the ADAURA trial (NCT02511106) of adjuvant osimertinib, a third-generation TKI
50	targeting NSCLC with EGFR T790M mutation, globally 682 patients with IB-IIIA NSCLC harboring
51	EGFR mutations were randomized to the treatment or PBO arm (Table 1) [26]. Although OS was
52	immature (4% maturity) with 29/682 deaths at data cutoff, two-year DFS rate was 89% with osimertinib
63	versus 53% with PBO (HR: 0.21, 95% CI: 0.16, 0.28; p<0.0001) [26]. Mature data were reported to reach
64	a 79% reduction in the risk of disease recurrence or death (J Clin Oncol 2020; 38(suppl):LBA5). Thus,
5	adjuvants that are used for molecular targeted therapy, such as osimertinib, could be the first targeted
66	agent in a global trial to be an effective new treatment strategy for patients with stage IB/II/IIIA EGFR
57	mutation NSCLC after complete surgical resection.
8	Another clinical trial platform of NSCLC with known EGFR mutations or ALK translocations was
69	coordinated by the United States cooperative group system under the name ALCHEMIST (Adjuvant
60	Lung Cancer Enrichment Marker Identification and Sequencing Trial, NCT02193282, NCT02201992,
51	NCT02595944, and NCT04267848) (Table 1). It planned to enroll 8,300 patients and currently consists of

((Surgery Today))

(pembrolizumab/PT-DC, nivolumab, erlotinib, and crizotinib), according to the driver genes and PD-L status. Enrolled patients with completely resected IB-IIIA NSCLC were randomly assigned to the appropriate targeted therapy or PBO group after resection of the tumor and appropriate adjuvant chemotherapy, with the aim of identifying whether TKI treatment provides an overall survival benefit in the adjuvant setting. Neoadjuvant therapy with platinum-based chemotherapy and radiotherapy For potentially resectable N2 disease, a randomized study (RTOG, R9309) reported apparent favorable prognosis in patients treated with induction chemotherapy followed by surgery compared to those treated with upfront surgery [27]. Well-documented evidence exists for the enhanced cytotoxicity of platinum-based chemotherapy with the combination of radiotherapy leading to enhance radiosensitivity for NSCLC [28]. These direct and potential oncological effects of radiation on cancer cells suggest that neoadjuvant therapy including radiotherapy might be superior to chemotherapy alone before complete surgical resection in stage III NSCLC, particular in patients who acquired down staging after the induction therapy [29, 30]. Pless et al. conducted a phase III randomized trial for IIIA-N2 NSCLC patients treated with induction chemoradiotherapy, which revealed the superiority of the trimodality therapy [31]. There may be a possible advantage of induction chemoradiotherapy followed by surgical resection compared with chemotherapy followed by surgery in a select population of patients with N2

1
2 3
3 4
5 6
0 7
8
9 10
11
12 13
14
15 16
17
18 19
20
21 22
23
24 25
26
27 28
29
30 31
32
33 34
35
36 37
38
39 40
41
42 43
44
45 46
47
48 49
50
51 52
53
54 55
55 56
57
58 59
<u> </u>

181	disease.
182	In a retrospective study of 58 patients who underwent bronchoplasty for primary lung cancer, 20 patients
183	underwent preoperative chemoradiotherapy, and the postoperative complications were similar in both
184	groups (with and without chemoradiotherapy) [32]. Additionally, induction chemoradiotherapy for locally
185	advanced NSCLC might possibly contribute to securing a clear surgical margin [33]. However, the early
186	and late postoperative complications such as radiation pneumonitis and pulmonary aspergillosis should
187	also be considered [34]. Moreover, Soh and colleagues reported that 84% of patients who underwent
188	induction chemoradiotherapy and subsequent surgery developed chronic lung injury in one year, after
189	which up to 34% of patients had progressively devastated residual lung [35].
190	Apart from the retrospective study, we reported that induction concurrent chemoradiotherapy with
191	docetaxel and cisplatin for NSCLC with pathologically proven cN2/3 showed favorable prognosis (7-year
192	OS rate of 63.6% after median follow-up of 8.7 years) [36]. The ESPATUE study demonstrated similar
193	outcomes of PFS and OS between the chemotherapy plus radiation boost group and chemoradiation
194	followed by the surgery group in resectable IIIA and IIIB NSCLC patients [37]. Although the survival
195	curve indicated that the perioperative death rate was relatively high in the early phase after surgery and
196	the data were not mature enough to reach statistical significance, the five-year OS was more favorable in
197	the surgery group than in the chemoradiation group (OS rates of 44% for the surgery group and 40% for
198	the radiation group). Long-term pooled data analysis from SAKK trials of phase II and III (16/96, 16/00,

((Surgery Today))

כ ⊿	
4 5	
6 7	
7 8	
o 9	
10 11	
12 13	
13 14	
14	
16	
17 18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

199 and 16/01) was conducted for a total 368 patients with operable stage III NSCLC treated with bimodality 200(chemotherapy and surgery) or trimodality (bimodality plus radiotherapy) [38]. Trimodality did not 201improve OS, and the role of additional preoperative radiotherapy remains controversial, although the 20210-year survival rate of this study reached almost 30%. 203Nowadays, although the Japanese Guideline does not recommend neoadjuvant therapy for stage I-II 204NSCLC, they do suggest neoadjuvant chemotherapy with platinum-based regimens and radiotherapy for 205cIIIA NSCLC. In addition, the necessity and the regimen used for adjuvant therapy after neoadjuvant and 206 surgery are issues of interest. Detailed analyses of biomolecules, such as by next-generation sequencing 207(NGS) of the resected specimen, will provide details of the effects of both optimal adjuvant therapy and 208induction therapy [39].

209

210 Neoadjuvant therapy with newly developed agents, TKIs and ICIs

Targeted therapeutic drugs have particularly been developed as adjuvant candidate agents for patients with resectable but high-risk NSCLC harboring driver oncogenes and have a promising effect on the reduction of cancer cells before surgery. After the confirmation of the effectiveness of osimertinib (ADAURA) as an adjuvant therapy [3], the ongoing randomized phase III NeoADUARA trial (NCT04351555) has been investigating the neoadjuvant therapeutic effects of osimertinib with or without chemotherapy over chemotherapy alone, for II-IIIB NSCLC with N2 disease harboring an *EGFR*

2
Δ
т 5
4 5 6 7 8 9 10 11 12
7
/ 8
0
9
10
11
12
13
14
15
10
1/
10
עו 20
20
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 8 9 30 31 32
22
23 24
24
25
20
2/
28
29
30
31
33
34
34 35 36
36
37 38 39
38
40
41
42
43
44
45
46 47
48
49
50 51
53
54
55
56 57
57 58
59

1

217mutation (Table 2). Two phase II trials investigating the effects of the TKIs afatinib (NCT04201756) and 218icotinib (NCT02820116) as induction therapy are ongoing for stage III patients harboring EGFR 219mutation. Estimated completion dates of these studies are 2029, 2025, and 2023, respectively (Table 2). 220Additionally, a ongoing phase III study of CANOPY-A (NCT03447769) and a phase II study of 221CANOPY-B (NCT03968419) are investigating the additional effect of canakinumab, an anti-IL-1ß 222monoclonal antibody treatment agent used for several inflammatory diseases, as a neoadjuvant therapy 223added to ICI for IB-IIIA NSCLC (Table 2). 224Recently, the most hopeful additional drugs for multimodal therapy in the neoadjuvant setting are the 225newly developed immunotherapeutic drugs, and several clinical studies on neoadjuvant immunotherapies 226are ongoing (Table 2) [1, 2, 40-46]. Although anti-programmed death 1 (PD-1) antibodies have 227revolutionized the treatment of metastatic and advanced NSCLC, their application in the neoadjuvant 228setting has not been well established. Results from a pilot clinical study reported the safety and feasibility 229of a neoadjuvant PD-1 blockade [2]. Because of these antitumor effects of immunotherapy, 230pseudo-progression should be considered after immunotherapy, even though radiographic evaluation does 231not show tumor shrinkage probably due to invasion of the tumor by immune cells such as CD8-positive T 232cells [46]. For this reason, iRECIST (guidelines for response criteria for use in trials testing 233immunotherapeutics) was released to evaluate the induction therapy including ICIs in 2017 [47]. That is, 234when immunotherapy is included in anticancer therapies, it is important for thoracic surgeons to know

((Surgery Today))

whether or not neoadjuvant treatment is effective, especially with regard to surgical indications for resectable lesions. Shu et al reported that the neoadjuvant atezolizumab plus carboplatin and nab-paclitaxel, followed by surgery, successfully achieved 80% of major pathologic response (MPR) (NCT02716038) [2]. Furthermore, in a pilot study of the neoadjuvant nivolumab (NCT02259621), tumor mutational burden was reported to be strongly related to the effectiveness of PD-1 blockade, resulting in high MPR and complete response (CR) [46]. An early intermediate report of the CheckMate 816 trial (NCT02998528) studying PT-DC/nivolumab plus ipilimumab neoadjuvant therapy showed a 45% MPR in 21 patients in the nivolumab arm, and there [ASCO P2.16-03. of patients 2019, is а plan to recruit а total DOI:https://doi.org/10.1016/j.jtho.2018.08.1478] (Table 2). Recent results from the NADIM trial (NCT 03081689) examining paclitaxel/carboplatin plus nivolumab for IIIA, N2 resectable NSCLC followed by surgery revealed that 41 out of the 46 planned recruited number of patients had been operated, and MPR and CR were 86% and 71%, respectively [DOI: 10.1200/JCO.2018.36.15 suppl.8521 Journal of Clinical Oncology 36, no. 15 suppl (May 20, 2018) 8521-8521.] (Table 2). However, the phase II PRINCEPS (NCT02994576) trial investigating the efficacy and safety of only single injection of the neoadjuvant atezolizumab followed by surgery in patients with IA-IIIA NSCLC revealed no MPR (ESMO Virtual Congress 2020, Abstract 1215O]. The negative results of neoadjuvant immunotherapy were also early reported in the IFCT-1601 IONESCO trial of neoadjuvant durvalumab

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
58 59	
74	

1

253(NCT03030131), which was stopped because of higher 90-day postoperative mortality (ESMO Virtual 254Congress 2020, Abstract 1214O). In this study, although the direct causes of mortality did not include 255adverse events of ICI itself and 41 patients received R0 resection, postoperative complication frequently 256occurred (resulting in 9% deaths) and 9 of 41 operated patients underwent pneumonectomies' (Table 2). 257Neoadjuvant therapy with QUADRI-modality therapy 258259Concurrent radiotherapy with ICIs can be considered to have a positive effect on tumor cell proliferation 260 and inflammation, which might also benefit the tumor antigens and attack the cancer cells under ICI 261administration [48, 49]. 262A phase I and II study of the Squat trial (WJOG12119L) is investigating the effect of durvalumab over 263neoadjuvant chemotherapy with CBDCA/PAC plus concurrent radiotherapy of 50 Gy for N2 IIIA 264NSCLC (Table 3). A new clinical trial of neoadjuvant chemoradiotherapy (S-1 and cisplatin with 66 Gy 265concurrent radiotherapy) plus durvalumab has also started for a particular tumor, so-called superior sulcus 266tumor (DEEP OCEAN, NCT04465968). SAKK16/18 (NCT04245514), an ongoing phase II trial, is 267investigating an optimal radiotherapy regimen (2 Gy X 20 days, or 5 Gy X 5 days, or 8 Gy X 3 days) for 268immune-modulatory chemoradiotherapy (Table 3). This quadrimodality therapy is to evaluate the efficacy 269and safety of chemotherapy with CDDP/DOC plus immunotherapy with durvalumab plus chemotherapy 270followed by surgery, and the study is expected to complete in 2025 (Table 3). Although these ongoing

((Surgery Today))

3 4		
5 6 7	271	trials on quadrimodality therapy are still in phase II, the next phase is about to start and the future
8 9 10	272	direction will be coming in the next decade.
11 12 13	273	Although low-dose radiation therapy (LDRT) as a neoadjuvant is the direct effect on the tumor weakened
14 15 16	274	as radiation therapy, LDRT is expected to enhance immunotherapy and exert an abscopal effect;
17 18 19	275	furthermore, additional adjuvant treatment can be considered in pathologically defined high-risk patients.
20 21 22	276	In the future, it is expected that biological status such as genomic analysis including mutational burden
23 24 25	277	will progress and genomic medicine will be further developed. Among them, surgical therapy plays a
26 27 28	278	central role, and immunotherapy, conventional PT-DC, and RT may all be used as adjuvant, neoadjuvant,
29 30 31	279	or both.
32 33 34	280	or both.
35 36 37	281	SALVAGE surgery and surgical treatment for oligometastatic disease or recurrence
38 39 40	282	NSCLC with an oligometastatic lesion represents a new category of patients in whom multimodal therapy
41 42 43	283	may improve the prognosis. A retrospective study from Italy, investigating the role of surgery in 57
44 45 46	284	patients with oligometastatic NSCLC was reported [4]. Casiraghi et al. reported that surgical resection
47 48 49	285	after adjuvant chemotherapy was conducted in 57 patients with oligometastasis stage IV NSCLC, and OS
50 51 52	286	rates at two, three, and five years were 57%, 50%, and 30%, respectively [4]. In our retrospective study of
53 54 55	287	48 cases with recurrence after multimodal treatment, there were 18 cases of oligometastasis [5]. Of the 20
56 57 58 59 60	288	patients who underwent local treatment aiming at a cure, 16 patients had oligometastasis, two had

((Surgery Today))

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

289	multiple brain metastases, one had supraclavicular lymph node metastasis, and one had both brain and
290	adrenal metastases. The 2-year survival rate was 62%. Depending on the individual patient, surgical
291	resection should be considered, with or without systemic therapy, particularly for oligometastasis [5]. For
292	these particular situations, to aim for complete cure, the Maastricht University group is currently
293	conducting a prospective multicenter phase II CHESS study to show the neoadjuvant effect of
294	durvalumab, carboplatin/paclitaxel, plus radiotherapy using stereotactic body radiation therapy followed
295	by surgical resection or chemoradiation as definitive local treatment for stage IV NSCLC
296	(NCT03965468). This study is planned to be completed in 2021 (Table 3).
297	
298	Summary and Future Direction
298 299	Summary and Future Direction Although advanced NSCLC is considered to be incurable with current therapeutic options, it is clear that
299	Although advanced NSCLC is considered to be incurable with current therapeutic options, it is clear that
299 300	Although advanced NSCLC is considered to be incurable with current therapeutic options, it is clear that there has been measurable progress over the past decades. It is remarkable that, only 20 years ago, there
299 300 301	Although advanced NSCLC is considered to be incurable with current therapeutic options, it is clear that there has been measurable progress over the past decades. It is remarkable that, only 20 years ago, there was still discussion regarding the validity of treatment for any patient with advanced NSCLC, whereas,
299 300 301 302	Although advanced NSCLC is considered to be incurable with current therapeutic options, it is clear that there has been measurable progress over the past decades. It is remarkable that, only 20 years ago, there was still discussion regarding the validity of treatment for any patient with advanced NSCLC, whereas, today, we have unequivocally established the value of treatment for essentially all fit patients with
299 300 301 302 303	Although advanced NSCLC is considered to be incurable with current therapeutic options, it is clear that there has been measurable progress over the past decades. It is remarkable that, only 20 years ago, there was still discussion regarding the validity of treatment for any patient with advanced NSCLC, whereas, today, we have unequivocally established the value of treatment for essentially all fit patients with advanced disease, including second- and third-line treatments. Nowadays, adjuvant treatment can be

((Surgery Today))

3
4
5
6
7
/
8
9
10
11
12
13
14
15
15
16 17
17
18
19
20
21
21 22
22
∠⊃ ⊃4
24
25
26 27
27
28
29
30
31 32
32
33
34
35
36
36 37
38
39
40
41
42
43
44
45
46
47
48
40 49
50
51
52
53
54
55
55 56
50 57
58
59

307	examples, EGFR mutation frequencies are well known to differ among the ethnic groups. [50, 51].
308	Multiple other biomarkers with prognostic utility are under investigation, for example, next generation
309	sequencing is being used more commonly for analyzing many interesting gene signature profiles [52, 53],
310	but prospective randomized data to verify their predictive capacity are still lacking. With regard to
311	biological aspects, the neoadjuvant setting may be favored because it maintains the tumor environment,
312	including the exposure of oncoantigens to dendritic cells to encourage antigen presentation to initiate an
313	immune response from T cells, before the surgical disruption of immune interaction and a boost of the
314	abscopal effect with concurrent radiotherapy.
315	In recent years, experience in advanced surgical procedures such as complicated bronchoplasty, extended
316	surgical resection with great vessels and vertebrae, and particularly, autologous lung transplantation has
317	been accumulated [33], and surgical techniques and perioperative management have thus advanced.
318	Furthermore, not only drug-related adverse events but also specific complications of multimodal therapy
319	should be considered for short- and long-term periods after surgery, with particular attention to the high
320	rate of chronic lung injury in the cancer survivors after chemoradiotherapy and surgical resection [34, 35].
321	Most ongoing studies discussed in this review will be completed in the next decade and the analyzed data
322	might be completed and reported by 2030. With the advent of newly developed drugs, especially ICIs, the
323	role of thoracic surgeons has become even more important in the process of deciding a strategy for
324	complete cure in patients with advanced lung cancer. The novel mechanism of action of these drugs, with

3	
4	
5	
5	
6 7	
7 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
45 44	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

325immune and T-cell activation, is postulated to lead to unusual patterns of responses that resemble tumor 326 flare reaction but are more pronounced and more frequent than the previously described responses. In the 327 early melanoma trials on immune-based therapeutics, investigators described a unique response pattern 328 called pseudo-progression. Consequently, we will have new evidence regarding appropriate perioperative treatment approaches. ICIs 329 330 are undoubtedly key agents in the neoadjuvant setting with other modalities including radiotherapy such 331as LDRT and surgery. Moreover, depending on the presence of oncogene drivers, TKIs will have a main 332 role as precision medicine in addition to ICIs. Standard cancer-killing drug regimen of PD/CT may still 333 continue to be an essential chemotherapy agent. Therefore, after reduction of tumor cells as much as 334possible by multimodal therapy including newly developed induction therapy and complete R0 surgical 335 resection, sometimes even involving a complicated extended surgical procedure, advanced cancer could 336 be completely cured. Conversely, negative results have also been reported from neoadjuvant 337immunotherapy studies, and thoracic surgeons should carefully analyze these study designs based on 338 what message lies behind them. Multimodality therapies, including extended surgery or minimal invasive 339 treatments, need to be planned such that there exists a balance between the risks and benefits of personalized therapy and molecular biomarker-based precise medicine. Thoracic oncology surgeons are 340 341in the best position to judge tumor operability including salvage surgery and resectability, not only now 342but also after neoadjuvant effectiveness of advanced NSCLC, in an era when systemic cancer therapies

1		
2		
3		
4		
5		
6	343	are rapidly developing.
7		
8		
9	344	
10	-	
11		
12	345	Conclusion
13		
14		
15	346	On the basis of accurate analyses of the resected specimen, the efficacy of neoadjuvant therapy could be
16		
17		
18	347	carefully evaluated by responses such as nodal down staging, tumor viability rate, newly observed
19		
20		
21	348	oncogenes, and estimates of the possibility of existence of microtumors. Thus, with the development of
22		
23		
24	349	not only trimodality but also quadrimodality and multimodality therapies, and with the optimal timing of
25		
26		
27	350	surgical complete resection, patients with advanced NSCLC have a chance to completely overcome the
28		
29		
30	351	disease in the new era.
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49 50		
51 52		
52 53		
54 55		
55 56		
56		
57		
58 50		
59		
60		

352 Funding Information

353 The authors declare no funding associated with this manuscript.

for per peries

2 3			
4 5			
6 7	355		
8 9 10	356	Refe	prences
11 12 13	357		
14 15 16	358	1.	Kris MG, Faivre-Finn C, Kordbacheh T, Chaft J, Luo J, Tsao A, et al. Making checkpoint inhibitors
17 18 19	359		part of treatment of patients with locally advanced lung cancers: the time is now. Am Soc Clin
20 21 22	360		Oncol Educ Book. 2020;40: 1-12.
23			
24 25	361	2.	Shu CA, Gainor JF, Awad MM, Chiuzan C, Grigg CM, Pabani A, et al. Neoadjuvant atezolizumab
26 27 28	362		and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre,
29 30 31	363		single-arm, phase 2 trial. Lancet Oncol. 2020;21: 786-95.
32 33 34	364	3.	Wu YL, Herbst RS, Mann H, Rukazenkov Y, Marotti M, Tsuboi M. ADAURA: Phase III,
35 36 37	365		double-blind, randomized study of osimertinib versus PBO in EGFR mutation-positive early-stage
38 39 40	366		NSCLC after complete surgical resection. Clin Lung Cancer. 2018;19: e533-e536.
41 42 43	367	4.	Casiraghi M, Bertolaccini L, Sedda G, Petrella F, Galetta D, Guarize J, et al. Lung cancer surgery in
44 45 46	368		oligometastatic patients: outcome and survival. Eur J Cardiothorac Surg. 2020;57: 1173-80.
47 48 49	369	5.	Suzawa K, Soh J, Takahashi Y, Sato H, Shien K, Yamamoto H, et al. Clinical outcome of patients
50 51 52	370		with recurrent non-small cell lung cancer after trimodality therapy. Surg Today. 2019;49: 601-9
53 54 55	371	6.	The Japan Lung Cancer Society, Guideline 2019 Edition Committee. Lung Cancer Practice
56 57 58 59	372		Guidelines 2019 Edition. https://www.haigan.gr.jp/guideline/2019/1/2/190102040100.html
60			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
1/	
18	
19 20	
20	
21 22 23	
22 22	
25 24	
24 25	
25 26	
20	
28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 59	
60	

373	7.	Baselga J, Albanell J. Targeting epidermal growth factor receptor in lung cancer. Curr Oncol Rep.
374		2002;4: 317-24.
375	8.	Shea M, Costa DB, Rangachari D. Management of advanced non-small cell lung cancers with
376		known mutations or rearrangements: latest evidence and treatment approaches. Ther Adv Respir
377		Dis. 2016;10: 113-29.
378	9.	Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity,
379		and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366: 2443-54.
380	10.	Broderick SR. Adjuvant and neoadjuvant immunotherapy in non-small cell lung cancer. Thorac
381		Surg Clin. 2020;30: 215-20.
382	11.	Stewart L A; Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell
383		lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical
384		trials. BMJ. 1995;311:899-909.
385	12.	NSCLC Meta-analyses Collaborative Group. Adjuvant chemotherapy, with or without
386		postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual
387		patient data. Lancet. 2010;375: 1267-77.
388	13.	Kenmotsu H, Yamamoto N, Yamanaka T, Yoshiya K, Takahashi T, Ueno T, et al. Randomized
389		phase III study of pemetrexed plus cisplatin versus vinorelbine plus cisplatin for completely resected

- 390 stage II to IIIA nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020;38:2187-96.
 - 23

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

391	14	Kato H, Ichinose Y, Ohta M, Hata E, Tsubota N, Tada H, et al. A randomized trial of adjuvant
591	14.	Kato H, Tehmose T, Onta M, Hata E, Tsubota N, Tada H, et al. A fandomized that of adjuvant
392		chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med. 2004;350:
393		1713-21.
394	15.	Hamada C, Tanaka F, Ohta M, Fujimura S, Kodama K, Imaizumi M, et al. Meta-analysis of
395		postoperative adjuvant chemotherapy with tegafur-uracil in non-small-cell lung cancer. J Clin
396		Oncol. 2005;23: 4999-5006.
397	16.	Toyooka S, Okumura N, Nakamura H, Nakata M, Yamashita M, Tada H, Kajiwara S, Watanabe N,
398		Okada M, Sakamoto J, Aoe M, Soh J, Miyoshi S, Hotta K, Matsuo K, Date H. A Multicenter
399		Randomized Controlled Study of Paclitaxel plus Carboplatin versus Oral Uracil-Tegafur as the
400		Adjuvant Chemotherapy in Resected Non-Small Cell Lung Cancer. J Thorac Oncol. 2018
401		May;13(5):699-706. doi: 10.1016/j.jtho.2018.02.015.
402	17.	Soh J, Okumura N, Nakata M, Nakamura H, Fukuda M, Kataoka M, et al. Randomized feasibility
403		study of S-1 for adjuvant chemotherapy in completely resected stage IA non-small-cell lung cancer:
404		results of the Setouchi Lung Cancer Group Study 0701. Jpn J Clin Oncol. 2016;46:741-7.
405	18.	H Kunitoh, M Tsuboi, M Wakabayashi, M Okada A, K Suzuki, S Watanabe, et al. A phase III study
406		of adjuvant chemotherapy in patients with completely resected, node-negative non-small cell lung
407		cancer (JCOG 0707). JTCVS Open. 2020; https://doi.org/10.1016/j.xjon.2020.08.009
408	19.	Okumura N, Sonobe M, Okabe K, Nakamura H, Kataoka M, Yamashita M, et al. Feasibility of

409		adjuvant chemotherapy with S-1 plus carboplatin followed by single-agent maintenance therapy
410		with S-1 for completely resected non-small-cell lung cancer: results of the Setouchi Lung Cancer
411		Group Study 1001. Int J Clin Oncol. 2017;22: 274-82.
412	20.	Okamoto I, Yoshioka H, Morita S et al (2010) Phase III trial comparing oral S-1 plus carboplatin
413		with paclitaxel plus carboplatin in chemotherapy-naïve patients with advanced non-small cell lung
414		cancer: results of a West Japan Oncology Group study. J Clin Oncol 28:5240-5246
415	21.	Tsuboi M, Kato H, Nagai K, Tsuchiya R, Wada H, Tada H, et al. Gefitinib in the adjuvant setting:
416		safety results from a phase III study in patients with completely resected non-small cell lung cancer.
417		Anticancer Drugs. 2005;16: 1123-8.
418	22.	Kelly K, Altorki NK, Eberhardt WE, O'Brien ME, Spigel DR, Crinò L, et al. Adjuvant erlotinib
419		versus PBO in patients with stage IB-IIIA non-small-cell lung cancer (RADIANT): a randomized,
420		double-blind, phase III trial. J Clin Oncol. 2015 Dec 1;33(34):4007-14.
421	23.	Goss GD, O'Callaghan C, Lorimer I, Tsao MS, Masters GA, Jett J, Edelman MJ, et al. Gefitinib
422		versus PBO in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19
423		study. J Clin Oncol. 2013;31: 3320-6.
424	24.	Pennell NA, Neal JW, Chaft JE, Azzoli CG, Jänne PA, Govindan R, et al. SELECT: A phase II trial
425		of adjuvant erlotinib in patients with resected epidermal growth factor receptor-mutant non-
426		small-cell lung cancer version 2. J Clin Oncol. 2019;37: 97-104.

((Surgery Today))

2 3			
4			
5 6 7 8	427	25.	Zhong WZ, Wang Q, Mao WM, Xu ST, Wu L, Shen Y, et al. Gefitinib versus vinorelbine plus
9 10 11	428		cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC
12 13 14	429		(ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 2018;19:
15 16 17	430		139-48.
18 19 20	431	26.	Wu YL, Herbst RS, Mann H, Rukazenkov Y, Marotti M, Tsuboi M. ADAURA: Phase III,
21 22 23	432		double-blind, randomized study of osimertinib versus PBO in EGFR mutation-positive early-stage
24 25 26	433		NSCLC after complete surgical resection. Clin Lung Cancer. 2018;19: e533-e536.
27 28 29	434	27.	Albain KS, Swann RS, Rusch VW, Turrisi AT 3rd, Shepherd FA, Smith C, et al. Radiotherapy plus
30 31 32	435		chemotherapy with or without surgical resection for stage III non-small-cell lung cancer. Lancet.
33 34 35	436		2009;374: 379-86. doi: 10.1016/S0140-6736(09)60737-6.
36 37 38	437	28.	Sears CR, Cooney SA, Chin-Sinex H, Mendonca MS, Turchi JJ. DNA damage response (DDR)
39 40 41	438		pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair
42 43 44	439		(Amst). 2016 Apr;40:35-46. doi: 10.1016/j.dnarep.2016.02.004.
45 46 47	440	29.	Toyooka S, Kiura K, Shien K, Katsui K, Hotta K, Kanazawa S, et al. Induction chemoradiotherapy
48 49 50	441		is superior to induction chemotherapy for the survival of non-small-cell lung cancer patients with
51 52 53	442		pathological mediastinal lymph node metastasis. Interact Cardiovasc Thorac Surg. 2012;15: 954-60.
54 55 56	443	30.	Katakami N, Tada H, Mitsudomi T, Kudoh S, Senba H, Matsui K, Saka H, Kurata T, Nishimura Y,
57 58 59 60	444		Fukuoka M. A phase 3 study of induction treatment with concurrent chemoradiotherapy versus

445		chemotherapy before surgery in patients with pathologically confirmed N2 stage IIIA nonsmall cell
446		lung cancer (WJTOG9903). Cancer. 2012 Dec 15;118(24):6126-35. doi: 10.1002/cncr.26689.
447	31.	Pless M, Stupp R, Ris HB, Stahel RA, Weder W, Thierstein S, et al. Induction chemoradiation in
448		stage IIIA/N2 non-small-cell lung cancer: a phase 3 randomised trial. Lancet. 2015;386: 1049-56.
449	32.	Toyooka S, Soh J, Yamamoto H, Yamane M, Hattori S, Shien K, Miyoshi K, et al. Extended sleeve
450		lobectomy after induction chemoradiotherapy for non-small cell lung cancer. Surg Today. 2015;45:
451		1121-6.
452	33.	Sato H, Toyooka S, Soh J, Hotta K, Katsui K, Shien K, et al. Advantage of induction
102	55.	
453		chemoradiotherapy for lung cancer in securing cancer-free bronchial margin. Ann Thorac Surg.
454		2017;104: 971-8.
455	34.	Sugimoto S, Soh J, Suzawa K, Miyoshi K, Otani S, Yamamoto H, et al. Pulmonary aspergillosis as a
456		late complication after surgery for locally advanced non-small cell lung cancer treated with
457		induction chemoradiotherapy. Surg Today. 2020;50(8): 863-871.
458	35.	Soh J, Sugimoto S, Namba K, Miura A, Shiotani T, Yamamoto H, et al. Chronic lung injury after
100	55.	Son V, Sugimoto S, Fumou F, Finana F, Sinotani F, Fumanoto F, et al. Onionio fang injury arter
459		trimodality therapy for locally advanced non-small cell lung cancer. Ann Thorac Surg. 2020, in
460		press
461	36.	Torigoe H, Soh J, Tomida S, Namba K, Sato H, Katsui K, et al. Induction chemoradiotherapy using
462		docetaxel and cisplatin with definitive-dose radiation followed by surgery for locally advanced

 $\mathbf{27}$

1			
2 3			
4			
5			
6	463		non-small cell lung cancer. J Thorac Dis. 2017;9: 3076-86.
7	100		
8 9			
10	464	37.	Eberhardt WE, Pöttgen C, Gauler TC, Friedel G, Veit S, Heinrich V, et al. Phase III study of surgery
11			
12	465		versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and
13 14			
15			
16	466		selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent
17			
18	467		chemoradiotherapy (ESPATUE). J Clin Oncol. 2015;33: 4194-201.
19	101		enemorationiciapy (ESTATOE). 5 enii Oneon. 2015,55. 4194-201.
20			
21 22	468	38.	Früh M, Betticher DC, Stupp R, Xyrafas A, Peters S, Ris HB, et al. ; Swiss Group for Clinical
23			
24	400		Cancer Descenth (CARK) Mathing del Trectment in Orenehle Steve III NSCI C. A Desled Anchoir
25	469		Cancer Research (SAKK). Multimodal Treatment in Operable Stage III NSCLC: A Pooled Analysis
26			
27 29	470		on Long-Term Results of Three SAKK trials (SAKK 16/96, 16/00, and 16/01). J Thorac Oncol.
28 29			
30	. – .		
31	471		2019 Jan;14(1):115-123. doi: 10.1016/j.jtho.2018.09.011.
32			
33	472	39.	Dall'Olio FG, Conci N, Rossi G, Fiorentino M, De Giglio A, Grilli G, et al. Comparison of
34 25			
35 36			
37	473		sequential testing and next generation sequencing in advanced lung adenocarcinoma patients - A
38			
39	474		single centre experience. Lung Cancer. 2020 Sep 3;149:5-9. doi: 10.1016/j.lungcan.2020.08.008.
40	1/1		single centre experience. Lung cuncer. 2020 Sep 5,147.5 9. doi: 10.1010/j.lungcun.2020.00.000.
41 42			
42 43	475		Online ahead of print.
44			
45	476	40	Vong CL Macharmy E. Marma ND, Wong V. Darmy ME, Tong D, at al. Surginal outcomes after
46	470	40.	Yang CJ, McSherry F, Mayne NR, Wang X, Berry MF, Tong B, et al. Surgical outcomes after
47			
48 40	477		neoadjuvant chemotherapy and ipilimumab for non-small cell lung cancer. Ann Thorac Surg.
49 50			
51	450		2010 105 024 0
52	478		2018;105: 924-9.
53			
54	479	41.	Eichhorn F, Klotz LV, Bischoff H, Thomas M, Lasitschka F, Winter H, et al. Neoadjuvant
55 56			
50 57			
58	480		anti-programmed Death-1 immunotherapy by Pembrolizumab in resectable nodal positive stage
59			
60			

481		II/IIIa non-small-cell lung cancer (NSCLC): the NEOMUN trial. BMC Cancer. 2019 May
482		2;19(1):413. doi: 10.1186/s12885-019-5624-2.
483	42.	Dickhoff C, Senan S, Schneiders FL, Veltman J, Hashemi S, Daniels JMA, et al. Ipilimumab plus
484		nivolumab and chemoradiotherapy followed by surgery in patients with resectable and borderline
485		resectable T3-4N0-1 non-small cell lung cancer: the INCREASE trial. BMC Cancer. 2020 Aug
486		14;20(1):764. doi: 10.1186/s12885-020-07263-9.
487	43.	Ahern E, Cubitt A, Ballard E, Teng MWL, Dougall WC, Smyth MJ, et al. Pharmacodynamics of
488		Pre-Operative PD1 checkpoint blockade and receptor activator of NFkB ligand (RANKL) inhibition
489		in non-small cell lung cancer (NSCLC): study protocol for a multicentre, open-label, phase 1B/2,
490		translational trial (POPCORN). Trials. 2019 Dec 19;20(1):753. doi: 10.1186/s13063-019-3951-x.
491	44.	Reuss JE, Anagnostou V, Cottrell TR, Smith KN, Verde F, Zahurak M, et al. Neoadjuvant
492		nivolumab plus ipilimumab in resectable non-small cell lung cancer. J Immunother Cancer. 2020
493		Sep;8(2):e001282. doi: 10.1136/jitc-2020-001282.
494	45.	Tfayli A, Al Assaad M, Fakhri G, Akel R, Atwi H, Ghanem H, et al. Neoadjuvant chemotherapy and
495		Avelumab in early stage resectable nonsmall cell lung cancer. Cancer Med. 2020 Sep 29. doi:
496		10.1002/cam4.3456.
497	46.	Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant
498		PD-1 blockade in resectable lung cancer. N Engl J Med. 2018 May 24;378(21):1976-1986.

((Surgery Today))

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

47. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. ; RECIST working
group. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet
Oncol. 2017 Mar;18(3):e143-e152. doi: 10.1016/S1470-2045(17)30074-8.
48. Qin A, Rengan R, Lee S, Santana-Davila R, Goulart BHL, Martins R, Baik C, Kalemkerian GP,

503 Hassan KA, Schneider BJ, Hayman JA, Jolly S, Hearn J, et al. A pilot study of atezolizumab plus

504 hypofractionated image-guided radiation therapy for the treatment of advanced non-small cell lung

505 cancer [published online ahead of print 2019 Nov 19]. Int J Radiat Oncol Biol Phys. 2019;

doi: 10.1016/j.ijrobp.2019.10.047.

49. Yin L, Xue J, Li R, Zhou L, Deng L, Chen L, et al. Effect of low-dose radiation therapy on abscopal
responses to hypofractionated radiation therapy and anti-PD1 in mice and patients with non-small

509 cell lung cancer. Int J Radiat Oncol Biol Phys. 2020 Sep 1;108(1):212-224. doi:

510 10.1016/j.ijrobp.2020.05.002.

50. Campbell JD, Lathan C, Sholl L, Ducar M, Vega M, Sunkavalli A, et al. Comparison of prevalence

and types of mutations in lung cancers among black and white populations. JAMA Oncol. 2017; 3:

513 801-9. doi: 10.1001/jamaoncol.201

514 51. Qian J, Nie W, Lu J, Zhang L, Zhang Y, Zhang B, et al. Racial differences in characteristics and

515 prognoses between asian and white patients with nonsmall cell lung cancer receiving atezolizumab:

516 An ancillary analysis of the POPLAR and OAK studies. Int J Cancer. 2020; 146: 3124-33. doi:

2	
3	
4	
5	
6	
2 3 4 5 6 7 8 9 10 11 12	
<i>'</i>	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
19	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
53	
54	
55	
56	
57	
58	
50	

517

10.1002/ijc.32717. Epub 2019 Nov 1.

51852. Dall'Olio FG, Conci N, Rossi G, Fiorentino M, De Giglio A, Grilli G, et al. Comparison of sequential testing and next generation sequencing in advanced lung adenocarcinoma patients - A 519520single centre experience. Lung Cancer. 2020 Sep 3;149:5-9. doi: 10.1016/j.lungcan.2020.08.008. 521Online ahead of print. 52253. Zheng R, Shen Q, Mardekian S, Solomides C, Wang ZX, Evans NR 3rd. Molecular profiling of key 523driver genes improves staging accuracy in multifocal non-small cell lung cancer. J Thorac 524Cardiovasc Surg. 2020;160:e71-e79. doi: 10.1016/j.jtcvs.2019.11.126. Epub 2019 Dec 20. e perie 525

1		
2		
3		
4		
5		
6	526	
7	020	
8		
9	527	Table 1. Desent and engaing alinical trials for store ID. III NECL C in the adjuvent estima
10	527	Table 1. Recent and ongoing clinical trials for stage IB-III NSCLC in the adjuvant setting.
11		
12	E00	The exercise used for a division theorem, in allinical trials are relationer based and UET C.1. mainly during
13	528	The agents used for adjuvant therapy in clinical trials are platinum-based and UFT, S-1, mainly during
14		
15	F 00	
16	529	2000-2010; however, recent trends are molecular targeted therapies or combination of ICIs with PT-DC.
17		
18	-	
19	530	Several ongoing recent trials have been conducted on molecular targeted therapies or ICIs with or without
20		
21		
22	531	PT-DC. In some of them, the eligibility for patient enrollment included driver oncogene status.
23		
24		
25	532	
26		
20		
	533	Abbreviations
28		
29		
30	534	ALK: anaplastic lymphoma kinase, BRAF: v-raf murine sarcoma viral oncogene homolog B1, CBDCA:
31		
32		
33	535	carboplatin, CDDP: cisplatin, EGFR: epidermal growth factor receptor, PAC: paclitaxel,
34		
35		
36	536	PT-DC: platinum-based doublet chemotherapy, RT: radiotherapy
37	000	
38		
39	537	
40	001	
41		
42	538	
43	000	
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

4 5		
6	X 00	
7	539	Table 2. Recent and ongoing trials investigating the efficacy of newly developed agents for stage IB-IIIB
8		
9 10	540	NSCLC in the neoadjuvant setting. The recently used agents include not only ICIs but also novel
10		
12	541	therapeutic drugs such as oleclumab, monalizumab, and danvatirsen in the Neo COAST trial.
13	011	inclupente drugs such as ofeeraniae, monanzaniae, and danvatisen in the ree constraint.
14 15		
16	542	
17		
18	543	Abbreviations
19 20		
21	F 4 4	ALV
22	544	ALK: anaplastic lymphoma kinase, CBDCA: carboplatin, CDDP: cisplatin, EGFR: epidermal growth
23		
24 25	545	factor receptor, PAC: paclitaxel, PDL: Programmed cell death ligand, PEM: Pemetrexed,
26		
27	546	PT-DC: platinum-based doublet chemotherapy, VNR: vinorelbine
28 29	010	
30		
31	547	
32		
33 34	548	
35		
36		
37		
38 39		
40		
41		
42 43		
44		
45		
46 47		
47 48		
49		
50		
51 52		
53		
54		
55		
56 57		
58		
59		
60		20
		99

2 3		
4 5		
6 7 8	549	Table 3. Neoadjuvant therapy with chemoimmunoradiotherapy. The latest report of induction therapy of
9 10 11	550	chemoradiation without ICIs was published in 2019. Current ongoing trials investigating the efficacy of
12 13 14	551	neoadjuvant therapy with radiation include ICIs without a phase III study.
15 16	552	
17 18 19	553	Abbreviations
20 21 22 22	554	ALK: anaplastic lymphoma kinase, BSC, best supportive care, CBDCA: carboplatin, CDDP: cisplatin,
23 24 25 26	555	EGFR: epidermal growth factor receptor, PAC: paclitaxel, PDL: Programmed cell death
26 27 28	556	ligand, PEM: Pemetrexed, PT-DC: platinum-based doublet chemotherapy, VNR:
29 30 31 32	557	vinorelbine
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	558	vinorelbine
47 48 49 50		
51 52 53 54 55 56 57 58		
59 60		
		34

No.	Author, study group or Investigator	study phase	Study ID	Drug	Control	Stage). of Patien	biological status	Stu Compl yea
1	S Toyooka	phase III	SLCG0401 UMIN00000081 0	UFT	CBDCA/PAC	IB-IIIA	402	-	201
2	T Okamoto	phase II	KLSS	S-1	S-1+CDDP	II-IIIA	141	-	20
3	T Nagayasu	phase II	LOGIK1702 UMIN00002743 5	S-1	CDDP+VNR	II-IIIA	190	-	20
4	H Kenmotsu	phase III	JIPANG UMIN00000673 7	CDDP/PEM	CDDP+VNR	II-IIIA	804	-	20
5	M Tsuboi	phase III	-	Gefitinib	placebo	IB-IIIA	38	-	20
6	GD Goss	phase III	BR.19 NCT00049543	Gefitinib	placebo	IB-IIIA	503	-	20
7	Kelly	phase III	RADIANT NCT00373425	Gefitinib	placebo	IB-IIIA	973	EGFR protein amplification	20
8	Pennnel	phase II	SELECT NCT00567359	Erlotinib	-	IA-IIIA	100	EGFRm-positive	20
9	W Zhong	phase III	ADJUVANT NCT01405079	Gefitinib	PT+VNR	II-IIIA (N1-2)	222	EGFRm-positive	20
10	M Tsuboi	phase III	ADAURA NCT02511106	Osimertinib	Placebo	IB-IIIA	682	EGFRm-positive	20
11	R Govindan	phase III	ALCHEMIST Treatment Trial NCT02193282	Erlotinib	placebo or observ	IB-IIIA	450	EGFRm-positive	20
12	D Gerber	phase III	ALCHEMIST Treatment Trial NCT02201992	Crizotinib	observation	IB-IIIA	168	ALK Fusion Mutations	20
13	JE Chaft	Phase III	ALCHEMIST (ANVIL) NCT02595944	Nivolumab	observation	IB-IIIA	903 s	stratified by PD-L1 status	20
14	JM Sands	Phase III	ALCHEMIST Chemo-IO NCT04267848	Pembrolizumab	PT-DC	IB-IIIA	1263 s	stratified by PD-L1 status	20
15	Novartis Pharm.	phase III	CANOPY-A NCT03447769	Canakinumab	Placebo	II-IIIA IIIB (N2)	1500	-	20
16	Novartis Pharm.	phase III	CANOPY-N NCT03968419	akinumab/pembrolizu	Canakinumab or pembrolizumab	IB-IIIA	110	-	20
17	Hoffmann-La Roche	phase III	IM power 010 NCT02486718	Atezolizumab	BSC/PT-DC	IB-IIIA	1280	-	20
18	GD Goss	phase III	BR31 NCT02273375	Durvalumab	Placebo	IB-IIIA	1360 s	stratified by PD-L1 status	20
19	Merck Sharp & Dohme Corp.	phase III	KEYNOTE-091 PEARLS NCT02504372	Pembrolizumab	Placebo	IB-IIIA	1380	-	20

Page 41	of 42
---------	-------

((Surgery Today))

No.	Investigator, Auth	Study Phas	se Trial, ID	Agent	Regimen	Control	Stage	biological status	No. of Patients	Study Completion n Year
1	M Tsuboi	Phase III	NeoADAURA NCT04351555	Osimertinib	Osimertinib With or Without Chemotherapy	Chemotherapy Alone	II-IIIB, N2	EGFRm-positive	351	2029
2	Peng Zhang	Phase II	NCT04201756	Afatinib	Afatinib	-	III	Adenocacrinoma, EGFRm possitive	47	2025
3	Jun liu	Phase II	NCT02820116	Icotinib	Icotinib	-	IIIA-B	EGFRm-positive	67	2023
4	Mariano Provenci	i Phase II	NADIM NCT03081689	Nivoumab	CBDCA/PAC/Nivolumab	-	IIIA N2	EGFRm negative ALK translocation negative	41	2022
5	Mariano Provenci	i Phase II	NADIM II NCT03838159	Nivolumab	CBDCA/PAC/Nivolumab	CBDCA/PAC	(resectable	EGFRm negative ALK translocation negative	90	2027
6	Rita Axelrod	Phase II	NCT03366766	Nivoumab	PT-DC/Nivolumab	-	IB (≥4cm)- IIIA	EGFRm negative ALK translocation negative	14	2022
7	Bristol-Myers Sq	u Phase III	Checkmate 77T NCT04025879	Nivolumab	PT-DC/Nivolumab	PT-DC/placebo	IIA–IIIB (T3N	EGFRm negative ALK translocation negative	452	2024
8	Tina Cascone	Phase II	NEOSTAR NCT03158129	Nivoumab	Nivoumab +/- Ipilimumab	PEM/Nivolumab +/-	I-IIIA	none	88	2022
9	X Mignard	Phase II	IONESCO NCT03030131	Durvalumab	Durvalumab	-	IB-IIB	none	81	2019
10	John Heymach	Phase III	AEGEAN study NCT03800134	Durvalumab	PT-DC/Durvalumab	PT-DC/Placebo	II-III	Documented EGFR and ALK	800	2024
11	MedImmune LLC	C Phase II	NeoCOAST NCT03794544	Durvalumab	Durvalumab + (Oleclumab or Monalizumab or	Durvalumab	I-IIIA	none	160	2022
12	Sacha Rothschild	Phase II	SAKK 16/14 NCT 02572843	Durvalumab	CDDP/DOC+ durvalumab	-	IIIA(N2)	none	68	2021
13	Hoffmann-La Ro	c Phase III	IM power 030 NCT03456063	Atezolizumab	PT-DC/Atezolizumab	PT-DC/Placebo	II, IIIA, IIIB (T3N2)	EGFRm negative ALK translocation negative	374	2025
14	Hoffmann-La Ro	c Phase II	NCT02927301 LCMC3	Atezolizumab	Atezolizumab	-	IB-IIIA, selected IIIB	none	180	2024
15	Gustave Roussy	Phase II	PRINCEPS NCT02994576	Atezolizumab	Atezolizumab	-	IB-IIIA Non N	í none	60	2022
16	Bristol-Myers Sq	u Phase III	CheckMate 816 NCT02998528	Ipilimumab	PT-DC/Nivolumab or Ipilimumab/Nivolumab	PT-DC	I-IIIA	none	350	2028
17	Chi-Fu Jeffrey Ya	a Phase II	TOP1201 NCT01820754	Ipilimumab	CDDP or CBDCA/PAC/Ipilimumab	Safety and Feasibility	II-IIIA	none	13	2018
18	Merck Sharp & D	Phase III	KEYNOTE-671 NCT03425643	Pembrolizum ab	PT-DC/Pembrolizumab	PT-DC/Placebo	II-IIIA, IIIB (T3-4N2)	none	786	2026
19	Florian Eichhorn	Phase II	the NEOMUN trial NCT03197467	Pembrolizum ab	Pembrolizumab	-	II-IIIA	none	30	2023
20	Peng Zhang	Phase II	camrelizumab + apatinib	apatinib	Camrelizumab/Apatinib	PT-DC/Camrelizumab	II-IIIA	Without EGFR, ALK, ROS1 or BRAF gene mutation;	99	2026

((Surgery Today))

_									G4 1
N	Author ^{0.} Investigator	Study Pha	s Trial, ID	Agent	Regimen	biological status	Stage	No. Patient	Study Comple on Yea
1	Monica Bertagnolli	Phase II	CHIO3 NCT04062708	Durvalumab	PT-DC/Durvalumab RT 54Gy	-	IIIA-B, N2	55	2024
2	2 Matthias Guckenberger	phase II	CHESS NCT03965468	Durvalumab	CBDCA/PAC/Durvalumab stereotactic body radiotherapy (SBRT)	-	IV Synchronous Oligo-metastases	47	2021
3	Grg A Durm	phase II	NCT03871153	Durvalumab	CBDCA/PAC/Durvalumab RT 45-61.2 Gy	-	III (N2)	25	2022
4	Byoung Chul Cho	phase I, I	I NCT03694236	Durvalumab	PT-DC/Durvalumab RT 45Gy	-	II-IIIA	39	2027
5	5 Sacha Rothschild	phase II	SAKK 16/18 NCT04245514	Durvalumab	CDDP/DOC/Durvalumab +20x2 Gy (weekdaily, 4 weeks) or 5x5 Gy (weekdaily, 1 week) or 3x8 Gy (on alternate days, 1 week)	-	III (T1-4N2)	90	2025
6	Wilfried Eberhardt	phase II	ESPADURVA NCT04202809	Durvalumab	PT-DC/Durvalumab RT 45Gy	-	IIIA-B	90	2024
7	/ Jarushka Naidoo	phase II	NCT03237377	Durmarmb/Trememlimumab	Durvalumab +/- Trememlimumab RT	-	IIIA	32	2021
8	Sue Yom	phase II	NCT03217071	Pembrolizumab	Pembrolizumab SRT 12Gy	Pembrolizumab monotherapy	I-IIIA	40	2021
9	Tetsuya Mitsudomi	phase I, I	I SQUAT trial WJOG12119L	Durvalumab	CBDCA/PAC/Durvalmab RT 50Gy	-	IIIA-B, N2	31	2022
1	0 Chris Dickhoff	phase II	the INCREASE trial NL8435	Nivolumab/Ipilimumab	PT-DC/Nivolumab/Ipilimumab RT 50Gy	Without EGFR, ALK, ROS1 or BRAF gene mutation	T3-4N0-1	29	2022
) 2									