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Abstract: Crossed cerebellar diaschisis (CCD) is a state of hypoperfusion and hypometabolism in
the contralesional cerebellar hemisphere caused by a supratentorial lesion, but its pathophysiology
is not fully understood. We evaluated chronological changes in cerebellar blood flow (CbBF) and
gene expressions in the cerebellum using a rat model of transient middle cerebral artery occlusion
(MCAO). CbBF was analyzed at two and seven days after MCAO using single photon emission
computed tomography (SPECT). DNA microarray analysis and western blotting of the cerebellar
cortex were performed and apoptotic cells in the cerebellar cortex were stained. CbBF in the
contralesional hemisphere was significantly decreased and this lateral imbalance recovered over
one week. Gene set enrichment analysis revealed that a gene set for “oxidative phosphorylation”
was significantly upregulated while fourteen other gene sets including “apoptosis”, “hypoxia” and
“reactive oxygen species” showed a tendency toward upregulation in the contralesional cerebellum.
MCAO upregulated the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme
oxygenase-1 (HO-1) in the contralesional cerebellar cortex. The number of apoptotic cells increased in
the molecular layer of the contralesional cerebellum. Focal cerebral ischemia in our rat MCAO model
caused CCD along with enhanced expression of genes related to oxidative stress and apoptosis.

Keywords: apoptosis; cerebral blood flow; crossed cerebellar diaschisis; ischemic stroke;
oxidative stress

1. Introduction

The term “diaschisis” was coined by von Monakow as the temporary functional shock of
intact regions distant to the lesion [1]. Since then, several patterns of diaschisis have been
identified, and Baron et al. first described the occurrence of crossed cerebellar diaschisis (CCD)
after hemispheric stroke in 1981 [2]. CCD is characterized by decreased metabolism and blood flow in
the cerebellar hemisphere contralateral to a supratentorial brain lesion, such as an epileptic lesion, brain
trauma, Alzheimer’s disease, or stroke [3]. To date, the mechanism of CCD has been assumed to begin
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with an interruption of the excitatory input to the cerebellum, mainly via the cortico-ponto-cerebellar
pathway, which causes hypometabolism and hypoperfusion of the cerebellum [4,5].

In the previous researches evaluating CCD, most of them were concerned with cerebral ischemic
stroke. Some studies indicated that a volume of infarct, a severity of impaired perfusion, a location of
stroke, and a side of lesion are associated with CCD [6–9]. And some scholars showed the association
between CCD and functional outcomes [8,10], and showed the significance of CCD as a diagnostic
aid of supratentorial impairment and a prognostic factor after revascularization surgery [11,12].
They indicated that CCD is not only an associated phenomenon of supratentorial tissue damage,
but an important indicator of the therapeutic effect, functional recovery and prognosis of patients.
Furthermore, the recent data based on rodent models of cerebral ischemia suggest that stimulation
of the cerebellar nucleus is efficient for post-stroke neurorehabilitation, termed as “upside-down
CCD” [13,14].

As CCD has been mainly reported and discussed in clinical settings, little is known about
the molecular and biological mechanisms of CCD in either human or experimental models.
The preclinical characterization of CCD in animal models might provide a novel understanding
of neural interaction after brain injury. In the present study, we evaluated the chronological changes
in CCD using single photon emission computed tomography (SPECT) in a rat middle cerebral
artery occlusion model, examined gene expression patterns in the cerebellar hemispheres in CCD,
and performed histopathological analysis.

2. Results

2.1. Baseline Characteristics

2,3,5-triphenyltetrazolium hydrochloride (TTC) staining at the endpoint of each protocol revealed
cerebral infarction in the middle cerebral artery (MCA) perfusion area, consisting of both cerebral
cortex and deep white matter, in all rats subjected to middle cerebral artery occlusion (MCAO).
None of the rats in the control group showed any obvious TTC-unstained areas.

2.2. Time Course of CBF and CbBF after MCAO

A representative SPECT image coregistered with its corresponding computed tomography (CT)
image is shown in Figure 1. Cerebral blood flow (CBF) and cerebellar blood flow (CbBF) perfusion
rate were evaluated using N-isopropyl-123I-p-iodoamphetamine (123I-IMP) SPECT/CT for both control
group and MCAO group (Figure 2). Mean CBF r/l ratio of control group was 100.7 ± 2.5%. Compared
to the control group, the CBF ratio was significantly decreased two and seven days after MCAO
(two days: 36.6 ± 16.9%, seven days: 62.1 ± 20.0%). When the CBF ratio was compared between two
and seven days after MCAO, it significantly recuperated at seven days after MCAO. Mean CbBF l/r ratio
of control group was 100.1 ± 2.9%. Compared to the control group, the CbBF ratio was significantly
decreased two and seven days after MCAO (two days: 85.7 ± 6.6%, seven days: 93.3 ± 2.4%). When
the CbBF ratio was compared between two and seven days after MCAO, it significantly rose up at
seven days after MCAO.
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Figure 1. Single photon emission computed tomography (SPECT) / computed tomography (CT) 
images and regions of interest (ROI) settings to evaluate cerebral and cerebellar blood flow after 
MCAO. SPECT acquisitions were color-coded with National Institute of Health spectrum color scale. 
(A), Vertical section of SPECT/CT image obtained 2 days after middle cerebral artery occlusion 
(MCAO) shows obvious hypointensity at the right middle cerebral artery territory (*). Dashed line 
“b” indicates the coronal slice 2 mm posterior from bregma and dashed line “c” indicates the coronal 
slice 11 mm posterior from bregma. (B) In the coronal slice 2 mm posterior from bregma, 6 × 9 × 6 mm 
3D-elliptical ROIs were symmetrically placed. (C) In the coronal slice 11 mm posterior from bregma, 
2 × 2 × 2 mm global ROIs were symmetrically placed at medial cerebellar cortex, lateral cerebellar 
cortex and cerebellar nuclei of each side respectively. 

 
Figure 2. (A) Rats in the control group showed no apparent laterality of cerebral blood flow. Cerebral 
blood flow ratio (right/left) was significantly decreased two and seven days after MCAO. The plots 
of each individual are connected with bottled lines. This ratio significantly recuperated over time. (B) 
Rats in the control group showed no apparent laterality of cerebellar blood flow. Cerebellar blood 
flow ratio (left/right) was significantly decreased two and seven days after MCAO, but this decrease 
was of a lesser degree than that in the cerebrum. As in the cerebrum, the decrease in blood flow ratio 
in the cerebellum likewise recuperated over time. (* p < 0.05, n = 5 in the control group, n = 8 in the 
MCAO group). 

Figure 1. Single photon emission computed tomography (SPECT)/computed tomography (CT) images
and regions of interest (ROI) settings to evaluate cerebral and cerebellar blood flow after MCAO. SPECT
acquisitions were color-coded with National Institute of Health spectrum color scale. (A), Vertical
section of SPECT/CT image obtained 2 days after middle cerebral artery occlusion (MCAO) shows
obvious hypointensity at the right middle cerebral artery territory (*). Dashed line “b” indicates the
coronal slice 2 mm posterior from bregma and dashed line “c” indicates the coronal slice 11 mm posterior
from bregma. (B) In the coronal slice 2 mm posterior from bregma, 6 × 9 × 6 mm 3D-elliptical ROIs
were symmetrically placed. (C) In the coronal slice 11 mm posterior from bregma, 2 × 2 × 2 mm global
ROIs were symmetrically placed at medial cerebellar cortex, lateral cerebellar cortex and cerebellar
nuclei of each side respectively.
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Figure 2. (A) Rats in the control group showed no apparent laterality of cerebral blood flow. Cerebral
blood flow ratio (right/left) was significantly decreased two and seven days after MCAO. The plots
of each individual are connected with bottled lines. This ratio significantly recuperated over time.
(B) Rats in the control group showed no apparent laterality of cerebellar blood flow. Cerebellar blood
flow ratio (left/right) was significantly decreased two and seven days after MCAO, but this decrease
was of a lesser degree than that in the cerebrum. As in the cerebrum, the decrease in blood flow ratio
in the cerebellum likewise recuperated over time. (* p < 0.05, n = 5 in the control group, n = 8 in the
MCAO group).
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2.3. Gene Expression Changes in the Cerebellar Cortex Induced by MCAO

In the contralateral cerebellar cortex, 765 genes were increased and 1813 were decreased after
MCAO as compared to the control group. In the ipsilateral cerebellar cortex, the expression levels of
1183 genes were increased after MCAO while those of 813 genes were decreased. Among the increased
genes, 502 were up-regulated in both the contralateral and ipsilateral cerebellar cortex; among the
decreased genes, 500 were down-regulated on both sides (Figure 3).
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Figure 3. (A,B) Correlation plot of the contralesional, ipsilesional and control group. The genes with
expression change between two conditions <2.0× are labeled as blue and ≥2.0× as red. (C,D) The
mRNA gene expression ratio was expressed as the ratio of the fluorescence intensity of the contra-or
ipsilesional group to that of the control group. Increasing genes were defined as those for which Log2
(ratio) > 1 if the ratio was more than double, while decreasing genes were defined as those for which
Log2 (ratio) < −1 if the ratio was less than one-half.

We compared the cerebellar cortices from the MCAO group with those from the control group
using gene set enrichment analysis (GSEA) (Tables 1 and 2). In the present study, GSEA identified
14 gene sets that tended to be upregulated in the cerebellar cortices of the MCAO group, including
“hypoxia”, “apoptosis”, and “reactive oxygen species pathway”. At a nominal p-value of 5%, only the
gene set known as “oxidative phosphorylation” was detected as being significantly enriched. And
30 gene sets were identified as downregulated in the cerebellar cortices of the MCAO group. No gene
sets were significantly enriched in the left cerebellar cortices of the MCAO group, with a false discovery
rate (q-value) of 25%.
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Table 1. Upregulated gene sets of the contralesional cerebellar cortex.

Gene Sets NES Nominal p-Value FDR q-Value

Apical surface 1.4829147 0.08070175 0.41270936
Oxidative phosphorylation 1.4047105 0.03902439 0.3811725

Hypoxia 1.3170835 0.056603774 0.421758
Apoptosis 1.2919638 0.05142857 0.36732572

Reactive oxygen species pathway 1.1763533 0.20440252 0.56658465
Fatty acid metabolism 1.1711965 0.1904762 0.4835092

IL6 JAK STAT3 signaling 1.161279 0.19491525 0.43585464
p53 pathway 1.1298119 0.21857923 0.45179152

Interferon-γ response 0.999022 0.4489796 0.7390757
TNF-α signaling via NF-κB 0.93690044 0.61290324 0.85676676

UV response UP 0.81916744 0.8905473 1
Myogenesis 0.79656494 0.9 1

Spermatogenesis 0.7820479 0.85542166 1
Glycolysis 0.76751935 0.90338165 0.95213044

DNA repair 0.65829355 0.97890294 0.97356385

NES indicates normalized enrichment score; FDR, false discovery rate.

Table 2. Downregulated gene sets of the contralesional cerebellar cortex.

Gene Sets NES Nominal p-Value FDR q-Value

Angiogenesis −1.3574327 0.08066759 1
Apical junction −1.3069164 0.0870098 1

Bile acid metabolism −1.2624685 0.1498029 1
G2M checkpoint −1.2126812 0.19066148 1

KRAS signaling DN −1.1927822 0.1927555 1
Xenobiotic metabolism −1.1860862 0.18062201 1

Myc targets v1 −1.1843342 0.23136246 0.89537966
UV response DN −1.1636689 0.21843435 0.87870497

coagulation −1.153253 0.26289308 0.8315621
Heme metabolism −1.1413887 0.27120823 0.79227114

Estrogen response early −1.1271846 0.25159642 0.7696532
Mitotic spindle −1.1119729 0.31737345 0.7581073

Androgen response −1.0270199 0.44093406 0.9964891
KRAS signaling UP −0.98356724 0.5177665 1
Allograft rejection −0.95813197 0.57441574 1

E2f targets −0.94351673 0.5536424 1
Cholesterol homeostasis −0.9269579 0.58760107 1

Peroxisome −0.8992629 0.6364847 1
Epithelial mesenchymal transition −0.88842046 0.6766467 1

IL2 STAT5 signaling −0.87723947 0.6804878 1
TGF β signaling −0.8657552 0.67280453 1

Inflammatory response −0.8562549 0.7315036 0.9768945
Adipogenesis −0.83410215 0.78725964 0.98129094
Complement −0.7720234 0.86107785 1

Estrogen response late −0.7568291 0.88578373 1
Interferon α response −0.73042226 0.83664775 1

PI3K AKT mTOR signaling −0.6855016 0.92736703 1
mTORC1 signaling −0.644657 0.9788294 1

Protein secretion −0.59601074 0.9776021 1
Unfolded protein response −0.457154 1 0.99926555

NES indicates normalized enrichment score; FDR, false discovery rate.
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2.4. Expression of Oxidative Stress-Related Proteins in the Cerebellar Cortex

Given these GSEA results, we next evaluated the expression patterns of the oxidative stress-related
factors nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the cerebellar
cortex (Figure 4). Western blotting showed that the expression of Nrf2 was upregulated in the cerebellar
cortex on the side contralateral to the infarct (0.29 ± 0.04) compared to the cerebellar cortex on the
ipsilateral side (0.21 ± 0.04) as well as to the control group (0.20 ± 0.04). The expression of HO-1 was
also upregulated on the contralateral side (0.41 ± 0.06) compared to the ipsilateral side (0.28 ± 0.04)
and to the control group (0.30 ± 0.03).
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Figure 4. (A) Western blots of cerebellar cortices show expression of Nrf2 and HO-1. Protein levels
were normalized to beta-actin. (B) Quantification of western blots by densitometric analysis indicated
that the expression of Nrf2 was upregulated in contralesional cerebellar cortices. (C) The expression of
HO-1 was also upregulated in contralesional cerebellar cortices (* p < 0.05 versus other groups, n = 6 in
each group). Nrf2: nuclear factor erythroid 2-related factor 2, HO-1: heme oxygenase-1.

2.5. Apoptosis in the Cerebellar Cortex Induced by MCAO

To confirm the effect of MCAO on apoptosis in the cerebellar cortex, terminal deoxynucleotidyl
transferase (TdT) deoxyuridine triphosphate nick-end labeling (TUNEL) assay was performed.
TUNEL+/propidium iodide (PI) + cells were identified only in the molecular layer of the cerebellar
cortex (Figure 5). The number of TUNEL+/PI+ cells in the molecular layer was significantly larger in the
left hemisphere (contralateral to the cerebral infarct, 11.0 ± 4.7) than in the right hemisphere (ipsilateral
to the cerebral infarct, 1.5 ± 0.9).
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Figure 5. (A) Immunostaining for TUNEL (green) shows apoptotic cells in the molecular layer of
the cerebellar cortex. (B) Nuclei were stained with PI in red. (C) Merged image of TUNEL and PI
immunostaining. White arrowheads indicate TUNEL/PI-positive cells. (D) There was a significant
increase in the number of TUNEL/PI-positive cells in the contralesional (left) cerebellar cortex compared
to the ipsilesional (right) cerebellar cortex (scale bar: 50 µm, * p < 0.001, n = 11 in each group).
TUNEL: terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling, PI:
propidium iodide.

3. Discussion

3.1. Cerebral and Cerebellar Blood Flow Analysis

Takuwa et al. have previously evaluated CCD caused by MCAO in mice using laser doppler
flowmetry (LDF) [15]. Although LDF can measure CbBF stably and reproducibly, it requires craniotomy
of the posterior cranial fossa and can only evaluate the brain surface. Small animal positron emission
tomography (PET) provides a higher photon detection sensitivity than SPECT does, but its spatial
resolution is usually inferior to that of SPECT [16]. Furthermore, radioactive tracers for SPECT are
easier to prepare and handle than those for PET. For these reasons, SPECT is the best modality for
detecting CCD in rodent models. In our study, consistent with previous studies [17,18], the CBF
in the infarct area notably decreased after the insult and was restored over the following one week.
This recovery probably resulted from post-ischemic rebound due to luxury perfusion [19]. The CbBF
ratio, i.e., the ratio of CbBF on the contralateral side to that on the ipsilateral side, also decreased
in the acute phase of cerebral infarct but did not reach the same degree of lateral asymmetry seen
in CBF. This change can be identified as CCD. Furthermore, the CbBF asymmetry also improved in
association with the improvement in the CBF asymmetry. This result suggests that the degree of CCD
may correlate with supratentorial lesional blood flow. It has been reported in several human studies
that diaschisis is potentially reversible if supratentorial reperfusion can be achieved [9,20]. Sobesky et
al. have shown that the degree of supratentorial hypoperfusion is correlated with the degree of CCD
before and after cerebral reperfusion. Our findings regarding the CbBF time course are in keeping
with these previous clinical studies.
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3.2. Gene Expression in the Cerebellar Cortex

To the best of our knowledge, no previous studies have reported on gene expression in the
contralesional cerebellar cortex. Hypoperfusion of the cerebellar hemisphere, which is caused by CCD,
might be one of the most important factors affecting the expression of genes related to oxidative stress.
In this study, several gene sets associated with inflammation and oxidative stress were identified as
upregulated in the contralesional cerebellar cortex. The redox-sensitive transcriptional factor Nrf2
is widely expressed in the central nervous system and is one of the most major regulators of cellular
defense mechanisms against oxidative stresses through its coordination of stress-inducible activation
of multiple cytoprotective genes [21–24]. Nrf2 binds to the antioxidant response element sequence and
thereby upregulates the expression of its target genes. One of these Nrf2 target genes, HO-1, regulates
antioxidant defense and oxidant signaling [25]. Taking these findings together, Nrf2 and HO-1 can
be considered as major oxidative stress sensors. We can conclude that Nrf2-regulating anti-oxidative
molecules are compensatory induced by CCD to ameliorate oxidative stress.

The gene set of “apoptosis” also tends to be upregulated in the contralateral cerebellar cortex.
The expression of these “apoptosis” genes might be triggered by the hypoperfusion induced by
CCD. Jie et al. detected caspase-3-positive cells and TUNEL-positive cells in the contralateral cerebellar
cortex in the acute phase of MCAO [26]. Similarly, we observed a lateral asymmetry of TUNEL-positive
cells, with more TUNEL-positive cells in the contralesional cerebellar cortex. Our results indicate that
apoptosis in this case is not caused by a systemic phenomenon, which would affect the cerebral cortex
symmetrically. Rather, the asymmetrical apoptosis must be caused by an asymmetrical factor, such as
cerebral blood flow and/or input from the cerebrum. The numbers of apoptotic cells counted in our
study were much lower than those in previous reports. The reasons for the differences in frequency and
location of apoptotic cells between our study and previous reports are unclear, but they may be related
to differences in experimental conditions, such as experimental models, timing of the evaluations,
and reagents. In the chronic phase of supratentorial injury, TUNEL-positive cells were detected only
in the lateral cerebellar nucleus and not in the cerebellar cortex [27]. The cortico-ponto-cerebellar
pathway originates from the cerebral cortex and mostly terminates in the cerebellar gray matter [28,29].
Taking these findings together, we can conclude that CCD primarily affects the contralateral cerebellar
cortex and that, in the chronic phase, secondary changes may occur in the deep white matter, including
the cerebellar nucleus. Since this study could be a preliminary data, further investigation is needed
to clarify the molecular mechanisms of deafferentation and their relationship to oxidative stress
and apoptosis.

3.3. Study Limitations

This study has several limitations. First, our observations were taken only in the very acute phase
of MCAO. In clinical practice, CCD sometimes persists even after the reperfusion of the supratentorial
ischemic lesion. In future studies, CbBF and protein expression should be observed over a longer
period. Second, we have not proved a decrease in the excitatory input to the cerebellum. It would
be difficult to be prove this, but a novel method for the visualization of the neural network, such as
diffusion tensor imaging, may help. Finally, it remains unclear whether CCD is actually a direct cause
of oxidative stress and apoptosis. Deeper insight into the relationship between these phenomena as
observed in this study requires further studies with larger sample sizes.

4. Materials and Methods

4.1. Ethics Statement

This study was conducted in accordance with the guidelines of the Institutional Animal Care and
Use Committee of Okayama University Graduate School of Medicine and reported in compliance with
ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines. The protocol was approved
by the Institutional Animal Care and Use Committee of Okayama University Graduate School of
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Medicine (protocol #OKU-2018179, approved on 5 April 2018). All efforts were made to minimize
animal suffering. Measurements and analyses were performed by examiners blinded to the study.

4.2. Animals

Adult male Wistar rats (n = 57, nine weeks old; SHIMIZU Laboratory Supplies Co., Ltd., Kyoto,
Japan) weighing 280 to 300 g were used in this study. They were housed in a temperature-and
humidity-controlled room and maintained on a 12-h light/dark cycle with free access to food and water.

4.3. Surgical Procedures

Rats were randomly assigned to the experimental or the control group. Transient middle cerebral
artery occlusion (MCAO) was carried out according to the intraluminal suture method as previously
reported [30,31]. Under general anesthesia (2.0% sevoflurane in 70% N2O and 30% O2), the bifurcation
of the right common carotid artery was exposed. After the right external carotid artery (ECA) was
cut, a 4–0 monofilament nylon suture with a silicone-coated tip (Xantopren L blue & ACTIVATOR
2 Universal Liquid, Heraeus Kulzer GmbH & Co. KG, Hanau, Germany) was inserted from the
arteriotomy of the ECA toward the origin of the right MCA. After 90 min of MCAO, the filament was
withdrawn and the ECA was cauterized. In the control group, the right common carotid artery was also
exposed, but arteriotomy was not performed. At the end of the operation, the skin was closed using
3–0 silk sutures. All rats were euthanized with an overdose of pentobarbital (150 mg/kg) at the end of
their respective protocols described below. After euthanasia, to confirm cerebral infarction, a coronal
brain slice was made 2.0 mm posterior to the bregma and stained using 2,3,5-triphenyltetrazolium
hydrochloride (TTC).

4.4. Neurological Assessment

The modified Neurological Severity Score (mNSS) was evaluated one day after MCAO. This score
was used to assess motor function, sensory disturbance, reflex, and balance. Neurological function was
graded on a scale of 0 to 18 (normal score: 0; maximal deficit score: 18) [32]. To uniform a postsurgical
neurological severity, only rats that scored between 7 and 12 points on the mNSS one day after MCAO
were used in the subsequent experiments. At the time of the neurological assessment, 13 rats were
excluded from the subsequent analysis: 3 rats died within one day of MCAO, and 10 showed mNSS
under 7.

Eventually, 44 rats were analyzed. Within 44 rats, 29 rats underwent MCAO (8 for blood flow
assessment, 4 for cDNA microarray, 6 for western immunoblotting, 11 for TUNEL analysis), and
15 rats were in the control group (5 for blood flow assessment, 4 for cDNA microarray, 6 for western
immunoblotting).

4.5. Blood Flow Assessment Using SPECT

Two and seven days after MCAO, the eligible rats in the MCAO group (n = 8) were scanned using
SPECT for small animals with an N-isopropyl-123I-p-iodoamphetamine (123I-IMP; Iofetamine Injection
Daiichi, FUJIFILM RI Pharma Co., Ltd., Tokyo, Japan) tracer to evaluate CBF and CbBF. The rats in the
control group (n = 5) were likewise scanned two days after their sham surgery. The rats were placed
under general anesthesia with 2.0% sevoflurane in a mixture of room air (flow, 2.0 L/min). The scan
was performed under general anesthesia in the prone position 15 min after 123I-IMP tracer injection
(30 MBq) into the lateral tail vein.

Images were obtained using a SPECT/CT scanner (FX3000, TriFoil Imaging Inc., Northridge, CA,
USA) with cadmium–zinc–telluride semiconductors and multi-pinhole collimators (focal length, 65 mm;
aperture, 1.0 mm). The CT component of the resulting images was used only for anatomical reference
in examining the SPECT images. SPECT images were reconstructed using FLEX-RECON software with
a three-dimensional ordered subset expectation maximization (iteration, 5; subset, 8) algorithm and
data was collected (360◦ acquisition, 30 s/frame, 64 frames total) with 45-mm semidiameter detectors.
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CBF/CbBF imaging was automatically obtained using free analysis software (AMIDE, a Medical
Imaging Data Examiner, version 1.0.5) and analyzed semiquantitatively. We performed CBF/CbBF
analysis using the region of interest (ROI) settings and calculated the radiation intensity of each ROI
automatically (Figure 1). Prolate spheroid shaped ROIs (6 × 9 × 6 mm) were symmetrically placed in
the coronal slices 2.0 mm posterior to the bregma and were used in analyzing CBF in the MCA territory.
The cerebral perfusion ratio was obtained according to the following formula: radiation intensity of
the infarct side (right)/radiation intensity of the unaffected side (left) (r/l, %). For the CbBF analysis,
six globular-shaped ROIs (2 × 2 × 2 mm each) were placed in the coronal slices 11.0 mm posterior
to the bregma, symmetrically at the medial cerebellar cortex, lateral cerebellar cortex, and cerebellar
nuclei. The average of the three ROIs on each side was calculated and the cerebellar perfusion ratio
was calculated according to the following formula: average radiation intensity on the side contralateral
to the infarct (left)/average radiation intensity on the side ipsilateral to the infarct (right) (l/r, %).

4.6. cDNA Microarray

Genes induced by MCAO in the cerebellar cortex were searched comprehensively by microarray.
Two days after MCAO, the cerebellar cortical tissues on both sides (contralateral and ipsilateral to
the infarct) were collected and homogenized in TRIzol® reagent (Invitrogen, Carlsbad, CA, USA),
and total RNA was extracted. In the control group, the left cerebellar cortices were extracted two days
after sham surgery. In each group (contralateral, ipsilateral and control group), tissues from four
rats were combined to ensure sufficient mass of the experimental material. Sample labeling by Cy3
and array hybridization were performed according to One-Color Microarray-Based Gene Expression
Microarrays Analysis (Agilent Technology, Santa Clara, CA, USA). Total RNA from each sample was
linearly amplified and labeled with Cy3. Total RNA was checked for quantity using Agilent 2100
Bioanalyze. The Cy3-labeled cRNA was fragmented and hybridized to an Agilent Expression Array
(SurePrint G3 Rat Gene Expression 8 × 60 K Ver2.0; Agilent Technology) on which cDNA probes for
30,584 genes had been blotted. This hybridized array was then washed using the Gene Expression
Wash Buffer Pack (Agilent Technology) and scanned using the Agilent DNA Microarray Scanner
(G2600D). Each gene expression level was calculated from its fluorescence intensity as quantified using
Agilent Feature Extraction software. We normalized the gene transcript expression values to the control
samples on each chip. The obtained data has been deposited at the NCBI Gene Expression Omnibus
(GEO) site (under accession number GSE144547) and is freely available to the scientific community for
download and further in-depth analysis. Each gene expression ratio was expressed as the fluorescence
intensity of the contra-or ipsilateral group/fluorescence intensity of the control group. Increasing genes
were defined as those for which Log2 (ratio) > 1 if the ratio was greater than two, and decreasing genes
were defined as those for which Log2 (ratio) < −1 if the ratio was less than one-half. To identify the
biological processes or pathways causing global mRNA perturbation, Gene Set Enrichment Analysis
(GSEA, v4.0.2, Broad Institute, MA, USA) was performed to assess the enrichment of signature gene
sets from the contralateral and control groups. In the present study, GSEA was performed using the
collected “Hallmarks” gene-sets with the following parameters: 1000 gene set permutations, gene set
size between 15 and 500, weighted enrichment statistics.

4.7. Western Immunoblotting Using Brain Homogenates

Two days after the surgery, rats from the MCAO group and the control group (n = 6 per group)
were processed with western immunoblotting. From the MCAO group rats, each side of the cerebellar
cortex (i.e., that contralateral to the infarct (left hemisphere) and that ipsilateral to the infarct (right
hemisphere)) was extracted as a separate sample. From the control group rats, the left cerebellar cortex
was extracted. Sample preparation and western blotting were performed as described previously [33].
The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in
the cerebellar cortex was evaluated. The antibodies included anti-Nrf2 antibody (1:1000, ab137550;
abcam), anti-HO-1 antibody (1:1000, ab68477; abcam), and anti-beta-actin antibody (1:5000, A5441;
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Sigma-Aldrich, St. Louis, MO, USA), with anti-mouse and anti-rabbit IgG HRP-linked secondary
antibodies (both 1:5000, Cell Signaling Technology, Danvers, MA, USA). Signals were analyzed using
the VersaDoc molecular imaging system (Bio-Rad, Hercules, CA, USA), and protein levels were
normalized to beta-actin.

4.8. TUNEL Analysis

In order to evaluate apoptosis in the cerebellum, TUNEL assay staining was performed in a new
cohort of 11 rats using a commercial kit according to the manufacturer’s instructions (No. 8442, Medical &
Biological Laboratories, Nagoya, Japan). Rats were sacrificed seven days after MCAO. The brain tissues
were rapidly removed and postfixed in formalin. After postfixed tissues were embedded in paraffin
wax, a 6-µm-thick coronal section was obtained from each sample 11.0 mm posterior to the bregma.
The deparaffinized sections were incubated with TdT enzyme, which links digoxigenin-deoxyribose
nucleoside triphosphate (dNTP) to apoptotic DNA fragments. Anti-digoxigenin antibody conjugated
with fluorescein was applied to detect the digoxigenin-dNTP tails. After TUNEL assay, sections were
counterstained with propidium iodide (PI) (Life Technologies, Carlsbad, CA, USA). TUNEL+/PI+ cells
in the entire region were counted at 20× magnification. The data were expressed as the number of
TUNEL+/PI+ cells in each cerebellar hemisphere.

4.9. Statistical Analysis

At the start of the study, the sample size estimation for each protocol was calculated using
G*Power software version 3.1 (Heinrich Heine University, Düsseldorf, Germany) based on the
result of the preliminary experiments. All data in the study are presented as mean ± standard
deviation. Statistical significance was assessed by two-tailed t test for comparisons between two
groups. Data ware analyzed using JMP software version 10.0.2 (SAS Institute, Cary, NC, USA) and a
p-value less than 0.05 was considered to indicate significance.

5. Conclusions

Gene expression analysis showed that oxidative stress, apoptosis, and hypoxia may be related to
the pathophysiology of CCD in a rat MCAO model.
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Abbreviations

CCD Crossed cerebellar diaschisis
SPECT Single photon emission computed tomography
TTC 2,3,5-triphenyltetrazolium hydrochloride
MCAO Middle cerebral artery occlusion
CBF Cerebral blood flow
CbBF Cerebellar blood flow
ROI regions of interest
GSEA Gene Set Enrichment Analysis
Nrf2 nuclear factor erythroid 2-related factor 2
HO-1 heme oxygenase-1
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TUNEL terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling
ECA External carotid artery
mNSS modified Neurological Severity Score
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