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A WEAK EULER FORMULA

FOR l-ADIC GALOIS DOUBLE ZETA VALUES

Zdzis law Wojtkowiak

Abstract. The fact that the double zeta values ζ(n,m) can be written
in terms of zeta values, whenever n+m is odd is attributed to Euler. We
shall show the weak version of this result for the l-adic Galois realization.
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0. Introduction.

The fact that the double zeta values

ζ(a+ 1, b+ 1) =

∫ 1

0

dz

1− z
, (
dz

z
)a,

dz

1− z
, (
dz

z
)b =

∑

i2>i1≥1

1

ib+1
2

1

ia+1
1

can be written as a linear combination with rational coefficients of products
of two zeta values ζ(α)ζ(β) with α and β positive integers and of ζ(a+ 1+
b+1), whenever a+1+b+1 is a positive odd integer seems to be attributed
to Euler. In fact, in the papers quoted below, it is said that Euler found a
formula for ζ(a+ 1, b+1) in terms of the Riemann zeta function, whenever
a+1+b+1 is a positive odd integer. (See [3, page 71] and [8, page 275], where
the Euler paper [2] is cited. In [7] the author claims to give rigorous proof
of the Euler results. However we have not found the explicit formulation
of the result mentioned at the beginning of the section, neither in [2], nor
in [3], [8] or in any other papers on multiple zeta values we have consulted.
Still there are so many papers on the subject that one can easily miss some
of them.)
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The examples of the above mentioned equality are

ζ(1, 2) =
∑

n1>n2≥1

1

n2
1n2

= ζ(3)

(see [8, page 275]) and

ζ(2, 3) = 3ζ(2)ζ(3) −
11

2
ζ(5)

(see [5, page 215], notice however that our notation is different from the
notation in [5]). On the other side, one should be able to show, perhaps
somewhere in future, that ζ(3, 5) cannot be written as a linear combination
with rational coefficients of products of two zeta values at positive integers
and of zeta values at positive integers. Notice that 3 + 5 is even.

The purpose of this paper is to prove a weak analogue of this result for
l-adic Galois multiple zeta values. Let us explain what we mean by this
statement.

Let us fix a rational prime number p. Let us denote by

π1(P
1
Q̄
\ {0, 1,∞},

→

01)

the maximal pro-p quotient of the étale fundamental group of P1
Q̄
\{0, 1,∞}

based at the tangential point
→

01. The Galois group

GQ := Gal(Q̄/Q)

acts on π1(P
1
Q̄
\ {0, 1,∞},

→

01) (see [1] and [9]). Let us fix an embedding of

Q̄ into C. Let π be the canonical path from
→

01 to
→

10 on P1
Q̄
\ {0, 1,∞}, the

interval [0, 1] ⊂ C. Let x and y be generators of π1(P
1
Q̄
\ {0, 1,∞},

→

01) as on

the picture.

Picture 1

Let

E : π1(P
1
Q̄
\ {0, 1,∞},

→

01)→ Qp{{X,Y }}
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be a continuous multiplicative map defined by

E(x) := exp(X) and E(y) := exp(Y ) .

For σ ∈ GQ, let us define a power series

Λπ(σ) := E(π−1 · σ(π)) ∈ Qp{{X,Y }} .

The coefficients of the power series Λπ or logΛπ, considered as functions on
GQ, are analogues of multiple zeta values (see [14, page 119], where we have
pointed this analogy). Let us denote by

λY XaY Xb

the coefficient at Y XaY Xb of the power series Λπ. This coefficient we view
as an analogue of the multiple zeta value ζ(a+1, b+1). The analogue of the
result attributed to Euler and mentioned at the beginning of the section will
be the following conjecture, which we state only for elements of GQ(µp∞ ).

Conjecture A. If a+1+b+1 is odd then λY XaY Xb is a linear combination

over Q of products λY Xα · λY Xβ with α + β ≤ a + b and of λY Xα with

α ≤ a+ b+ 1.

The actual result we shall prove is much weaker, hence “weak Euler for-
mula” in the title of the paper. We denote by N the set of non-negative
integers. Let us define a subfield of Q̄,

K1 := Q(µp∞)((1 − ξipn)
1

pm | n,m ∈ N, 0 < i < pn) .

We shall prove the following result as well as its generalization.

Theorem B. Let us assume that a + 1 + b + 1 is odd. If σ ∈ GK1
then

λY XaY Xb(σ) = 0.

It seems clear that Conjecture A and Theorem B and its generalizations
can be proved using the Drinfeld-Ihara-Deligne relations: the Z/2Z-relation
Λπ(X,Y ) ·Λπ(Y,X) = 1, the Z/3Z-relation and the Z/5Z-relation (see [10]),
in the same way as in [17] we have calculated the coefficients λY X2n−1 .

The proof we present in this paper is however different. In [18] we have
shown that the coefficient

λY Xa1Y Xa2 ...Y Xar

of Λπ at Y Xa1Y Xa2 . . . Y Xar can be expressed as an integral on (Zp)
r

against the measure which we denoted by Gr(
→

10). We shall show that the

measures Gr(
→

10) satisfy also some symmetry relations. These symmetry re-

lations of the measures Gr(
→

10) will imply Theorem B and its generalizations.
It is also possible to prove Conjecture A, as well as its generalization for

σ ∈ GQ, in this way, but the calculations will be much more complicated.
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1. The power series associated with Galois action.

Let V be a smooth algebraic variety over a number field K and let VK̄ :=
V ×K K̄. Let v be a point of V with values in an algebraic closed field. We
denote by

π1(VK̄ , v)

the maximal pro-p quotient of the étale fundamental group of VK̄ based at
v. Assume that v and w are K-points or generic points (tangential points)
“defined” over K. The Galois group GK := Gal(K̄/K) acts on π1(VK̄ , v)
and on the π1(VK̄ , v)-torsor of pro-p étale paths on VK̄ from v to w. Let γ
be a pro-p étale path on VK̄ from x to y. For any σ ∈ GK we define

fγ(σ) := γ−1 · σ(γ) ∈ π1(VK̄ , v) .

The function fγ : GK → π1(VK̄ , v) is a cocycle and have the following
properties:

a) naturality – if g : V → W is a smooth algebraic morphism defined
over K then

(1.1) g∗(fγ(σ)) = fg∗(γ)(σ) ,

where g∗ is the map induced by g on étale fundamental groups and
on torsors of paths;

b) compatibility with composition of paths – if α is a path from x to y
and β from y to z, we denote by β · α the composed path from x to
z. Then we have

(1.2) fβ·α(σ) = α−1 · fβ(σ) · α · fα(σ) .

c) Hence we get that

(1.3) fα−1(σ) = α · fα(σ)
−1 · α−1

(see [13, pages 117-118]).

We assume that K ⊂ Q̄. We recall that we have fixed an embedding of
Q̄ into the field of complex numbers C.

We denote by V (C) the set of C-points of V . Then V (C) is a complex
variety.

A K-point v of V or a tangential point v defined over K (called a K-
rational tangential base point on V in [12, (1.1) Definition]) determines a
corresponding point of V (C), which we denote also by v. We denote by
π1(V (C), v) the fundamental group of the topological space V (C) based at
v.

We have the comparison homomorphism

π1(V (C), v)→ π1(VK̄ , v) ,
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which induces a canonical isomorphism of the pro-p completion of π1(V (C), v)
onto π1(VK̄ , v) (see [4, Exposé X, Corollaire 1.8 and Exposé XII, Corollaire
5.2]). In the sequel elements of π1(V (C), v) we shall identify with the corre-
sponding elements of π1(VK̄ , v).

We denote by µpn the subgroup of all pn-th roots of 1 in Q̄. We set
µp∞ :=

⋃∞
n=1 µpn . Let us denote

ξpn := exp
(2πi

pn

)

.

Let us set
Vn := P1

Q̄
\ ({0,∞} ∪ µpn) .

Let xn (loop around 0) and yk,n (loop around ξkpn) for k ∈ Z/pnZ be the

standard generators of π1(Vn,
→

01) as on Picture 2.

Picture 2

Let
Yn

be a set of non-commuting variables Xn and Yk,n for k ∈ Z/pnZ and let

Qp{{Yn}}

be a Qp-algebra of non-commutative formal power series on elements of Yn.
Let

En : π1(Vn,
→

01)→ Qp{{Yn}}

be a continuous, multiplicative map defined by

En(xn) := expXn and En(yk,n) := expYk,n for k ∈ Z/pnZ .

It follows from the Baker-Campbell-Hausdorff formula (see [11, Theorem

5.19]) that for any g ∈ π1(Vn,
→

01), En(g) = expG for some G ∈ Qp{{Yn}},
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which is a (possibly infinite) sum of homogeneous Lie elements of Qp{{Yn}}.
Further such a Lie series we shall call a Lie element.

LetMn be the set of all monomials in non-commuting variables belonging
to Yn. If w ∈ Mn we denote by degw the degree of w as a monomial in
variables Xn and Yk,n for k ∈ Z/pnZ and by degYw the degree of w in
variables Yk,n for k ∈ Z/pnZ.

Let πn be the canonical path from
→

01 to 1
pn

→

10 on Vn (the interval [0, 1]).

Let w ∈ Mn. For σ ∈ GQ we set

Λπn(σ) := En(fπn(σ))

and we define coefficients λ
(n)
w and li

(n)
w by the equalities

Λπn(σ) = 1 +
∑

w∈Mn

λ(n)
w (σ)w ∈ Qp{{Yn}}

and

logΛπn(σ) =
∑

w∈Mn

li(n)w (σ)w ∈ Qp{{Yn}} .

If n = 0 we shall usually omit the index 0 and we shall write

Λπ(σ) = 1 +
∑

w∈M

λw(σ)w ∈ Qp{{X,Y }} .

We shall also omit σ from the formulas to stress that λ
(n)
w and li

(n)
w are

functions on GQ.

The study of the coefficients λw and liw of the power series Λπ and logΛπ

is the principal aim of the paper. Let w = Y Xn1Y Xn2 . . . Y Xnk . The
coefficients λw or liw we view as analogues of the multiple zeta values ζ(n1+
1, n2 + 1, . . . , nk + 1). For example in [17, Proposition 3.1] it is shown that

λY X2n−1 = liY X2n−1 = −
B2n

2 · (2n)!
(χ2n − 1) ,

where B2n is the 2n-th Bernoulli number and χ : Gal(Q(µp∞)/Q) → Z×
p is

the p-cyclotomic character.

In the next proposition we present one of our two main tools used in the
paper. The proposition below is a special case of Propositions 2.3 and 2.5
in [18].

Proposition 1.1. Let σ ∈ GQ and let r ≥ 1.

i) The family of functions
{

G(n)
r (σ) : (Z/pnZ)r ∋ (i1, . . . , ir) 7→ λ

(n)
Yi1,n

Yi2,n
...Yir,n

(σ) ∈ Qp

}

n∈N

forms a measure Gr(σ) on (Zp)
r with values in Qp .
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ii) Let w = Xn0Y Xn1Y Xn2 . . . Y Xnr . Then we have

λw =
(

r
∏

k=0

nk!
)

−1
∫

(Zp)r
(−x1)

n0(x1 − x2)
n1 . . . (xr−1 − xr)

nr−1xnr

r dGr(x1, . . . , xr) .

iii) Let 0 ≤ ik < pn for k = 1, 2, . . . , r and let i = (i1, i2, . . . , ir).
Let w = Xn0

n Yi1,nX
n1

n Yi2,n · · ·X
nr−1

n Yir ,nX
nr
n be inMn. Then

λ(n)
w =

(

r
∏

k=0

nk!
)

−1
∫

i+(pnZp)r
(−x1)

n0(x1 − x2)
n1 . . . (xr−1 − xr)

nr−1xnr

r dGr(x1, . . . , xr) .

The point iii) of the proposition is not proved in [18], but it follows im-
mediately from the proof of Proposition 2.5 in [18]. There is an analogous
formula for the coefficients liw (see [18]). In [18] the measure Gr was denoted

by Gr(
→

10).

2. The rhombus relation.

In this section we present our second tool. We start with few definitions.
Let a ∈ P1(C) and let v, w be two tangent vectors at a such that ||v|| = ||w||.
We denote by sa(w, v) a path on P1

C \ {a} from v to w in an infinitesimal
neighbourhood of the point a. This path is an arc in the opposite clockwise
sense (see Picture 3).

Picture 3

Let us define a morphism

kn : Vn → Vn

by kn(z) = 1/z. Let us set

qn := kn(πn)
−1 .

Let
Rn,1 : Vn → Vn
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be given by Rn,1(z) = ξpnz.

Let us set

s = s0(
−−→
0ξpn ,

→

01)−1, t = s1(
1

pn
→

10,
1

pn
−→
1∞)−1, η = Rn,1(kn(s)) and

e = Rn,1(kn(t)).

We set also

cn = Rn,1(πn)
−1 and dn = Rn,1(qn)

−1 = Rn,1(kn(πn)) .

Observe that the composition of paths

(2.1) s · cn · e · dn · η · qn · t · πn = 1

in π1(Vn,
→

01) (see Picture 4 or [16, page 167], where a similar composition
of paths appears).

Picture 4

The picture 4 has a shape of an octagon or a rhombus, hence a name of
a relation we shall deduce. Let us set

α1 := t · πn, α2 := qn · α1, α3 := η · α2,

α4 := dn · α3, α5 := e · α4 and α6 := cn · α5 .

Proposition 2.1. (Octagon relation) On the group GQ(µpn ) we have

α−1
6 ·fs·α6·α

−1
5 ·fcn ·α5·α

−1
4 ·fe·α4·α

−1
3 ·fdn

·α3·α
−1
2 ·fη·α2·α

−1
1 ·fqn ·α1·π

−1
n ·ft·πn·fπn

= 1 .

Proof. The proposition follows immediately from the formula (1.2) applied
several times to the equality (2.1). �
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Lemma 2.2. On the group GQ we have

fqn = q−1
n ·

(

(kn)∗(f
−1
πn

)
)

· qn .

Proof. The lemma follows from the naturality property (1.1) and the formula
(1.3). �

Lemma 2.3.

a) On the subgroup GQ(µpn ) of GQ we have

i) fcn = c−1
n ·

(

(Rn,1)∗(f
−1
πn

)
)

· cn ;

ii) fdn = (Rn,1)∗
(

(kn)∗(fπn)
)

;

iii) fη = (Rn,1)∗
(

(kn)∗(fs)
)

.
b) On the subgroup GQ(µp∞ ) of GQ we have

iv) fs = fe = fη = ft = 1 .

Proof. The morphism Rn,1 commutes with the action of the Galois group
GQ(µpn ). Hence the points i), ii) and iii) of the proposition follow. Study-

ing the effect of fs(σ) on the test functions z
1

pn one shows that fs(σ) =

x
1

pn
(1−χ(σ))

n for σ ∈ GQ(µpn ). Therefore it follows that fs(σ) = 1 for σ ∈

GQ(µp∞ ). Hence we get that fη(σ) = 1 for σ ∈ GQ(µp∞ ). In the same way
one shows that fe = 1 and ft = 1 on the subgroup GQ(µp∞ ) of GQ. �

The elements xn, y0,n, . . . , ypn−1,n are free generators of a free pro-p group

π1(Vn,
→

01). Hence the element fπn is a convergent infinite product of com-

mutators in these generators as the group π1(Vn,
→

01) is pro-unipotent. We
shall write
fπn = fπn(xn, y0,n, . . . , ypn−1,n) to indicate this dependence on generators.

Moreover if g : π1(Vn,
→

01)→ G is a continuous morphism of groups then

g∗(fπn(xn, y0,n, . . . , ypn−1,n)) = fπn(g∗(xn), g∗(y0,n), . . . , g∗(ypn−1,n)),

as xn and yk,n for k ∈ Z/pnZ are free generators of the free pro-p group

π1(Vn,
→

01).

Proposition 2.4. (Rhombus relation) We have the following equality on
the subgroup GQ(µp∞ ) of GQ :

f−1
πn

(

α−1
6 ·((Rn,1)∗(xn))·α6, α

−1
6 ·((Rn,1)∗(y0,n))·α6, . . . , α

−1
6 ·((Rn,1)∗(ypn

−1,n))·α6

)

·

fπn

(

α−1
3 · ((Rn,1 ◦ kn)∗(xn)) · α3, α

−1
3 · ((Rn,1 ◦ kn)∗(y0,n)) · α3, . . .

)

·

f−1
πn

(

α−1
2 · ((kn)∗(xn)) · α2, α

−1
2 · ((kn)∗(y0,n)) · α2, . . .

)

· fπn
(xn, y0,n, y1,n, . . .) = 1 .
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Proof. The proposition follows from Proposition 2.1 and Lemmas 2.2 and
2.3. �

Let us define
zn := α−1

2 · (kn)∗(xn) · α2.

Then
y0,n · xn · ypn−1,n · . . . · y2,n · y1,n · zn = 1

in π1(Vn,
→

01). Now we shall describe the maps induced by kn and Rn,1 on
fundamental groups. For our purpose the following result will be sufficient.

Lemma 2.5. We have the following equalities and congruences in the group

π1(Vn,
→

01) modulo the commutator subgroup
(

π1(Vn,
→

01), π1(Vn,
→

01)
)

.

α−1
2 · (kn)∗(xn) · α2 = y−1

1,n · y
−1
2,n · . . . · y

−1
pn−1,n · x

−1
n · y

−1
0,n = zn ,i)

α−1
2 · (kn)∗(yi,n) · α2 ≡ y−i,n for i ∈ Z/pnZ ,

α−1
3 · (Rn,1 ◦ kn)∗(xn) · α3 = zn ,ii)

α−1
3 · (Rn,1 ◦ kn)∗(yi,n) · α3 ≡ y−i+1,n for i ∈ Z/pnZ ,

α−1
6 · (Rn,1)∗(xn) · α6 = xn ,iii)

α−1
6 · (Rn,1)∗(yi,n) · α6 ≡ yi+1,n for i ∈ Z/pnZ .

Proof. We view the loops xn, zn and yk.n for k ∈ Z/pnZ as the elements
of the first homology group H1(Vn(C),Z). But then the congruences of the
lemma are equalities in H1(Vn(C);Z) and they are clear. �

We finish the section with the following technical lemma.

Lemma 2.6. Let f(xn, y0,n, . . . , ypn−1,n) ∈ π1(Vn,
→

01) and let

En

(

f(xn, y0,n, . . . , ypn−1,n)
)

= F (Xn, Y0,n, . . . , Ypn−1,n).

Let α and β0, . . . , βpn−1 be elements of π1(Vn,
→

01) and let En(α) = expA and

En(βk) = expBk (0 ≤ k ≤ pn − 1) for some Lie elements A,B0, . . . , Bpn−1

in Qp{{Yn}}. Then En

(

f(α, β0, . . . , βpn−1)
)

= F (A,B0, . . . , Bpn−1).

Proof. Let φ : π1(Vn,
→

01) → π1(Vn,
→

01) be a continuous morphism of pro-
p groups defined by φ(xn) = α and φ(yk,n) = βk for k ∈ Z/pnZ. Let us
define a continuous morphism of Qp-algebras Φ : Qp{{Yn}} → Qp{{Yn}} by
Φ(Xn) = A and Φ(Yk,n) = Bk for k ∈ Z/pnZ. Then we have En◦φ = Φ◦En.
Hence it follows that

En

(

f(α, β0, . . . , βpn−1)
)

= En(φ
(

f(xn, y0,n, . . . , ypn−1,n)
)

= Φ(En

(

f(xn, y0,n, . . . , ypn−1,n)
)

= Φ(F (Xn, Y0,n, . . . , Ypn−1,n))

= F (A,B0, . . . , Bpn−1). �
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3. Filtration of the group Gal(Q̄/Q).

With the action of the Galois group GQ on fundamental groups one can
associate several filtrations of GQ. We shall define a filtration associated
with the action of GQ on fundamental groups of the tower of coverings
{Vn → V0}n∈N. Let us set

L0 := GQ(µp∞ )

and

Lk := {σ ∈ L0 | ∀n ∈ N, ∀w ∈ Mn, degw = degYw ≤ k ⇒ λ(n)
w (σ) = 0}

for k > 0.

We denote by

In

the augmentation ideal of Qp{{Yn}}.

Lemma 3.1. We have

i) Lk+1 ⊂ Lk for k ≥ 0;
ii) the subsets Lk of GQ(µp∞ ) are closed subgroups of GQ(µp∞ ).

Proof. The first point is clear from the very definition. It rests to show
the point ii). Let us take τ, σ ∈ Lk. It follows from the cocycle formula
fπn(τσ) = fπn(τ) · τ∗(fπn(σ)) (see [13, Proposition 1.0.7]) that

(3.1) Λπn(τσ) = Λπn(τ) · τ∗(Λπn(σ)) .

It follows from [15, Proposition 15.1.7] that τ∗(Xn) = Xn and τ∗(Yi,n) =
exp(−Fi(τ)) · Yi,n · exp(Fi(τ)) (i ∈ Z/pnZ) for some Lie element Fi(τ) ∈

Qp{{Yn}}. Let (Xn)+ I
k+1
n be the ideal of Qp{{Yn}} generated by Xn and

Ik+1
n . Then it follows from Lemma 2.6 and the definition of the filtration
{Lk}k∈N that

Λπn(τ) · τ∗(Λπn(σ)) ≡ 1 modulo (Xn) + I
k+1
n .

Therefore the equality (3.1) implies that

Λπn(τσ) ≡ 1 modulo (Xn) + I
k+1
n .

Hence it follows that τσ ∈ Lk. In the similar way one shows that τ−1 ∈ Lk
if τ ∈ Lk.

The groups GQ and π1(Vn,
→

01) are equipped with their natural profinite
topologies. A finite dimensional vector space over Qp is naturally a topolog-
ical locally compact normed vector space over Qp. Observe that

Qp{{Yn}} = lim
←−
k

Qp{{Yn}}/I
k
n .
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We equipped Qp{{Yn}} with the topology of the inverse limit of finite di-
mensional topological vector spaces over Qp. Then the maps fπn : GQ →

π1(Vn,
→

01) and En : π1(Vn,
→

01) → Qp{{Yn}} are continuous. Therefore the

coefficients λ
(n)
w for w ∈ Mn are continuous functions on GQ with values

in Qp. The finite subsets of Qp{{Yn}} are closed. Hence (λ
(n)
w )−1({0}) is

a closed subset of GQ. The subgroup GQ(µp∞ ) is a closed subgroup of GQ.
Therefore Lk is a closed subgroup of GQ and of GQ(µp∞ ), as an intersection
of a family of closed subsets of GQ. �

Lemma 3.2. Let r be a positive integer. Let 0 ≤ iα < pn for α = 1, 2, . . . , r.
Let

w = Xn0

n Yi1,nX
n1

n Yi2,nX
n2

n . . . Xnr−1

n Yir,nX
nr
n ∈ Mn .

Then the coefficient λ
(n)
w vanishes on Lk for k ≥ r.

Proof. Let i = (i1, i2, . . . , ir). It follows from the Proposition 1.1, iii) that

λ(n)
w =

(

r
∏

i=0

ni!)
−1

∫

i+(pnZp)r
(−x1)

n0(x1 − x2)
n1 . . . (xr−1 − xr)

nr−1xnr

r dGr(x1, . . . , xr) .

The assumptions that σ ∈ Lk and k ≥ r imply that the measures Gr(σ) are

zero measures. Hence the coefficient λ
(n)
w vanishes on Lk. �

4. Symmetries of the measures Gr.

We recall that In is the augmentation ideal of Qp{{Yn}}. The subgroups

Γkπ of the lower central series of a group π are defined recursively by

Γ1 := π, Γk+1π := (Γkπ, π) for k = 1, 2 . . . .

(see [11, Section 5.3.]).

Lemma 4.1. For k ≥ 1 we have

En

(

Γkπ1(Vn,
→

01)
)

⊂ 1 + I k
n .

Proof. Let a, b ∈ π1(Vn,
→

01). It follows from the Baker-Campbell-Hausdorff
formula (see [11, Theorem 5.19]) that En(a) = expA and En(b) = expB
for some Lie elements A,B ∈ Q{{Yn}}. Applying three times the Baker-
Campbell-Hausdorff formula we get that

En(aba
−1b−1) = expD
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for some D ∈ Q{{Yn}} satisfying D ≡ A · B − B · A modulo I 3
n . Observe

that A · B − B · A ∈ I2n. Hence the lemma holds for k = 2. Repeating the
above arguments one shows the statement of the lemma for any k. �

The principal result of this section is the following theorem.

Theorem 4.2. Let r ≥ 1 and let σ ∈ Lr−1. Then

Gr(x1, x2, . . . , xr)(σ) −Gr(−x1,−x2, . . . ,−xr)(σ)+

Gr(−x1+1,−x2+1, . . . ,−xr+1)(σ)−Gr(x1−1, x2−1, . . . , xr−1)(σ) = 0 .

Proof. To simplify the notation let us set i = (i1, i2, . . . , ir) ∈ (Z/pnZ)r and
1 = (1, 1, . . . , 1) ∈ (Z/pnZ)r. Then −i, i+ 1 and −i+ 1 are in (Z/pnZ)r. If
i = (i1, i2, . . . , ir) ∈ (Z/pnZ)r we denote by Yi the product Yi1,nYi2,n . . . Yir,n.

It follows from Lemma 3.2 that on the subgroup Lr−1 of GQ we have

(4.1) Λπn ≡ 1 +
∑

i∈(Z/pnZ)r

λ
(n)
i

Yi modulo Ir+1
n .

It follows from Lemma 2.6 that

En(fπn

(

α−1
2 · ((kn)∗(xn)) · α2, α

−1
2 · ((kn)∗(y0,n)) · α2, . . .

)

) =

Λπn

(

logEn(α
−1
2 · ((kn)∗(xn)) · α2), logEn(α

−1
2 · ((kn)∗(y0,n)) · α2), . . .

)

.

Lemma 2.5 and Lemma 4.1 imply that

logEn(α
−1
2 · ((kn)∗(yi,n)) · α2) ≡ Y−i,n modulo I2n

for i ∈ Z/pnZ. Hence it follows from the congruence (4.1) that

(4.2) En(fπn

(

α−1
2 · ((kn)∗(xn)) · α2, α

−1
2 · ((kn)∗(y0,n)) · α2, . . .

)

)

≡ 1 +
∑

i∈(Z/pnZ)r

λ
(n)
i

Y−i modulo Ir+1
n ,

on the subgroup Lr−1 of GQ. In the similar way we show that

(4.3) En(fπn

(

α−1
3 · ((Rn,1 ◦kn)∗(xn)) ·α3, α

−1
3 · ((Rn,1 ◦kn)∗(y0,n)) ·α3, . . .

)

)

≡ 1 +
∑

i∈(Z/pnZ)r

λ
(n)
i

Y−i+1 modulo Ir+1
n

and

(4.4) En(fπn

(

α−1
6 · ((Rn,1)∗(xn)) · α6, α

−1
6 · ((Rn,1)∗(y0,n)) · α6, . . .

)

)

≡ 1 +
∑

i∈(Z/pnZ)r

λ
(n)
i

Yi+1 modulo Ir+1
n
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on the subgroup Lr−1 of GQ. Hence it follows from Proposition 2.4 and the
congruences (4.1) - (4.4) that for σ ∈ Lr−1 we have

(

1−
∑

i∈(Z/pnZ)r

λ
(n)
i

(σ)Yi+1

)

·
(

1 +
∑

i∈(Z/pnZ)r

λ
(n)
i

(σ)Y−i+1

)

·

(

1−
∑

i∈(Z/pnZ)r

λ
(n)
i

(σ)Y−i

)

·
(

1 +
∑

i∈(Z/pnZ)r

λ
(n)
i

(σ)Yi

)

≡ 1 modulo Ir+1
n .

Comparing coefficients at monomials Yi = Yi1,n . . . Yir,n we get the identity
of measures. �

5. Euler relations.

Now we shall formulate and prove our main result. We recall from Intro-
duction and from section 1 that

λXn0Y Xn1Y Xn2 ...Xnr−1Y Xnr (σ)

are the coefficients of the power series Λπ(σ) ∈ Qp{{X,Y }}, where π is the

canonical path from
→

01 to
→

10 on P1
Q̄
\ {0, 1,∞}.

Theorem 5.1. Let r be a positive integer. Let ni be non-negative integers

for 0 ≤ i ≤ r. Let σ ∈ Lr−1 and let w = Xn0Y Xn1Y Xn2 . . . Xnr−1Y Xnr . If
∑r

i=0 ni is odd then

λw(σ) = 0 .

Proof. Let us set

dµ(x1, . . . , xr)(σ) := d
(

Gr(x1, . . . , xr)(σ) −Gr(−x1, . . . ,−xr)(σ)+

Gr(−x1 + 1, . . . ,−xr + 1)(σ) −Gr(x1 − 1, . . . , xr − 1)(σ)
)

.

Let σ ∈ Lr−1. Let d, n1, . . . , nr−1, q be any sequence of length r + 1 of
non-negative integers. It follows from Theorem 4.2 that

(5.1)

∫

(Zp)r
(−x1)

d(x1 − x2)
n1 . . . (xr−1 − xr)

nr−1xqr dµ(x1, . . . , xr)(σ) = 0 .

Let us set m =
∑r−1

i=1 ni. Let us define a polynomial

Pd,q(x1, xr) :=

(−1)dxd
1x

q
r − (−1)m+qxd

1x
q
r +(−1)m+q(x1− 1)d(xr − 1)q − (−1)d(x1 +1)d(xr +1)q .
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After changes of variables in the last three integrals in the formula (5.1) we
get
(5.2)

∫

(Zp)r
(x1 − x2)

n1 . . . (xr−1 − xr)
nr−1Pd,q(x1, xr)dGr(x1, . . . , xr)(σ) = 0 .

We define an order ≺ on the set N2 by

(d, q) ≺ (d1, q1)

if d < d1 or d = d1 and q < q1. Observe that the set N2 is well-ordered by
≺.

For (d, q) ∈ N2, let Pd,q be the following proposition:

Let w = XdY Xn1Y Xn2 . . . Xnr−1Y Xq and let m =
∑r−1

i=1 ni. If d +m + q
is odd then λw(σ) = 0 for σ ∈ Lr−1.

In order to prove the theorem it is enough to prove the propositions Pd,q
for all (d, q) ∈ N2. We shall prove the theorem by the method of transfinite
induction applied to the set N2 well ordered by ≺ (see [6, Chapter VII]).

Observe that

P0,2(x1, xr) =

{

−4xr if m is even,
−2 if m is odd .

The identity (5.2) holds for any sequence of length r + 1 of non-negative
integers d, n1, . . . , nr−1, q. In particular, in the case m is odd, d = 0 and
q = 2 we have

∫

(Zp)r
(x1 − x2)

n1 . . . (xr−1 − xr)
nr−1 · (−2) dGr(x1, .., xr) = 0

on Lr−1. In the case m is even, d = 0 and q = 2 we have
∫

(Zp)r
(x1 − x2)

n1 . . . (xr−1 − xr)
nr−1 · (−4xr) dGr(x1, .., xr) = 0

on Lr−1. Observe that if m is even then m+1 is odd. Hence we have shown
the propositions P0,0 and P0,1.

In order to do an inductive step we need to consider two cases. The first
case is that of an element, which has a direct predecessor and the second
case is that of an element, which has no direct predecessor.

Let us assume that the propositions Px,y are true for all pairs (x, y) ≺
(d, a + 1). Let us assume that d+m+ a+ 1 is odd. We have

Pd,a+2(x1, xr) =
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(−1)m+a+2
(

d
∑

i=0

a+2
∑

j=0

(

d

i

)(

a+ 2

j

)

(

(−1)i+j − 1
)

xd−i
1 xa+2−j

r

)

.

Observe that (−1)i+j − 1 = 0 if i+ j is even and (−1)i+j − 1 = −2 if i+ j
is odd. If i+ j is odd and (i, j) 6= (0, 1) then

(5.3)

∫

(Zp)r
xd−i
1 (x1 − x2)

n1 . . . (xr−1 − xr)
nr−1xa+2−j

r dGr(x1, .., xr) = 0

on Lr−1 by the inductive assumption because then d− i+m+ a+ 2− j is
odd and (d − i, a + 2 − j) ≺ (d, a + 1). Hence it follows from the equality
(5.2) applied to the polynomial Pd,a+2(x1, xr) and from (5.3) that

∫

(Zp)r
xd1(x1 − x2)

n1 . . . (xr−1 − xr)
nr−1xa+1

r dGr(x1, .., xr) = 0

on Lr−1. Therefore we have shown the proposition Pd,a+1.

Let us assume that the propositions Px,y are true for all pairs (x, y) ≺
(d+ 1, 0). Let us assume that d+ 1 +m is odd. We have

Pd+1,1(x1, xr) =

(−1)m+1
(

d+1
∑

i=1, i odd

(

d+ 1

i

)

(−2)xd+1−i
1

)

xr + (−1)m
(

d+1
∑

i=0, i even

(

d+ 1

i

)

2xd+1−i
1

)

.

If i is odd and 1 ≤ i ≤ d+1 then d+1− i+m+1 is odd. By the inductive
assumption

(5.4)

∫

(Zp)r
xd+1−i
1 (x1 − x2)

n1 . . . (xr−1 − xr)
nr−1xr dGr(x1, . . . , xr) = 0

on Lr−1 for i odd and 1 ≤ i ≤ d+ 1 because then (d+ 1− i, 1) ≺ (d+ 1, 0)
and d+ 1− i+m+ 1 is odd.

By the inductive assumption we have also

(5.5)

∫

(Zp)r
xd+1−i
1 (x1 − x2)

n1 . . . (xr−1 − xr)
nr−1 dGr(x1, . . . , xr) = 0

on Lr−1 for i even and 2 ≤ i ≤ d+ 1 because then (d+ 1− i, 0) ≺ (d+ 1, 0)
and d+1− i+m is odd. Hence it follows from the equality (5.2) applied to
the polynomial Pd+1,1(x1, xr) and from (5.4) and (5.5) that

∫

(Zp)r
xd+1
1 (x1 − x2)

n1 . . . (xr−1 − xr)
nr−1 dGr(x1, . . . , xr) = 0

on Lr−1. Hence the proposition Pd+1,0 is true. Therefore by the principle
of transfinite induction the theorem is true. �
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Proof of Theorem B. Observe that

L1 = {σ ∈ GQ(µp∞ ) | ∀n ∈ N, ∀ 0 ≤ i < pn, λ
(n)
Yi,n

(σ) = 0}.

The functions λ
(n)
Yi,n

: GQ(µp∞ ) → Zp are Kummer characters κ(1 − ξipn)

associated with 1 − ξipn for n ∈ N and 0 ≤ i < pn. Hence they vanish on
the Galois group GK1

of the field K1. Therefore we have GK1
⊂ L1. Hence

Theorem B follows from Theorem 5.1. �

Corollary 5.2. Let r be a positive integer. Let 0 ≤ ik < pn for k = 1, . . . , r
and let i = (i1, . . . , ir). Let 1 = (1, 1, . . . , 1) ∈ (Zp)

r. Let n0, . . . , nr be any

sequence of length r+1 of non negative integers. Let m = n0+ . . .+nr. Let

F (x1, . . . , xr) = (x1 − x2)
n1 ...(xr−1 − xr)

nr−1 . Let σ ∈ Lr−1 and let n ≥ 0.
Then we have

∫

i+pn(Zp)r
(−x1)

n0F (x1, . . . , xr)x
nr
r dGr(x1, .., xr)(σ)+

(−1)m+1

∫

−i+pn(Zp)r
(−x1)

n0F (x1, . . . , xr)x
nr
r dGr(x1, .., xr)(σ)+

(−1)m
∫

−i+1+pn(Zp)r
(−x1 + 1)n0F (x1, . . . , xr)(xr − 1)nr dGr(x1, .., xr)(σ)+

(−1)

∫

i−1+pn(Zp)r
(−x1 − 1)n0F (x1, . . . , xr)(xr + 1)nr dGr(x1, .., xr)(σ) = 0 .

Proof. We calculate integrals over the set i+ pn(Zp)
r against the measure µ

from the proof of Theorem 5.1. After changes of variables in the last three
integrals we get the result. �

Below we shall rewrite the formula from Corollary 5.2 in terms of coeffi-

cients λ
(n)
w .

Corollary 5.3. Let n0, . . . , nr be any sequence of length r+1 of non-negative

integers. Let m = n0 + . . . + nr. Let n ≥ 0. Let

w = Xn0

n Yi1,nX
n1

n Yi2,nX
n2

n . . . Xnr−1

n Yir,nX
nr
n ,

w1 = Xn0

n Y−i1,nX
n1

n Y−i2,nX
n2

n . . . Xnr−1

n Y−ir,nX
nr
n ,

and let

v = Y−i1+1,nX
n1

n Y−i2+1,nX
n2

n . . . Xnr−1

n Y−ir+1,n,

u = Yi1−1,nX
n1

n Yi2−1,nX
n2

n . . . Xnr−1

n Yir−1,n.

Let v(a, b) = Xa
nvX

b
n and u(a, b) = Xa

nuX
b
n.
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i) Let σ ∈ Lr−1. Then

λ(n)
w (σ) + (−1)m+1λ(n)

w1
(σ) + (−1)m

n0
∑

k=0

nr
∑

j=0

(

n0

k

)(

nr

j

)

λ
(n)
v(n0−k,nr−j)(σ)

+ (−1)

n0
∑

k=0

nr
∑

j=0

(−1)j
(

n0

k

)(

nr

j

)

λ
(n)
u(n0−k,nr−j)(σ) = 0

and

λ(n)
w (σ) + (−1)m+1λ(n)

w1
(σ) + (−1)mλ

(n)
v(n0,n1)

(σ)− λ
(n)
u(n0,nr)

(σ) ≡ 0

modulo Im+r−1
n .

ii) Let σ ∈ Lr−1 and let n0 = nr = 0. Then we have

λ(n)
w (σ) + (−1)m+1λ(n)

w1
(σ) + (−1)mλ

(n)
v(n0,n1)

(σ)− λ
(n)
u(n0,nr)

(σ) = 0.

Proof. We apply the binomial formula to the polynomials (−x1 + 1)n0 ,
(xr − 1)nr , (−x0 − 1)n0 and (xr + 1)nr in the formula of Corollary 5.2.
Then the formula in the point i) of the corollary follows immediately from
Proposition 1.1, iii).

Let k+j > 0. Then degv(n0−k, nr−j) < m+r and degu(n0−k, nr−j) <
m + r. Hence it follows the congruence in the point i). The point ii) is a
special case of the point i). �
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