1 Anatomical Risk Factors for Reintervention after Arterial Switch Operation for Taussig–Bing

- 2 Anomaly
- 3 Running Head: Reinterventional factors post TBA Repair
- 4
- 5 <u>Authors:</u>
- 6 Yasuyuki Kobayashi, MD¹, Yasuhiro Kotani, PhD¹, Yosuke Kuroko, PhD¹, Atsushi Tateishi,
- 7 PhD¹, Shunji Sano, PhD², Shingo Kasahara, PhD¹
- 8 Institutions and Affiliations:
- 9 ¹⁾Cardiovascular Surgery, Okayama University Hospital
- 10 ²⁾Pediatric Cardiothoracic Surgery, University of California, San Francisco
- 11 <u>Word Count:</u> 4446/4500
- 12 *Corresponding Author: Yasuhiro Kotani. 2-5-1 Shikatacho, Kitaku, Okayama, Japan 700-8558. +81-
- 13 86-235-7359, Fax: +81-86-235-7431, <u>yasuhiro.kotani@cc.okayama-u.ac.jp</u>

15 Abstract

16	Background: This study aimed to determine the factors related to reintervention, especially for
17	pulmonary artery stenosis (PS), in patients with Taussig-Bing anomaly (TBA) after arterial switch
18	operation (ASO).
19	Methods: This retrospective study included 34 patients with TBA who underwent ASO between
20	1993 and 2018. Preoperative anatomical and physiological differences and long-term outcomes were
21	determined using a case-matched control with transposition of the great arteries (TGA) with
22	ventricular septal defect (VSD) and TBA with an anterior and rightward aorta.
23	Results: The median age and body weight at ASO were 43 (16–102) days and 3.6 (2.8–3.8) kg,
24	respectively. Aortic arch obstruction and coronary anomalies were present in 64% and 41% patients,
25	respectively. The hospital mortality rate was 11%, including one cardiac death, and late mortality rate
26	was 2.9%. Furthermore, 41% patients underwent 26 reinterventions for PS. Patients undergoing PS-
27	related reintervention had a significantly larger native pulmonary artery: aortic annulus size ratio than
28	those not receiving reintervention (1.69 vs. 1.41, $P = 0.02$). This ratio was the only predictor of PS-
29	related reintervention; it was significantly higher in the TBA group than in the TGA/VSD group. PS-
30	related reintervention was required more in the TBA group than in the TGA/VSD group.

31	Conclusions: Regardless of complex coronary anatomy and associated anomalies, early and late
32	survival were acceptable. Postoperative PS was strongly associated with having a larger native
33	pulmonary valve, suggesting that an optimal surgical reconstruction was required for achieving an
34	appropriate aortopulmonary anatomical relationship during ASO. (243 words)
35	
36	
37	

38 Introduction

39	Double-outlet right ventricle with subpulmonary ventricular septal defect (VSD) was first described
40	by Taussig and Bing in 1949 ¹ . The unique anatomy of Taussig–Bing anomaly (TBA), particularly,
41	subpulmonary VSD with malalignment of the infundibular septum and frequent association with
42	aortic arch obstruction and complex coronary anomalies, makes achieving optimal surgical repair a
43	challenge, including arterial switch operation (ASO) and aortic arch reconstruction. Recent
44	advancements in surgical techniques and perioperative management has resulted in improved
45	outcomes of primary repair ^{2,3} . However, reintervention rate in patients with TBA is significantly
46	higher than that in those with simple transposition of great arteries (TGA), accounting for about 22%
47	to 40% ⁴⁻⁷ . Previous studies have emphasized that reintervention is more frequently observed in right-
48	sided lesions, such as right ventricular outlet tract obstruction (RVOTO) and pulmonary artery
49	stenosis (PS); the freedom from RVOTO or PS was 19% to 45% ^{3,8,9} .
50	We sought to evaluate the long-term clinical outcomes, determine the factors related to
51	reintervention, especially for PS after ASO, and determine whether the associated anomalies in
52	patients with TBA affect reintervention. A case-match study was performed comparing anatomical
53	characteristics and long-term outcomes between patients with TBA and TGA/VSD.
54	

55 Patients and Methods

56	Out of 38 patients, a retrospective study of 34 patients with TBA, who underwent ASO at Okayama
57	University Hospital between 1993 and 2018, was performed. Four patients who underwent
58	Kawashima (n = 1), Damus–Kaye–Stansel procedure with Rastelli (n = 1), and Fontan (n = 2)
59	operations were excluded. This study was approved by our hospital's Institutional Review Board. The
60	requirement for obtaining informed consent was waived due to the study's observational nature. In
61	this study, TBA was defined using Van Praagh criteria: true double outlet right ventricle; great
62	arteries originating predominantly from the right ventricle, following the 50% rule; bilateral coni;
63	VSD beneath the pulmonary artery (PA), with no pulmonary stenosis; and no pulmonary-mitral
64	continuity ¹⁰ . The PA typically arises biventricularly, with the aorta positioned rightward and slightly
65	anterior, or alongside the PA (side by side) ¹¹ .
66	
67	Surgical technique
68	All procedures were performed under cardiopulmonary bypass with aortic and bicaval venous
69	cannulation. Intraventricular rerouting of the VSD to the PA was performed with an expanded
70	polytetrafluoroethylene patch. Both outflow tracts were carefully inspected, and resection of any
71	obstructive infundibular structures was performed. The ascending aorta was transected above the

72	sinotubular junction, and the PA was transected just before bifurcation. The coronary artery buttons
73	were excised from the aorta and reimplanted using the open technique. The neo-pulmonary root was
74	augmented with a fresh autologous pericardium. Lecompte maneuver was performed in all patients
75	with an anterior and rightward aorta and some patients with arteries that lie side by side. Our strategy
76	for aortic arch repair was to reconstruct the aortic arch without any patch materials, such as a
77	homograft. End-to-end anastomosis was usually conducted; only two cases underwent the swing back
78	technique ¹² . Two-stage repair was performed for the high-risk for cardiopulmonary bypass.
79	
80	Case-match control
81	Patients with TGA with VSD (TGA/VSD) were selected as case-match control. Seventeen patients
82	with TBA an anterior and rightward aorta were matched, excluding one patient who did not undergo
00	
83	Lecompte maneuver because the swing back technique was utilized. In patients with TGA/VSD, a
83 84	Lecompte maneuver because the swing back technique was utilized. In patients with TGA/VSD, a single best fit was chosen according to the preoperative anatomy assessed by echocardiogram and the
83 84 85	Lecompte maneuver because the swing back technique was utilized. In patients with TGA/VSD, a single best fit was chosen according to the preoperative anatomy assessed by echocardiogram and the surgical technique used, namely, aorta-PA relationship, Lecompte maneuver, aortic annulus size, and
83 84 85 86	Lecompte maneuver because the swing back technique was utilized. In patients with TGA/VSD, a single best fit was chosen according to the preoperative anatomy assessed by echocardiogram and the surgical technique used, namely, aorta-PA relationship, Lecompte maneuver, aortic annulus size, and body weight at ASO.

88 Statistical analysis

89	Continuous variables were reported as median (interquartile range) for skewed data or mean
90	(standard deviation) for values with normal distribution. Categorical variables were reported as
91	absolute frequency (percentage). Patients' characteristics were compared between those who
92	underwent PS reintervention and those who did not. Continuous variables were compared using
93	Student's t-test or Mann–Whitney U test based on data normality of. Categorical variables were
94	compared using Fisher exact tests or chi-square test. Risk factors for time-related outcomes were
95	tested using Cox regression analysis. Univariate analysis identified variables with P -value < 0.15 that
96	were entered in a stepwise fashion into a multivariate Cox proportional hazards regression model to
97	determine the independent predictors of outcomes. The hazard ratio (HR) and 95% confidence
98	interval (CI) were reported for significant multivariate risk factors. Estimate for freedom from
99	reintervention was made by the Kaplan-Meier method. The level of statistical significance was set at
100	P-value < 0.05. All statistical analyses were performed with SPSS version 22 (Chicago, IL).
101	
102	Results
103	Patients' and anatomical characteristics
104	Patients' characteristics are demonstrated in Table 1. Median age and weight at total repair were 43
105	(16–102) days, 3.6 (2.8–3.8) kg, respectively. Four infants died in the hospital. Follow-up was

106	available in 30 survivors (88%), with a median duration of 17.1 (9.6–21.0) years. Eight patients (23%)
107	underwent two-stage repair with initial palliation: arch repair in 4, pulmonary artery banding in 1, and
108	both procedures in 3.
109	Anatomical characteristics are shown in Table 1. The position of the aortic valve in relation to the
110	pulmonary valve was anterior and rightward in 19 patients (55%) and side by side in 15 patients
111	(45%). A usual coronary artery arrangement, with the left anterior descending and circumflex arteries
112	arising from sinus 1 and the right coronary artery arising from sinus 2 (classified as 1LCx-2R by the
113	Leiden Convention) was noted in 15 patients (44%), whereas the majority had various atypical
114	branching patterns. Fourteen patients (41%) had coronary anomalies including a single coronary
115	artery and intramural coronary artery. Aortic coarctation (CoA) was present in 22 patients (64%).
116	Subaortic RVOTO requiring a relief at the time of ASO was found in seven patients (20%).
117	
118	Operative and postoperative data
119	The mean cross-clamp time was 132±34 min. Lecompte maneuver was used in all patients with an
120	anterior and rightward aorta and 10 out of 15 patients with side by side position of the great arteries as

121 shown in Figure 1. Two patients who underwent VSD enlargement needed a permanent pacemaker

122 imj	plantation for comple	e heart block. The aor	tic arch was basically	reconstructed with ext	tended end-
---------	-----------------------	------------------------	------------------------	------------------------	-------------

- 123 to-end anastomosis, and the swing-back technique was utilized in two patients.
- 124 Hospital mortality, defined as death within 30 days if discharged, or no time limit if remaining in the
- 125 hospital, occurred in four patients (11%) (Supplementary Table 1). Late mortality occurred in one
- 126 patient (2.9%). Four months after an uncomplicated ASO and CoA repair, the patient succumbed to
- 127 severe pneumonia complicated by sepsis.
- 128

130 Surgical or transcatheter reintervention was required in 12 patients with a median follow-up period of

131 3.0 (0.1–20.5) years (Table 2). No mortality occurred upon reinterventions. Eight patients underwent

132 eight catheter reinterventions, including PA balloon angioplasty (n = 7) and a ortic arch balloon

133 angioplasty (n = 1). Eight patients underwent 18 reoperations, including pulmonary arterioplasty (n =

134 7), relief of RVOTO (n = 4), aortic arch repair (n = 3), relief of LVOTO (n = 1), residual VSD closure

135 (n = 1), aortic valve replacement (n = 1), and tricuspid valve repair (n = 1). Four patients underwent

136 seven pulmonary arterioplasty, as one patient underwent four repetitive pulmonary arterioplasty. PS

- 137 occurred at the bifurcation level of the main PA with bilateral PA in all four patients. The typical
- 138 positional relationship between the aorta and PA is demonstrated in Figure 3. Although three patients

139 did not originally have subaortic RVOTO, they underwent a RVOTO relief as a concomitant

140 procedure to relieve PS.

141

|--|

143 Patients were divided into two groups: those who underwent reintervention for PS including catheter 144 intervention (PS group, n = 10) and others (non-PS group, n = 24). Association of variables with 145 reintervention for PS is shown in Table 3. Age, body weight at ASO, and aorta-PA relationship were 146 comparable between the two groups. CoA was associated in 90% of the PS group and 54% of the non-PS group (P = 0.061). Two-stage repair was more frequently performed in the PS group than in 147 148 the non-PS group (50% vs. 12%, P = 0.023). The native PA annulus to aortic annulus ratio was 149 significantly higher in the PS group than in the non-PS group (PS group; 1.69 [IQR, 1.60–1.82] vs. 150 1.41 [1.18–1.62], P = 0.018). The native PA annulus to a ortic annulus ratio of all patients, excluding 151 two patients who underwent swing back technique, was plotted according to Lecompte maneuver 152 utilization (Figure 1). One patient who did not have a relatively large annulus for TBA (native PA 153 annulus to aortic annulus ratio: 1.22) suffered from PS at the bifurcation level of the main PA. She 154 underwent main PA banding plus aortic arch repair as a palliation surgery on day 14. While waiting

155	for ASO, banding tape for the main PA was migrated to the bifurcation with the bilateral PA causing
156	PS. Eight months later, she underwent PA plasty at the timing of ASO; however, PS remained.
157	All 18 patients with an anterior and rightward aorta underwent Lecompte maneuver, six (30%) of
158	them caused PS. Ten patients with side by side position of the arteries underwent Lecompte
159	maneuver; four (40%) of them had PS. The other four patients who did not undergo Lecompte
160	maneuver entirely avoided PS, as shown in Figure 1. In a univariate analysis, native PA annulus to
161	aortic annulus ratio \geq 1.6 (HR 11.0; 95% CI, 1.35–90.1, $P = 0.020$) and two-stage repair (HR 3.77;
162	95% CI, 1.07–13.2, $P = 0.033$) were associated with PS-related reintervention. In a multivariate
163	analysis, the native PA annulus to aortic annulus ratio \geq 1.6 (HR 9.20; 95% CI, 1.06–79.9, $P = 0.036$)
164	was the only predictor of PS-related reintervention (Table 4).
165	The PS-related reintervention rate was 34.4% at 10 years (10 of 29). Freedom from PS-related
166	reintervention was stratified by the native PA annulus to aortic annulus ratio. It was lower in the
167	patients with annulus ratio \geq 1.6 than in those with annulus ratio $<$ 1.6 (33.3% vs 94.2% at 10 years,
168	HR 19.1; 95% CI, 5.06–72.1, P <0.001; Figure 2).
169	

170 Case-match control: TBA with an anterior and rightward aorta versus TGA/VSD

171	No statistical difference was found in age and body weight at ASO between the two groups
172	preoperatively (Table 5). CoA was associated in 76% of the TBA group and was not entirely
173	associated in the TGA/VSD group ($P < 0.001$). Aortic annulus size did not differ between the two
174	groups (8.2 vs. 8.1, $P = 0.713$). However, the PA annulus size was significantly larger in the TBA
175	group (11.3 [IQR, 10.8–14.0] vs. 8.9 [7.7–9.4], <i>P</i> <0.001) and the native PA annulus to aortic annulus
176	ratio was significantly higher in the TBA group than in the TGA/VSD group (1.50 [IQR, 1.23–1.71]
177	vs. 1.02 [0.9–1.1], $P < 0.001$). Two-stage repair was performed more often in the TBA group than in
178	the TGA/VSD group (4 vs. 0 patients, $P = 0.033$). PS-related reintervention was more often required
179	in the TBA group than in the TGA/VSD group (6 vs. 1 patients, $P = 0.034$). More than mild aortic
180	insufficiency during the follow-up was more often found in the TBA group than in the TGA/VSD
181	group (mild, 6 vs. 2, $P = 0.049$; moderate, 3 vs. 0, $P = 0.045$). Neo-aortic valve size was larger in the
182	TBA group than in the TGA/VSD group (139%N vs. 119%N, $P < 0.001$) (Table 6).
183	
184	Comment
185	Primary total repair for TBA can be performed in almost all neonates with good results. Therefore, it
186	is indicated for the treatment of complex lesions ^{2,3} . Despite good clinical outcome in most patients, a

187 high proportion needed various reinterventions and reoperations during the follow-up periods⁴⁻⁶.

188	Univariate Cox regression analysis identified TBA as a significant predictor of reoperations for
189	RVOTO and PS ^{6,8,13-14} . Therefore, the present study focused on long-term functional outcomes.
190	In our study, PS was most commonly seen, in approximately 30%, at a much higher rate than
191	recoarctation of aortic arch or RVOTO. All patients with PS were found to have stretched PA at the
192	bifurcation level, which was compressed by the dilated ascending neo-aorta, especially by a huge
193	sinus Valsalva (Figure 3). Analyzing the native PA annulus to aortic annulus ratio, patients with PS
194	had significantly larger native PA annulus which was reconstructed as neo-aortic annulus. Another
195	important finding was that patients with TBA had a larger native PA annulus compared to the
196	TGA/VSD patients because of associating anomalies, which appeared to be the anatomical factor
197	resulting in higher PS-related reintervention.
198	
199	Large native PA annulus to aortic annulus: effect of preoperative anatomy and physiology
200	
201	Patients with PS had a tendency to have larger native PA and CoA, and more frequently underwent
202	two-stage repair than the non-PS patients. Not all patients with CoA underwent two-stage repair.
203	However, two-stage repair was entirely performed in patients with CoA. Existence of CoA increases
204	blood flow toward the native PA, which grows at the annulus and sinus of Valsalva of the native PA.

205	Two-stage repair is divided into two patterns, arch repair only or PA banding plus arch repair. The
206	former procedure causes growth of the annulus and sinus of Valsalva of the PA, and the latter
207	procedure provokes dilation of the sinus of Valsalva and distortion of the PA valve ² . A dilated
208	Valsalva of the native PA had become more distended while waiting for total repair (Figure 4). In our
209	study, eight patients had staged repair. Before and after surgery, the sinus geometry of Valsalva and
210	annulus was examined using computed tomography in three patients only, proving to be the ones that
211	expanded toward the short axis while waiting. Although subaortic RVOTO boosts pulmonary blood
212	flow, there was no correlation with PS in this study.
213	
214	Impact of Lecompte maneuver
215	
216	In general, Lecompte maneuver is not recommended in patients with side by side arteries ¹⁴ .
217	Reviewing a large study about TBA, whether patients with side by side position of the great arteries
218	should have Lecompte maneuver is controversial ^{2,9,15,16} . In our study, Lecompte maneuver was
219	performed in all patients with an anterior and rightward aorta and in all patients with side by side
220	position of the great arteries at first. However, the PS rate was so high in patients with side by side
221	position of the great arteries that the policy was corrected to not perform Lecompte maneuver since

222	1998. Subsequently, all four patients with side by side position of the great arteries including two
223	patients with native annulus ratio \geq 1.6 avoided both PS-related reintervention and compression of the
224	left coronary artery. The anatomical fact that the retroaortic space is larger compared to that in
225	patients with an anterior and rightward aorta may support our technique of choice. As the principle is
226	to allow the neo-PA to lie in its most natural position without tension, we believe that Lecompte
227	maneuver is not required in this parallel arrangement of the great arteries. Although we did not shift
228	the anastomosis site in the PA bifurcation across the right side, this procedure may be added.
229	
230	Comparison to TGA/VSD
231	
232	The striking difference between TBA with an anterior and rightward aorta and TGA/VSD was
233	overriding the PA complexity of associating anomalies. Overriding PA increases blood flow toward
234	PA, which grows the native PA. CoA was associated more often in the TBA group. In some cases,
235	presence of CoA led to two-stage repair. Despite having an aortic annulus size similar to that in the
236	TGA/VSD group, the PA annulus size was significantly larger in the TBA group. Preoperative larger
237	native PA resulted in larger neo-aorta, which resulted in further PS-related reintervention because of
238	the large neo-aortic root pushing forward on the PA; this has been observed in another study as well ¹⁶ .

239	Bovés et al. compared the preoperative size of the great arteries' annulus and concluded that patients
240	with TGA/VSD had larger native PA than patients with TGA with intact ventricular septum defect
241	due to VSD ¹⁷ . This theory could also be applied to patients with TBA. Aortic insufficiency worsened
242	in TBA. However, no reintervention for the aortic valve was needed in both groups.
243	
244	Limitation
245	The current report has limitations of a retrospective study. Changes in perioperative management
246	during the study period may have affected our results. Additionally, the small cohort size due to this
247	disease rarity and the multiple variables in this series reflected a development of different surgical
248	approaches regarding to initial palliative versus single-stage total correction.
249	
250	Conclusions
251	Survival after ASO for TBA can be high despite concomitant major anomalies such as aortic arch
252	obstruction, subaortic stenosis, and unusual coronary patterns. In this study, postoperative PS occurs
253	more frequently in patients who had larger native PA, correlating with the association of CoA and
254	two-stage repair. Optimal surgical reconstruction to achieve an appropriate aorto-pulmonary

- anatomical relationship with arch reconstruction at the time of ASO and close life-long surveillance is
- 256 required.
- 257
- 258 <u>Acknowledgements and Disclosures:</u> None

259 <u>References</u>

- 260 1) Taussig HB, Bing RJ. Complete transposition of the aorta and a levoposition of the pulmonary
- **261** artery. *Am Heart J.* 1949;37:551-559.
- 262 2) Hayes DA, Jones S, Quaegebeur JM, et al. Primary arterial switch operation as a strategy for total
- correction of Taussig-Bing anomaly: a 21-year experience. *Circulation*. 2013;128:S194-198.
- 264 3) Alsoufi B, Cai S, Williams WG, et al. Improved results with single-stage total correction of
- 265 Taussig-Bing anomaly. *Eur J Cardiothorac Surg.* 2008;33:244-250.
- 266 4) Al-Muhaya MA, Ismail SR, Abu-Sulaiman RM, Kabbani MS, Najm HK. Short- and mid-term
- 267 outcomes of total correction of Taussig-Bing anomaly. *Pediatr Cardiol.* 2012;33:258-263.
- 268 5) Soszyn N, Fricke TA, Wheaton GR, et al. Outcomes of the arterial switch operation in patients
- with Taussig-Bing anomaly. *Ann Thorac Surg.* 2011;92:673-679.
- 270 6) Huber C, Mimic B, Oswal N, et al. Outcomes and re-interventions after one-stage repair of
- transposition of great arteries and aortic arch obstruction. *Eur J Cardiothorac Surg.* 2011;39:213-220.
- 272 7) Lalezari S, Bruggemans EF, Blom NA, Hazekamp MG. Thirty-year experience with the arterial
- switch operation. *Ann Thorac Surg.* 2011;92:973-979.
- 8) Wetter J, Sinzobahamvya N, Blaschczok HC, et al. Results of arterial switch operation for primary
- total correction of the Taussig-Bing anomaly. Ann Thorac Surg. 2004;77:41-46.

- 276 9) Griselli M, McGuirk SP, Ko CS, Clarke AJ, Barron DJ, Brawn WJ. Arterial switch operation in
- 277 patients with Taussig-Bing anomaly-influence of staged repair and coronary anatomy on outcome.
- **278** *Eur J Cardiothorac Surg.* 2007;31:229-235.
- **279** 10) Van Praagh R. What is the Taussig-Bing malformation? Circulation. 1968;38:445-449.
- 280 11) Walters HL III, Mavroudis C, Tchervenkov CI, Jacobs JP, Lacour-Gayet F, Jacobs ML.
- 281 Congenital heart surgery nomenclature and database project: double outlet right ventricle. Ann Thorac
- **282** *Surg.* 2000;69:S249-263.
- 283 12) Kosaka Y, Sakamoto T, Suetsugu F, Harada Y. Outcomes of swing-back aortic arch repair in
- arterial switch and Norwood operations. *Eur J Cardiothorac Surg.* 2013;43:1244-1246.
- 13) Hirata Y, Chen JM, Quaegebeur JM, Mosca RS. Should we address the neopulmonic valve?
- 286 Significance of right-sided obstruction after surgery for transposition of the great arteries and
- **287** coarctation. *Ann Thorac Surg.* 2008;86:1293-1298.
- 288 14) Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK. Complete Transposition of the Great
- 289 Arteries. Kirklin/Barratt-Boyes Cardiac Surgery. 4th ed. Philadelphia, PA; Elsevier Inc.; 2012:1884-
- **290** 1885.
- 291 15) Sinzobahamvya N, Blaschczok HC, Asfour B, et al. Right ventricular outflow tract obstruction
- after arterial switch operation for the Taussig-Bing heart. *Eur J Cardiothorac Surg.* 2007;31:873-878.

- 293 16) Vergnat M, Baruteau AE, Houyel L, et al. Late outcomes after arterial switch operation for
- **294** Taussig-Bing anomaly. *J Thorac Cardiovasc Surg.* 2015;149:1124-1130.
- 295 17) Bové T, De Meulder F, Vandenplas G, et al. Midterm assessment of the reconstructed arteries
- after the arterial switch operation. *Ann Thorac Surg.* 2008;85:823-830.

Characteristic	n (%) or median (IQR)				
Demographic						
Male	26	(76)				
Median age at surgery (d)	43	(16–102)				
Median weight at surgery (kg)	3.6	(2.8–3.8)				
Aorta-pulmonary artery relationship						
Aorta anterior and rightward	19	(55)				
Side by side	15	(45)				
Coronary configuration*						
1LCx-2R	15	(44)				
1R-2LCx	5	(14)				
1L-2RCx	4	(11)				
1LR-2Cx	2	(5)				
1LCxR	3	(8)				
2RLCx	3	(8)				

Table 1. Demographic and anatomical characteristics (n = 34)

Intramural coronary artery	1	(3)
Aortic coarctation	22	(64)
Subaortic RVOTO	7	(20)
Subpulmonary LVOTO	7	(20)
Other cardiac anomalies		
Ebstein's anomaly	1	(3)
Primary management of Taussig–Bing anomaly		
Primary total repair	26	(76)
Two-stage repair	8	(23)

IQR, interquartile range; L, left anterior descending anterior artery; Cx, left circumflex artery; R, right

coronary artery; RVOTO, right ventricular outflow tract obstruction; LVOTO, left ventricular outflow

tract obstruction

*Coronary configuration according to Leiden Convention

Reintervention	n (%)	No. of procedures
Any reintervention	12 (35)	26
Transcatheter reintervention	8 (23)	8
Pulmonary artery balloon angioplasty		7
Aortic arch balloon angioplasty		1
Surgical reintervention	8 (23)	18
Pulmonary arterioplasty		7
Relief of RVOTO		4
Relief of LVOTO		1
Aortic arch repair		3
Residual ventricular septal defect closure		1
Aortic valve replacement		1
Tricuspid valve repair		1

Table 2. Surgical or transcatheter reintervention (n = 34)

RVOTO, right ventricular outflow tract obstruction; LVOTO, left ventricular outflow tract obstruction

Variable	PS ($n = 10$)	No PS (n = 24)	<i>P</i> -value	
Preoperative variables				
Male	7 (70)	18 (75)	0.611	
Median age at surgery (d)	51 (15–172)	42 (16–92)	0.803	
Median weight at surgery (kg)	3.6 (3.0–3.9)	3 (2.9–3.4)	0.566	
Anatomical variables				
Aorta-PA relationship				
Aorta anterior and rightward	6 (60)	13 (54)	0.678	
Side by side	4 (40)	11 (46)	0.678	
Native PA annulus to aortic annulus ratio	1.69 (1.60–1.82)	1.41 (1.18–1.62)	0.018	
Aortic coarctation	9 (90)	13 (54)	0.061	

Table 3. Association of variables with reintervention for pulmonary artery stenosis

	Subaortic RVOTO	1	(11)	6	(25)	0.299
Ope	rative variables					
	Primary total repair	5	(50)	21	(88)	0.023
	Two-stage repair	5	(50)	3	(12)	0.023
	Cross-clamp time (min)	125	(107-171)	120	(106-150)	0.418
	Lecompte maneuver					
	Yes	9	(90)	19	(79)	0.586
	No	1	(10)	5	(21)	0.586

Data presented as median (interquartile range) or n (%). PS, pulmonary artery stenosis; PA, pulmonary artery; RVOTO, right ventricular outflow tract

obstruction

	<i>P</i> -value	HR (95% CI); <i>P</i> -value
Factor	(Univariate)	(Multivariate)
Weight at surgery <3 kg	0.160	
Native PA annulus to aortic annulus ratio ≥ 1.6	0.020	9.20 (1.06–79.9); <i>P</i> = 0.036*
Preoperative aortic coarctation	0.101	3.60 (0.41–32.8); <i>P</i> = 0.249
Preoperative subaortic RVOTO	0.291	
Two-stage repair	0.033	2.46 (0.65–9.33); <i>P</i> = 0.185
Cross-clamp time >120 min	0.960	

HR, hazard ratio; CI, confidence interval; PS, pulmonary artery stenosis; PA, pulmonary artery; RVOTO, right ventricular outflow tract.

Only variables having a *P*-value < 0.15 in the univariate analysis are displayed and entered into the multivariate Cox regression model.

* *P*-value < 0.05 (multivariate)

Variable	Taussig–Bing anomaly (n = 17)	TGA/VSD ($n = 17$)	P value
Preoperative variables			
Median age at surgery (d)	54 (15–110)	17 (12–24)	0.072
Median weight at surgery (kg)	3.2 (2.9–3.9)	3.3 (3.0–3.6)	0.377
Anatomical variables			
Aorta anterior and rightward	17 (100)	17 (100)	1.00
Coronary configuration			
1LCx-2R	11 (64.7)	15 (88.2)	0.106
1LR-2Cx	0 (0)	1 (5.8)	0.310

Table 5. Pre- and perioperative case-match control (TGA/VSD)

1LCxR	3	(17.6)	0	(0)	0.070
2RLCx	3	(17.6)	1	(5.8)	0.287
Intramural coronary artery	1	(5.8)	1	(5.8)	1.00
Associating anomalies					
Aortic coarctation	13	(76.4)	0	(0)	<0.001
Subaortic RVOTO	5	(29.4)	0	(0)	0.015
Subpulmonary LVOTO	5	(29.4)	0	(0)	0.015
Great arteries					
Aortic annulus size	8.2	(6.8–9.5)	8.1	(7.6–8.9)	0.713
PA annulus size	11.3	(10.8–14.0)	8.9	(7.7–9.4)	<0.001
Native PA annulus to aortic annulus ratio	1.50	(1.23–1.71)	1.02	(0.9–1.1)	<0.001

Operative variables

Primary total repair 13	(76.4)	17	(100) 0.033
Two-stage repair 4	(23.5)	0	(0) 0.033
Cross-clamp time (min) 122	(104–166)	81	(70–101) <0.001
Lecompte maneuver 17	(100)	17	(100) 1.00
Hospital mortality 1	(5.8)	0	(0) 0.310

Data presented as median (interquartile range) or n (%). TGA, transposition of great arteries; VSD, ventricular septal defect; L, left anterior descending anterior artery;

Cx, left circumflex artery; R, right coronary artery; RVOTO, right ventricular outflow tract obstruction; LVOTO, left ventricular outflow tract obstruction; PA,

pulmonary artery

Table 6. Postoperative case-match control

Variable	Taussig–Bing anomaly (n = 17)	TGA/VSD (n = 17)	P value
Any reintervention	8 (47.0)	1 (5.9)	0.007
PS-related reintervention	6 (35.2)	1 (5.9)	0.034
Aortic valve-related reintervention	0 (0)	0 (0)	-
Long-term follow-up echocardiogram	n = 14	n = 17	
Age at echocardiogram (m)	116 (42–198)	115 (49–156)	0.534
Interval from surgery (m)	96 (37–197)	115 (49–156)	0.653
Aortic insufficiency			
None	0 (0)	3 (17.6)	0.098
Trivial	5 (35.7)	12 (70.5)	0.052

Mild	6 (42.9)	2	(11.7)	0.049
Moderate	3 (21.4)	0	(0)	0.045
Severe	0 (0)	0	(0)	-
Aortic valve size (%N)	139 (133–173)	119	(108–126)	<0.001

Data presented as median (interquartile range) or n (%). TGA, transposition of the great arteries; VSD, ventricular septal defect; PS, pulmonary artery stenosis

307 Figure legend

308 Figure 1. Relationship between native PA annulus and aortic annulus classified with performance of Lecompte

- 309 maneuver and postoperative PS
- Figure 2. Freedom from PS-related reintervention stratified by native PA annulus to aortic annulus ratio
- 311 Figure 3. Stretched PA at the bifurcation level being compressed by dilated ascending neo-aorta
- Figure 4. Expanding Valsalva of the native PA (red arrow head) while waiting for total repair (A: before palliation, B:

313 before total repair)