SOME REMARKS ON HOMOTOPY EQUIVALENCES AND H-SPACES

MASAHIRO SUGAWARA

1. Introduction

A (continuous) map $f: X \to Y$ is called a homotopy equivalence if, and only if, there is a map (called a homotopy inverse of f), $g: Y \to X$, such that the maps $g \circ f: X \to X$ and $f \circ g: Y \to Y$ are homotopic to the identity maps 1_X of X and 1_Y of Y, respectively, where X and Y are any two (topological) spaces. If so, using the homotopies

$$F_t = \{1_X \sim g \circ f\}^{1}: X \to X, \qquad G_t = \{1_Y \sim f \circ g\}: Y \to Y,$$

the two homotopies $f \circ F_t$ and $G_t \circ f$, between f and $f \circ g \circ f$, are defined, and hence, a question arises whether or not these homotopies, considering as the maps $X \times I \to Y$, are homotopic each other, rel. $X \times I$. By this reason, we shall describe a map f as a *strong homotopy equivalence* if, and only if, there is a homotopy inverse g of f and the homotopies $F_t = \{1_x \sim g \circ f\}$ and $G_t = \{1_x \sim f \circ g\}$ can be so taken that

(1.1)
$$f \circ F_{\iota} \sim G_{\iota} \circ f : X \times I \to Y,^{2} \quad \text{rel.} \quad X \times \dot{I}, \\ g \circ G_{\iota} \sim F_{\iota} \circ g : Y \times I \to X, \quad \text{rel.} \quad Y \times \dot{I}.$$

One of our purposes of this note is to remark a relation between these two homotopy equivalences.

Theorem 1.2. If X and Y are CW-complexes and $f: X \to Y$ is a homotopy equivalence, then it is a strong one. In other words, the notions of the ordinary and the strong homotopy equivalences are equivalent in the category of all the CW-complexes.

This theorem will be proved in § 2 below.

Now, let F be a homotopy-associative H-space, and also a CW-complex such that the product space $F \times F$ is a CW-complex. (Its H-structure will be denoted by $x \cdot y$ for $x, y \in F$.) Then, there is an inversion x^{-1} . (3) Applying Theorem 1.2, we shall prove, in §4 below, the following

¹⁾ This means that F_t , $0 \le t \le 1$, is a homotopy between 1x and $g \circ f$, i.e., $F_0 = 1x$ and $F_1 = g \circ f$.

²⁾ We shall mean by this notation that the two homotopies, $f \circ F_t$, $G_t \circ f \colon X \to Y$, are homotopic, considering as the maps $X \times I \to Y$.

³⁾ Cf. [3, Lemma 2.5].

lemmas, which are generalizations of [3, Lemmas 2.14.1-2]: $^{4)}$

Lemma 1.3.1. Let A be a space, and K_t , $G_t: A \to F$ be the homotopies and H_0 , $H_1: A \to F$ be the maps such that $K_t \cdot H_t^{-1} = G_t^{-5}$ for t = 0, 1.

Then, there is a homotopy $H_t: A \to F$ between H_0 and H_1 such that

$$G_t \sim K_t \cdot H_t^{-1} : A \times I \rightarrow F_1^{(5)}$$
 rel. $A \times \dot{I}$.

Lemma 1.3.2. Let A be a space, and G_t , $H_t: A \to F$ be the homotopies and K_0 , $K_1: A \to F$ be the maps such that $K_t \cdot H_t^{-1} = G_t$ for t = 0, 1.

Then, there is a homotopy $K_t: A \to F$ between K_0 and K_1 such that

$$G_t \sim K_t \cdot H_t^{-1}: A \times I \rightarrow F, \quad rel. \ A \times \dot{I}.$$

If we apply these lemmas instead of [3, Lemmas 2.14.1-2], we can prove [3, Lemma 5.1] and hence [3, Theorems 4.5 and 1.9] by the completely same methods, without assuming [3, (2.13)] on F. On the fore, combining with [3, Theorem 1.4], we obtain the following theorem, which is our main result of this note.

Theorem 1.4. Let F be a CW-complex such that the product space $F \times F \times F$ is also a CW-complex. Then, F is a homotopy-associative H-space (having an inversion) if, and only if, there exist topological spaces $E_2 \supset E_1 (\supset F)$, $B_2 \supset B_1 \supset b$ (a point) and a map $p: (E_2, E_1, F) \rightarrow (B_2, B_1, b)$, satisfying the following properties (1.5)—(1.8):

- (1.5) F is contractible in E_1 to a vertex $\varepsilon \in F$, leaving ε fixed throughout the contraction;
- (1.6) E_1 is a CW-complex, containing F as its subcomplex, and $E_1 \times F$ is also a CW-complex. Furthermore, E_1 is contractible in E_2 to ε , leaving ε fixed throughout the contraction;
 - (1.7) $p|E_1:(E_1, F) \to (B_1, b)$ is a weak homotopy equivalence, i. e., $(p|E_1)_*: \pi_v(E_1, F) \approx \pi_v(B_1, b)$, for every integer n > 0;
 - (1.8) $p: (E_2, F) \to (B_2, b)$ is also a weak homotopy equivalence, i.e., $p_*: \pi_n(E_2, F) \approx \pi_n(B_2, b)$, for every integer n > 0.

2. Proof of Theorem 1.2

The following lemma is an immediate consequence of the definition

⁴⁾ In [3, Lemmas 2.14.1-2], these lemmas are proved, assuming that F satisfies the additional assumption [3, (2.13)] (cf. the correction of $\S 5$ below).

⁵⁾ $K \cdot H^{-1}$: $A \to F$ is the map or the homotopy, defined by $(H \cdot K^{-1})$ $(a) = H(a) \cdot (K(a))^{-1}$ for $a \in A$.

⁶⁾ In the proofs of [3, Lemma 5.1, Theorems 4.5 and 1.9], the assumption [3, (2.13)] is used only to prove [3, Lemmas 2.14.1-2] in [3, p. 134].

of the strong homotopy equivalence in §1.

Lemma 2.1. If $f_1 \sim f_2 : X \to Y$ and f_1 is a strong homotopy equivalence, then so is f_2 .

If $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ are both strong homotopy equivalences, then so is $h \cdot f: X \rightarrow Z$.

To prove Theorem 1.2, we use the following lemma about the deformation retract.

Lemma 2.2. If a subspace X of a space Z is a deformation retract⁷⁾ of Z, then the inclusion map $i: X \to Z$ is a strong homotopy equivalence.

Proof. Let $h_t: Z \to Z$ be a retracting deformation, i. e.,

$$h_0 = 1_Z$$
, $h_1(Z) \subset X$, $h_t | X = 1_X$, for $0 \le t \le 1$.

 $h_1: Z \to X$ is clearly a homotopy inverse of i. If we set $F_t = 1_X$ and $G_t = h_t$ for $0 \le t \le 1$, then $F_t = \{1_X \sim h_1 \circ i\}$ and $G_t = \{1_Z \sim i \circ h_1\}$. The first of (1.1) is clear, because $i \circ F_t = 1_X = h_t | X = G_t \circ i$.

Using the homotopy $h_s \circ G_t = h_s \circ h_t$, $(0 \le t, s \le 1)$,

$$\begin{Bmatrix} h_1 \sim h_1 \circ i \circ h_1 \\ h_1 \circ G_t \end{Bmatrix} = \begin{Bmatrix} h_1 \circ h_1 \sim h_1 \circ h_1 \circ i \circ h_1 \\ h_1 \circ h_1 \circ h_1 \circ G_t \end{Bmatrix}$$

$$\sim \begin{Bmatrix} h_1 \circ h_1 \sim h_1 \circ h_0 \sim h_1 \circ h_0 \sim h_1 \circ h_0 \circ i \circ h_1 \sim h_1 \circ h_1 \circ h_1 \circ h_1 \circ i \circ h_1 \\ h_1 \circ h_{1-t} \qquad h_1 \circ h_0 \circ G_t \qquad h_1 \circ h_0 \circ i \circ h_1 \sim h_1 \circ i \circ h_1 \end{Bmatrix}^{8)},$$

rel. $Z \times \dot{I}$. Because $h_1 \circ h_0 \circ G_t = h_1 \circ h_t$ and $h_1 \circ h_t \circ i \circ h_1 = h_1$, this is homotopic rel. $Z \times \dot{I}$ to $\begin{cases} h_1 \sim h_1 \\ h_1 \end{cases} = \begin{cases} h_1 \sim h_1 \circ i \circ h_1 \\ F_t \circ h_1 \end{cases}$. Therefore, the second of (1.1) is proved, and we have Lemma 2.2.

Proof of Theorem 1.2. Let X, Y be CW-complexes and $f: X \rightarrow Y$ be a homotopy equivalence. Making use of a preliminary homotopy, if necessary, we assume that f is cellular. Let Z be the mapping cylinder of f. Then $X = X \times 0 \subset Z$ is a deformation retract of Z. Therefore, the inclusion map $i: X \rightarrow Z$ is a strong homotopy equivalence, by Lemma 2.2.

It is clear that Y is a deformation retract of Z, and the map $\bar{f}: Z \to Y$, defined by

$$\bar{f}(x, t) = f(x), \quad \bar{f}(y) = y, \quad \text{for } x \in X, y \in Y, \quad 0 \le t \le 1,$$

 $^{^{7)}}$ We shall use this term when, and only when, there is a retracting deformation throughout which each point of X is held fixed.

⁸⁾ This is the composed homotopy of $h_1 \circ h_1 = \{h_1 \circ h_1 \sim h_1 \circ h_0\}$, $h_1 \circ h_0 \circ G_t = \{h_1 \circ h_0 \sim h_1 \circ h_0 \circ i \circ h_1\}$ and $h_1 \circ h_1 \circ i \circ h_1 = \{h_1 \circ h_0 \circ i \circ h_1 \sim h_1 \circ h_0 \circ i \circ h_1\}$, cf. [3, (2.6)]. In this note, we shall often use the notations of [3].

⁹⁾ Cf. [1], [2] and (J) of [4].

is a retraction, which is homotopic to 1_z rel. Y. Hence, \bar{f} is a strong homotopy equivalence, as be seen in the proof of Lemma 2.2, and $f = \bar{f} \circ i$ is also so, by Lemma 2.1. Therefore, Theorem 1.2 is proved.

3. Auxiliary lemmas

To prove Lemmas 1.3.1-2, we use the auxiliary lemmas about the strong homotopy equivalence.

Lemma 3.1. Let $f: X \to Y$ be a strong homotopy equivalence, and $g: Y \to X$ be any its left homotopy inverse, i. e., $g \circ f \sim 1_X$, and $F_t = \{1_X \sim g \circ f\}$. Then g is a homotopy inverse of f, and there is such a homotopy $G_t = \{1_Y \sim f \circ g\}$ that (1, 1) is satisfied by these g, F_t and G_t .

Proof. Because f is a strong homotopy equivalence, there are a homotopy inverse g' of f and homotopies $F'_t = \{1_x \sim g' \circ f\}$ and $G'_t = \{1_y \sim f \circ g'\}$, such that

$$f \cdot F'_t \sim G'_t \circ f, \quad \text{rel.} \quad X \times \dot{I}, \quad g' \circ G'_t \sim F'_t \circ g', \quad \text{rel.} \quad Y \times \dot{I}.$$
If we set $H_t = \left\{ g' \underbrace{\widetilde{F_t \circ g'}}_{F_t \circ g'} \underbrace{g \circ f' \circ g'}_{g \circ G'_{1-t}} g \right\}$, then the homotopy $G_t = \left\{ \begin{matrix} 1_T \\ G'_t \end{matrix} \right\}$ shows that g is a homotopy inverse of f . Furthermore,

$$\begin{cases}
1_{x} \sim g' \circ f \sim g \circ f \\
F'_{t} & F'_{t} & F'_{t} \circ g' \circ f
\end{cases} \sim
\begin{cases}
1_{x} \sim g' \circ f \sim g \circ f \circ g' \circ f \sim g \circ f \circ g' \circ f \sim g \circ f \circ g' \circ f
\end{cases}$$

$$\sim
\begin{cases}
1_{x} \sim g \circ f \sim g \circ f \sim g \circ f \circ g' \circ f \sim g \circ f \circ g' \circ f
\end{cases}
\sim
\begin{cases}
1_{x} \sim g \circ f \sim g \circ f \sim g' \circ f \sim g \circ f \circ g' \circ f
\end{cases}
\sim
\begin{cases}
1_{x} \sim g \circ f \sim g \circ f \sim g' \circ f \sim g \circ f \circ g' \circ f
\end{cases}$$

rel. $X \times I$. Therefore,

$$\left\{ f \underset{f \circ F_{t}}{\sim} f \cdot g \circ f \right\} \sim \left\{ f \underset{f \circ F_{t}}{\sim} f \circ g' \circ f \underset{f \circ H_{t} \circ f}{\sim} f \circ g \circ f \right\}$$

$$\sim \left\{ f \underset{G_{t} \circ f}{\sim} f \circ g' \circ f \underset{f \circ H_{t} \circ f}{\sim} f \circ g \circ f \right\} = \left\{ f \underset{G_{t} \circ f}{\sim} f \circ g \circ f \right\},$$

$$\left\{ g \underset{g \circ G_{t}}{\sim} g \circ f \circ g \right\} = \left\{ g \underset{g \circ G_{t}}{\sim} g \circ f \circ g' \underset{g \circ f \circ H_{t}}{\sim} g \circ f \circ g \right\}$$

$$\sim \left\{ g \underset{H_{1-t}}{\sim} g' \underset{g' \circ G'_{t}}{\sim} g' \circ f \circ g' \underset{H_{t} \circ f \circ g'}{\sim} g \circ f \circ g' \underset{g \circ f \circ H_{t}}{\sim} g \circ f \circ g \right\}$$

$$\sim \left\{ g \underset{H_{1-t}}{\sim} g' \underset{F_{t} \circ g'}{\sim} g' \circ f \circ g' \underset{g \circ f \circ H_{t}}{\sim} g \circ f \circ g \right\}$$

$$\sim \left\{ g \underset{H_{1-t}}{\sim} g' \underset{F_{t} \circ g'}{\sim} g \circ f \circ g' \underset{g \circ f \circ H_{t}}{\sim} g \circ f \circ g \right\}$$

$$\sim \left\{ g \underset{H_{1-t}}{\sim} g' \underset{F_{t} \circ g'}{\sim} g \circ f \circ g' \underset{g \circ f \circ H_{t}}{\sim} g \circ f \circ g \right\}$$

It is clear that the terminal maps are held fixed throughout these homotopies.

Therefore, g, F_t and G_t satisfy (1.1), and Lemma 3.1 is proved.

Lemma 3.2. Let $f: X \to Y$ be a strong homotopy equivalence, and $g: Y \to X$, $F_t = \{1_x \sim g \circ f\}$ and $G_t = \{1_y \sim f \circ g\}$ be a homotopy inverse of f and homotopies such that they satisfy (1, 1).

Let A be a space, and μ_0 , $\mu_1: A \to X$, $\nu_t: A \to Y$ be maps and a homotopy such that $f \circ \mu_t = \nu_t$ for t = 0, 1.

Furthermore, let $\mu_t: A \to X$ be the following homotopy between μ_0 and μ_1 :

$$(3.3) \quad \mu_t = \left\{ \begin{matrix} \mu_0 & \sim & g \circ f \circ \mu_0 = g \circ \nu_0 \\ F_{t} \circ \mu_0 \end{matrix} & g \circ \nu_t \end{matrix} & g \circ \nu_1 = g \circ f \circ \mu_1 & \sim \sim \mu_1 \\ F_{1-t} \circ \mu_1 \end{matrix} \right\}.$$

Then, the two homotopies $f \circ \mu_t$ and ν_t are homotopic each other:

$$f \circ \mu_t \sim \nu_t : A \times I \to Y$$
, rel. $A \times \dot{I}$.

Proof.

$$f \circ \mu_{t} = \begin{cases} f \circ \mu_{0} & \overbrace{f \circ F_{t} \circ \mu_{0}} & f \circ g \circ f \circ \mu_{0} & \overbrace{f \circ g \circ \nu_{t}} & f \circ g \circ f \circ \mu_{1} \\ f \circ F_{t} \circ \mu_{0} & f \circ g \circ \nu_{t} & f \circ g \circ \nu_{1} \end{cases}$$

$$\sim \begin{cases} \nu_{0} & \overbrace{G_{t} \circ \nu_{0}} & f \circ g \circ \nu_{1} & \overbrace{G_{1-t} \circ \nu_{1}} \end{cases}$$

$$\sim \begin{cases} \nu_{0} & \nu_{1} \\ \nu_{t} & \nu_{t} \end{cases} = \nu_{t}, \quad \text{rel.} \quad A \times \dot{I}.$$

4. Proof of Lemmas 1.3.1-2.

Now, we consider about a homotopy-associative H-space F (having an inversion³⁾), which is a CW-complex such that $F \times F$ is also a CW complex, and use the following notations of [3]:

 $\varepsilon \in F$ is the unit, i. e., $\varepsilon \cdot x = x \cdot \varepsilon = x$, [3, (2.1)];

 $f_t: F \times F \times F \to F \times F \times F$ is the homotopy such that $f_t(x, y, z) = \{(x \cdot y) \cdot z \sim x \cdot (y \cdot z)\}, [3, (2.3)];$

 $\overline{\varepsilon}_t$, $i_t: F \to F$ are the homotopies such that $\overline{\varepsilon}_t(x) = \{\varepsilon \sim x^{-1} \cdot x\}$, $i_t(x) = \{x \sim (x^{-1})^{-1}\}$, [3, (2.9), (2.8)];

 $j_t: F \times F \to F$ is the homotopy such that $j_t(x, y) = \{(x \cdot y)^{-1} \sim y^{-1} \cdot x^{-1}\}, [3, (2.10)].$

Let l_i , $m_1: F \times F \to F \times F$ be the maps defined by

$$l_1(x, y) = (x, x \cdot y^{-1}), \quad m_1(x, y) = (x, y^{-1} \cdot x).$$

Then, it is easy to see that $1_{F\times F} \sim m_1 \circ l_1$, $1_{F\times F} \sim l_1 \circ m_1$, using the above homotopies. Therefore, l_1 is a strong homotopy equivalence, by Theorem 1.2.

Let $L_t^1: F \times F \to F$, $\bar{L}_t^1: F \times F \to F \times F$ be the homotopies defined by

$$L_{t}^{1}(x, y) = \left\{ y \underbrace{\sim_{i_{t} \cdot \overline{\varepsilon}_{t}}} (y^{-1})^{-1} \cdot (x^{-1} \cdot x) \underbrace{\sim_{i_{t} \cdot \overline{\varepsilon}_{t}}} ((y^{-1})^{-1} \cdot x^{-1}) \cdot x \underbrace{\sim_{i_{t} \cdot x}} (x \cdot y^{-1})^{-1} \cdot x \right\},$$

and $\bar{L}_t^1(x, y) = (x, L_t^1(x, y))$. Then, $\bar{L}_t^4 = \{1_{F \times F} \sim m_1 \circ l_1\}$. Applying Lemma 3.1 to m_1 and \bar{L}_t^1 , we obtain a homotopy $\bar{M}_t^1 = \{1_{F \times F} \sim l_1 \circ m_1\}$ such that these satisfy (1.1). Let $q_2: F \times F \to F$ be the natural projection of $F \times F$ onto F of the second factor, and $M_t^1 = q_2 \circ \bar{M}_t^1$.

Now, let K_t , G_t , H_0 , $H_1: A \to F$ be the homotopies and the maps such that $K_t \cdot H_t^{-1} = G_t$, for t = 0, 1, as in Lemma 1.3.1.

Let $\mu_0, \ \mu_1, \ \nu_t: A \to F \times F$ be defined as follows:

$$\mu_t = (K_t, H_t), \text{ for } t = 0, 1; \quad \mu_t = (K_t, G_t), \text{ for } 0 \le t \le 1.$$

Then, $l_1 \circ \mu_t = \nu_t$, for t = 0, 1, and we can define the homotopy μ_t between μ_0 and μ_1 by (3.3), using m_1 , \overline{L}_t^1 and \overline{M}_t^1 . It is clear that $q_1 \circ \mu_t = \{K_0 \sim K_1\}$, $q_2 \circ \mu_t = \{H_0 \sim H_1\}$, where $q_1 : F \times F \to F$ be the natural projection onto F of the first factor. Furthermore, by (3.3),

$$q_1 \circ \mu_t = \left\{ \begin{matrix} K_0 \sim K_0 \sim K_1 \sim K_1 \\ K_0 \sim K_t & K_1 \end{matrix} \right\} \sim K_t \colon A \times I \to F, \text{ rel. } A \times \dot{I},$$

because $q_1 \circ \bar{L}_t^1(x, y) = x$, and hence $q_2 \circ l_1 \circ \mu_t \sim K_t \cdot (q_2 \circ \mu_t)^{-1}$, rel. $A \times \dot{I}$. On the other hand, by Lemma 3. 2,

$$l_1 \circ \mu_t \sim \nu_t : A \times I \to F \times F$$
, rel. $A \times \dot{I}$.

Therefore, projecting by q_2 , we have

$$K_t \cdot H_t^{-1} \sim G_t : A \times I \to F$$
, rel. $A \times I$,

where $H_t = q_2 \circ \mu_t$. This proves Lemma 1.3.1.

Lemma 1.3.2 is proved similarly, using the maps l_2 , m_2 : $F \times F \rightarrow F \times F$, defined by

$$l_2(x, y) = (x \cdot y^{-1}, y), \quad m_2(x, y) = (x \cdot y, y),$$

and the homotopy

$$L^{2}_{t}(x, y) = \begin{cases} x \sim x \cdot (y^{-1} \cdot y) \sim (x \cdot y^{-1}) \cdot y \\ f_{1-t} \end{cases} : F \times F \to F,$$

instead of l_1 , m_1 and L_t^1 in the above proofs.

5. Corrections to [3].

The author takes this opportunity of correcting the following errata in [3]. (These errata are concerned only with [3, (2.13)], which may be omitted by the results of this note.)

p. 126, l. 9 — The homotopy "
$$\left\{x^{-1} \underbrace{i_t(x^{-1})}^{((x^{-1})^{-1})^{-1}} \underbrace{(i_{1-t}(x))^{-1}}^{(x^{-1})} x^{-1}\right\}$$
" is numbered by (2. 12. 0).

- 1. 8 up For "(2.12.1-2)" read "(2.12.0-2)". — For " $F \times F$ " read "F or $F \times F$ ".
- 1.7 up For " $F \times F \times \dot{I} \cup (\varepsilon, \varepsilon) \times I$ " read " $F \times \dot{I} \cup \varepsilon \times I$ or $F \times F \times \dot{I} \cup (\varepsilon, \varepsilon) \times I$ ".
- l. 6 up For "… maps $F \times F \times I \to F$ " read "… maps of $F \times I$ or $F \times F \times I$ into F".
- p. 127, l. 2 up For " $\cdots i_t$, and \cdots " read " $\cdots i_t$ and (2. 13) that the homotopy (2. 12. 0) is homotopic to the stationary homotopy, and \cdots ".

REFERENCES

- [1] R. H. Fox, On homotopy type and deformation retracts, Ann. Math., 44 (1943), 40-50.
- [2] H. SAMELSON, Remark on a paper by R. H. Fox, Ann. Math., 45 (1944), 448-449.
- [3] M. SUGAWARA, A condition that a space is group-like, Math. J. Okayama Univ., 7 (1957), 123-149.
- [4] J.H.C. WHITEHEAD, Combinatorial homotopy I, Bull. Amer. Math, Soc., 55 (1949), 213-245.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received August 9, 1958)