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Abstract: We report the design, synthesis, and physicochemical properties of an array of
phenanthro[2,1-b:7,8-b’]dithiophene (PDT-2) derivatives by introducing five types of alkyl (CnH2n+1;
n = 8, 10, 12, 13, and 14) or two types of decylthienyl groups at 2,7-positions of the PDT-2 core.
Systematic investigation revealed that the alkyl length and the type of side chains have a great effect
on the physicochemical properties. For alkylated PDT-2, the solubility was gradually decreased as
the chain length was increased. For instance, C8-PDT-2 exhibited the highest solubility (5.0 g/L) in
chloroform. Additionally, substitution with 5-decylthienyl groups showed poor solubility in both
chloroform and toluene, whereas PDT-2 with 4-decylthienyl groups resulted in higher solubility.
Furthermore, UV-vis absorption of PDT-2 derivatives substituted by decylthienyl groups showed a
redshift, indicating the extension of their π-conjugation length. This work reveals that modification
of the conjugated core by alkyl or decylthienyl side chains may be an efficient strategy by which to
change the physicochemical properties, which might lead to the development of high-performance
organic semiconductors.

Keywords: phenacene-type compounds; thiophene ring; cross-coupling; alkyl side chains;
UV-vis absorption; p-type organic semiconductors; organic field-effect transistor (OFET)

1. Introduction

Since the development of the first organic field-effect transistor (OFET) in 1986,
organic semiconductors have gained a great deal of attention because of their flexible, lightweight,
and solution-process capable features [1]. Generally, by installing appropriate substituents,
π-conjugated organic molecules with structural rigidity have shown significant properties, such as
controllable solubility and light absorption ability, which are required for high-performance organic
semiconductors [2–6]. Among them, the carrier mobilities of acene- and phenacene-based OFET
reached over 30 cm2 V−1 s−1, typically with single-crystal devices [7–9]. Seeking to improve transistor
properties, tremendous engineering progress has been made to modify the π-conjugated backbones in
molecular design [10–16]. Side chains are usually introduced to affect the intermolecular packing and
thin film morphology, leading to a suitable solubility, and thus, to high-performance devices [17–25].
Linear alkyl groups are the most commonly used as side chains in π-conjugated organic molecules [26].
A suitable installation of alkyl chains onto the conjugated backbones can increase the electronic
coupling because of improved stacking in molecular aggregates [27]. In terms of the solubility of
organic semiconductors, there are two factors; one is van der Waals interactions between side chains
and the solvent, and the other is that the vibrational motions of the side chains result in a decrease in
the intermolecular interactions between π-conjugated molecules [28–30]. Moreover, the significant
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effects of chain lengths, substitution positions, parity effect, and chirality on carrier mobilities have
been investigated in different π-conjugated systems [31,32].

Recently, thiophene-containing fused molecules have played an important role in the
progress of OFETs [33–42]. For instance, [1]benzothieno [3,2-b][1]benzothiophene (BTBT) [43],
dinaphtho[2,3-b:2′,3′-f ]thieno[3,2-b]thiophene (DNTT) [44], and their dialkyl derivatives formed
a herringbone packing structure showing hole mobilities higher than 1 cm2 V−1 s−1. Moreover, the side
chain effect of BTBT with alkyl groups of a different bulk on the charge transport properties was
investigated, and devices based on BTBT bearing 2,7-di-tert-butyl groups exhibited high mobility
above 10 cm2 V−1 s−1 [45]. Also, the incorporation of heterocycle linkages between the alkyl chains
and conjugated backbones or heteroatom-containing side chains could significantly change the energy
levels and molecular packing. The former is the introduction of alkylthienyl groups, which can increase
the solubility and highest occupied molecular orbital (HOMO) energy levels. A solution-crystallized
FET based on 2,9-bis(4-decylthiophen-2-yl)chryseno[2,1-b:8,7-b’]dithiophene (C10-Th-ChDT) exhibited
hole mobility of up to 10 cm2 V−1 s−1 with reduced threshold voltage (Vth) [46]. The latter is the use of
alkylthio and alkylamino side chains, as reported by Zhang and coworkers, to enhance the hole and
electron mobilities through the rise of HOMO and the improvement of sTable 2D molecular packing,
which was partly the result of the overlap of pπ(C)-dπ(S) orbitals [47].

We previously reported the synthesis of phenanthro[1,2-b:8,7-b’]dithiophene (PDT) via
Suzuki-Miyaura coupling of 3-formyl-2-thienylboronic acid with 1,4-dibromobenzene, followed
by epoxidation and Lewis acid-catalyzed regioselective cycloaromatization (Figure 1, left) [48].
The introduction of two n-dodecyl groups into PDT (C12-PDT) along the longitudinal direction
of the molecular axis showed a high crystallinity of its thin-film, resulting in a mobility as high as
2.2 cm2 V−1 s−1, i.e., higher by one order of magnitude than that of the parent PDT thin-film FET
(1.1 × 10−1 cm2 V−1 s−1) [49]. This synthetic protocol can also be applied to the synthesis of the isomer
of PDT, phenanthro[2,1-b:7,8-b’]dithiophene (PDT-2) (Figure 1, center). Likewise, the synthesized
2,7-didodecyl-substituted PDT-2 (C12-PDT-2) exhibited higher hole mobility, i.e., as high as 5.4 cm2

V−1 s−1, than that of C12-PDT, with a high-k gate dielectric [50]. This may be attributed to its favorable
HOMO and HOMO−1 (hereafter NHOMO) geometries. To improve the hole mobility of PDT-2
derivatives, we reasoned that the introduction of a different array of alkyl or decylthienyl groups at
2,7-positions of the PDT-2 core may control crystallinity, solubility, and HOMO energy level, leading to
improved transistor properties. We herein report the design, synthesis, and physicochemical properties
of a series of 2,7-disubstituted PDT-2 derivatives (Figure 1, right).
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Figure 1. Chemical structures of PDT and PDT-2 derivatives.

2. Results and Discussion

From a viewpoint of the molecular design, the molecular orbitals for representative PDT-2
derivatives were calculated by the density functional theory (DFT) using Gaussian 09 package with a
basis set of B3LYP/6-31G(d) (Figures S1–S3) [51]. The HOMO and NHOMO (Figure 2), and HOMO and
LUMO (Figure S4) of PDT-2, C10-PDT-2 and Th1-PDT-2 are shown with the dihedral angles (ψ) between
the PDT-2 core and the decylthienyl groups. In our previous studies, molecular conformations showed
a close relationship with HOMO and NHOMO distributions, while the length of the alkyl side chains
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had a negligible influence on HOMO and NHOMO coefficients. As seen in Figure 2, the introduction
of decyl groups increased the HOMO level of C10-PDT-2 from −5.49 eV to −5.29 eV, which is the same
tendency as that of C12-PDT-2 [50]. In contrast, the energy differences between HOMO and NHOMO
and the large electron density localizing on sulfur atoms remained unchanged. This sulfur-dominated
orbital is expected to make a great contribution to the electronic coupling [52]. Theoretical calculations
of PDT-2 and C10-PDT-2 indicated that their HOMO and NHOMO coefficients are delocalized over the
entire π-framework. For Th1-PDT-2 and Th2-PDT-2, the introduction of decylthienyl groups resulted
in a big increase in the HOMO energy level, i.e., to −5.08 and −5.17 eV, respectively. This result
might be due to the extension of π-conjugation length and the electron-donating effect of thienyl
groups. Compared with Th1-PDT-2, Th2-PDT-2 showed a small increase in the HOMO energy level.
The different sizes of these increases may be attributed to the degree of the dihedral angles between
a PDT-2 core and a thienyl group. Th1-PDT-2 has a dihedral angle which is 10◦ smaller than that of
Th2-PDT-2 (15◦), resulting in a more efficient electron delocalization due to its extended π-conjugation,
and a significant decrease in the electron density of the sulfur atoms of the PDT-2 core. The different
dihedral angles may be caused by the different bond lengths of the terminal thiophene rings in the
PDT-2 core and thienyl moieties between Th1-PDT-2 and Th2-PDT-2 (Table S1). These slightly different
bond lengths may cause steric repulsion between the PDT-2 core and decylthienyl groups.
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Figure 2. Calculated HOMO and HOMO−1 (NHOMO) distributions of PDT-2, C10-PDT-2, Th1-PDT-2,
and Th2-PDT-2. For Th1-PDT-2, and Th2-PDT-2, the dihedral angles (ψ) between the PDT-2 core and a
thienyl group are shown. Carbon and hydrogen atoms on alkyl side chains are omitted for clarity.

The synthetic route of the target PDT-2 derivatives is shown in Scheme 1. We treated PDT-2 [50] with
n-butyllithium, followed by the addition of bromine, resulting in 2,7-dibrominated PDT-2 1 in 96% yield.
Successively, five types of 2,7-dialkylated PDT-2 (Cn-PDT-2: n = 8, 10, 12, 13, and 14) were synthesized in
42–67% yields by Suzuki-Miyaura coupling of 1 with various alkylboranes, derived from hydroboration
of terminal alkenes and 9-BBN dimer. Additionally, using the Pd-catalyzed Migita-Kosugi-Stille
coupling reaction, 1 was reacted with (5-decylthiophen-2-yl)- or (4-decylthiophen-2-yl)tributylstannane,
resulting in the desired products, Th1-PDT-2 and Th2-PDT-2 in 52% and 61% yields, respectively.
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Scheme 1. Synthetic route of PDT-2 derivatives.

To gain some insights into the effect of the side chains on the physical properties of the obtained
five alkyl-substituted PDT-2 derivatives (Cn-PDT-2), we measured their solubility in several organic
solvents at room temperature. These compounds are poorly soluble in hexane and polar solvents such
as acetonitrile and methanol. The correlation between the number of alkyl carbons and solubility
of dialkylated PDT-2 derivatives in chloroform and toluene is shown in Figure 3. As predicted,
in chloroform, the length of the side chains significantly affected the solubility, i.e., it gradually
decreased with an increase in chain length [53]. C8-PDT-2 exhibited superior solubility in chloroform,
i.e., 5.0 g/L, which is 10-fold higher than that of C14-PDT-2. This may be due to differences in the
hydrophobic interactions of each molecule. Surprisingly, compared with the solubility of C10-PDT-2,
the insertion of thienyl groups resulted in an approximately four-fold higher solubility of Th2-PDT-2
in toluene (Table S2). In comparison, the substitution of 5-decylthienyl and 4-decylthienyl groups
displayed significant changes in solubility that may be attributed to the difference of dihedral angles
between the PDT-2 core and the thiophene ring, as shown in Figure 2. Th1-PDT-2 has a slightly
smaller dihedral angle (ψ = 10◦) that enhances the intermolecular π-orbital overlaps, resulting in poor
solubility, whereas Th2-PDT-2 (ψ = 15◦) exhibited higher solubility in both chloroform and toluene.Molecules 2019, 24, x FOR PEER REVIEW 5 of 12 
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Next, the optical properties of PDT-2 derivatives were investigated by UV-vis absorption and
fluorescence spectra in chloroform solution (Figure 4). Detailed data, including the absorption
maximum wavelength (λmax

abs), emission maximum wavelength (λmax
em), absorption edge (λedge),

optical bandgaps (Eg
opt), and Stokes shifts, are summarized in Table 1. Figure 4a shows the absorption

spectra of PDT-2 derivatives. The absorptions of dialkylated PDT-2 derivatives were nearly identical,
with the strong peaks at 257, 276, 304, 324, and 339 nm, suggesting that the length of the alkyl chains
has a negligible effect on the optical properties. All Cn-PDT-2 showed very weak absorption at 365 nm,
which corresponds to an S0 → S1 transition of picene-type molecules [23]. Since such a transition is
forbidden, as is evident from TD-DFT calculations (Table S3), their molar absorption coefficients (ε) are
less than 1000 M−1 cm−1. In comparison, the parent PDT-2 shows a broad absorption band at about
272 nm, but not at 257 nm (Figure S4). Additionally, the introduction of alkyl chains resulted in a
small redshift at 324 and 339 nm due to its electron-donating nature. For Th1-PDT-2 and Th2-PDT-2,
the broad absorption bands were redshifted to 365 and 362 nm, respectively, along with the significantly
increased absorption strength compared to those of dialkylated PDT-2 molecules. This result was due
to the extension of the π-conjugation length of PDT-2. Their strong absorption bands, with a λmax at
about 380 nm, could be attributed to the π-π* transition, as predicted by TD-DFT calculations (Tables S4
and S5), whose lower energy absorption was attributed to the HOMO→ LUMO transition. The longest
absorption edge of Cn-PDT-2 was located at about 370 nm, resulting in bandgaps of over 3.3 eV.
Th2-PDT-2 exhibited the longest absorption edge of λedge at 404 nm, and the calculated Eg

opt bandgap
was 3.07 eV. The UV-vis absorption spectra indicated that thienyl groups can significantly lower the
bandgap of the PDT-2 backbone. This side-chain effect can be explained by the electron-donating
properties of thienyl groups. On the other hand, the results of the redshifted absorption edges and lower
bandgaps were also attributable to the extended conjugated side chains attached to the PDT-2 backbone.
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Table 1. Optical properties of PDT-2 derivatives.

Solution Thin Film

Compounds λmax
abs (nm) λmax

em (nm) λedge (nm) Eg
opt (eV) Stokes shift

(cm−1)
λmax

abs (nm)

PDT-2 251, 271, 302, 318, 333 364, 382, 402 366 3.39 305 282, 292
C8-PDT-2 257, 276, 304, 324, 339 369, 386, 406 370 3.35 297 263, 287, 296, 349
C10-PDT-2 257, 276, 304, 324, 339 369, 386, 406 370 3.35 297 263, 288, 297, 349
C12-PDT-2 257, 276, 304, 324, 340 369, 387, 406 370 3.35 297 263, 289, 297, 350
C13-PDT-2 257, 276, 304, 324, 339 369, 386, 406 370 3.35 297 263, 289, 300,351
C14-PDT-2 256, 276, 304, 324, 339 369, 387, 407 369 3.36 297 262, 302, 335, 352, 371
Th1-PDT-2 263, 293, 365, 384 399, 422 404 3.07 979 258, 323, 389
Th2-PDT-2 263, 292, 362, 380 396, 418 397 3.12 1063 244, 319, 368, 389

Furthermore, we investigated the UV-vis absorption spectra in the solid-state (Figure S8);
the corresponding optical data are summarized in Table 1. The thin films of PDT-2 derivatives
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were prepared by spin-coating from hot chloroform solutions (ca. 0.5 wt%). In the case of dialkylated
PDT-2 derivatives, they formed a heterogeneous, thin film. In contrast, the thin films of Th1-PDT-2
and Th2-PDT-2 were homogeneous and structureless. This indicated that Th1-PDT-2 and Th2-PDT-2
have better film-forming properties than those of the dialkylated PDT-2 derivatives, which are suitable
for solution-processed OFETs. In sharp contrast, the absorption spectra of PDT-2 derivatives were
broadened relative to the counterpart spectra in solution, and the vibrational peaks were red-shifted
with respect to those in solution, suggesting the formation of intermolecular π-π stacking in the
solid-state. In the thin films, the maximum absorption peaks of C8-, C10-, C12-, and C13-PDT-2 showed
almost the same wavelength without significant differences in shape, indicating a negligible effect of
the alkyl chain length (n = 8, 10, 12, and 13) on molecular packing. However, it is worth noting that
C14-PDT-2 exhibited strong and obvious absorption peaks at 335, 352, and 371 nm, which differ from
those of other alkylated derivatives with regard to the spectra shape, suggesting the formation of a
well-ordered crystalline structure.

The fluorescence spectra of PDT-2 derivatives in chloroform are shown in Figure 4b. All of the
dialkylated PDT-2 derivatives showed the same wavelength of emission maximum and similar
emission peak shapes. The fluorescence spectra measured, using an excitation wavelength of 276 nm,
exhibited strong intensity at 386 nm. Furthermore, Cn-PDT-2 also exhibited an identical Stokes shift of
297 cm−1, whereas the fluorescence of Th1-PDT-2 and Th2-PDT-2 was characterized by an extended
Stokes shift, i.e., more than three-fold that of others. The increasing Stokes shift was due to the
introduction of flexible decylthienyl groups into the PDT-2 backbone, leading to reduced molecular
rigidity and coplanarity. It is noteworthy that both Th1-PDT-2 and Th2-PDT-2 displayed significant
fluorescence properties in chloroform, with Th1-PDT-2 emitting fluorescence bands at 399 and 422 nm,
and Th2-PDT-2 emitting bands at 396 and 418 nm, which were excited at 365 and 362 nm, respectively.

3. Summary

In summary, various alkyl and decylthienyl-substituted PDT-2 derivatives were successfully
synthesized and characterized. We found that alkyl chain length and types of side chains have a
great effect on the physicochemical properties. For dialkylated PDT-2 molecules, the solubility was
gradually decreased with an increase in carbon number, owing to increased hydrophobic interactions.
The substitution with 5-decylthienyl groups exhibited poor solubility in both chloroform and toluene,
whereas that with 4-decylthienyl groups resulted in higher solubility. All of these alkylated PDT-2
derivatives exhibited the proximate absorption maximum, suggesting that the change of alkyl chain
length has a negligible influence on photophysical properties. The introduction of decylthienyl
groups as conjugated side chains can slightly reduce bandgaps and increase HOMO energy levels.
In the solid-state, all PDT-2 derivatives have broadened and red-shifted absorptions compared to
the solution, indicating the formation of the ordered thin film. Among them, C14-PDT-2 exhibited
the strongest and sharpest absorption peaks, suggesting the formation of a well-ordered crystalline
structure. On the other hand, Th1-PDT-2 and Th2-PDT-2 had better film-forming properties than
dialkylated PDT-2 derivatives, owing to their homogeneous and structureless nature, making them
suitable for solution-processed OFETs. The PDT-2 derivatives presented in this work can thus be
expected to serve as high-performance p-type semiconductors for OFET materials. Further evaluation
of these derivatives for application as OFETs is currently in progress in our laboratory.

4. Experimental Sections

4.1. General

Unless otherwise noted, all reactions were carried out under an argon atmosphere using standard
Schlenk techniques. Glassware was dried in an oven (150 ◦C) and heated under reduced pressure before
use. Materials obtained from commercial suppliers were used without further purification. Solvents
were employed as eluents for all other routine operations, and were purchased from commercial
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suppliers and employed without any further purification. For all thin-layer chromatography (TLC)
analyses, Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm) were used. Silica gel column
chromatography was carried out using silica gel 60 N (spherical, neutral, 40–100 µm) from Kanto
Chemicals Co., Inc. NMR spectra (1H and 13C{1H}) were recorded on Varian INOVA-600 (600 MHz).
The chemical shifts were recorded in ppm relative to CDCl3 at 7.26 ppm and 1,1,2,2-tetrachloroethane-d2

at 6.00 ppm. The chemical shifts for 13C{1H} NMR were recorded in ppm downfield using the
central peak of CDCl3 (77.16 ppm), 1,1,2,2,-tetrachloroethane-d2 (73.78 ppm) as the internal standard.
Infrared spectra were recorded on a SHIMADZU IRPrestige-21 spectrophotometer and reported in
wavenumbers (cm−1). UV-vis absorption spectra were measured using a Shimadzu UV-2450 UV-vis
spectrometer. Fluorescence spectra were measured using SHIMADZU RF-5300PC. High-resolution
mass spectrometry (HRMS) was carried out on a JEOL JMS-700 MStation (double-focusing mass
spectrometer). Elemental analyses were carried out with a Perkin-Elmer 2400 CHN elemental analyzer
at Okayama University. Geometry optimizations and normal-mode calculations were performed at the
B3LYP/6-31G(d) level using the Gaussian 09, Revision D. 01, program package. PDT-2 was synthesized
according to our previously reported procedure [50].

4.2. Synthesis of 2,7-dibrominated PDT-2 1

To a solution of PDT-2 (145 mg, 0.5 mmol), in anhydrous THF (15 mL) in a 20 mL Schlenk tube
equipped with a magnetic stir bar under an argon atmosphere, was added dropwise n-butyllithium
(1.6 M in hexane, 690 µL, 1.1 mmol) at −78 ◦C. After being stirred for 1 h at room temperature,
the mixture was cooled to −78 ◦C again and bromine (62 µL, 1.2 mmol) was added dropwise.
The reaction was stirred overnight at room temperature, quenched with water (5 mL), and poured into
MeOH, which caused the precipitation of a pale yellow solid. The suspension was filtered, and the
solid was dried under vacuum to yield 1 (210 mg, 96%). The spectroscopic and mass data were identical
to those previously reported [50].

4.3. General Procedure for the Palladium-Catalyzed Suzuki-Miyaura Coupling of 1 with Alkylboranes

To a solution of 1-alkene (0.9 mmol), in anhydrous THF (6 mL) in a 20 mL Schlenk under argon,
was added 9-BBN dimer (0.45 mmol) at room temperature. The reaction mixture was stirred at 60 ◦C for
1 h. Then, Pd(dba)2 (26 mg, 0.045 mmol), [HPt-Bu3]BF4 (26 mg, 0.09 mmol), powdered KOH (101 mg,
1.8 mmol), and 1 (134 mg, 0.3 mmol) were added successively at room temperature. The reaction
mixture was stirred at 85 ◦C for 6 h, quenched with water (10 mL), and extracted with chloroform
(30 mL × 3). The combined organic layers were washed with brine and dried over MgSO4. Filtration
and evaporation yielded a brown solid. The residue was purified by column chromatography on silica
gel (hexane:chloroform = 2:1), and subsequent recrystallization with acetone gave target dialkylated
PDT-2 derivatives as a white solid.

2,7-Dioctylphenanthro[2,1-b:7,8-b’]dithiophene (C8-PDT-2): 55% yield. Rf = 0.79 (hexane:chloroform = 2:1).
Mp = 263–264 ◦C. FT-IR (KBr, cm−1): 2956 (m), 2920 (s), 2873 (m), 2850 (s), 1465 (w), 1195 (w), 823 (w),
796 (s). 1H-NMR (600 MHz, CDCl3, rt): δ 0.88 (t, J = 7.2 Hz, 6H), 1.26–1.34 (m, 12H), 1.35–1.39 (m, 4H),
1.43–1.47 (m, 4H), 1.81–1.86 (m, 4H), 3.04 (t, J = 7.8 Hz, 4H), 7.74 (s, 2H), 8.00 (d, J = 9.0 Hz, 2H),
8.37 (s, 2H), 8.61 (d, J = 9.0 Hz, 2H); 13C{1H} NMR (150 MHz, CDCl3, rt): δ 14.3, 22.8, 29.36, 29.39, 29.5,
31.2, 31.7, 32.0, 119.0, 119.1, 121.1, 123.0, 126.6, 127.8, 136.9, 137.4, 147.4. Anal. Calcd for C34H42S2: C,
79.32; H, 8.22%. Found: C, 79.03; H, 8.24%.

2,7-Didecylphenanthro[2,1-b:7,8-b’]dithiophene (C10-PDT-2): 60% yield. Rf = 0.79 (hexane: chloroform
= 2:1). Mp = 243–244 ◦C. FT-IR (KBr, cm−1): 2954 (m), 2918 (s), 2872 (m), 2846 (s), 1463 (m),
1192 (w), 835 (w), 821 (s), 792 (s). 1H-NMR (600 MHz, CDCl3, rt): δ 0.88 (t, J = 7.2 Hz, 6H),
1.26–1.32 (m, 20H), 1.35–1.38 (m, 4H), 1.43–1.47 (m, 4H), 1.81–1.86 (m, 4H), 3.04 (t, J = 7.2 Hz, 4H),
7.74 (s, 2H), 8.00 (d, J = 9.0 Hz, 2H), 8.37 (s, 2H), 8.61 (d, J = 9.0 Hz, 2H); 13C{1H} NMR (150 MHz,
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CDCl3, rt): δ 14.3, 22.8, 29.3, 29.5, 29.6, 29.7, 29.8, 31.2, 31.7, 32.1, 119.0, 119.1, 121.1, 123.0, 126.6, 127.7,
136.9, 137.4, 147.4. Anal. Calcd for C38H50S2: C, 79.94; H, 8.83%. Found: C, 79.82; H, 9.05%.

2,7-Didodecylphenanthro[2,1-b:7,8-b’]dithiophene (C12-PDT-2): 67% yield. Rf = 0.79 (hexane:chloroform = 2:1).
Mp = 233–234 ◦C. FT-IR (KBr, cm−1): 2954 (m), 2918 (s), 2870 (m), 2846 (s), 1463 (m), 1199 (w), 839 (w),
821 (s), 792 (s), 723 (w). 1H-NMR (600 MHz, 1,1,2,2-tetrachloroethane-d2, 80 ◦C): δ 0.92–0.95 (m, 6H),
1.32–1.39 (m, 28H), 1.44 (t, J = 7.2 Hz, 4H), 1.53 (m, 4H), 1.90 (m, 4H), 3.09 (t, J = 7.2 Hz, 4H),
7.78 (s, 2H), 8.04 (d, J = 8.4 Hz, 2H), 8.41 (s, 2H), 8.63 (d, J = 9.0 Hz, 2H); 13C{1H} NMR (150 MHz,
1,1,2,2,-tetrachloroethane-d2, 80 ◦C): δ13.9, 22.4, 29.0, 29.1, 29.2, 29.3, 29.41, 29.42, 29.44, 30.9, 31.3, 31.7,
118.7, 118.7, 120.8, 122.8, 126.4, 127.5, 136.7, 137.2, 147.4. Anal. Calcd for C42H58S2: C, 80.45; H, 9.32%.
Found: C, 80.63; H, 9.51% [50].

2,7-Ditridecylphenanthro[2,1-b:7,8-b’]dithiophene (C13-PDT-2): 42% yield. Rf = 0.79 (hexane:chloroform = 2:1).
Mp = 224–225 ◦C. FT-IR (KBr, cm−1): 2954 (w), 2918 (s), 2872 (w), 2848 (s), 1463 (w), 1199 (w), 821 (m),
792 (m). 1H-NMR (600 MHz, 1,1,2,2-tetrachloroethane-d2, 80 ◦C): δ 0.92–0.95 (m, 6H), 1.32–1.39 (m, 32H),
1.44 (t, J = 7.2 Hz, 4H), 1.53 (m, 4H), 1.90 (m, 4H), 3.09 (t, J = 7.2 Hz, 4H), 7.78 (s, 2H), 8.04 (d, J = 8.4 Hz,
2H), 8.41 (s, 2H), 8.63 (d, J = 9.0 Hz, 2H); 13C{1H} NMR (150 MHz, 1,1,2,2,-tetrachloroethane-d2, 80 ◦C):
δ13.9, 22.4, 29.0, 29.1, 29.2, 29.3, 29.43 (2 carbons), 29.44, 29.5, 30.9, 31.3, 31.7, 118.7, 118.7, 120.8, 122.8, 126.4,
127.5, 136.7, 137.2, 147.4. Anal. Calcd for C44H62S2: C, 80.67; H, 9.54%. Found: C, 80.39; H, 9.33%.

2,7-Ditetradecylphenanthro[2,1-b:7,8-b’]dithiophene (C14-PDT-2):62% yield. Rf = 0.79 (hexane:chloroform = 2:1).
Mp = 216–217 ◦C. FT-IR (KBr, cm−1): 2954 (m), 2918 (s), 2870 (m), 2846 (s), 1462 (m), 1197 (w), 821 (m), 792 (m).
1H-NMR (600 MHz, 1,1,2,2-tetrachloroethane-d2, 80 ◦C): δ 0.95–0.97 (m, 6H), 1.35–1.41 (m, 36H), 1.43–1.47
(m, 4H), 1.52–1.56 (m, 4H), 1.90–1.93 (m, 4H), 3.10 (t, J = 7.2 Hz, 4H), 7.78 (s, 2H), 8.04 (d, J = 9.0 Hz, 2H),
8.40 (s, 2H), 8.62 (d, J = 9.0 Hz, 2H); 13C{1H} NMR (150 MHz, 1,1,2,2,-tetrachloroethane-d2, 80 ◦C): δ13.9,
22.5, 29.06, 29.11, 29.2, 29.35, 29.44 (2 carbons), 29.46, 29.48, 29.49, 30.9, 31.3, 31.7, 118.7, 118.7, 120.8, 122.8,
126.4, 127.5, 136.7, 137.2, 147.3. Anal. Calcd for C46H66S2: C, 80.88; H, 9.74%. Found: C, 80.51; H, 9.60%.

4.4. General Procedure for the Palladium-Catalyzed Migita-Kosugi-Stille Coupling of 1 with
(decylthiophene-2-yl)Tributylstannane

To a solution of 1 (140 mg, 0.31 mmol), in anhydrous DMF (7 mL) in a 20 mL Schlenk under
argon, were added LiCl in THF (0.5 M, 1.56 mL, 0.78 mmol), (decylthiophene-2-yl)tributylstannane
(0.78 mmol), and Pd(PPh3)4 (36 mg, 10 mol %). The reaction mixture was stirred at 100 ◦C for 10 h,
then quenched with an aqueous solution of potassium fluoride at room temperature. The resulting
suspension was extracted with chloroform (50 mL × 3). The combined organic layers were washed
with brine and dried over MgSO4. Filtration and evaporation yielded a brown solid. The residue
was purified by column chromatography on silica gel (hexane:chloroform = 10:1), and subsequent
recrystallization with acetone gave the target product Th1-PDT-2 as a yellow solid.

2,7-Bis(5-decylthiophene-2-yl)phenanthro[2,1-b:7,8-b’]dithiophene (Th1-PDT-2): 52% yield. Rf = 0.60
(hexane:chloroform = 10:1). Mp = 239–240 ◦C. FT-IR (KBr, cm−1): 2954 (w), 2920 (s), 2850 (m), 1465 (w),
1190 (w), 819 (w), 792 (s). 1H-NMR (600 MHz, CDCl3, rt): δ 0.89 (t, J = 7.2 Hz, 6H), 1.29–1.43
(m, 28H), 1.73–1.75 (m, 4H), 2.82–2.90 (m, 4H), 6.77 (d, J = 1.2 Hz, 2H), 7.20 (d, J = 1.8 Hz, 2H),
8.01 (d, J = 9.0 Hz, 2H), 8.04 (s, 2H), 8.43 (s, 2H), 8.63 (d, J = 9.0 Hz, 2H); 13C{1H} NMR was not obtained
due to its poor solubility. HR-MS (FAB+): Calcd for C46H55S4 [M + H] 735.3181. Found: 735.3185.

2,7-Bis(4-decylthiophene-2-yl)phenanthro[2,1-b:7,8-b’]dithiophene (Th2-PDT-2): 61% yield. Rf = 0.60
(hexane:chloroform = 10:1). Mp = 150–151 ◦C. FT-IR (KBr, cm−1): 2954 (w), 2916 (s), 2848 (s),
1460 (w), 1188 (w), 844 (w), 794 (s). 1H-NMR (600 MHz, CDCl3, rt): δ 0.89 (t, J = 7.2 Hz,
6H), 1.24–1.41 (m, 28H), 1.65–1.70 (m, 4H), 2.64 (t, J = 7.2 Hz, 4H), 6.92 (d, J = 1.2 Hz, 2H),
7.21 (d, J = 1.8 Hz, 2H), 7.98 (d, J = 9.0 Hz, 2H), 8.05 (s, 2H), 8.38 (s, 2H), 8.59 (d, J = 9.0 Hz, 2H);
13C{1H} NMR (150 MHz, CDCl3, rt): δ 14.3, 22.9, 29.51, 29.52, 29.6, 29.78, 29.80, 30.6, 30.7, 32.1, 117.9,
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120.0, 120.3, 120.9, 123.2, 126.5, 127.0, 127.9, 136.9, 137.3, 137.7, 138.2, 144.5. HR-MS (FAB+): Calcd for
C46H55S4 [M + H] 735.3181. Found: 735.3185.

Supplementary Materials: The following are available online. 1H-NMR and 13C{1H} NMR spectra are available
for all new compounds, as well as detail of physicochemical properties and computational data.
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