
O ver the past 30 years,  the sonographic estima-
tion of fetal weights has been investigated by 

applying several regression formulae.  The precise esti-
mation of fetal weight is important because birth weight 
is an important predictive parameter for neonatal mor-
bidity and mortality [1].  Problems remain regarding 
significant discrepancies between the estimated fetal 
weights and the actual birth weights,  however.  This is 
because the multiple regression function for birth 
weight as a function of fetal biometry measured by 
ultrasound,  which uses the method of finding the 
straight or non-straight line that most closely fits the 
data according to a specific mathematical criterion,  

usually does not cover distant values that are far from 
the mean or median.  This feature of regression has pre-
sented a methodological limitation for identifying more 
accurate formulae for fetal weights.

In 2003,  the Japan Society of Ultrasonics in Medicine 
(JSUM) published a dataset of the standard values of 
ultrasonic measurements that consisted of −2 standard 
deviations (SD),  −1.5SD,  ± 0SD,  +1.5SD,  and +2SD 
categories of the fetal weight of Japanese fetuses [2-5].  
We used this dataset (which has been approved as the 
standard in Japan) as ʻthe JSUM dataʼ in the present 
study.  The JSUM (2003) and the Japan Society of 
Obstetrics and Gynecology (2005) decided that the for-
mula for estimating the fetal weights of Japanese fetuses 
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We developed an artificial intelligence (AI) method for estimating fetal weights of Japanese fetuses based on the 
gestational weeks and the bi-parietal diameter,  abdominal circumference,  and femur length.  The AI comprised 
of neural network architecture was trained by deep learning with a dataset that consists of ± 2 standard devia-
tion (SD),  ± 1.5SD,  and ± 0SD categories of the approved standard values of ultrasonic measurements of the 
fetal weights of Japanese fetuses (Japan Society of Ultrasonics in Medicine [JSUM] data).  We investigated the 
residuals and compared 2 other regression formulae for estimating the fetal weights of Japanese fetuses by t-test 
and Bland-Altman analyses,  respectively.  The residuals of the AI for the test dataset that was 12.5% of the JSUM 
data were 6.4 ± 2.6,  −3.8 ± 8.6,  and −0.32 ± 6.3 (g) at −2SD,  +2SD,  and all categories,  respectively.  The residu-
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should be a regression function based on the JSUM data 
of the values of the bi-parietal diameter (BPD),  the 
abdominal circumference (AC),  and the femur length 
(FL) [2],  and this formula has been widely used in 
Japan since then.  The formula is as follows: estimated 
fetal weight (EFBW) [g] = 1.07 × BPD3 [cm] + 3.00 × 10−1 
AC2 [cm] × FL [cm].  In the present study,  we refer to 
this formula as the ʻJSUM formulaʼ.

In 2018,  Miyagi et al.  proposed a different formula 
for estimating the fetal weight of Japanese fetuses 
[6]: EFBW [g] = 8045.1/(1 + Exp (4.747 + 0.2584 × BPD 
[cm] + 0.1010 × AC [cm] − 1.416 × FL [cm])) [g].  In the 
present study,  we refer to this formula as the ʻMiyagi 
formulaʼ.

Applications of artificial intelligence (AI) in the 
medical field (including obstetrics and gynecology) 
have been investigated.  Generally,  AI is classified as 
supervised,  unsupervised,  or reinforcement learning.  
Supervised deep learning with neural networks is often 
used as in applications of AI in the medical field.  In 
obstetrics and gynecology,  AI has been applied mostly 
for imaging purposes such as the prognostic prediction 
of blastocysts in sterility [7-11],  estimating the placen-
tal volume by 3D ultrasound [12],  diagnoses in colpos-
copy [13-15],  and the prediction of local relapse and 
distant metastasis of cervical cancer [15].  Artificial 
intelligence has also been used for some non-imaging 
procedures such as survival analyses [17 , 18] and mas-
sive hemorrhage during delivery [19].  Since AI consist-
ing of neural networks involves a very large and com-
plex structure of high-dimensional matrices in deep 
learning,  we speculated that a more accurate estimation 
of fetal weight,  not only for mean values but also for 
distant values from the mean,  would be possible if AI is 
trained properly with a reliable dataset with supervised 
learning.  We hypothesized that neural network archi-
tecture trained by supervised deep learning might 
therefore be feasible for estimating fetal weights.

We conducted the present retrospective study to 
investigate the potential of AI with the original archi-
tecture of a neural network for supervised deep learn-
ing,  using the published ultrasonic biometric parame-
ters,  for generating more precise fetal weights for both 
the mean and distant values.  We did this by evaluating 
the residuals themselves and by comparing them with 
those of the JSUM formula and the Miyagi formula.  We 
used the JSUM data to create the AI by supervised deep 
learning in this study.

Materials and Methods

The datasets published by the JSUM were used [2-5].  
The values in this dataset consisted of −2SD,  −1.5SD,  
± 0SD,  +1.5SD,  and +2SD categories that were obtained 
with standard ultrasonic measurements of the BPD,  
AC,  and FL of Japanese fetuses from 18 to 41 weeks of 
gestation.

We speculated that fetal weight could be a function 
of both the raw values of BPD,  AC,  and FL — as has 
often been used in the published regression formu-
lae — and of gestational age in weeks,  which is an inte-
ger variable.  Therefore,  we used not z-scores but rather 
the raw values of BPD,  AC,  FL,  and gestational age in 
weeks for predicting the fetal weights.  We hypothesized 
that when the standard values of BPD,  AC,  and FL are 
used,  the estimated fetal weights would be closer to the 
standard values of fetal weight.  The published standard 
dataset at −2SD,  −1.5SD,  ± 0SD,  +1.5SD,  and +2SD for 
each gestational week,  all of which follow a normal dis-
tribution,  is available for use [2-5].

There is no gold-standard method for dividing and 
selecting datasets as the training,  validation,  and test 
datasets.  We felt that the values of the gestational weeks 
of relatively smaller datasets such as the validation data-
set and the test dataset should not be glomerated.  We 
also thought that the training and validation datasets 
should be as large as possible for creating better AI.  
Therefore,  because 24 classes of gestational weeks 
(from 18 to 41 weeks) were used for the preparation for 
deep learning,  we defined the values of BPD,  AC,  and 
FL at 18 , 19 , 20 , 22 , 23 , 25 , 27 , 28 , 29 , 31 , 33 , 34 , 35 ,  
36 , 37 , 38,  and 41 weeks of gestation as the training 
dataset; we defined their values at 21 , 26 , 30,  and 39 
weeks of gestation as the validation dataset; and we 
defined their values at 24 , 32,  and 40 weeks of gestation 
as the test dataset.  Thus,  the ratio of the numbers of the 
training dataset to the validation dataset to the test data-
set was 17 : 4 : 3 ( = 0.708 : 0.167 : 0.125),  and the data-
sets did not overlap.

We then weighted the training dataset and the vali-
dation dataset of ± 2SD,  ± 1.5SD and ± 0SD as 54 :  
130 : 399,  respectively,  which are the integer ratios of 
the values of the standard normal distribution probabil-
ity density function at 2 , 1.5,  and 0.  The AI was trained 
with the training dataset and simultaneously validated 
with the validation dataset.  The AI was then evaluated 
with the test dataset.  No standardizations were applied 
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to the datasets prior to the training of the AI with deep 
learning.

The architecture of the present neural network for 
deep learning was originally created with linear layers 
[20 , 21] catenated with gestational week,  BPD,  AC,  
and FL as the scalar,  batch normalization layers [22],  
rectified linear unit layers,  [23 , 24] and scaled expo-
nential liner unit layers [25] as shown in Fig. 1.  The 
number of maximum training rounds,  known as 
epochs,  was 1,500,  and the batch size was 64.  The 
optimal trained network was obtained as the best AI.

We compared the predicted values of fetal weight for 
the test dataset obtained by the best AI with the JSUM 
data.  The predicted values for the test dataset obtained 
with the JSUM formula and those obtained with the 
Miyagi formula were also compared with the JSUM 
data.  We then compared the AI,  the JSUM formula,  
and the Miyagi formula with each other by performing 
a Bland-Altman analysis.  Then,  after the AI created by 
using the training dataset seemed feasible for estimating 

fetal weights,  we created a new AI for predicting esti-
mated fetal weights (with the same architecture,  train-
ing rounds,  and batch size) by using all of the JSUM 
datasets,  of which 20% were randomized validation 
data.  We then compared the residuals of this new AI,  
the JSUM formula,  and the Miyagi formula with the 
JSUM data.

The results obtained were compared with the results 
of the Miyagi formula and those of the commonly used 
JSUM formula.  The residuals of the AI,  the JSUM for-
mula,  and the Miyagi formula against the JSUM data 
were compared by unpaired t-test.  The relationships 
among the AI,  the JSUM formula,  and the Miyagi for-
mula were investigated by a Bland-Altman analysis 
[26 , 27] with a calculation of the exact parametric con-
fidence intervals for limits of agreement [28].  
Probability (p)-values < 0.05 were accepted as signifi-
cant.

A Mac PC running OS X 10.14.5 (Apple) and Wolfram 
language 12.0.0.0 (Wolfram Research,  Champaign,  IL,  
USA) were used as the development environment.

Results

Figure 2 illustrates the AI-generated fetal weights 
obtained using the training and validation datasets at 
the −2SD,  −1.5SD,  ± 0SD,  +1.5SD,  and +2SD catego-
ries for the test dataset,  as well as the training and vali-
dation datasets themselves.  As shown in Fig. 3 and 
Table 1,  the mean ± SD (range) of the residuals of the 
AI-predicted fetal weight and the JSUM data (rAI) for 
the −2SD,  −1.5SD,  ± 0SD,  +1.5SD,  and +2SD catego-
ries and all categories of the test dataset were 6.4 ± 2.6 
(3.5 to 8.5),  −0.8 ± 2.3 (−2.3 to 1.9),  −1.4 ± 6.8 (−8.9 to 
4.3),  −2.0 ± 7.3 (−8.8 to 5.8),  −3.8 ± 8.6 (−10.1 to 6.0),  
and −0.32 ± 6.3 (−10.1 to 8.5) g,  respectively.  All of the 
estimated fetal weights generated by the AI created with 
the training dataset of the JSUM data were not different 
from the JSUM data.  Regarding the test dataset,  we also 
investigated the residuals of the JSUM formula and the 
JSUM data (rJSUM) and those of the Miyagi formula 
and the JSUM data (rMiyagi) (Fig. 3,  Table 1).  The rAI 
and rJSUM were not different from zero in any of the 
categories.  The rMiyagi values were not different from 
zero,  with the exception of the −2SD and −1.5SD cate-
gories.  The absolute values of the rJSUM were larger 
(but not significantly) than those of the rMiyagi in all 
categories except +1.5SD.  The rAI values were smaller 
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Fig. 1　 The architecture of the neural network for estimating fetal 
weight.



than the rMiyagi values in the −2SD and −1.5SD cate-
gories (p < 0.001).  The rMiyagi values were smaller than 
the rJSUM values in the +2SD category,  and the abso-
lute values of the rMiyagi were smaller than those of the 
rJSUM in all of the categories (p < 0.05).

Figure 4 and Table 2 provide the results of our com-
parison of the AI,  the JSUM formula,  and the Miyagi 
formula for the test dataset against the JSUM data by 
Bland-Altman analysis.  The differences (95% limits of 
agreement) between the AI and the JSUM formula,  the 
AI and the Miyagi formula,  and the Miyagi formula and 
the JSUM formula were 48.8 (−133.3 to 230.8),  −12.4 

(−112.5 to 87.8),  and 61.1 (−203.6 to 325.9),  respec-
tively.  The absolute value of the difference between the 
AI and the Miyagi formula was the smallest,  but not 
significantly.  There were no absolute systematic differ-
ences in these three comparisons because all of the 
p-values by t-test were not significant.  No proportional 
errors were observed in the three comparisons.  The 
Bland-Altman plots of the JSUM formula and either the 
AI or the Miyagi formula showed divergence as the 
mean increased (Fig. 4).  The Bland-Altman analysis 
results thus indicated that the variation of the JSUM 
formula depended strongly on the magnitude of the 
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measurements.
Table 3 shows the estimated fetal weights that were 

obtained with the use of a different AI that we created 
with all of the JSUM data.  As shown in Fig. 5 and Table 
4,  the mean ± SD (range) of the residuals of these 
AI-predicted fetal weights and the JSUM data (rAI’) for 
−2SD,  −1.5SD,  ± 0SD,  +1.5SD,  +2SD,  and for all cate-
gories of the JSUM dataset were −1.5 ± 9.4 (−16.5 to 
12.1),  0.2 ± 5.1 (−8.3 to 8.8),  0.6 ± 4.1 (−7.0 to 7.9),  
−2.1 ± 6.3 (−14.4 to 7.4),  −2.5 ± 7.3 (−15.4 to 9.6),  and 
−1.1 ± 6.7 (−16.5 to 12.0) g,  respectively.  The rAI’ val-
ues are not different from zero in all of categories.  In 
other words,  all of the estimated fetal weights generated 

by the AI created with all of the JSUM data were not 
different from the JSUM data.  On the other hand,  the 
residuals of the JSUM formula and the JSUM data 
(rJSUM’) and those of the Miyagi formula and the 
JSUM data (rMiyagi’) for all of the JSUM data were dif-
ferent from the JSUM data with the exception of the 
Miyagi formula at ± 0SD.  The rAI’ values were smaller 
than the rJSUM’ values in all categories and the rMiyagi’ 
in all categories except for the ± 0SD category.  The  
rMiyagi’ values were smaller than the rJSUM’ values in 
all categories except +1.5SD.

Figure 6 and Table 5 provide the results of the com-
parison of the AI created with all of the JSUM dataset,  
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Table 1　 Comparison of residuals of the test dataset of the JSUM data and the JSUM formula (rJSUM),  the Miyagi formula (rMiyagi),  
and the AI (rAI) that was created with the training dataset

Statisitc 2SD 1.5SD ±0SD +1.5SD +2SD All

Residuals of AI and the JSUM 
data (rAI)

6.4±2.6 g
(N.S.)

0.8±2.3 g
(N.S.)

1.4±6.8 g
(N.S.)

2.0±7.3 g
(N.S.)

3.8±8.6 g
(N.S.)

0.3±6.3 g
(N.S.)

Residuals of the JSUM formula 
and the JSUM data (rJSUM)

111.6±95.8 g
(N.S.)

114.1±92.2g 
(N.S.)

83.2±59.3 g
(N.S.)

9.2±11.1 g
(N.S.)

54.2±42.6 g
(N.S.)

49.1±91.2g
(N.S.)

Residuals of the Miyagi formula 
and the JSUM data (rMiyagi) 82.4±7.7 g＊＊ 57.8±5.19 g＊＊ 0.6±7.1 g

(N.S.)
35.8±26.6 g

(N.S.)
44.8±36.0 g

(N.S.)
12.1±55.0 g

(N.S.)
rAI vs rJSUM N.S. (p=0.167) N.S. (p=0.100) N.S. (p=0.138) N.S. (p=0.221) N.S. (p=0.082) N.S. (p=0.058)
rAI vs rMiyagi AI<Miyagi＊ AI<Miyagi＊＊ N.S. (p=0.747) N.S. (p=0.100) N.S. (p=0.128) N.S. (p=0.401)
rMiyagi vs rJSUM N.S. (p=0.07) N.S. (p=0.08) N.S. (p=0.132) N.S. (p=0.054) Miyagi<JSUM＊ Miyagi<JSUM＊

The residuals of each method are shown as the mean ± standard deviation (SD).  The rAI and rJSUM values are not different from zero in all of the categories.  The 
rMiyagi values are not different from zero except for the 2SD and 1.5SD categories.  The absolute values of the residuals of the rJSUM seem to be larger,  but with 
no significance due to the large number of standard deviations caused by the small size of the test dataset,  which was 3 points for each category.  The rAI values are 
significantly smaller than the rMiyagi values in the 2SD and 1.5SD categories (p<0.001).  The rMiyagi values are significantly smaller than the rJSUM values in 
+2SD and all of the categories (p<0.05).  N.S.; not significant,  ＊p<0.05,  ＊＊p<0.001 by t-test.

AI
-J

SU
M

 fo
rm

ul
a 

(g
)

300

200

100

0

-100

-200

Mean of AI and JSUM formula (g)
0 1,000 2,000 3,000 4,000

AI
-M

iy
ag

i f
or

m
ul

a 
(g

)

300

200

100

0

-100

-200

Mean of AI and Miyagi formula (g)
0 1,000 2,000 3,000 4,000

M
iy

ag
i-

JS
U

M
 fo

rm
ul

a 
(g

)

300

200

100

0

-100

-200

Mean of Miyagi and JSUM formula (g)
0 1,000 2,000 3,000 4,000

Fig. 4　 Bland-Altman plots for comparing pairs of methods.  AI and the JSUM formula (left panel),  AI and the Miyagi formula (middle 
panel),  and the Miyagi formula and the JSUM formula (right panel) are shown.  The mean and 95% limits of agreement of the differences 
between each pair of methods are shown as a solid line and dashed line,  respectively.  The absolute value of the difference between the 
AI and the Miyagi formula was the smallest,  although not significantly.  In all three comparisons,  no absolute systematic differences and no 
proportional errors were observed.  The JSUM formula and either the AI or the Miyagi formula showed divergence as the mean increased 
(left and right panels).  These results suggested that the variation of the JSUM formula depended strongly on the magnitude of the mea-
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the JSUM formula,  and the Miyagi formula for all of the 
JSUM dataset by the Bland-Altman analysis.  The differ-
ences (95% limits of agreement) between the AI and the 
JSUM formula,  the AI and the Miyagi formula,  and the 
Miyagi formula and the JSUM formula were 40.5 

(−111.1 to 192.1),  −20.1 (−114.0 to 73.7),  and 60.6 
(−157.6 to 278.8),  respectively.  The value of the differ-
ences between the AI and the JSUM formula,  that 
between the AI and the Miyagi formula,  and that 
between the Miyagi formula and the JSUM formula 
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Table 2　 Comparison of the AI that was created with the training dataset of the JSUM data,  the JSUM formula,  and the Miyagi formula 
for the test dataset by Bland-Altman analysis [26-28]

Statistic AI vs JSUM
formula

AI vs Miyagi
formula

Miyagi formula vs
JSUM formula

Sample size 15 15 15
Difference (g) 48.8 12.4 61.1
Lower 95% LoA (g) 133.3 112.5 203.6
Upper 95% LoA (g) 230.8 87.8 325.9
Upper 95% exact CI for lower 95% LoA (g) 70.3 77.8 111.9
Lower 95% exact CI for lower 95% LoA (g) 254.8 179.3 380.3
Upper 95% exact CI for upper 95% LoA (g) 352.3 154.6 502.6
Lower 95% exact CI for upper 95% LoA (g) 167.8 53.1 234.2
The coefficient of Repeatability 200.1 99.7 282.4
p-value by t-test for p (H0: Mean=0) N.S. (p=0.061) N.S. (p=0.364) N.S. (p=0.101)
The absolute value of the difference between the AI and the Miyagi formula is the smallest,  although not significantly.  LoA,  limits of 
agreement; N.S.,  not significant.

Table 3　 Estimated fetal weights predicted by AI with the use of all of the JSUM data

Gestational
Week 2SD (g) 1.5SD (g) ±0SD (g) +1.5SD (g) +2SD (g) 5 percentile 

(g)
95 percentile

(g)

18 137.6 149.8 187.9 237.0 256.6 138.7 258.0
19 173.9 192.2 251.0 314.6 337.3 173.5 338.0
20 216.0 240.0 312.9 395.5 422.1 218.0 424.1
21 267.7 297.0 394.1 482.3 519.5 270.7 513
22 328.1 358.5 469.9 587.4 618.7 332.2 619.2
23 392.3 436.9 562.5 695.6 738.1 393.7 741.9
24 473.1 519.8 661.8 803.0 860.9 474.1 855.9
25 552.5 597.5 778.4 937.6 988.7 549.9 983.6
26 643.9 702.5 892.5 1,074.8 1,137.6 645.1 1,132.5
27 744.4 815.8 1,030.9 1,218.6 1,290.2 749.1 1,283.0
28 857.1 934.7 1,165.5 1,382.6 1,462.6 862.5 1,452.2
29 974.3 1,060.2 1,306.8 1,575.0 1,645.7 980.3 1,653.3
30 1,097.9 1,189.9 1,468.0 1,743.5 1,833.7 1,105.4 1,826.3
31 1,218.0 1,325.7 1,632.1 1,929.2 2,023.6 1,225.2 2,017.5
32 1,359.8 1,472.5 1,801.2 2,127.1 2,236.3 1,368.7 2,230.9
33 1,502.0 1,624.6 1,976.4 2,327.4 2,444.2 1,513.3 2,432.6
34 1,647.1 1,776.6 2,151.4 2,529.1 2,659.7 1,656.1 2,649.1
35 1,790.2 1,920.3 2,331.0 2,734.8 2,871.0 1,797.5 2,860.1
36 1,911.1 2,067.9 2,507.9 2,935.9 3,084.7 1,920.6 3,067.0
37 2,042.5 2,204.7 2,669.0 3,134.6 3,286.8 2,058.0 3,271.3
38 2,165.7 2,341.0 2,837.5 3,330.1 3,490.5 2,177.9 3,475.1
39 2,280.5 2,461.8 2,992.0 3,507.5 3,678.8 2,300.2 3,658.7
40 2,372.5 2,566.3 3,125.9 3,679.1 3,860.8 2,390.7 3,853.6
41 2,457.9 2,662.5 3,249.5 3,831.7 4,031.7 2,472.1 4,012.5



were 40.5 ± 77.3,  −20.1 ± 111.3,  and 60.6 ± 47.9 (g),  
respectively.  The absolute value of the difference 
between the AI and the Miyagi formula was smaller 
than that between the AI and the JSUM formula 
(p = 6.68 × 10−12) and that between the Miyagi formula 
and the JSUM formula (p = 1.23 × 10−15).  There were 
absolute systematic differences in these three compari-
sons because all of the p-values revealed by t-test were 
significant.  In other words,  the AI created with all of 
the JSUM data and the AI created with each of the two 
formulas were different from each other.

In addition,  no proportional errors were observed 
in the three comparisons.  The Bland-Altman plots of 

the JSUM formula and either the AI or the Miyagi for-
mula for all of the JSUM data showed divergence as the 
mean increased (Fig. 6).  The Bland-Altman analysis 
results thus suggest that the variation of the JSUM for-
mula depended strongly on the magnitude of the mea-
surements.

Discussion

We developed an AI method that can generate the 
fetal weight from the gestational age in weeks,  the BPD,  
the AC,  and the FL (Fig. 2).  The residual obtained by 
the AI for the test dataset was only −0.32 ± 6.3 g (Table 
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Fig. 5　 The mean ± SD of the residuals of estimated fetal weight obtained by the AI and the JSUM data,  the JSUM formula and the 
JSUM data,  and the Miyagi formula and the JSUM data at -2SD,  -1.5SD,  ±0SD,  +1.5SD,  and +2SD.  This AI was trained with all of 
the JSUM data [2-5] as the training dataset,  and 20% of these data were randomly selected as the validation dataset.  The estimated fetal 
weights generated by the AI created with all of the JSUM data were not different from the JSUM data.  The residuals of this AI were smaller 
than those of the JSUM formula in all categories and that of the Miyagi formula in all categories except ±0SD.  ＊p<0.001 by t-test.

Table 4　 Comparison of the residuals of all of the JSUM data and the JSUM formula (rJSUMʼ),  the Miyagi formula (rMiyagiʼ),  and the 
AI that was created with all of the JSUM data (rAIʼ)

Statistic 2SD 1.5SD ±0SD +1.5SD +2SD All

Residuals of AI and the JSUM 
data (rAIʼ)

1.5±9.4g
(N.S.)

0.23±5.1g
(N.S.)

0.6±4.1g
(N.S.)

2.1±6.3g
(N.S.)

2.5±7.3g
(N.S.)

1.1±6.7g
(N.S.)

Residuals of the JSUM formula 
and the JSUM data (rJSUMʼ) 92.4±79.0g＊＊ 94.7±76.8g＊＊ 70.2±52.1g＊＊ 6.0±9.7g＊ 43.4±29.1g＊ 41.6±79.0＊＊

Residuals of the Miyagi formula 
and the JSUM data (rMiyagiʼ) 79.8±14.0g＊＊ 58.1±15.6g＊＊ 7.9±21.1g

(N.S.) 22.0±27.9g＊＊ 28.4±32.0g＊＊ 19.1±48.9g＊＊

rAIʼ vs rJSUMʼ AI<JSUM＊＊ AI<JSUM＊＊ AI<JSUM＊＊ AI<JSUM＊＊ AI<JSUM＊＊ AI<JSUM＊＊

rAIʼ vs rMiyagiʼ AI<Miyagi＊＊ AI<Miyagi＊＊ N.S. (P=0.109) AI<Miyagi＊＊ AI<Miyagi＊＊ AI<Miyagi＊＊

rMiyagiʼ vs rJSUMʼ Miyagi<JSUM＊＊ Miyagi<JSUM＊＊ Miyagi<JSUM＊＊ JSUM<Miyagi＊＊ Miyagi<JSUM＊＊ Miyagi<JSUM＊＊

The residuals of each method are shown as mean ± SD.  The rAIʼ values are not different from zero in all of the categories.  The rAIʼ values are smaller than the 
rJSUMʼ values in all categories.  The rAIʼ values are smaller than the rMiyagiʼ values in all categories,  except ±0SD.  ＊p<0.01,  ＊＊p<0.001 by t-test.



1).  All of the estimated fetal weights generated by the AI 
created with the training dataset of the JSUM data were 
not significantly different from the JSUM data,  which 
are considered the standard dataset of Japanese fetuses.  
The main advantage of this AI method is its use of the 
neural network,  which may provide good accuracy for 
extreme fetal weights.  The rAI values at −2SD and 
+2SD were 6.4 ± 2.6 g and −3.8 ± 8.6 g,  respectively.  On 
the other hand,  the rJSUM values at −2SD and +2SD 
were −111.6 ± 95.8 g and 54.2 ± 42.6 g,  and the rMiyagi 

values at −2SD and +2SD were 82.4 ± 7.7 g and 
−44.8 ± 36.0 g,  respectively.  However,  the rAI values 
were not smaller than the rJSUM values and rMiyagi 
values except for the Miyagi formula at +2SD,  probably 
because of the large number of standard deviations of 
the latter two formulae and the small sample size of test 
dataset which used 3 points for each category.  
Therefore,  the subsequent AI created by using all of the 
JSUM datasets demonstrated that the rAI’ values were 
significantly smaller than the rJSUM’ values and the 
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Fig. 6　 Bland-Altman plots for comparisons of pairs of methods.  The AI and the JSUM formula (left panel),  the AI and the Miyagi for-
mula (middle panel),  and the Miyagi formula and the JSUM formula (right panel) are shown.  This AI was trained with all of the JSUM data 
[2-5] as the training dataset,  and 20% of these data were randomly selected as the validation dataset.  The mean and 95% limits of agree-
ment of differences of each pair of methods are shown as a solid line and dashed line,  respectively.  The values of the differences between 
the AI and the JSUM formula,  that between the AI and the Miyagi formula,  and that between the Miyagi formula and the JSUM formula 
were 40.5±77.3,  -20.1±111.3,  and 60.6±47.9 (g),  respectively.  The absolute value of the difference between the AI and the Miyagi 
formula was smaller than that of the difference between the AI and the JSUM formula (p=6.68×10-12) and that of the Miyagi formula and 
the JSUM formula (p=1.23×10-15).  In all three comparisons,  no absolute systematic differences or proportional errors were observed.  The 
JSUM formula and either the AI or the Miyagi formula showed divergence as the mean increased (left and right panels).  These results 
suggested that the variation of the JSUM formula depended strongly on the magnitude of the measurements.

Table 5　 Comparison of the AI that was created with all of the JSUM data,  the JSUM formula,  and the Miyagi formula with all of the 
JSUM datasets by Bland-Altman analysis [26-28]

Statistic AI vs JSUM
formula

AI vs Miyagi
formula

Miyagi formula vs
JSUM formula

Sample size 120 120 120
Difference (g) 40.5 20.1 60.6
Lower 95% LoA (g) 111.1 114.0 157.6
Upper 95% LoA (g) 192.1 73.7 278.8
Upper 95% exact CI for lower 95% LoA (g) 15.3 54.7 19.7
Lower 95% exact CI for lower 95% LoA (g) 137.6 130.4 195.7
Upper 95% exact CI for upper 95% LoA (g) 218.6 90.1 317.0
Lower 95% exact CI for upper 95% LoA (g) 96.3 14.4 141.0
The coefficient of Repeatability 170.5 101.5 247.7
p-value by t-test for p (H0: Mean=0) p=7.45×108 p=1.04×105 p=2.56×108

LoA: limits of agreement.



rMiyagi’ values at not only the −2SD and +2SD catego-
ries but also all categories (p < 0.001) except for the 
Miyagi formula at ± 0SD (as shown in Table 4).  The AI’s 
good accuracy for extreme fetal weights is likely to be 
very useful.  Thus,  AI with the neural network seems to 
have potential for estimating fetal weights.

We applied a Bland-Altman plot analysis to the 
JSUM formula and the Miyagi formula as a method for 
comparing two tests.  Since this analysis revealed that 
the differences between the two methods were not sig-
nificantly different from zero and no divergence was 
observed,  the AI seemed to have features in common 
with the Miyagi formula.  On the other hand,  the com-
parison of the JSUM formula with either the AI or the 
Miyagi formula showed divergence as the mean 
increased.  We thus consider the AI method and the 
Miyagi formula to be in agreement,  and we suspect that 
they might be used interchangeably,  although using the 
AI method would be better because of the smaller 
residuals of AI.

We created an AI method by using all of the datasets 
after creating an AI method with the training and vali-
dation datasets of the JSUM data,  and the latter AI 
method appears to have the ability to estimate fetal 
weights.  The ranges of the 5-95th percentiles as well as 
the SDs of the estimated fetal weights are given in Table 
3.  The values of the percentiles may have much more 
clinical implications in determining small-for-gesta-
tional-age and large-for-gestational-age fetuses.

Although the AI method that we created by using all 
of the JSUM data demonstrated superiority to the JSUM 
formula and the Miyagi formula compared to the AI 
method created using the training and validation data-
sets,  the possibility of over-fitting of the AI derived 
from all of the datasets remains [29-34].  In other 
words,  the AI created by using all of the datasets may 
not fit well for non-standard fetuses,  such as in multiple 
pregnancies,  or for untrained gestational weeks that are 
not integers,  such as 30.4 weeks of gestation.  The fetal 
weights generated by the AI method created by using all 
of the JSUM datasets were reliable for normal fetuses of 
integer gestational age,  but the AI method created by 
using the training and validation datasets should be 
used for patients with a gestational age in a non-integer 
format or non-standard fetuses,  in order to avoid 
over-fitting.

The existing published formulae use mathematical 
models that are based on a regression analysis,  and the 

method is to find the line,  whether straight or not,  that 
most closely fits the data according to a specific mathe-
matical criterion.  However,  it is theoretically difficult 
for a single formula to estimate the values of fetal weight 
in the −2SD,  −1.5SD,  +1.5SD,  and +2SD categories 
simultaneously.  Since neural networks have complex 
structures of high-dimensional matrices,  it is possible 
that deep learning could estimate those values as well as 
the ± 0SD values.  We speculate that this is why the AI 
method described herein demonstrated less residuals.

Here,  the AI consisted of an original neural network 
architecture for deep learning with 13 layers,  the first 
layer of which was a linear layer catenated with the ges-
tational week,  BPD,  AC,  and FL as the scalar.  We tried 
different architectures including different types of layers 
such as dropout layers [35],  and different first linear 
layers catenated with the BPD,  AC,  and FL but without 
the gestational week,  etc.  Those architectures resulted 
in less accuracy (data not shown).  Because there is no 
gold-standard neural network architecture,  improve-
ments of the architecture might result in the creation of 
better AI methods.  It is also possible that an improved 
AI method will be obtained if other parameters are 
used,  such as the head circumference [36-38] and 
transverse abdominal diameter [39],  which are used in 
published formulae.  Because the JSUM has not pub-
lished the standard values of those parameters for 
Japanese fetuses,  it was not possible to include those 
parameters in the AI methods in the present study.

An external validation study should be conducted to 
evaluate the AI methods described herein for their use 
in clinical practice,  although the supervised data we 
used are approved as the standard data.  There seldom 
are actual fetuses with completely standard fetal biome-
try measured by ultrasound.  The AI methods should be 
validated on an actual dataset of biometrical evalua-
tions 3-5 days prior to delivery,  and the estimated fetal 
weights should be compared with the birth weights.

Several formulae for estimating fetal weight have 
been published.  There are nine published regression 
formulae that are functions of at least one of the param-
eters of BPD,  AC,  and FL: the JSUM [2],  Miyagi [6],  
Campbell [40],  Shepard [41],  Mertz [42],  Hadlock II 
and Hadlock III [36],  Warsof [43],  and Schild (for 
female fetuses) [37] formulae.  Burd et al.  (2009) reported 
that among several formulae they examined for 81 
fetuses in the U.S.,  Formula C (described by Hadlock et 
al.  [36]) — which is a function of BPD,  AC and FL —  
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had the best performance according to the bias and pre-
cision method [44].  In Germany,  Siemer et al.  (2008) 
reported that among 11 formulae,  two Hadlock formu-
lae [36 , 38] including abdominal circumference,  FL,  
head circumference,  and BPD showed the best levels of 
accuracy in newborns with a birth weight < 2,500 g 
(n = 160) [1].

All of these formulae were derived from datasets 
with completely different racial compositions.  
Anthropometric differences reflected in fetal biometry 
may strongly affect the results of the comparisons of 
formulae.  When those formulae are compared,  a 
regression analysis with terms that are similar to the 
published terms should be performed to see how the 
regressions coefficients change compared to those 
reported in other studies.  Alternatively,  the coefficients 
in the Japanese dataset being compared with the pub-
lished coefficients could be obtained in a Bayesian 
framework.  However,  a prospective study might be still 
required for Japanese fetuses.  The estimated crude sam-
ple sizes that are necessary to validate the significant 
difference between the JSUM data and the AI method 
that showed −0.32 ± 6.3 (g) as the residual following a 
normal distribution for the test dataset are 120,000 for 
p < 0.05 and 200,000 for p < 0.01.  However,  it is possible 
that the use of neural network architecture with deep 
learning could be feasible for localized areas consider-
ing racial compositions.

The limitations of this study should be considered.  
We applied only the averaged data of −2SD,  −1.5SD,  
± 0SD,  +1.5SD,  and +2SD categories of the fetuses to 
train the AI.  We do not know the reliability of this AI 
method for non-standard fetuses such as in multiple 
pregnancies,  asymmetrically developed fetuses,  fetuses 
with congenital malformations,  etc.  More data or spe-
cific data may be necessary to improve the AI method 
for general use or for specific uses.  If some parameters,  
whether known or unknown,  are found to be of impor-
tance in estimating fetal weights,  and if such parame-
ters are used for AI training,  an improved generalized 
AI method for estimating the fetal weight of Japanese 
fetuses will be obtained.  Such parameters may be values 
detected by ultrasound or tensors measured by different 
modalities such as genetic information.  Similarly,  if 
specific parameters related to the weight of non-stan-
dard fetuses are discovered,  a specific AI method can be 
created for each specific case,  such as multiple preg-
nancies.

In conclusion,  AI with deep learning demonstrated 
potential for accurately estimating fetal weights and 
might be superior to the commonly used regression 
formulae.  Though improved AI methods for estimating 
fetal weights can be created by using different neural 
network architecture,  by using other parameters,  and 
by adding data for non-integer gestational ages,  pro-
spective studies may be required to validate this.  
Nevertheless,  our present findings revealed that AI 
could have the ability to accurately estimate fetal 
weights in conventional clinical practice.
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