1 <u>Title</u>

2	Improved Outcomes for Out-of-Hospital Cardiac Arrest Patients Treated by Emergency Life-
3	Saving Technicians Compared with Basic Emergency Medical Technicians: A JCS-ReSS Study
4	Report
5	
6	Authors:
7	Hiromichi Naito MD PhD ^{1,2} , Tetsuya Yumoto MD PhD ^{1,2} , Takashi Yorifuji MD PhD ^{1,3} ,
8	Yoshio Tahara MD PhD ^{1,4} , Naohiro Yonemoto MPH PhD ^{1,5} , Hiroshi Nonogi MD PhD ^{1,6} ,
9	Ken Nagao MD PhD ^{1,7} , Takanori Ikeda MD PhD ^{1,8} , Naoki Sato MD PhD ^{1,9} , Hiroyuki
10	Tsutsui MD PhD ^{1,10}
11	
12	Author Affiliations:
13	1. JCS-ReSS Group
14	2. Okayama University Hospital, Advanced Emergency and Critical Care Medical Center
15	3. Department of Epidemiology, Okayama University Graduate School of Medicine,
16	Dentistry and Pharmaceutical Sciences
17	4. National Cerebral and Cardiovascular Center, Department of Cardiovascular Medicine
18	5. National Center of Neurology and Psychiatry

19	6. Shizuoka	General	Hospital,	Intensive	Care Center
----	-------------	---------	-----------	-----------	-------------

20	7. Nihon University Hospital, Cardiovascular Center
21	8. Toho University Faculty of Medicine, Department of Cardiovascular Medicine
22	9. Kawaguchi Cardiovascular and Respiratory Hospital, Cardiovascular Medicine
23	10. Kyushu University Faculty of Medical Sciences, Department of Cardiovascular
24	Medicine
25	
26	Corresponding Author:
27	Hiromichi Naito MD PhD, Okayama University Hospital, Advanced Emergency and
28	Critical Care Medical Center, 2-5-1 Shikata, Okayama, Japan 700-8558; e-mail address:
29	naito.hiromichi@gmail.com
30	
31	Keywords:
32	Paramedic; Prehospital; Emergency Medical Services; Cardiopulmonary Resuscitation;
33	Advanced Life Support
34	
35	Word Count: 2,850 words, Number of References: 39, Number of Tables: 3, Number of
36	Figures: 1

37

39 Abstract

Background: Emergency life-saving technicians (ELSTs) are specially trained prehospital 40 41 medical providers believed to provide better care than basic emergency medical technicians 42 (BEMTs). ELSTs are certified to perform techniques such as administration of advanced 43 airways or adrenaline and are considered to have more knowledge; nevertheless, ELSTs' effectiveness over BEMTs regarding out-of-hospital cardiac arrest (OHCA) remains unclear. 44 45 We investigated whether the presence of an ELST improves OHCA patient outcomes. 46 Methods: In a retrospective study of adult OHCA patients treated in Japan from 2011 to 2015, 47 we compared two OHCA patient groups: patients transported with at least one ELST and patients transported by only BEMTs. The primary outcome measure was one-month 48 49 favorable neurological outcomes, defined as Cerebral Performance Category \leq 2. A multivariable logistic regression model was used to calculate odds ratios (ORs) and their 50 51 confidence intervals (CIs) to evaluate the effect of ELSTs. 52 Results: Included were 552,337 OHCA patients, with 538,222 patients in the ELST group and 14,115 in the BEMT group. The ELST group had a significantly higher odds of favorable 53

54 neurological outcomes (2.5% vs. 2.1%, adjusted OR 1.39, 95% CI 1.17-1.66), one-month

55	survival (4.9% vs. 4.1%, adjusted OR 1.37, 95% CI 1.22-1.54), and return of spontaneous
56	circulation (8.1% vs. 5.1%, adjusted OR 1.90, 95% CI 1.72–2.11) compared with the BEMT
57	group. However, ELSTs' limited procedure range (adrenaline administration or advanced
58	airway management) did not promote favorable neurological outcomes.
59	Conclusions: Compared with the BEMT group, transport by the ELST group was associated
60	with better neurological outcomes in OHCA.
61	
62	
63	Introduction
64	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3];
64 65	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4],
64 65 66	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4], public education [5], and advanced care in the receiving hospital [6] can ameliorate survival
64 65 66 67	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4], public education [5], and advanced care in the receiving hospital [6] can ameliorate survival and neurological outcomes in OHCA. Prehospital medical providers play important roles
6465666768	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4], public education [5], and advanced care in the receiving hospital [6] can ameliorate survival and neurological outcomes in OHCA. Prehospital medical providers play important roles worldwide [7][8]. In Japan, the Fire and Disaster Management Agency (FDMA) employs two
 64 65 66 67 68 69 	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4], public education [5], and advanced care in the receiving hospital [6] can ameliorate survival and neurological outcomes in OHCA. Prehospital medical providers play important roles worldwide [7][8]. In Japan, the Fire and Disaster Management Agency (FDMA) employs two levels of public prehospital medical providers, emergency life-saving technicians (ELSTs) and
 64 65 66 67 68 69 70 	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4], public education [5], and advanced care in the receiving hospital [6] can ameliorate survival and neurological outcomes in OHCA. Prehospital medical providers play important roles worldwide [7][8]. In Japan, the Fire and Disaster Management Agency (FDMA) employs two levels of public prehospital medical providers, emergency life-saving technicians (ELSTs) and basic emergency medical technicians (BEMTs). ELSTs are certified and receive more
 64 65 66 67 68 69 70 71 	Out-of-hospital cardiac arrest (OHCA) is a leading public health concern [1][2][3]; favorable neurological outcomes remain low. Improvement in the health care system [4], public education [5], and advanced care in the receiving hospital [6] can ameliorate survival and neurological outcomes in OHCA. Prehospital medical providers play important roles worldwide [7][8]. In Japan, the Fire and Disaster Management Agency (FDMA) employs two levels of public prehospital medical providers, emergency life-saving technicians (ELSTs) and basic emergency medical technicians (BEMTs). ELSTs are certified and receive more prehospital emergency care education than BEMTs [9].

73	however, approximately 3% of cases are transported without ELSTs (only BEMTs). Legally,
74	only ELSTs may administer advanced airways using tools like supraglottic devices in Japan;
75	specially-trained ELSTs can perform endotracheal intubation (ETI) [9]. Another important
76	potentially life-saving skill only specially trained ELSTs may perform is adrenaline
77	administration. Considering their skills and knowledge, treatment and transport by advanced
78	prehospital medical providers seem to be associated with improved survival [10][11][12];
79	however, the survival or neurological benefit of advanced prehospital medical providers
80	remains controversial globally [13][14][15]. In addition, ELST skill maintenance requires
81	costly efforts and training [9][16].
82	ELSTs' effectiveness over BEMTs in OHCA treatment and transport has not been
83	fully elucidated. We conducted a large-scale, observational, population-based cohort study on
84	OHCA patients treated by BEMTs and ELSTs and investigated whether presence of ELSTs
85	improved OHCA patient outcomes.
86	
87	
88	Methods
89	Emergency Medical System (EMS) and Providers

90 Japan is a 378,000 km² area with 127 million people. In 2015, there were 750 local

91	fire departments with 1,709 fire stations and 3,145 dispatch centers [17]; the EMS is available
92	24 hours daily. Ambulances respond to scenes from the nearest fire stations. Each ambulance
93	commonly has three emergency personnel, including at least one ELST nationally certified
94	and trained to provide prehospital emergency care. Since April 1991, the number of ELSTs
95	has been increasing. However, only BEMTs are present for some cases.
96	Two levels of Japanese prehospital medical providers (BEMTs and ELSTs) have
97	been previously described [12]. BEMTs are accredited by local EMS after 250 hours of
98	medical education, perform basic life support (BLS), including bag-valve-mask (BVM)
99	ventilation, and are encouraged to apply automated defibrillators. ELSTs are accredited in
100	two ways: $\textcircled{1}$ They must work as a BEMT in prehospital care and transportation for
101	approximately five years, complete a half year of ELST education and training, and pass a
102	national examination, or ② After two years of ELST education at an EMT school/college,
103	they must pass a national examination. ELSTs perform Advanced Life Support, applying
104	semi-automated defibrillators. When ELSTs have difficulty performing BVM ventilation, they
105	may secure the airway using supraglottic devices (laryngeal tube, i-gel, laryngeal mask, combi-
106	tube, etc.) for OHCA patients under direct telephone orders of a local medical consultant
107	(emergency physician). Additionally, ELSTs who complete the additional training and
108	perform 30 successful live intubations in the operating room are certified to perform ETI. ETI

109	criteria include OHCA patients with asphyxia due to foreign-body airway obstruction without
110	successful airway through a supraglottic device or judgement by a medical consultant on direct
111	order. Similarly, ELSTs with additional training may establish intravenous (IV) lines
112	(additional training, 10 successful IV placements, one adrenaline administration to a cardiac
113	arrest patient under supervision). If return of spontaneous circulation (ROSC) doesn't occur
114	after initial defibrillation, advanced ELSTs can administer adrenaline to pulseless electrical
115	activity, asystole, or refractory ventricular fibrillation (VF)/ventricular tachycardia (VT)
116	rhythms after giving shock. Adrenaline is administered via prefilled syringes every three to
117	five minutes until ROSC or hospital arrival. Synchronized radio-controlled watches are used
118	to record all procedures. ELSTs and BEMTs are legally banned from terminating resuscitation
119	in the field. They may not attempt resuscitation in cases with definite deaths like incineration,
120	decapitation, rigor mortis, decomposition, or "do not attempt resuscitation" orders [18].
121	
122	Study Design and Data Collection
123	The Okayama University Ethics Committee approved the study (1806-012) and

waived the requirement for written informed consent. This nationwide, retrospective,
population-based, observational study used the All-Japan Utstein Registry database for
OHCA patients run by the FDMA [5].

127	OHCA patient data were prospectively collected based on Utstein-style guidelines
128	[19][20] by the local EMS and subsequently integrated into the national registry. Cardiac
129	arrest was defined as stoppage of mechanical cardiac activity substantiated by lack of
130	circulation signs. Cardiac arrest was assumed of cardiac origin unless caused by respiratory or
131	cerebrovascular diseases; external causes, including hanging, trauma, drowning, asphyxia, and
132	drug overdose; malignant tumors; or other non-cardiac causes. Diagnoses of cardiac or non-
133	cardiac causes were clinically decided by in charge physicians in collaboration with EMS
134	providers. Variables included gender, age, witness status, bystander-initiated
135	cardiopulmonary resuscitation (CPR), initial electrocardiogram rhythm, resuscitation time-
136	course, cardiac arrest region, cardiac or non-cardiac origin, ELST status, use of advanced
137	airway, establishment of IV line, adrenaline administration, hospital admission, ROSC, one-
138	month neurological status, and one-month survival. ROSC was defined as recovery of any
139	spontaneous palpable pulse with any time duration confirmed with cardiac rhythm monitoring
140	[18]. Cerebral Performance Category (CPC) scale was used to evaluate neurological
141	outcomes [19][20].

143 Patient Selection and Endpoint

144 All 18-year-old or older patients with OHCA of cardiac and non-cardiac causes

145	transported by the FDMA from January 1, 2011 through December 31, 2015 were included.
146	Cases where resuscitation was not attempted and cases involving patients under 18, the
147	presence of doctor during transport, and treatment by doctor before transport were excluded.
148	We compared two OHCA patient groups, the ELST group (patients transported by EMS,
149	including at least one ELST) and the BEMT group (patients transported only by BEMTs).
150	The primary outcome measure was one-month favorable neurological outcome defined as
151	CPC 1 or 2. Secondary outcome measures included one-month survival and ROSC.
152	Additionally, advanced airway efficacy and adrenaline use were evaluated in the ELST group.
153	

1

Data Analysis 154

155 Continuous variables were described using median with interquartile ranges (IQR). 156 Categorical variables were described using percentages. The Mann-Whitney U-test was used to compare EMS contact to initial defibrillation times between the ELST and BEMT groups. 157 158 For the primary outcome, univariable logistic regression was used to determine association between favorable neurological outcome and groups. Multivariable logistic regression was 159 160 performed to adjust covariates (year of cardiac arrest, age, gender, initial recorded cardiac 161 rhythm, estimated cardiac or non-cardiac origin, bystander CPR, dispatcher instruction for 162 CPR, time from EMS call to hospital arrival, cardiac arrest region). Logistic regression

163	analysis results were expressed using odds ratios (ORs) and 95% confidence intervals (CIs).
164	For the secondary outcome, including effect of ELST on one-month survival and ROSC,
165	univariable and multivariable logistic regression were used. Effectiveness of advanced
166	treatments (airway management, adrenaline administration) only allowed by ELSTs is still
167	conflicting; to identify advantages of ELSTs' technical procedure skills, univariable and
168	multivariable logistic regression were also used in the ELST group to evaluate whether these
169	advanced treatments contribute to the outcomes. Same variables were used for adjustment in
170	multivariable logistic regression. Statistical analysis was performed using Stata version 15
171	(StataCorp LP, College Station, TX). P-values below 0.05 were considered statistically
172	significant.
173	
174	
175	Results
176	Figure 1 shows an OHCA patient flow chart. The registry documented 629,471
177	OHCA patients from 2011 to 2015 in Japan. Patients meeting exclusion criteria (16,210
178	resuscitations not attempted; 7,687 under 18 years old; 18,951 transported with doctors;
179	34,286 treated by doctors) were excluded. Finally, 552,337 were included, 538,222 in the
180	ELST group and 14,115 in the BEMT group.

181	Table 1 shows baseline ELST and BEMT group characteristics, prehospital
182	procedure characteristics, and outcomes. The proportion of males (ELST group vs. BEMT
183	group: 56.6 vs. 56.9%), age (median [IQRs]: 79 [67-86] vs. 79 [68-86] years), witnessed
184	collapse (40.3 vs. 40.0%), and time from EMS call to hospital arrival (32 [26-39] vs. 31 [26-
185	39] min) did not differ between the groups. Proportions of initial rhythm VF/VT (7.1 vs.
186	6.6%) and dispatcher instruction for CPR (53.0 vs. 50.0%) were higher in the ELST group,
187	while estimated cardiac origin (59.5 vs. 62.2%) and bystander CPR (50.9 vs. 56.0%) were
188	lower. The proportion of patients transported by BEMTs tended to decrease as the years
189	progressed. The proportion of BEMTs tended to be higher in low population density regions.
190	Time from EMS arrival to initial defibrillation did not differ between the ELST and BEMT
191	groups (2 [1-3] vs. 2 [1-4] min, $p = 0.25$). Advanced airway management was conducted in
192	42.2% of ELST group patients (34.0% supraglottic airways; 7.3% ETI); adrenaline
193	administration was conducted in 16.0% of the ELST group. Overall, there was a 2.5%
194	incidence of favorable neurological outcomes, 4.9% of one-month survival, and 8.0% of
195	ROSC.
196	In the univariable logistic regression (Table 2), all outcomes, including favorable
197	neurological outcomes (2.5 vs. 2.1%, OR 1.19, 95% CI 1.06-1.34), one-month survival (4.9

198 vs. 4.1%, OR 1.21, 95% CI 1.12-1.32), and ROSC (8.1 vs. 5.1%, OR 1.65, 95% CI 1.53-1.78),

199	were higher in the ELST group. Multivariable logistic regression was conducted to adjust for
200	potential confounders (Table 2). ELST presence was significantly associated with favorable
201	neurological outcomes (adjusted OR 1.39, 95%, CI 1.17-1.66), one-month survival (adjusted
202	OR 1.37, 95% CI 1.22-1.54), and ROSC (adjusted OR 1.90, 95% CI 1.73-2.11).
203	We explored whether technical procedures (advanced airway management;
204	adrenaline administration) limited to ELSTs promoted outcomes with univariable and
205	multivariable logistic regression (Table 3). Use of advanced airways did not promote favorable
206	neurological outcomes (adjusted OR 0.34, 95% CI 0.32-0.36) or one-month survival
207	(adjusted OR 0.72, 95% CI 0.70-0.75). Administration of adrenaline did not promote
208	favorable neurological outcomes (adjusted OR 0.33, 95% CI 0.31-0.35) or one-month survival
209	(adjusted OR 0.84, 95% CI 0.80-0.87). However, both advanced airways (adjusted OR 1.08,
210	95% CI 1.05-1.11) and adrenaline (adjusted OR 3.73, 95% CI 3.64-3.83) increased ROSC.
211	
212	

213 Discussion

We examined the efficacy of ELST presence during treatment and transport for OHCA patient outcomes using a large national registry in Japan and found that patients treated by ELSTs had better neurological outcomes (adjusted OR of 1.39) than patients

217	treated only by BEMTs. Adjusted one-month survival and ROSC were also better in the ELST
218	group compared with the BEMT group. However, intervention skills such as advanced airway
219	use or adrenaline administration did not fully explain ELSTs' contribution to favorable
220	neurological outcomes. ELSTs' greater knowledge of pathophysiology and appropriate
221	transport to receiving hospitals to treat OHCA patients may be their advantages.
222	Prehospital medical providers contribute to treating and transporting patients,
223	including OHCA patients, all over the world [21][22]; their techniques and knowledge may
224	vary widely by region. Since prehospital medical providers (in Japan, BEMTs or ELSTs)
225	commonly play important roles in advising/helping first-contacted public BLS providers or
226	treating and transporting OHCA patients to hospitals, their skills or knowledge can be
227	decisive factors in OHCA patient outcomes. OHCA experience (case volume) of prehospital
228	medical provider has been reported to predict ROSC [11]. Similarly, association between
229	OHCA exposure of prehospital medical provider and patient survival has been reported.
230	OHCA exposure during the preceding three years had a positive effect on patient survival;
231	moreover, outcomes improved when it was less than six months since prehospital medical
232	providers last treated OHCA patients [23]. In Osaka, Japan, Kajino et al. compared the
233	efficacy of supraglottic devices vs. ETI; in their sub-analysis, the presence of an ETI-certified
234	ELST was significantly associated with favorable neurological outcomes (adjusted OR of 1.86,

235	95% CI 1.04 to 3.34), similar to our results [24]. Our study did not address the number of
236	EMTs or ELSTs; however, in the Osaka study, the presence of three ELSTs was associated
237	with improved one-month survival with favorable neurological outcomes in OHCA compared
238	with presence of one ELST [12]. In addition, an over 50% ratio of on-scene advanced EMTs
239	was associated with improved survival in OHCA patients with witnessed, non-shockable
240	rhythm in Taipei [10]. In their study, the presence of four EMTs with an advanced EMT ratio
241	of over 50% was associated with the best outcomes. However, number of EMTs alone does
242	not seem to improve outcomes. More EMTs in ambulances did not affect rates of ROSC,
243	survival, or neurological favorable outcomes of OHCA patients in Tokyo [25]. Similarly,
244	Eschmann et al. reported that in their two-tiered system, the presence of three or advanced
245	EMTs at the scene was not associated with improved survival compared with one basic EMT
246	and two advanced EMTs [13]. At least one well-trained and experienced prehospital medical
247	provider such as an ELST seems to be needed on scene for decision-making to improve
248	outcomes.

249 Whether advanced airways contribute to OHCA outcomes remains debatable; 250 however, these skills are essential in some cases with a limited number of crews. However, the 251 use of advanced airways did not promote ELST favorable neurological outcomes, implying 252 that ELSTs' advantages extend beyond the technique. The results provided additional

253	evidence of the limited impact of advanced techniques like advanced airways or adrenaline
254	administration on neurological outcomes. Our results were consistent with those from
255	previous studies showing no improved outcomes with advanced airway device use in Japan
256	[14]. However, these skills may still potentially improve outcomes [26][27][28]. Proper
257	indications for advanced airways are needed; moreover, outcomes may vary according to the
258	prehospital medical provider's proficiency in performing the procedure. Adrenaline
259	administration was conducted in fewer patients (16%) compared to the US [29] or UK [30].
260	Regional protocols for administering adrenaline have variations; some districts do not
261	recommend adrenaline administration to unwitnessed asystole [31]. Moreover, the need for
262	direct phone orders from a medical consultant physician to establish an intravenous access
263	and a subsequent phone call to administer adrenaline may have resulted in decreased
264	incidence or delayed adrenaline administration. Adrenaline administration increased ROSC;
265	however, our data did not show efficacy of adrenaline administration for favorable
266	neurological outcomes. Past studies have conflicting results: in one trial, prehospital
267	epinephrine use was associated with higher chance of ROSC, but lower chance of survival and
268	good neurological outcomes [15]. Contrarily, after accounting for time-dependent patient
269	imbalance, Nakahara et al. reported higher proportions of overall and neurologically-intact
270	survival among those with non-shockable rhythms in adrenaline administration [32]. In the

recent randomized controlled trial, adrenaline use resulted in significantly higher survival, but
a lower rate of good neurological outcome in those who survived [30]. Adrenaline timing
[33][34] or dosing [35][36][37] and appropriate patients [38] should be further evaluated
in prehospital settings.

BLS quality is crucial in OHCA outcomes; more educated prehospital medical providers may have performed better quality BLS. Other possible explanations for better neurological survival with ELSTs is that they performed better quality defibrillation. Shorter interruptions in chest compressions before and after defibrillatory shock is an independent predictor of survival from shockable OHCA [39]. Although EMS contact time to initial defibrillation time did not differ between groups, ELSTs with more experience/education and semi-automated defibrillator use may have facilitated faster defibrillation.

Results of multivariable logistic regression showed evidence supporting ELST presence. ELSTs' knowledge of factors other than skills/procedures like defibrillation or administration of advanced airways or adrenaline may have had more impact on outcomes. Receiving hospital characteristics may be associated with OHCA outcomes. Transport to Japanese nationally-certified critical care medical centers assumed to be high-volume independently predicted good neurological outcomes in OHCA without field ROSC [6]. Receiving hospital choice may have been better with more educated or experienced

289	prehospital medical providers like ELSTs. In addition, ELSTs may have provided hospitals
290	more precise meaningful information from the field to prepare for definitive treatment.
291	Future research should determine these factors affecting the association between advanced
292	prehospital medical providers' ability and improved outcomes.
293	

295 Limitations

296 Our study has several limitations. First, we couldn't obtain information on several 297 factors associated with outcomes in BEMT or ELST transport. We didn't address ELST 298 education level (whether or not they are certified in ETI/adrenaline administration), number 299 of BEMTs and ELSTs, or BEMTs/ELST experience. Second, the number of BEMTs was 300 much smaller than the number of ELSTs. Moreover, there was some difference in characteristics between groups. For instance, ELST group showed higher rates of patients 301 with VF/VT and lower rates of patients with estimated cardiac origin. This may attribute to 302 303 regional variation for BEMT-only transport: (i.e., more frequent BEMT transport in rural 304 areas). We tried to adjust the difference between the two groups using known factors 305 potentially related to outcomes using factors obtained in the database. Third, other 306 unmeasured confounding factors may have influenced outcomes, i.e. patient comorbidity,

307	location of arrest, cardiac arrest etiology, receiving hospital information, hospital post-cardiac
308	arrest management, CPR quality information. Finally, like with all epidemiological studies,
309	data validity, integrity, and ascertainment bias were possible limitations. However, large
310	sample size, population-based design to cover all OHCA in Japan, and uniform data collection
311	based on Utstein-style guidelines for reporting cardiac arrest were intended to lessen these
312	potential biases.
313	
314	
315	Conclusions
316	Compared with the BEMT group, treatment and transport by the ELST group was
317	associated with improved favorable neurological outcomes for OHCA. EMS response to
318	OHCA should include at least one advanced level prehospital provider.
319	
320	
321	Conflict of interest
322	Conflicts of interest: none.
323	
324	

325 Acknowledgements

326 Thank you to all EMS providers and concerned physicians.

327

328

329 Figure Legends

330 Figure 1

331

Flow diagram of patients analyzed. The ELST group comprised patients transported by
emergency medical service, including at least one ELST. The BEMT group comprised
patients transported only by BEMTs. BEMT: basic emergency medical technician; CPR:
cardiopulmonary resuscitation; ELST: emergency life-saving technician; OHCA: out-ofhospital cardiac arrest.

340 Tables

341 Table 1. Patient Characteristics and Outcomes of ELST and BEMT Groups

342		All	ELST	BEMT
343	Patient characteristics			
344	Male sex	312,615/552,337 (56.6%)	304,590/538,222 (56.6%)	8,025/14,115 (56.9%)
345	Age – median [IQR]	79 [67-86]	79 [67-86]	79 [68-86]
346	Initial rhythm VF/VT	37,779/531,586 (7.1%)	36,879/517,989 (7.1%)	900/13,597 (6.6%)
347	PEA/Asystole	493,807/531,586 (92.9%)	481,110/517,989 (92.9%)	12,697/13,597 (93.4%)
348	Estimated cardiac origin	329,021/552,337 (59.6%)	320,239/538,222 (59.5%)	8,782/14,115 (62.2%)
349	Witnessed collapse	222,329/553,337 (40.3%)	216,685/538,222 (40.3%)	5,644/14,115 (40.0%)
350	Bystander CPR	246,326/482,684 (51.0%)	240,091/471,611 (50.9%)	6,235/11,073 (56.3%)
351	Dispatcher instruction for CPR	288,006/544,419 (52.9%)	281,129/530,670 (53.0%)	6,877/13,749 (50.0%)
352	Time from EMS call to hospital arrival – median [IQR]	32 [26-39] min	32 [26-39] min	31 [26-39] min
353	Year of cardiac arrest			
354	2011	116,911	113,687/116,911 (97.2%)	3,224/116,911 (2.8%)
355	2012	112,923	110,244/112,923 (97.6%)	2,679/112,923 (2.4%)
356	2013	106,714	104,267/106,714 (97.7%)	2,447/106,714 (2.3%)
357	2014	108,741	105,104/108,741 (96.7%)	3,637/108,741 (3.3%)
358	2015	107,048	104,920/107,048 (98.0%)	2,128/107,048 (2.0%)
359	Region			
360	Hokkaido	22,056/552,337 (4.0%)	21,532/538,222 (4.0%)	524/14,115 (3.7%)
361	Tohoku	47,322/552,337 (8.6%)	44,747/538,222 (8.3%)	2,575/14,115 (18.2%)
362	Kanto	186,808/552,337 (33.8%)	184,580/538,222 (34.3%)	2,228/14,115 (15.8%)
363	Chubu	102,970/552,337 (18.6%)	101,195/538,222 (18.8%)	1,775/14,115 (12.6%)
364	Kinki	88,715/552,337 (16.1%)	85,054/538,222 (15.8%)	3,661/14,115 (25.9%)
365	Chugoku	32,481/552,337 (5.9%)	31,683/538,222 (5.9%)	798/14,115 (5.7%)
366	Shikoku	18,518/552,337 (3.4%)	17,957/538,222 (3.3%)	561/14,115 (4.0%)
367	Kyushu	53,467/552,337 (9.7%)	51,474/538,222 (9.6%)	1,993/14,115 (14.1%)

369

370 Interventions

371	Time from EMS arrival to initial defibrillation (VF/VT) - median [IQR]	2 [1-3] min	2 [1-3] min	2 [1-4] min
372	Use of advanced airways	N/A	220,135/522,001 (42.2%)	N/A
373	Supraglottic airways	N/A	183,098/538,222 (34.0%)	N/A
374	Endotracheal intubation	N/A	39,339/538,222 (7.3%)	N/A
375	Use of intravenous line and adrenaline			
376	Intravenous line establishment	N/A	172,371/538,998 (32.0%)	N/A
377	Administration of adrenaline	N/A	85,432/535,420 (16.0%)	N/A
378	Outcomes			
379	One-month favorable neurological outcome (overall)	13,536/552,334 (2.5%)	13,244/538,219 (2.5%)	292/14,115 (2.1%)
380	Initial rhythm VF/VT	6,877/37,779 (18.2%)	6,726/36,879 (18.2%)	151/900 (16.8%)
381	Initial rhythm PEA/Asystole	3,834/493,804 (0.78%)	3,746/481,107 (0.78%)	88/12,697 (0.69%)
382	One-month survival (overall)	26,829/552,337 (4.9%)	26,257/538,222 (4.9%)	572/14,115 (4.1%)
383	Initial rhythm VF/VT	10,036/37,779 (26.6%)	9,828/36,879 (26.7%)	208/900 (23.1%)
384	Initial rhythm PEA/Asystole	12,643/493,807 (2.6%)	12,360/481,110 (2.6%)	283/12,697 (2.2%)
385	ROSC	44,340/552,337 (8.0%)	43,625/538,222 (8.1%)	715/14,115 (5.1%)

Patient characteristics, interventions, and outcomes are shown. All patient characteristics variables were used to adjust for the outcomes in the multivariable logistic regression. BEMT: basic emergency technician, CPR: cardiopulmonary

resuscitation, ELST: emergency life-saving technician, EMS: emergency medical service, IQR: interquartile range, N/A: not applicable, PEA: pulseless electrical activity, ROSC: return of spontaneous circulation, VF/VT: ventricular

388 fibrillation/ventricular tachycardia

		Crude OR (95% CI)	Adjusted OR (95% CI)
One-mo	onth favorable net	ırological outcome	
Over	call		
	BEMT	1 (ref)	1 (ref)
	ELST	1.19 (1.06-1.34)	1.39 (1.17-1.66)
VF/V	VT		
	BEMT	1 (ref)	1 (ref)
	ELST	1.11 (0.93-1.32)	1.41 (1.13-1.77)
PEA	/Asystole		
	BEMT	1 (ref)	1 (ref)
	ELST	1.12 (0.91-1.39)	1.31 (1.01-1.73)
One-mo	onth survival		
	BEMT	1 (ref)	1 (ref)
	ELST	1.2 (1.12-1.32)	1.37 (1.22-1.54)
ROSC			
	BEMT	1 (ref)	1 (ref)
	ELST	1.65 (1.53-1.78)	1.90 (1.72-2.11)

Variables, including gender, age, initial shockable rhythm, estimated cardiac origin, witnessed
collapse, bystander CPR, dispatcher instruction for CPR, time from EMS call to hospital
arrival, cardiac arrest year, and region, were used to adjust for the outcomes in the
multivariable logistic regression. CI: confidence interval, CPR: cardiopulmonary resuscitation,
BEMT: basic emergency medical technician, ELST: emergency life-saving technician, EMS:
emergency medical service, OR: odds ratio, PEA: pulseless electrical activity, ROSC: return
of spontaneous circulation, VF/VT: ventricular fibrillation/ventricular tachycardia

419 Table 3. Univariable and Multivariable Logistic Regression Comparing the Presence or Absence of Technical Intervention on Favorable

	Crude OR (95% CI)	Adjusted OR (95% CI)
Favorable neurological outcome		
Advanced airways	0.30 (0.29-0.32)	0.34 (0.32-0.36)
Adrenaline	0.50 (0.47-0.53)	0.33 (0.31-0.35)
One-month survival		
Advanced airways	0.60 (0.59-0.62)	0.72 (0.70-0.75)
Adrenaline	1.02(0.99-1.06)	0.84 (0.80-0.87)
ROSC		
Advanced airways	0.97 (0.95-0.99)	1.08 (1.05-1.11)
Adrenaline	3.89 (3.81-3.97)	3.73 (3.64-3.83)

420 Neurological Outcomes, One-Month Survival, and ROSC in the ELST group

Variables, including gender, age, initial shockable rhythm, estimated cardiac origin, witnessed
collapse, bystander CPR, dispatcher instruction for CPR, time from EMS call to hospital
arrival, cardiac arrest year, and region, were used to adjust for the outcomes in the
multivariable logistic regression. CI: confidence interval, CPR: cardiopulmonary resuscitation,
ELST: emergency life-saving technician, EMS: emergency medical service system, OR: odds
ratio, ROSC: return of spontaneous circulation

440 **References**

441	[1]	Kitamura T, Iwami T, Kawamura T, Nitta M, Nagao K, Nonogi H, et al. Nationwide
442		improvements in survival from out-of-hospital cardiac arrest in Japan. Circulation
443		2012;126:2834–43.
444	[2]	Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, Herlitz J, et al. EuReCa
445		ONE—27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of
446		out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation
447		2016;105:188–95.
448	[3]	Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart
449		Disease and Stroke Statistics—2016 Update. Circulation 2016;133:e38-360.
450	[4]	Japanese Circulation Society Resuscitation Science Study Group. Chest-compression-
451		only bystander cardiopulmonary resuscitation in the 30:2 compression-to-ventilation
452		ratio era. Nationwide observational study. Circ J 2013;77:2742–50.
453	[5]	Kitamura T, Kiyohara K, Sakai T, Matsuyama T, Hatakeyama T, Shimamoto T, et al.
454		Public-Access Defibrillation and Out-of-Hospital Cardiac Arrest in Japan. N Engl J Med
455		2016;375:1649–59.
456	[6]	Kajino K, Iwami T, Daya M, Nishiuchi T, Hayashi Y, Kitamura T, et al. Impact of
457		transport to critical care medical centers on outcomes after out-of-hospital cardiac arrest.

458	Resuscitation	2010;81:549-54.

459	[7]	Spaite DW, Stiell IG, Bobrow BJ, de Boer M, Maloney J, Denninghoff K, et al. Effect of
460		transport interval on out-of-hospital cardiac arrest survival in the OPALS study:
461		implications for triaging patients to specialized cardiac arrest centers. Ann Emerg Med
462		2009;54:248–55.
463	[8]	Drennan IR, Verbeek PR. The Role of EMS in Regionalized Systems of Care. CJEM
464		2015;17:468–74.
465	[9]	Takahashi H, Sagisaka R, Natsume Y, Tanaka S, Takyu H, Tanaka H. Does dispatcher-
466		assisted CPR generate the same outcomes as spontaneously delivered bystander CPR in
467		Japan? Am J Emerg Med 2018;36:384–91.
468	[10]	Sun J, Chiang W, Hsieh M, Huang EP, Yang W-S, Chien Y-C, et al. The effect of the
469		number and level of emergency medical technicians on patient outcomes following out of
470		hospital cardiac arrest in Taipei. Resuscitation 2018;122:48-53.
471	[11]	Tuttle J, Hubble M. Paramedic Out-of-hospital Cardiac Arrest Case Volume Is a

- 472 Predictor of Return of Spontaneous Circulation. West J Emerg Med 2018;19:654–9.
- 473 [12] Kajino K, Kitamura T, Iwami T, Daya M, Ong MEH, Nishiyama C, et al. Impact of the
- 474 number of on-scene emergency life-saving technicians and outcomes from out-of-hospital

475 cardiac arrest in Osaka City. Resuscitation 2014;85:59–64.

476	[13]	Eschmann NM, Pirrallo RG, Aufderheide TP, Lerner EB. The association between
477		emergency medical services staffing patterns and out-of-hospital cardiac arrest survival.
478		Prehosp Emerg Care 2010;14:71–7.
479	[14]	Hasegawa K, Hiraide A, Chang Y, Brown DFM. Association of prehospital advanced
480		airway management with neurologic outcome and survival in patients with out-of-hospital
481		cardiac arrest. JAMA 2013;309:257–66.
482	[15]	Hagihara A. Prehospital Epinephrine Use and Survival among Patients with Out-of-
483		Hospital Cardiac Arrest. JAMA - J Am Med Assoc 2013;43:205–6.
484	[16]	Wang HE, Mann NC, Mears G, Jacobson K, Yealy DM. Out-of-hospital airway
485		management in the United States. Resuscitation 2011;82:378-85.
486	[17]	Ambulance Service Planning Office of Fire and Disaster Management Agency of Japan.
487		Statistics of fire department and fire fighters, 2017 (in Japanese). Available at:
488		https://www.fdma.go.jp/publication/hakusho/h29/data/2180.html. Accessed November
489		1, 2019.
490	[18]	Nagao K, Nonogi H, Yonemoto N, Gaieski DF, Ito N, Takayama M, et al. Duration of
491		prehospital resuscitation efforts after out-of-hospital cardiac arrest. Circulation
492		2016;133:1386–96.
493	[19]	Cummins RO, Chamberlain DA, Abramson NS, Allen M, Baskett PJ, Becker L, et al.

494		Recommended guidelines for uniform reporting of data from out-of-hospital cardiac
495		arrest: the Utstein Style. A statement for health professionals from a task force of the
496		American Heart Association, the European Resuscitation Council, the Heart and Stroke.
497		Circulation 1991;84:960–75.
498	[20]	Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al. Cardiac arrest and
499		cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein
500		templates for resuscitation registries. A statement for healthcare professionals from a task
501		force of the international liaison committee on resusci. Resuscitation 2004;63:233-49.
502	[21]	Martin AC, O'Meara P. Perspectives from the frontline of two North American
503		community paramedicine programs: an observational, ethnographic study. Rural Remote
504		Health 2019;19:4888.
505	[22]	O'Meara P, Duthie S. Paramedicine in Australia and New Zealand: A comparative
506		overview. Aust J Rural Health 2018;26:363–8.
507	[23]	Dyson K, Bray JE, Smith K, Bernard S, Straney L, Finn J. Paramedic Exposure to Out-of-
508		Hospital Cardiac Arrest Resuscitation Is Associated With Patient Survival. Circ
509		Cardiovasc Qual Outcomes 2016;9:154–60.
510	[24]	Kajino K, Iwami T, Kitamura T, Daya M, Ong MEH, Nishiuchi T, et al. Comparison of
511		supraglottic airway versus endotracheal intubation for the pre-hospital treatment of out-

512		of-hospital cardiac arrest. Crit Care 2011;15:R236.
513	[25]	Hagiwara S, Oshima K, Aoki M, Miyazaki D, Sakurai A. American Journal of Emergency
514		Medicine Does the number of emergency medical technicians affect the neurological
515		outcome of patients with out-of-hospital cardiac arrest? Am J Emerg Med 2017;35:391–
516		6.
517	[26]	Jabre P, Penaloza A, Pinero D, Duchateau F-X, Borron SW, Javaudin F, et al. Effect of
518		Bag-Mask Ventilation vs Endotracheal Intubation During Cardiopulmonary Resuscitation
519		on Neurological Outcome After Out-of-Hospital Cardiorespiratory Arrest: A Randomized
520		Clinical Trial. JAMA 2018;319:779–87.
521	[27]	Izawa J, Komukai S, Gibo K, Okubo M, Kiyohara K, Nishiyama C, et al. Pre-hospital
522		advanced airway management for adults with out-of-hospital cardiac arrest: nationwide
523		cohort study. BMJ 2019;364:1430.
524	[28]	Izawa J, Iwami T, Gibo K, Okubo M, Kajino K, Kiyohara K, et al. Timing of advanced
525		airway management by emergency medical services personnel following out-of-hospital
526		cardiac arrest: A population-based cohort study. Resuscitation 2018;128:16-23.
527	[29]	Hansen M, Schmicker RH, Newgard CD, Grunau B, Scheuermeyer F, Cheskes S, et al.
528		Time to Epinephrine Administration and Survival From Nonshockable Out-of-Hospital
529		Cardiac Arrest Among Children and Adults. Circulation 2018;137:2032–40.

530	[30]	Perkins G, Ji C, Deakin C, Quinn T, et al. A Randomized Trial of Epinephrine in Out-of-
531		Hospital Cardiac Arrest. N Engl J Med 2018:1–11.
532	[31]	Tomio J, Nakahara S, Takahashi H, Ichikawa M, Nishida M, Morimura N, et al.
533		Effectiveness of Prehospital Epinephrine Administration in Improving Long-term
534		Outcomes of Witnessed Out-of-hospital Cardiac Arrest Patients with Initial Non-
535		shockable Rhythms. Prehosp Emerg Care 2017;21:432–41.
536	[32]	Nakahara S, Tomio J, Takahashi H, Ichikawa M, Nishida M, Morimura N, et al.
537		Evaluation of pre-hospital administration of adrenaline (epinephrine) by emergency
538		medical services for patients with out of hospital cardiac arrest in Japan: Controlled
539		propensity matched retrospective cohort study. BMJ 2013;347:1–10.
540	[33]	Tanaka H, Takyu H, Sagisaka R, Ueta H, Shirakawa T, Kinoshi T, et al. Favorable
541		neurological outcomes by early epinephrine administration within 19 minutes after EMS
542		call for out-of-hospital cardiac arrest patients. Am J Emerg Med 2016;34:2284–90.
543	[34]	Koscik C, Pinawin A, McGovern H, Allen D, Media DE, Ferguson T, et al. Rapid
544		epinephrine administration improves early outcomes in out-of-hospital cardiac arrest.
545		Resuscitation 2013;84:915–20.
546	[35]	Fisk CA, Olsufka M, Yin L, McCoy AM, Latimer AJ, Maynard C, et al. Lower-dose
547		epinephrine administration and out-of-hospital cardiac arrest outcomes. Resuscitation

548 2018;124:43-8.

549	[36]	Callaway CW, Donnino MW. Testing Epinephrine for Out-of-Hospital Cardiac Arrest. N
550		Engl J Med 2018:1–2.

- 551 [37] Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, et al. The influences of
- adrenaline dosing frequency and dosage on outcomes of adult in-hospital cardiac arrest:
- 553 A retrospective cohort study. Resuscitation 2016;103:125–30.
- 554 [38] Goto Y, Maeda T, Goto YN. Effects of prehospital epinephrine during out-of-hospital
- 555 cardiac arrest with initial non-shockable rhythm: An observational cohort study. Crit Care
- 556 2013;17:1–11.
- 557 [39] Cheskes S, Schmicker RH, Christenson J, Salcido DD, Rea T, Powell J, et al. Perishock
- 558 pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest.
- 559 Circulation 2011;124:58–66.