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DEFINING RELATIONS OF 3-DIMENSIONAL QUADRATIC

AS-REGULAR ALGEBRAS

Ayako Itaba and Masaki Matsuno

Abstract. Classification of AS-regular algebras is one of the main in-
terests in non-commutative algebraic geometry. Recently, a complete list
of superpotentials (defining relations) of all 3-dimensional AS-regular al-
gebras which are Calabi-Yau was given by Mori-Smith (the quadratic
case) and Mori-Ueyama (the cubic case), however, no complete list of
defining relations of all 3-dimensional AS-regular algebras has not ap-
peared in the literature. In this paper, we give all possible defining
relations of 3-dimensional quadratic AS-regular algebras. Moreover, we
classify them up to isomorphism and up to graded Morita equivalence
in terms of their defining relations in the case that their point schemes
are not elliptic curves. In the case that their point schemes are elliptic
curves, we give conditions for isomorphism and graded Morita equiva-
lence in terms of geometric data.

1. Introduction

Classification of Artin-Schelter regular (AS-regular) algebras is one of
the main interests in noncommutative algebraic geometry. It was originally
defined by Artin-Schelter [1], and in that paper, it was attempted to classify
3-dimensional AS-regular algebras generated in degree 1, partially using
computer programs. It was shown in [1] that every 3-dimensional AS-regular
algebra generated in degree 1 has either 3 generators and 3 quadratic defining
relations (the quadratic case), or 2 generators and 2 cubic defining relations
(the cubic case). In each case, a list of defining relations (in fact potentials
in the modern terminology) of “generic”3-dimensional AS-regular algebras
was given in [1, Table (3.11)] (the quadratic case) and in [1, Table (3.9)] (the
cubic case). Soon after, Artin-Tate-Van den Bergh [2] found a nice one-to-
one correspondence between the set of 3-dimensional AS-regular algebras A
and the set of regular geometric pairs (E, σ) where E is a scheme and σ ∈
AutkE, so the classification of 3-dimensional AS-regular algebras reduces to
the classification of regular geometric pairs. A list of regular geometric pairs
corresponding to “generic”3-dimensional AS-regular algebras was given in
[2, 4.13]. (A complete list of regular geometric pairs “up to graded Morita
equivalence”in the quadratic case was given in [4, Table 1]. See Remark
3.3.) This work convinced us that algebraic geometry is very useful to study
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even noncommutative algebras, and is considered as a starting point of the
research field noncommutative algebraic geometry.

Although the next natural project is to classify 4-dimensional AS-regular
algebras, which has been in fact very active until now, some “non-generic”3-
dimensional AS-regular algebras were also studied ([14], [16], etc.). Recently,
a complete list of superpotentials (defining relations) of all 3-dimensional
AS-regular algebras which are “Calabi-Yau”was given in [13] (the quadratic
case) and in [15] (the cubic case), however, no complete list of defining
relations of “all”3-dimensional AS-regular algebras has not appeared in the
literature. So the goal of our project is

(I) to give a complete list of defining relations of “all”3-dimensional qua-
dratic AS-regular algebras,

(II) to classify them up to isomorphism in terms of their defining relations,
and

(III) to classify them up to graded Morita equivalence in terms of their
defining relations.

In this paper, we completed our project in the case that the point scheme
is not an elliptic curve.

This paper is organized as follows: In Section 2, we recall the defini-
tions of a twisted algebra from [19], a geometric algebra from [12], and an
AS-regular algebra from [1]. In Section 3, we give a complete list of defin-
ing relations of 3-dimensional quadratic AS-regular algebras whose point
schemes are not elliptic curves, and classify them up to isomorphism and up
to graded Morita equivalence in terms of their defining relations (see The-
orems 3.1, 3.2). In particular, in the case that the point scheme is a nodal
cubic curve, we found a new algebra which is not isomorphic to any algebra
classified in [16] (see Remark 3.4). Finally, in Section 4, we give a com-
plete list of defining relations of geometric algebras whose point schemes are
elliptic curves (which include 3-dimensional quadratic AS-regular algebras
whose point schemes are elliptic curves), and conditions for isomorphism
and graded Morita equivalence in terms of geometric data (see Theorems
4.9, 4.16, 4.20).

2. Preliminary

Throughout this paper, we fix an algebraically closed field k of charac-
teristic zero, and assume that a graded k-algebra is an N-graded algebra
A =

⊕

i∈NAi. A connected graded algebra is a graded algebra A =
⊕

i∈NAi
such that A0 = k. We denote by GrModA the category of graded right
A-modules. Morphisms in GrModA are right A-module homomorphisms
preserving degrees. We say that two graded algebras A and A′ are graded

Morita equivalent if the categories GrModA and GrModA′ are equivalent.
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2.1. Twisted Algebras. For a graded algebra A, Zhang [19] introduced
a notion of twisted algebra Aϕ of A by a graded algebra automorphism
ϕ ∈ GrAutkA. In this paper, we only define a twisted algebra for a quadratic
algebra. A quadratic algebra A is of the form T (V )/(R) where V is a finite-
dimensional k-vector space, T (V ) is the tensor algebra of V , R ⊂ V ⊗k V
is a subspace and (R) is the two-sided ideal of T (V ) generated by R. We
denote the general linear group of V by GL (V ). It is easy to check the
following lemma.

Lemma 2.1. Let A = T (V )/(R) and A′ = T (V )/(R′) be quadratic algebras

with R,R′ ⊂ V ⊗k V . Then A ∼= A′ if and only if there is φ ∈ GL(V ) such

that R′ = (φ⊗ φ)(R).

Definition 2.2. Let V be a finite-dimensional k-vector space and A =
T (V )/(R) a quadratic algebra with R ⊂ V ⊗k V .

(1) For φ ∈ GL(V ), we define the twisted algebra Aφ := T (V )/(Rφ) of A
by φ where Rφ := (φ⊗ id)(R) ⊂ V ⊗k V .

(2) For ϕ ∈ GrAutkA, we define the twisted algebra Aϕ := Aϕ|V of A by ϕ
where ϕ|V ∈ GL(V ).

For a quadratic algebra A and φ ∈ GL(V ), it follows from the definition

that (Aφ)φ
−1

= A. If ϕ ∈ GrAutkA, then ϕ ∈ GrAutkA
ϕ and (Aϕ)ϕ

−1

= A.
Since Aϕ is isomorphic to the twisted algebra defined in [19], the following
theorem is shown.

Theorem 2.3 ([19, Theorem 3.1]). Let V be a finite-dimensional k-vector
space and A = T (V )/(R) a quadratic algebra with R ⊂ V ⊗ V . If ϕ ∈
GrAutkA, then GrModA ∼= GrModAϕ.

Remark 2.4. Let A = T (V )/(R) be a quadratic algebra and φ ∈ GL(V ).
If (φ ⊗ φ)(R) = R, then φ extends to φ ∈ GrAutkA, so GrModA ∼=
GrModAφ = GrModAφ. However, when (φ ⊗ φ)(R) 6= R, A may not
be graded Morita equivalent to Aφ (See Example 4.21).

2.2. Geometric Algebras. Let V be a finite dimensional k-vector space.
The equivalence relation on V \ {0} is defined by

u ∼ v ⇐⇒ there exists λ ∈ k× with u = λv.

The projective space associated to V is defined by

P(V ) := V \ {0}/ ∼ .

For φ ∈ GL(V ), the map φ∗ : P(V ∗) → P(V ∗) defined by φ∗(ξ) = φ∗(ξ) is an
automorphism where φ∗ : V ∗ → V ∗ is the dual map of φ. For φ,ψ ∈ GL(V ),
the map φ × ψ : V × V → V ⊗k V defined by (φ× ψ)(v,w) = φ(v) ⊗ ψ(w)
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is a bilinear map and induces a linear map φ ⊗ ψ : V ⊗k V → V ⊗k V by
(φ⊗ψ)(v⊗w) = φ(v)⊗ψ(w) where v, w ∈ V . For g =

∑

vi⊗wi ∈ V ⊗k V ,
we write

g(p, q) =
∑

ξ(vi)η(wi)

where p = ξ, q = η ∈ P(V ∗). Note that the zero set of R ⊂ V ⊗k V ,

V(R) := {(p, q) ∈ P(V ∗)× P(V ∗) | g(p, q) = 0 for any g ∈ R}
is well-defined.

In [12], the notion of geometric algebra was introduced.

Definition 2.5 ([12]). A geometric pair (E, σ) consists of a projective vari-
ety E ⊂ P(V ∗) and σ ∈ Autk E. Let A = T (V )/(R) be a quadratic algebra
with R ⊂ V ⊗k V .

(1) We say that A satisfies (G1) if there exists a geometric pair (E, σ) such
that

V(R) = {(p, σ(p)) ∈ P(V ∗)× P(V ∗) | p ∈ E}.
In this case, we write P(A) = (E, σ), and call E the point scheme of A.

(2) We say that A satisfies (G2) if there exists a geometric pair (E, σ) such
that

R = {f ∈ V ⊗k V | f(p, σ(p)) = 0 for any p ∈ E}.
In this case, we write A = A(E, σ).

(3) A quadratic algebra A is called geometric if A satisfies both (G1) and
(G2) with A = A(P(A)).

If A satisfies (G1), then A determines the pair (E, σ). Conversely, if A
satisfies (G2), then A is determined by the pair (E, σ). When we say that
A(E, σ) is geometric, we tacitly assume that P(A(E, σ)) = (E, σ) so that
the point scheme of A(E, σ) is E.

Note that, for g =
∑

vi ⊗ wi ∈ V ⊗k V , φ,ψ ∈ GL (V ) and p, q ∈ P(V ∗),
((φ⊗ ψ)(g))(p, q) = 0 if and only if g

(

φ∗(p), ψ∗(q)
)

= 0.

Proposition 2.6. Let E ⊂ P(V ∗) be a projective variety, σ ∈ Autk E and

φ ∈ GL (V ). Suppose that φ∗ ∈ AutkP(V
∗) restricts to φ∗ ∈ Autk E. Let

A = T (V )/(R) be a quadratic algebra with R ⊂ V ⊗k V .

(1) A
(

E, σφ∗
)

= A(E, σ)φ.

(2) If P(A) = (E, σ), then P(Aφ) = (E, σφ∗).
(3) If A is geometric with P(A) = (E, σ), then Aφ is geometric with P(Aφ) =

(E, σφ∗).

Proof. (1) By (G2), we can write A(E, σ) = T (V )/(R1) where

R1 = {f ∈ V ⊗k V | f(p, σ(p)) = 0 for any p ∈ E},
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and A(E, σφ∗) = T (V )/(R2) where

R2 = {f ∈ V ⊗k V | f(p, σφ∗(p)) = 0 for any p ∈ E}.

Since φ∗ ∈ Autk E,

f ∈ R2 ⇐⇒ f(p, σφ∗(p)) = 0 for any p ∈ E

⇐⇒ f
(

(

φ∗
)−1

(p), σ(p)
)

= 0 for any p ∈ E

⇐⇒
(

(φ−1 ⊗ id)(f)
)

(p, σ(p)) = 0 for any p ∈ E

⇐⇒ (φ−1 ⊗ id)(f) ∈ R1

⇐⇒ f ∈ (φ⊗ id)(R1) =: Rφ1 ,

so R2 = Rφ1 .
(2) Suppose that P(A) = (E, σ), that is, V(R) = {(p, σ(p)) ∈ P(V ∗) ×

P(V ∗) | p ∈ E}. Since φ∗ ∈ Autk E,

(p, q) ∈ V(Rφ) ⇐⇒ g(p, q) = 0 for any g ∈ Rφ

⇐⇒ ((φ⊗ id)(f)) (p, q) = 0 for any f ∈ R

⇐⇒ f
(

φ∗(p), q
)

= 0 for any f ∈ R

⇐⇒
(

φ∗(p), q
)

∈ V(R)
⇐⇒ q = σφ∗(p), p ∈ E

⇐⇒ (p, q) ∈ {(p, σφ∗(p)) ∈ P(V ∗)× P(V ∗) | p ∈ E},

so P(Aφ) = (E, σφ∗).
(3) Suppose that A is geometric with P(A) = (E, σ). Since P(A) = (E, σ),

P(Aφ) = (E, σφ∗) by (2). Since A = A(P(A)) = A(E, σ), A(P(Aφ)) =
A(E, σφ∗) = A(E, σ)φ = Aφ by (1).

�

Definition 2.7. Let X,Y ⊂ P(V ) be two projective varieties. We say
that X and Y are projectively equivalent if there exists an isomorphism
φ : X → Y which extends to an automorphism of P(V ). We call φ a
projective equivalence from X to Y .

The following theorem tells us that classifying geometric algebras is equiv-
alent to classifying geometric pairs.

Theorem 2.8 ([12, Remark 4.9], cf. [2]). Let A = A(E, σ) and A′ =
A(E′, σ′) be geometric algebras. Then A is isomorphic to A′ as graded k-
algebras if and only if there is a projective equivalence φ from E to E′, such
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that the following diagram commutes:

E
φ−−−−→ E′

σ





y





yσ′

E
φ−−−−→ E′

Theorem 2.9 ([12, Theorem 4.7]). Let A = A(E, σ) and A′ = A(E′, σ′) be
geometric algebras. Then GrModA ∼= GrModA′ if and only if there exists

a sequence {φi}i∈Z of projective equivalences from E to E′ such that the

following diagram commute for all i ∈ Z:

E
φi−−−−→ E′

σ





y





yσ′

E
φi+1−−−−→ E′

2.3. AS-regular algebras. Artin and Schelter [1] defined a class of regu-
lar algebras which are main objects of study in noncommutative algebraic
geometry.

Definition 2.10 ([1]). A connected graded algebra A is called a d-dimensional

Artin-Schelter regular (simply AS-regular) algebra if A satisfies the following
conditions:

(i) gldimA = d <∞,
(ii) GKdimA := inf{α ∈ R | dimk(

∑n
i=0Ai) ≤ nα for all n ≫ 0} < ∞,

and,

(iii) (Gorenstein condition) ExtiA(k,A) =

{

k (i = d),
0 (i 6= d).

A 3-dimensional AS-regular algebra A finitely generated in degree 1 is
one of the following forms:

A = k〈x, y, z〉/(f1, f2, f3)
where fi are homogeneous polynomials of degree 2 (the quadratic case), or

A = k〈x, y〉/(g1, g2)
where gi are homogeneous polynomials of degree 3 (the cubic case) (see
[1, Theorem 1.5]). Our main focus of this paper is to study 3-dimensional
quadratic AS-regular algebras.

Theorem 2.11 ([2]). Every 3-dimensional quadratic AS-regular algebra A
is geometric. Moreover, the point scheme E of A is either P

2 or a cubic

divisor in P
2.
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Remark 2.12. In the above theorem, E ⊂ P
2 could be a non-reduced cubic

divisor in P
2. See [12, Definition 4.3] for the definition of a geometric algebra

in the case that E is non-reduced.

We call a geometric pair (E, σ) regular if (E, σ) = P(A) for some 3-
dimensional quadratic AS-regular algebra A. The above theorem shows that
the classification of 3-dimensional quadratic AS-regular algebras reduces to
the classification of regular geometric pairs.

The types of regular geometric pairs are defined in [14] which are slightly
modified from the original types defined in [1] and [2]. We extend the types
defined in [14] as follows (since Autk P

n−1 ∼= PGLn(k), we often identify
σ ∈ AutkP

n−1 with the representing matrix σ ∈ PGLn(k)):

(1) Type P: E is P
2, and σ ∈ AutkP

2 ∼= PGL3(k) (Type P is divided
into Type Pi (i = 1, 2, 3) in terms of the Jordan canonical form of
σ).

(2-1) Type S1: E is a triangle, and σ stabilizes each component.
(2-2) Type S2: E is a triangle, and σ interchanges two of its compo-

nents.
(2-3) Type S3: E is a triangle, and σ circulates three components.
(3-1) Type S′1: E is a union of a line and a conic meeting at two points,

and σ stabilizes each component and two intersection points.
(3-2) Type S′2: E is a union of a line and a conic meeting at two points,

and σ stabilizes each component and interchanges two intersection
points.

(4-1) Type T1: E is a union of three lines meeting at one point, and σ
stabilizes each component.

(4-2) Type T2: E is a union of three lines meeting at one point, and σ
interchanges two of its components.

(4-3) Type T3: E is a union of three lines meeting at one point, and σ
circulates three components.

(5) Type T′: E is a union of a line and a conic meeting at one point,
and σ stabilizes each component.

(6) Type CC: E is a cuspidal cubic curve.
(7) Type NC: E is a nodal cubic curve (Type NC is divided into Type

NCi (i = 1, 2)).
(8) Type WL: E is a union of a double line and a line (Type WL is

divided into Type WLi (i = 1, 2, 3)).
(9) Type TL: E is a triple line (Type TL is divided into Type TLi

(i = 1, 2, 3, 4)).
(10) Type EC: E is an elliptic curve.
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Example 2.13 ([12, Example 4.10]). 3-dimensional quadratic AS-regular
algebras A = A(E, σ) of Type S1 are classified by the following steps.
Step 0: Since E is a union of three lines making a triangle, E is projectively
equivalent to V(xyz) = V(x) ∪ V(y) ∪ V(z), so we may assume that E =
V(xyz) = V(x) ∪ V(y) ∪ V(z) by Theorem 2.8.
Step 1: Since σ ∈ AutkE stabilizes each component, σ ∈ AutkE is given by

σ|V(x)(0 : b : c) = (0 : b : αc),

σ|V(y)(a : 0 : c) = (βa : 0 : c),

σ|V(z)(a : b : 0) = (a : γb : 0),

where α, β, γ ∈ k and αβγ 6= 0, 1.
Step 2: By using (G2) condition in Definition 2.5, we can compute the defin-
ing relation of A = A(E, σ) as

yz − αzy, zx− βxz, xy − γyx.

Let A′ be another algebra of Type S1 with the defining relations

yz − α′zy, zx− β′xz, xy − γ′yx,

where α′, β′, γ′ ∈ k and α′β′γ′ 6= 0, 1.
Step 3: By Theorem 2.8, we can show that A ∼= A′ as graded k-algebras if
and only if

(α′, β′, γ′) =

{

(α, β, γ), (β, γ, α), (γ, α, β),

(α−1, γ−1, β−1), (β−1, α−1, γ−1), (γ−1, β−1, α−1).

Step 4: By Theorem 2.9, we can show that GrModA ∼= GrModA′ if and only
if α′β′γ′ = (αβγ)±1.

The purpose of this paper is to expand the above example to the remaining
types.

3. Defining relations for non Type EC algebras

The following theorem lists all possible defining relations of algebras in
each type up to isomorphism except for Type EC.

Theorem 3.1 ([5, 9, 10, 11, 17]). Let A = A(E, σ) be a 3-dimensional qua-

dratic AS-regular algebra. For each type except for Type EC, the following

table describes

(I): the defining relations of A, and
(II): the conditions to be isomorphic as graded algebras in terms of

their defining relations. (see Example 2.13.)
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In the following table, if X 6= Y or i 6= j, then Type Xi algebra is not

isomorphic to any Type Yj algebra.

Type (I) defining relations (II) condition to be

(α, β, γ ∈ k) graded algebra isomorphic

P1











αxy − βyx,

βyz − γzy,

γzx− αxz

(αβγ 6= 0)

(α′ : β′ : γ′)

=











(α : β : γ), (α : γ : β),

(β : α : γ), (β : γ : α),

(γ : α : β), (γ : β : α)

in P
2

P2











xy − yx+ y2,

xz − αzx+ αzy,

yz − αzy (α 6= 0)

α′ = α

P3











xy − yx+ y2 − zx,

xz + yz − zx,

zy − yz − z2
———————

S1











yz − αzy,

zx− βxz,

xy − γyx

(αβγ 6= 0, 1)

(α′, β′, γ′)

=











(α, β, γ), (β, γ, α),

(γ, α, β), (α−1 , γ−1, β−1),

(β−1, α−1, γ−1), (γ−1, β−1, α−1)

S2











zx− αyz,

xz − βzy,

x2 + αβy2
(αβ 6= 0) (α′ : β′) = (α : β) in P

1

S3











yx− αz2,

zy − βx2,

xz − γy2
(αβγ 6= 0, 1) α′β′γ′ = αβγ

S′1











xy − βyx,

x2 + yz − αzy,

zx− βxz (αβ2 6= 0, 1)

(α′, β′) = (α, β), (α−1, β−1)

S′2











xy − zx,

yx− xz,

x2 + y2 + z2
———————
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T1































xy − yx,

xz − zx− βx2

+(β + γ)yx,

yz − zy − αy2

+(α+ γ)xy

(α+ β + γ 6= 0)

(α′ : β′ : γ′)

=











(α : β : γ), (α : γ : β),

(β : α : γ), (β : γ : α),

(γ : α : β), (γ : β : α)

in P
2

T2































x2 − y2,

xz − zy − βxy

+(β + γ)y2,

yz − zx− αyx

+(α+ γ)x2

(α+ β + γ 6= 0)

(α′ + β′ : γ′) = (α+ β : γ) in P
1

T3











x2 − xy + y2,

xz + zy,

yx− yz + zx− zy

———————

T′



















αx2 + β(α+ β)xy − xz

+zx− (α+ β)zy,

xy − yx− βy2,

2βxy − β2y2 + yz − zy

(α+ 2β 6= 0)

(α′ : β′) = (α : β) in P
1

CC



















−3x2 − 2xy + xz − zx

+2zy,

−xy + yx+ y2,

3x2 + y2 + yz − zy

———————

NC1



















xy − αyx,

α3 − 1

α
x2 + αzy − yz,

α3 − 1

α
y2 + αxz − zx

(α(α3 − 1) 6= 0)

α′ = α±1

NC2











xz − 2yx+ zy,

zx− 2xy + yz,

y2 + x2
———————
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WL1











αxy − yx,

αxz − γyx− zx,

zy − yz + (1 + γ)y2

(α 6= 0, 1)

(α′, γ′) = (α, γ)

WL2











xy − yx,

xz − γyx− zx,

zy − yz + (1 + γ)y2
γ′ = γ

WL3



















xy − yx,

xz − x2 − γyx− zx,

xy + zy − yz

+(1 + γ)y2

γ′ = γ

TL1











xy − αyx,

xz − α−1zx,

α−1zy − αyz + x2

(α 6= 0)

α′ = α±1

TL2











xy − yx− βx2,

xz − zx− yx,

zy − yz − βxz + x2 + y2
β′ = ±β

TL3











xy + yx,

xz + zx− yx,

zy − yz − x2 − y2
———————

TL4











xy + yx,

xz − zx− x2,

zy − yz + xy + x2
———————

The following theorem lists all possible defining relations of algebras in
each type up to graded Morita equivalence except for Type EC.

Theorem 3.2 ([5, 9, 10, 11, 17]). Let A = A(E, σ) be a 3-dimensional qua-

dratic AS-regular algebra. For each type except for Type EC, the following

table describes

(I): the defining relations of A, and
(III): the conditions to be graded Morita equivalent in terms of their

defining relations. (see Example 2.13. )

In the following table, if X 6= Y, then Type X algebra is not graded Morita

equivalent to any Type Y algebra.
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Type (I) defining relations (III) condition to be graded

(α, β, γ ∈ k) Morita equivalence

P











xy − yx,

yz − zy,

zx− xz

———————

S











yz − αzy,

zx− βxz, (αβγ 6= 0, 1)

xy − γyx

α′β′γ′ = (αβγ)±1

S′











xy − βyx,

x2 + yz − αzy,

zx− βxz (αβ2 6= 0, 1)

α′β′2 = (αβ2)±1

T











xy − yx,

xz − zx− x2,

yz − zy − y2
———————

T′











x2 − xz + zx− zy,

xy − yx,

yz − zy

———————

CC



















−3x2 − 2xy + xz − zx

+2zy,

−xy + yx+ y2,

3x2 + y2 + yz − zy

———————

NC



















xy − αyx,

α3 − 1

α
x2 + αzy − yz,

α3 − 1

α
y2 + αxz − zx

(α(α3 − 1) 6= 0)

α′3 = α±3

WL











xy + yx,

xz + zx,

zy − yz + y2
———————

TL











xy − yx,

xz − zx,

zy − yz + x2
———————

Remark 3.3. Since GrModA ∼= GrModA′ if and only if A ∼= A′ as Z-algebras
where A :=

⊕

i,j∈ZAj−i by [18], the above table agrees with [4, Table 1].
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If E is reduced, then Theorem 3.1 and Theorem 3.2 are proved by the
following five steps (see Example 2.13):

Step 0: Fix a defining relation of E.
Step 1: Find all automorphisms σ of E.
Step 2: Find the defining relations of A(E, σ) for each σ ∈ AutkE by

using (G2) condition in Definition 2.5.
Step 3: Classify them up to isomorphism of graded algebras in terms

of their defining relations by using Theorem 2.8.
Step 4: Classify them up to graded Morita equivalence in terms of their

defining relations by using Theorem 2.9.

For Type Pi (i = 1, 2, 3), Type Si (i = 1, 2, 3), Type S′i (i = 1, 2), Type
Ti (i = 1, 2, 3) and Type T′, the above five steps were completed in [11] and
[10]. For Type CC and Type NCi (i = 1, 2), Step 1 was completed in [17],
and Step 2, Step 3 and Step 4 were completed in [5].

We briefly explain the method in [17]. Let E be an irreducible variety

and π : Ẽ → E a normalization of E. Then, for any σ ∈ AutkE, there exists
a unique σ̃ ∈ Autk Ẽ such that σ ◦ π = π ◦ σ̃, i.e., the following diagram
commutes:

Ẽ
π−−−−→ E

σ̃





y





y

σ

Ẽ
π−−−−→ E

In fact, the assignment σ 7−→ σ̃ is an injective group homomorphism from
AutkE to AutkẼ.

For example, let A = A(E, σ) be a Type NC algebra.
Step 0: Since E is a nodal cubic curve, we may assume that E = V(x3 +
y3 + xyz).

Step 1: A normalization π : P1 = Ẽ −→ E is given by

π(a : b) = (a2b : ab2 : − a3 − b3).

Since σ fixes the singular point (0 : 0 : 1) ∈ E and π−1((0 : 0 : 1)) = {(1 :

0), (0 : 1)} ⊂ P
1, either σ̃ fixes both (1 : 0) and (0 : 1) so that σ̃ =

(

1 0
0 α

)

for 0 6= α ∈ k, or σ̃ switches (1 : 0) and (0 : 1) so that σ̃ =

(

0 1
β 0

)

for

0 6= β ∈ k. In each case, the corresponding σ is given as

σ1(x : y : z) = (αxy : α2y2 : (α3 − 1)x2 + α3yz) (α3 6= 0, 1)

or

σ2(x : y : z) = (βy2 : β2xy : (1− β3)x2 + yz) (β3 6= 0, 1).
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Remark 3.4. We call the above A(E, σi) Type NCi algebras (i = 1, 2). Type
NC1 algebras are isomorphic to algebras given in [16, Theorem 2.2], however,
Type NC2 algebras are not isomorphic to any algebra in [16, Theorem 2.2].
In fact, the above σ1 was in [16], but σ2 was overlooked in [16].

To prove Theorem 3.1 and Theorem 3.2 when E is a non-reduced cubic
in P

2, we use the following key lemma.

Lemma 3.5 ([3, Theorem 8.16 (iii)]). (1) If A is a 3-dimensional quadratic

AS-regular algebra of TypeWL, then there exists ϕ ∈ GrAutkA such that

Aϕ ∼= B1 := k〈x, y, z〉/(xy − yx, xz − zx, zy − yz + xz), or

Aϕ ∼= B2 := k〈x, y, z〉/(xy − yx, xz − zx, zy − yz + y2).

(2) If A is a 3-dimensional quadratic AS-regular algebra of Type TL, then

there exists ϕ ∈ GrAutkA such that

Aϕ ∼= B3 := k〈x, y, z〉/(xy − yx, xz − zx, zy − yz + x2).

Since B = Aϕ if and only if A = Bϕ−1

by [19, Proposition 2.5 (2)], for
Type WL algebras and Type TL algebras, Theorem 3.1 and Theorem 3.2
are proved by the following four steps:

Step 1: Find all graded algebra automorphisms ϕ−1 of Bi (i = 1, 2, 3)
in Lemma 3.5.

Step 2: Find the defining relations of Bϕ−1

i by using Definition 2.2.
Step 3: Classify them up to isomorphism of graded algebras in terms

of their defining relations by using Lemma 2.1.
Step 4: Classify them up to graded Morita equivalence in terms of their

defining relations by using Theorem 2.3.

Step 1 and Step 2 were completed in [9] and, Step 3 and Step 4 were com-
pleted in [5].

4. Defining relations for Type EC algebras

Throughout this section, let E be an elliptic curve in P
2. Our aim in this

section is to find Autk E and to compute the defining relations of A(E, σ)
where σ ∈ Autk E.

It is well-known that the j-invariant j(E) classifies elliptic curves up to
projective equivalence.

Theorem 4.1 ([7, Theorem IV 4.1 (b)]). Let E and E′ be two elliptic curves

in P
2. Then E and E′ are projectively equivalent if and only if j(E) = j(E′).

Let X be a scheme and Y a subscheme of X. We define

Autk (X,Y ) := {φ ∈ AutkX | φ|Y ∈ Autk Y }.
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We view an element of Autk (X,Y ) in two ways, that is, as an automorphism
of X which restricts to an automorphism of Y and as an automorphism of
Y which extends to an automorphism of X. In particular, if Y = {p}, then
we write Autk (X,Y ) = Autk (X, p).

Theorem 4.2 ([7, Corollary IV 4.7]). Let E be an elliptic curve in P
2. For

every p ∈ E,

|Autk(E, p)| =











2 if j(E) 6= 0, 123,

6 if j(E) = 0,

4 if j(E) = 123.

For each point o ∈ E, we can define an addition on E so that E is an
abelian group with the identity element o and, for p ∈ E, the map σp defined
by σp(q) := p+ q is a scheme automorphism of E, called the translation by
a point p. We write (E, o) when we view E as an abelian group with the
identity element o ∈ E.

In this paper, we use the Hesse form Eλ := V(x3+y3+z3−3λxyz) where
λ ∈ k. It is known that Eλ is an elliptic curve in P

2 if and only if λ3 6= 1.
The j-invariant of Eλ is given by the formula

j(Eλ) =
27λ3(λ3 + 8)3

(λ3 − 1)3

([6, Proposition 2.16]).
Every elliptic curve in P

2 is projectively equivalent to Eλ for some λ with
λ3 6= 1 ([6, Corollary 2.18]).

Theorem 4.3 ([6, Theorem 2.11]). Let Eλ be an elliptic curve of the Hesse

form in P
2 and oλ := (1 : −1 : 0) ∈ Eλ. The group structure on (Eλ, oλ) is

given as follows : for p = (a : b : c) and q = (α : β : γ) ∈ Eλ,

p+ q :=











(acβ2 − b2αγ : bcα2 − a2βγ : abγ2 − c2αβ) if p 6= q,

(a3b− bc3 : ac3 − ab3 : b3c− a3c) if p = q.

Throughout this paper, we fix the above group structure on Eλ with the
identity oλ := (1 : −1 : 0) ∈ Eλ.

4.1. Automorphism groups.

Lemma 4.4 ([7, Lemma IV 4.9]). Let (E, o) and (E′, o′) be two elliptic

curves in P
2. If ϕ : E → E′ is a morphism of schemes sending o to o′, then

ϕ is also a group homomorphism.

We set the following notations:
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(i) T := {σp ∈ Autk E | p ∈ E} and Tλ := {σp ∈ Autk Eλ | p ∈ Eλ}.
(ii) G := Autk(E, o) and Gλ := Autk(Eλ, oλ).

For σp ∈ T and τ ∈ G, it is easy to see that τσpτ
−1 = στ(p) ∈ T .

Proposition 4.5 (cf. [4, Section 6]). Suppose that (E, o) is an elliptic

curve in P
2. If Φ : G → AutT is the group homomorphism defined by

Φτ (σp) = στ(p) for τ ∈ G and σp ∈ T , then Autk E ∼= T ⋊Φ G.

Theorem 4.6. Let Eλ be an elliptic curve in P
2. A generator τλ of Gλ is

given by






































τλ(a : b : c) := (b : a : c) if j(Eλ) 6= 0, 123,

τλ(a : b : c) := (b : a : cε) if λ = 0 (so that j(Eλ) = 0),

τλ(a : b : c) := (aε2 + bε+ c : aε+ bε2 + c : a+ b+ c)

if λ = 1 +
√
3 (so that j(Eλ) = 123),

where ε is a primitive 3rd root of unity. In particular, Gλ is the subgroup of

Autk(P
2, Eλ).

Proof. (i) If j(Eλ) 6= 0, 123, then |Gλ| = 2 by Theorem 4.2. Let τλ =




0 1 0
1 0 0
0 0 1



 ∈ PGL3(k) ∼= Autk P
2. If p = (a : b : c) ∈ Eλ, then

τλ(p) = (b : a : c) ∈ Eλ, so τλ ∈ Autk(P
2, Eλ). Since τλ(oλ) = oλ, we

have τλ ∈ Gλ. By calculations, |τλ| = 2, so Gλ = 〈τλ〉.
(ii) If λ = 0 so that Eλ = V(x3 + y3 + z3), then j(Eλ) = 0, so |Gλ| = 6

by Theorem 4.2. Let τλ =





0 1 0
1 0 0
0 0 ε



 ∈ PGL3(k) ∼= Autk P
2, where

ε is a primitive 3rd root of unity. If p = (a : b : c) ∈ Eλ, then
τλ(p) = (b : a : cε) ∈ Eλ, so τλ ∈ Autk(P

2, Eλ). Since τλ(oλ) = oλ, we
have τλ ∈ Gλ. By calculations, |τλ| = 6, so Gλ = 〈τλ〉.

(iii) If λ = 1 +
√
3 so that Eλ = V(x3 + y3 + z3 − 3(1 +

√
3)xyz), then

j(Eλ) = 123, so |Gλ| = 4 by Theorem 4.2. Let τλ =





ε2 ε 1
ε ε2 1
1 1 1



 ∈

PGL3(k) ∼= Autk P
2. If p = (a : b : c) ∈ Eλ, then τλ(p) = (aε2+ bε+ c :

aε+ bε2 + c : a+ b+ c). Since

(aε2 + bε+ c)3 + (aε+ bε2 + c)3 + (a+ b+ c)3

−3(1 +
√
3)(aε2 + bε+ c)(aε + bε2 + c)(a+ b+ c)
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= 3(a3 + b3 + c3) + 18abc − 3(1 +
√
3)(a3 + b3 + c3 − 3abc)

= −3
√
3(a3 + b3 + c3) + 9

√
3(1 +

√
3)abc

= −3
√
3(a3 + b3 + c3 − 3(1 +

√
3)abc)

= 0,

we have τλ(p) ∈ Eλ, so τλ ∈ Autk(P
2, Eλ). Since τλ(oλ) = oλ, we have

τλ ∈ Gλ. By calculations, |τλ| = 4, so Gλ = 〈τλ〉.
�

We fix the above generator τλ of Gλ for the rest of the paper.

4.2. Defining Relations.

Lemma 4.7. Every 3-dimensional quadratic AS-regular algebra A = A(E, σ)
of Type EC is isomorphic to A(Eλ, σpτ

i
λ) where λ ∈ k with λ3 6= 1, p ∈ Eλ

and i ∈ Z .

Proof. By Theorem 4.1, there exists λ ∈ k such that E and Eλ are projec-
tively equivalent. If we set σ′ := φσφ−1 ∈ Autk Eλ where φ : E → Eλ is a
projective equivalence, then the diagram

E
φ

//

σ

��

Eλ

σ′

��

E
φ

// Eλ

commutes, so A(E, σ) ∼= A(Eλ, σ
′) by [14, Lemma 2.6 (1)]. By Proposition

4.5 and Theorem 4.6, there exist p ∈ Eλ and i ∈ Z such that σ′ = σpτ
i
λ

where 〈τλ〉 = Gλ = Autk(Eλ, oλ), so A ∼= A(Eλ, σpτ
i
λ). �

We can compute the defining relations of 3-dimensional quadratic AS-
regular algebras of Type EC by using the defining relations of a 3-dimensional
Sklyanin algebra

A(E, σp) = k〈x, y, z〉/(ayz + bzy + cx2, azx+ bxz + cy2, axy + byx+ cz2)

where p = (a : b : c) ∈ P
2. We say that a geometric algebra A is of Type EC

if the point scheme of A is an elliptic curve.

Lemma 4.8. Let Eλ be an elliptic curve in P
2 where λ3 6= 1, p = (a : b :

c) ∈ Eλ and i ∈ Z. Then A(Eλ, σpτ
i
λ) is a geometric algebra of Type EC if

and only if abc 6= 0.

Proof. If abc 6= 0, then ((a3 + b3 + c3)/3abc)3 = λ3 6= 1, that is, (a3 + b3 +
c3)3 6= (3abc)3, so A(Eλ, σp) is a 3-dimensional quadratic AS-regular algebra
of Type EC by [2, Section 1]. Since A(Eλ, σp) is a geometric algebra of Type
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EC, A(Eλ, σpτ
i
λ) is also a geometric algebra of Type EC by Proposition 2.6

(3). If abc = 0, then the point scheme of A(Eλ, σp) is P
2 by [2, Section 1],

so A(Eλ, σpτ
i
λ) is not of Type EC by Proposition 2.6 (2). �

Theorem 4.9. Every 3-dimensional quadratic AS-regular algebra A(E, σ)
of Type EC is isomorphic to one of the following algebras k〈x, y, z〉/(f1, f2, f3):

(1) If j(E) 6= 0, 123, then











f1 = ayz + bzy + cx2,

f2 = azx+ bxz + cy2,

f3 = axy + byx+ cz2.











f1 = axz + bzy + cyx,

f2 = azx+ byz + cxy,

f3 = ay2 + bx2 + cz2.

where (a : b : c) ∈ Eλ with j(Eλ) = j(E) such that abc 6= 0.
(2) If j(E) = 0, then











f1 = ayz + bzy + cx2,

f2 = azx+ bxz + cy2,

f3 = axy + byx+ cz2.











f1 = axz + bεzy + cyx,

f2 = aεzx+ byz + cxy,

f3 = ay2 + bx2 + cεz2.










f1 = ayz + bε2zy + cx2,

f2 = aε2zx+ bxz + cy2,

f3 = axy + byx+ cε2z2.











f1 = axz + bzy + cyx,

f2 = azx+ byz + cxy,

f3 = ay2 + bx2 + cz2.










f1 = ayz + bεzy + cx2,

f2 = aεzx+ bxz + cy2,

f3 = axy + byx+ cεz2.











f1 = axz + bε2zy + cyx,

f2 = aε2zx+ byz + cxy,

f3 = ay2 + bx2 + cε2z2.

where (a : b : c) ∈ E0 such that abc 6= 0 and ε is a primitive 3rd root of

unity.

(3) If j(E) = 123, then











f1 = ayz + bzy + cx2,

f2 = azx+ bxz + cy2,

f3 = axy + byx+ cz2.







































f1 = a(εx+ ε2y + z)z + b(x+ y + z)y

+c(ε2x+ εy + z)x,

f2 = a(x+ y + z)x+ b(ε2x+ εy + z)z

+c(εx+ ε2y + z)y,

f3 = a(ε2x+ εy + z)y + b(εx+ ε2y + z)x

+c(x+ y + z)z.
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f1 = axz + bzy + cyx,

f2 = azx+ byz + cxy,

f3 = ay2 + bx2 + cz2.







































f1 = a(ε2x+ εy + z)z + b(x+ y + z)y

+c(εx+ ε2y + z)x,

f2 = a(x+ y + z)x+ b(εx+ ε2y + z)z

+c(ε2x+ εy + z)y,

f3 = a(εx+ ε2y + z)y + b(ε2x+ εy + z)x

+c(x+ y + z)z.

where (a : b : c) ∈ E1+
√
3 such that abc 6= 0 and ε is a primitive 3rd root

of unity.

Proof. Let A be a 3-dimensional quadratic AS-regular algebra of Type EC.
By Lemma 4.7 and Proposition 2.6 (1), there exist λ ∈ k with λ3 6= 1,

p = (a : b : c) ∈ Eλ and i ∈ Z such that A ∼= A(Eλ, σpτ
i
λ) = A(Eλ, σpφ

∗
λ

i
) =

A(Eλ, σp)
φi
λ where φλ ∈ GL3(k) is given by

φλ :=









































































0 1 0

1 0 0

0 0 1






if j(Eλ) 6= 0, 123,







0 1 0

1 0 0

0 0 ε






if λ = 0,







ε2 ε 1

ε ε2 1

1 1 1






if λ = 1 +

√
3.

By Lemma 4.8, abc 6= 0 and, by the definition of a twisted algebra (see

Definition 2.2), the defining relations of A(Eλ, σp)
φi
λ are given by

aφiλ(y)z + bφiλ(z)y + cφiλ(x)x,

aφiλ(z)x+ bφiλ(x)z + cφiλ(y)y,

aφiλ(x)y + bφiλ(y)x+ cφiλ(z)z.

Thus A is isomorphic to one of the listed algebras in the statement. �

Remark 4.10. Unfortunately, not every algebra listed in Theorem 4.9 is
AS-regular, so Theorem 4.9 does not give a complete list of 3-dimensional
AS-regular algebras of Type EC, but a complete list of geometric algebras
of Type EC. In a subsequent paper [8], we give a geometric characterization
of AS-regularity of algebras listed in Theorem 4.9.
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4.3. Classification up to graded algebra isomorphism. By [6, Corol-
lary 2.18], for every E, there exists λ ∈ k with λ3 6= 1 such that Eλ and E
are projectively equivalent. If ψ : Eλ → E is a projective equivalence, then
Ψ : Autk Eλ → Autk E defined by Ψ(σ) := ψσψ−1 is a group isomorphism.
If o := ψ(oλ), then ψ : (Eλ, oλ) → (E, o) is a group isomorphism by Lemma
4.4, and Ψ(σp) = ψσpψ

−1 = σψ(p) ∈ T for σp ∈ Tλ. For the rest paper, we
fix

(a) a projective equivalence ψ : Eλ → E,
(b) the group isomorphism Ψ : Autk Eλ → Autk E defined by

Ψ(σ) := ψσψ−1,

(c) the identity element o := ψ(oλ) of E, and
(d) the generator τ := Ψ(τλ) of G = Autk(E, o).

We set the following notations:

(i) E[3] := {p ∈ E | 3p = o} and Eλ[3] := {p ∈ Eλ | 3p = oλ}.
(ii) T [3] := {σ ∈ T |σ3 = idE} = {σp ∈ T | p ∈ E[3]} and

Tλ[3] := {σ ∈ Tλ |σ3 = idEλ
} = {σp ∈ Tλ | p ∈ Eλ[3]}.

(iii) d := |G| and dλ := |Gλ|.
(iv) Fi := {p− τ i(p) ∈ E | p ∈ E[3]} for i ∈ Zd and

Fλ,i := {p− τ iλ(p) ∈ Eλ | p ∈ Eλ[3]} for i ∈ Zdλ .

It is easy to check the following lemma.

Lemma 4.11. The following hold.

(1) E[3] = ψ(Eλ[3]).
(2) Fi = ψ(Fλ,i).
(3) Autk(P

2, E) = Ψ(Autk(P
2, Eλ)).

(4) G = Ψ(Gλ).
(5) T = Ψ(Tλ).
(6) T [3] = Ψ(Tλ[3]).

Theorem 4.12. The following hold.

(1) Autk(P
2, E) ∩ T = T [3].

(2) G ≤ Autk(P
2, E).

(3) Autk(P
2, E) ∼= T [3]⋊G.

Proof. (1) See [12, Lemma 5.3].
(2) SinceGλ ≤ Autk(P

2, Eλ) by Theorem 4.6, G = Ψ(Gλ) ≤ Ψ(Autk(P
2, Eλ))

= Autk(P
2, E) by Lemma 4.11 (3) and (4).

(3) Since Autk E ∼= T ⋊G by Proposition 4.5 and G ≤ Autk(P
2, E) by (2),

for σpτ
i ∈ Autk E, σpτ

i ∈ Autk(P
2, E) if and only if σp ∈ Autk(P

2, E) if
and only if σp ∈ T [3] by (1), so Autk(P

2, E) ∼= T [3]⋊G.
�
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Remark 4.13. Theorem 4.12 (2) depends of the special choice of the identity
element o ∈ E. In fact, if we choose an arbitrary point p ∈ E, then it is
hardly the case that Autk(E, p) ≤ Autk(P

2, E).

Lemma 4.14. Let E be an elliptic curve in P
2, p ∈ E and i ∈ Z. Then

A(E, σpτ
i) is a geometric algebra of Type EC if and only if p ∈ E \ E[3].

Proof. For q = (a : b : c) ∈ Eλ, q ∈ Eλ \ Eλ[3] if and only if abc 6= 0 if and
only if A(Eλ, σqτ

i
λ) is a geometric algebra of Type EC by Lemma 4.8, so

A(E, σpτ
i) ∼= A(Eλ,Ψ

−1(σpτ
i))

= A(Eλ,Ψ
−1(σp)Ψ

−1(τ)i)

= A(Eλ, σψ−1(p)τ
i
λ)

is a geometric algebra of Type EC if and only if ψ−1(p) ∈ Eλ \ Eλ[3] if and
only if p ∈ E \ E[3]. �

We use the following two formulas.

Lemma 4.15. For σpτ
i, σqτ

j and σrτ
l ∈ Autk E,

(4.1) (σqτ
j)(σrτ

l)(σpτ
i)−1 = σq+τ j(r)−τ l+j−i(p)τ

l+j−i,

and

(4.2) (σqτ
j)−1(σrτ

l)(σpτ
i) = στ−j(−q+r+τ l(p))τ

l+i−j.

Proof. By calculations. �

By Proposition 4.5, for σpτ
i, σqτ

j ∈ Autk E ∼= T ⋊G, σpτ
i = σqτ

j if and
only if p = q in E and i = j in Zd,

Theorem 4.16. Let E be an elliptic curve in P
2, p, q ∈ E \E[3] and i, j ∈

Zd. Then A(E, σpτ
i) ∼= A(E, σqτ

j) if and only if i = j and q = τ l(p) + r
where r ∈ Fi and l ∈ Zd.

Proof. Since A(E, σpτ
i) and A(E, σqτ

j) are geometric algebras of Type EC

by Lemma 4.14, A(E, σpτ
i) ∼= A(E, σqτ

j) if and only if there is ϕ = σsτ
l ∈

Autk(P
2, E) where s ∈ E[3] and l ∈ Zd such that the diagram

E
ϕ

//

σpτ
i

��

E

σqτ
j

��

E
ϕ

// E

commutes by Theorem 2.8, that is,

(σqτ
j)(σsτ

l)(σpτ
i)−1 = σsτ

l.
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By Lemma 4.15 (4.1), (σqτ
j)(σsτ

l)(σpτ
i)−1 = σq+τ j(s)−τ l+j−i(p)τ

l+j−i, so we

have q+ τ j(s)− τ l+j−i(p) = s and l+ j− i = l, that is, q = τ l(p)+ s− τ i(s)
and i = j. By the definition of Fi, s−τ i(s) ∈ Fi, so A(E, σpτ

i) ∼= A(E, σqτ
j)

if and only if i = j and q = τ l(p) + r where r ∈ Fi and l ∈ Zd. �

By [6], we label the elements of Eλ[3] by

p0 := oλ := (1 : −1 : 0), p1 := (1 : −ε : 0), p2 := (1 : −ε2 : 0),
p3 := (1 : 0 : −1), p4 := (1 : 0 : −ε), p5 := (1 : 0 : −ε2),
p6 := (0 : 1 : −1), p7 := (0 : 1 : −ε), p8 := (0 : 1 : −ε2).

We calculate Fλ,i = {pl − τ iλ(pl) ∈ Eλ | 0 ≤ l ≤ 8} for each i ∈ Zdλ .

Lemma 4.17. (1) If j(Eλ) 6= 0, 123, then

Fλ,i =

{

{p0} if i = 0,

Eλ[3] otherwise.

(2) If λ = 0, then

Fλ,i =











{p0} if i = 0,

〈p1〉 = {p0, p1, p2} if i = 2, 4,

Eλ[3] otherwise.

(3) If λ = 1 +
√
3, then

Fλ,i =

{

{p0} if i = 0,

Eλ[3] otherwise.

Proof. By calculations. �

Example 4.18. Fix λ ∈ k such that λ3 6= 1 and j(Eλ) 6= 0, 123 and let
p = (a : b : c) ∈ Eλ = V(x3 + y3 + z3 − 3λxyz) such that abc 6= 0. If
A = A(Eλ, σp), then

A = k〈x, y, z〉/(ayz + bzy + cx2, azx+ bxz + cy2, axy + byx+ cz2),

and A is a 3-dimensional Sklyanin algebra. If A′ = A(Eλ, σ−p) where −p =
(b : a : c), then

A′ = k〈x, y, z〉/(byz + azy + cx2, bzx+ axz + cy2, bxy + ayx+ cz2),

and A′ is also a 3-dimensional Sklyanin algebra. If A′′ = A(Eλ, σpτλ), then

A′′ = k〈x, y, z〉/(axz + bzy + cyx, azx+ byz + cxy, ay2 + bx2 + cz2).

If A′′′ = A(Eλ, σp+p3τλ) where p3 := (1 : 0 : −1) ∈ Eλ[3], then

A′′′ = k〈x, y, z〉/(bxz + czy + ayx, bzx+ cyz + axy, by2 + cx2 + az2).
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By Theorem 4.16, since −p = τλ(p) and p3 ∈ Eλ[3] = Fλ,1, A ∼= A′ and
A′′ ∼= A′′′ but no other pairs are isomorphic.

4.4. Classification up to graded Morita equivalence. We recall that
o := ψ(oλ) and τ := Ψ(τλ) ∈ G = Autk(E, o). Since τ is also a group
automorphism of (E, o), it follows that τ(E[3]) = E[3].

Lemma 4.19. For p ∈ E and l ∈ Z, if p−τ l(p) ∈ E[3], then p−τnl(p) ∈ E[3]
for any n ∈ Z.

Proof. If n = 0, then p− τnl(p) = p− p = o ∈ E[3].
For any n ≥ 1, we can write

p− τnl(p) =
n−1
∑

i=0

τ il(p− τ l(p)).

Since p− τ l(p) ∈ E[3], τ il(p− τ l(p)) ∈ E[3] for 1 ≤ i ≤ n−1, so p− τnl(p) ∈
E[3].

If n ≤ −1, then p − τnl(p) = −τnl(p − τ−nl(p)). Since −n ≥ 1 and
p− τ−nl(p) ∈ E[3], it follows that p− τnl(p) ∈ E[3] for any n ≤ −1. �

Theorem 4.20. Let p, q ∈ E\E[3] and i, j ∈ Zd. Then GrModA(E, σpτ
i) ∼=

GrModA(E, σqτ
j) if and only if p− τ j−i(p) ∈ E[3] and there exist r ∈ E[3]

and l ∈ Zd such that q = τ l(p) + r.

Proof. Suppose that GrModA(E, σpτ
i) ∼= GrModA(E, σqτ

j). SinceA(E, σpτ
i)

and A(E, σqτ
j) are geometric algebras of Type EC by Lemma 4.14, there

exists a sequence {φn}n∈Z of Autk(P
2, E) such that the diagram

E
φn

//

σpτ
i

��

E

σqτ
j

��

E
φn+1

// E

commutes for n ∈ Z by Theorem 2.9. By Theorem 4.12 (3), there exist
r ∈ E[3] and l ∈ Zd such that φ0 = σrτ

l. Since the diagrams

E
φ−1

//

σpτ
i

��

E

σqτ
j

��

E
σrτ

l

// E

E
σrτ

l

//

σpτ
i

��

E

σqτ
j

��

E
φ1

// E

commute,

φ−1 = (σqτ
j)−1(σrτ

l)(σpτ
i)

= στ−j(−q+r+τ l(p))τ
l+i−j
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and

φ1 = (σqτ
j)(σrτ

l)(σpτ
i)−1

= σq+τ j(r)−τ l+j−i(p)τ
l+j−i

by Lemma 4.15. Since φ−1, φ1 ∈ Autk(P
2, E), we have

τ−j(−q + r + τ l(p)) ∈ E[3],

q + τ j(r)− τ l+j−i(p) ∈ E[3],

that is,

s := −q + r + τ l(p) = τ j(τ−j(−q + r + τ l(p))) ∈ E[3],

t := q + τ j(r)− τ l+j−i(p) ∈ E[3].

By the first condition, we have q = τ l(p) + r − s where r − s ∈ E[3]. Since
s+ t = r + τ j(r) + τ l(p)− τ l+j−i(p) ∈ E[3], we have

p− τ j−i(p) = τ−l(τ l(p)− τ l+j−i(p))

= τ−l(s+ t− r − τ j(r)) ∈ E[3].

Conversely, suppose that p − τ j−i(p) ∈ E[3] and q = τ l(p) + r where
r ∈ E[3] and l ∈ Zd. By Theorem 4.16, we have

A(E, σqτ
j) = A(E, στ l(p)+rτ

j) = A(E, στ l(p+τ−l(r))τ
j) ∼= A(E, σp+τ−l(r)τ

j).

To show

GrModA(E, σpτ
i) ∼= GrModA(E, σqτ

j),

it is enough to show

GrModA(E, σpτ
i) ∼= GrModA(E, σp+sτ

j)

where s = τ−l(r) ∈ E[3]. Since p ∈ E \E[3], p+ s ∈ E \E[3], so A(E, σpτ
i)

and A(E, σp+sτ
j) are geometric algebras of Type EC by Lemma 4.14. We

construct a sequence of automorphisms {φn}n∈Z of Autk (P
2, E). We set

φ0 := idE . For each n ≥ 1, we define φn inductively as

φn := σrnτ
n(j−i),

where rn := p − τn(j−i)(p) + s + τ j(rn−1) and r0 := o. For any n ≥ 0, if

rn ∈ E[3], then rn+1 := p − τ (n+1)(j−i)(p) + s + τ j(rn) ∈ E[3] by Lemma
4.19.

Next, for n ≤ −1, we construct automorphisms φn ∈ Autk(P
2, E). For

each n ≥ 1, we define φ−n inductively as

φ−n := σr−n
τ−n(j−i),
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where r−n := τ (n−1)i−nj(p − τ (n−1)(j−i)(p) + τ (n−1)(j−i)(−s+ r−(n−1))) and

r0 := o. For any n ≥ 0, if r−n ∈ E[3], then r−(n+1) := τni−(n+1)(j−i)(p −
τn(j−i)(p)+τn(j−i)(−s+r−n)) ∈ E[3] by Lemma 4.19. By this construction,
we have the sequence of automorphisms {φn}n∈Z of Autk(P

2, E) such that
the diagram

E
φn

//

σpτ
i

��

E

σp+sτ
j

��

E
φn+1

// E

commutes for each n ∈ Z, so GrModA(E, σpτ
i) ∼= GrModA(E, σp+sτ

j) by
Theorem 2.9. �

Example 4.21. We use the same graded algebras A and A′′ as in Exam-
ple 4.18 so that A 6∼= A′′. It follows from Theorem 4.20 that GrModA ∼=
GrModA′′ if and only if 2p = p − τλ(p) ∈ Eλ[3] if and only if p ∈ Eλ[6].
From [6], we see that |Eλ[6]| = 36, so A and A′′ = Aφλ are rarely graded
Morita equivalent (see Remark 2.4).
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