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ABSTRACT 

Most classical non-polarizable ion potential models underestimate the solubility values of NaCl 

and KCl in water significantly. We determine Lennard-Jones (LJ) parameters of Na+, K+, and Cl– 

that reproduce the solubility as well as the hydration free energy in dilute aqueous solutions for 

three water potential models, SPC/E, TIP3P, and TIP4P/2005. The ion-oxygen distance in the 

solution and the cation-anion distance in salt are also considered in the parametrization. In addition 

to the target properties, the hydration enthalpy, hydration entropy, self-diffusion coefficient, 

coordination number, lattice energy, enthalpy of solution, density, viscosity, and number of contact 

ion pairs are calculated for comparison with 17 frequently used or recently developed ion potential 

models. The overall performance of each ion model is represented by a global score using a scheme 

that was originally developed for comparison of water potential models. The global score is better 

for our models than for the other 17 models not only because of the quite good prediction for the 

solubility but also because of the relatively small deviation from the experimental value for many 

of the other properties. 
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1. INTRODUCTION 

    Ion hydration is relevant to various processes such as chemical reactions, biomolecular functions, 

and atmospheric phenomena.1-14 Molecular dynamics (MD) simulations have provided a wealth of 

information on thermodynamic, structural, and dynamic properties of ion hydration. In many cases, 

the ion-water interaction is described by the classical 12-6-1 type potential function:   

𝑈(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 {(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

} +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
,       (1) 

where 𝜀𝑖𝑗 and 𝜎𝑖𝑗 are the Lennard-Jones (LJ) energy and size parameters, 𝑞𝑖 is the partial charge 

on the i-th interaction site, 𝜀0 is the permittivity of vacuum, and 𝑟𝑖𝑗 is the distance between the i-

th and j-th interaction sites. The computational cost of the 12-6-1 type potential is low because of 

its simple form. Therefore, long and/or large-scale all-atom MD simulations are usually performed 

using the 12-6-1 potential.15-20 

    Solubility of salts in water is an important basic property in solution chemistry. There are two 

types of techniques to obtain the solubility using MD simulations. One is the chemical potential 

route in which the chemical potential of salt in the solid phase and that in the aqueous phase are 

calculated separately using thermodynamic integration or similar methods.21-22 The other is the 

direct coexistence method in which the solubility is determined from MD simulations of an 

aqueous solution in contact with a slab of crystalline salt.23 Table 1 summarizes the values of 

solubility of NaCl and KCl in water calculated using the two methods with 12-6-1 type potential 

models. The values reported in refs. 24, 25, and 26 are much higher than those of the other studies 

probably due to the artifact arising from the small system size mentioned by Espinosa et al.27 When 

the results of these three studies are ignored, only the SPC/E-RDVH (5.7 mol kg–1) and 

TIP4P/2005-Madrid (5.7 mol kg–1) reproduce the experimental solubility of NaCl (6.1 mol kg–1), 
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and there is no model that reproduces the solubility of KCl (4.8 mol kg–1) in the table. Most of the 

models underestimate the solubility to a large extent, and use of such a potential model can cause 

serious problems in MD simulations. For example, it was reported that ions aggregate 

spontaneously in the vicinity of biomolecules even when the salt concentration is much lower than 

the experimental solubility value.28-32  

 

Table 1. Solubility of NaCl and KCl in water calculated in simulation studies. The experimental 

solubility value is 6.1 mol kg–1 for NaCl and 4.8 mol kg–1 for KCl.33  

Salt Water model Ion model 

Solubility / mol kg–1 

Chemical potential 

route 
Direct coexistence method 

NaCl 

SPC/E34 

JC35 3.6,36 3.7,21 3.722 7.3,24 5.9,25 6.2,26 3.7,27  3.637 

HMN138 0.036  

HMN238 1.836  

HMN338 1.336  

RH139 0.036  

RH239 0.036  

RH339 0.136  

Dang40 0.236  

RDVH41 5.721  

KBFF42 0.921  

SD43 0.6,21 0.636  

CHARMM44  2.626 

DVH45 6.936  

TIP3P46 JC  1.524 

TIP4P/200547 Madrid48 5.748 5.748  

KCl 
SPC/E 

JC 2.721 5.124  

RDVH 0.121  

KBFF 0.621  

TIP3P JC  1.024 

 

    The solubility is determined by the balance between the stability of ion in the solution and that 

in crystalline salt. Joung and Cheatham determined LJ parameters for monovalent ions using the 

hydration free energy and the lattice energy of salt as target properties.35 Agreement with the 
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experimental solubility is better for the models of Joung and Cheatham than for most other models. 

However, their models still underestimate the solubility. Recently, Benavides et al. proposed a 

model of NaCl in TIP4P/2005 water, called the Madrid model.48 The solubility of this model is 

very close to the experimental value. This model also reproduces several other properties such as 

the salt concentration dependence of the density of the solution. A characteristic feature of this 

model is that the charge on each ion particle is scaled by 0.85. When there are ionic species other 

than Na+ and Cl–, their charges must be scaled consistently to satisfy charge neutrality.49  

    In this paper, we propose 12-6-1 type potential models of Na+, K+, and Cl– in aqueous 

solutions. A set of ion-water parameters determined for a specific water model is not necessarily 

good for different water models.35, 50 We select three water models, SPC/E, TIP3P, and 

TIP4P/2005, and determine a set of ion LJ parameters for each of the water models. The SPC/E 

model is a three-site water model.34 This model is selected because it has been used in MD 

simulations of aqueous electrolyte solutions as well as pure water very frequently.5-6, 21-22, 24-27, 36-

37, 51-52 The TIP3P model is also a three-site water model.46 This model has been used in most MD 

simulations of biomolecules because it is the default water model in the AMBER and CHARMM 

force field sets.17, 44 The TIP4P/2005 model is a four-site water model.47  Unlike the three-site 

models, this model reproduces not only liquid properties but also properties of ice polymorphs 

unless the pressure is extremely high.47, 53-55  

We employ the Lorentz-Berthelot combining rules, 𝜀IW = √𝜀I𝜀W  and 𝜎IW = (𝜎I + 𝜎W)/2 , 

where 𝜀I and 𝜎I are the LJ parameters of the ion particle and 𝜀W and 𝜎W are the LJ parameters of 

the oxygen atom of water. The charge on the ion particle is not scaled. The solubility of salt, 

hydration free energy of ion, ion-oxygen distance in the solution phase, and cation-anion distance 

in crystalline salt are considered as the target properties of the parameterization. In addition to 
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these target properties, the hydration enthalpy, hydration entropy, coordination number of water 

around the solute, number of contact ion pairs, self-diffusion coefficients of ion and water, lattice 

energy of salt, enthalpy of solution, density, and viscosity are evaluated for comparison with the 

12-6-1 type ion potential models listed in Table 2, which are selected because they were recently 

developed or have been frequently used in MD studies. 

 

Table 2. Potential models used in this study. The LJ parameters are listed in Table S1 of the 

Supporting Information.  

Water  Ion  Combining rule Source 

SPC/E34 This work Lorentz-Berthelot  

JC Lorentz-Berthelot Joung and Cheatham35 

LSM Lorentz-Berthelot Li, Song, and Merz50 

HMN1 Lorentz-Berthelot Horinek et al.38 

HMN2 Lorentz-Berthelot Horinek et al.38 

HMN3 Lorentz-Berthelot Horinek et al.38 

RH1 Geometric Reif and Hünenberger39 

RH2 Geometric Reif and Hünenberger39 

RH3 Geometric Reif and Hünenberger39 

Dang Lorentz-Berthelot Dang40 

RDVH Lorentz-Berthelot Reiser et al.41 

KBFF Geometrica) Gee et al.42 

TIP3P46 This work Lorentz-Berthelot  

JC Lorentz-Berthelot Joung and Cheatham35 

LSM Lorentz-Berthelot Li, Song, and Merz50 

CHARMM Lorentz-Berthelot Roux44 

AMBER Lorentz-Berthelot Case et al.17  

OPLS Geometric Chandrasekhar et al.56 

TIP4P/200547 This work Lorentz-Berthelot  

Madridb) Given to each pair Benavides et al.48 
a)The LJ  parameter for the ion-cation interaction is scaled by 0.75 for Na+ and 0.8 for K+. 
b)The LJ parameters for K+ are not given in this model. The charges of Na+ and Cl– are scaled by 

0.85. 
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2. Methods 

2.1 MD simulations 

    MD simulations are performed using the GROMACS 4.6 package with a time step of 2 fs.15-16 

The temperature and pressure are maintained at 298 K and 1 bar using a Nosé-Hoover thermostat57-

58 and a Berendsen barostat.59-60 The particle mesh Ewald method is used for long-range Coulomb 

interactions with a real-space cutoff length of 0.9 nm.61-62 LJ interactions are truncated at 0.9 nm 

and the standard long-range corrections are included in the potential energy and pressure. 

 

2.2. Solubility 

    The solubility of salt in water is calculated using the direct coexistence method.23 Figure 1 shows 

the initial configuration of a direct coexistence simulation. The system consists of a slab of salt 

and an aqueous solution. The dimensions of the simulation box are 4.3  4.1  8.6 nm3. This system 

is large enough to avoid the artifact caused by the small system size reported by Espinosa et al.27 

The number of water molecules is fixed to 1864. The number of ion particles, which is different 

for different initial concentrations of the aqueous solution, is approximately 1900 for each ion.   
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Figure 1. Initial configuration of a direct coexistence simulation. Red and black spheres show 

cation and anion particles. The hydrogen bond network of water is represented by blue lines. The 

concentration of salt in the solution is determined from the numbers of water molecules and ion 

particles in the region between the dashed green lines.  

 

    The concentration of salt in the solution changes as time evolves due to dissolution or growth 

of the salt slab until the system reaches equilibrium. Both the dissolution and growth rates are 

minimized when the most stable crystallographic surface, which is {100} for NaCl and KCl, is 

exposed to the solution.63 The {111} surface is quite unstable because all particles in a layer have 

the same charge. This unstable surface is exposed to the solution to facilitate the dissolution and 

growth of the salt slab in this study. Note that the solubility is independent of the exposed surface.27   

    The concentration at time t, m(t), is calculated from the numbers of salt and water molecules in 

the bulk region of the solution which is indicated by the green dashed lines in Figure 1. The width 

of the bulk solution region is 1.2 nm. The number of salt is defined as the average of the numbers 

of cation particles and that of anion particles. 

    For each pair of water and ion potential models, three MD simulations are performed for 500 ns 

at different initial concentrations. When the initial configuration is close to the solubility of the 

potential model, the concentration of salt in the bulk solution region does not change so much 

during the simulation. We select one such simulation out of three. As an example, we show the 

time evolution of the concentration of NaCl calculated using the SPC/E-JC model in Figure 2. It 

is evident that the initial concentrations of 1 mol kg–1 (red) and 6 mol kg–1 (blue) are quite different 

from the solubility value. Therefore, in this case, the simulation started from 3.5 mol kg–1 (green) 

is selected. The selected simulation is continued until the concentration seems to oscillate around 
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a certain value at least for 500 ns, and the solubility is defined as the concentration averaged over 

the last 500 ns. Table 3 shows the solubility values obtained from this scheme. Our results are very 

close to the values obtained via the chemical potential route shown in Table 1.  

 

Figure 2. Time evolution of the concentration of NaCl in the bulk solution region for three 

different initial concentrations, 1 (red), 3.5 (green), and 6 mol kg–1 (blue). The SPC/E water model 

and the JC ion model are employed.  
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Table 3. Solubility of NaCl and KCl in water at 298 K calculated in this study. 

Water model Ion model 
Solubility / mol kg–1 

NaCl KCl 

SPC/E This work 6.2  0.29 4.7  0.31 

JC 3.6  0.27 2.8  0.27 

LSM 0.2  0.08 0.1  0.05 

HMN1 0.0  0.04 0.0  0.01 

HMN2 1.5  0.20 0.6  0.13 

HMN3 0.9  0.15 0.3  0.08 

RH1 0.1  0.05 0.4  0.11 

RH2 0.0  0.04 4.7  0.33 

RH3 0.2  0.08 13.3  0.49 

Dang 0.3  0.10 0.3  0.10 

RDVH 5.9  0.29 0.5  0.10 

KBFF 0.9  0.17 0.5  0.13 

TIP3P This work 6.1  0.30 4.7  0.33 

JC 0.2  0.08 0.4  0.11 

LSM 0.1  0.05 0.1  0.06 

CHARMM 0.1  0.05 0.1  0.07 

AMBER 0.0  0.02 0.0  0.02 

OPLS 0.2  0.09 0.1  0.05 

TIP4P/2005 This work 6.2  0.28 4.7  0.30 

Madrid 6.0  0.38  

Experiment 6.1 4.8 

 

2.3. Properties of aqueous solutions 

    The hydration free energy of ion in the limit of a dilute aqueous solution, Ghyd, can be divided 

into two parts,  

𝐺hyd = 𝐺LJ + 𝐺c,          (2) 

where GLJ is the hydration free energy of the solute without partial charge and Gc is the free energy 

change for charging the neutral solute. We use the soft-core potential technique to avoid numerical 

instability in the calculation of GLJ.
64 The potential energy of the system is expressed as 

𝑈(λLJ) = 𝑈WW + 𝜆LJ ∑ 4𝜀IW {(
𝜎IW

𝑟I𝑗
′ (𝜆LJ)

)

12

− (
𝜎IW

𝑟I𝑗
′ (𝜆LJ)

)

6

}

𝑁W

𝑗=1

,         (3) 
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where UWW is the total water-water interaction energy, NW is the number of water molecules, and 

𝑟I𝑗
′ (𝜆LJ) is the -dependent distance between the solute ion and the j-th water molecule. The -

dependent distance is given by  

𝑟I𝑗
′ (𝜆LJ) =  {𝛼𝜎I𝑗

48(1 − 𝜆LJ) + 𝑟I𝑗
48}

1/48
,        (4) 

where  is the soft-core parameter which is set to 0.002. The LJ part of the free energy is calculated 

from  

𝐺LJ = ∑ (𝐺(λLJ
(𝑖+1)

) − 𝐺(λLJ
(𝑖)

)) ,

𝑁𝜆

𝑖=0

         (5) 

with  

λLJ
(𝑖)

=
𝑖

𝑁𝜆 + 1
,          (6) 

where 𝑁𝜆 is the number of intermediate states, which we set 𝑁𝜆 = 19 in this study. The free energy 

difference between adjacent states, 𝐺(λLJ
(𝑖+1)

) − 𝐺(λLJ
(𝑖)

), is calculated using the acceptance ratio 

method: 

𝐺(λLJ
(𝑖+1)

) − 𝐺(λLJ
(𝑖)

) =
𝐶

𝛽
 ,         (7) 

with 

〈(1 + exp (𝛽𝑈𝑖+1 − 𝛽𝑈𝑖 − 𝐶))−1〉𝑖 = 〈(1 + exp (𝛽𝑈𝑖 − 𝛽𝑈𝑖+1 + 𝐶))−1〉𝑖+1,      (8) 

where  is the reciprocal temperature and 〈  〉𝑖 represents the ensemble average obtained with the 

potential energy 𝑈(λLJ
(𝑖)

).65  We perform an equilibration run of 0.1 ns followed by a production 

run of 1 ns for each λLJ
(𝑖)

.  

    The free energy change for charging the solute particle, Gc, is calculated in a similar way but 

with a different -dependent potential:  
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𝑈(λc) = 𝑈WW + 𝑈IW
LJ + 𝜆𝐶 ∑ ∑

𝑞I𝑞𝑘
(𝑗)

4𝜋𝜀0𝑟I𝑘

𝑁s

𝑘=1

𝑁W

𝑗=1

 ,         (9) 

where 𝑈IW
LJ

 is the LJ interaction energy between the solute particle and water, Ns is the number of 

the charge sites in a water molecule, 𝑞𝑘
(𝑗)

 is the partial charge on the k-th charge site in the j-th 

water molecule, and qI is the charge on the solute ion which is either e or e in this study. The 

number of intermediate states for the charging is also 19.  

    The free energy calculations are performed with NW = 511. We check the system size effect on 

Ghyd for the SPC/E-JC model. The calculated Ghyd for Na+ with NW = 511, 2047, and 8191 are 371, 

371, and 370 kJ mol1, respectively.  

    We calculate Ghyd of Na+ in an aqueous solution consisting of 510 water molecules and one Cl 

ion to examine the effect of the counter ion. The obtained Ghyd value of 370 kJ mol1 is almost 

the same as that calculated without the counter ion, 371 kJ mol1. The hydration free energy is 

not affected by net electric neutrality.35 

    The simulation time of 1 ns for each state is long enough. We perform five independent sets of 

free energy calculations and obtain Ghyd = 371.4, 371.5, 371.1, 371.2, and 371.4 kJ mol1. 

The standard deviation is only 0.14 kJ mol1.  

    The enthalpy of the system, the self-diffusion coefficient of ion, and the ion-oxygen radial 

distribution function (RDF) are also calculated with the 511-water system. The simulation time is 

100 ns. Table S2 shows that this simulation time is long enough to calculate those properties. An 

MD simulation is performed without the solute to calculate the enthalpy of pure water, H0. The 

hydration enthalpy, Hhyd, is given by 

𝐻hyd = 𝐻s − 𝐻0,          (10) 
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where Hs is the enthalpy of the system with the solute particle. The hydration entropy is obtained 

from the hydration enthalpy and free energy:  

𝑆hyd =
𝐻hyd − 𝐺hyd

𝑇
.          (11) 

     The self-diffusion coefficient depends on the system size. Figure 3 shows the diffusion 

coefficients of Na+ and Cl at several salt concentrations calculated for two system sizes. The sum 

of the number of water molecules and the number of ion particles is 512 and 5120 for the small 

(open squares) and large systems (open triangles), respectively. The diffusion coefficient is larger 

for the larger system. Yeh and Hummer showed that the size dependence of the diffusion 

coefficient is expressed by 

𝐷(𝐿) = 𝐷∞ −
2.837𝑘𝐵𝑇

6𝜋𝜂𝐿
,      (12) 

where 𝐷∞ is the diffusion coefficient in an infinite system, L is the dimension of the simulation 

cell (L = 2.48 nm for the small system and 5.35 nm for the large system), and  is the shear 

viscosity of the solvent.66 We calculate the viscosity of pure water using the Green-Kubo formula: 

𝜂 =
𝑉

𝑘𝐵𝑇
∫ 〈𝑃𝛼𝛽(𝑡)𝑃𝛼𝛽(0)〉𝑑𝑡

∞

0

,      (13) 

where V is the volume of the system and P is the off-diagonal components of the pressure 

tensor.67 The filled symbols in Figure 3 show the values of 𝐷∞ estimated from the viscosity and 

D(L). The diffusion coefficients of the large and small systems become almost the same when the 

finite-size correction is included. The corrected value can be compared with the experimental value. 

The model used to plot Figure 3, SPC/E-JC, reproduces the diffusion coefficient of Na+ well while 

it underestimates the diffusion coefficient of Cl.  
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Figure 3. Diffusion coefficients of Na+ and Cl calculated with (filled) and without (open) the 

finite-size correction of Yeh and Hummer.66 The SPC/E-JC model is employed. The black and 

green symbols are those of the small system (the sum of the number of water molecules and the 

number of ion particles is 512) and the red and blue are those of the large system (the sum is 5120). 

The value at 0 mol kg1 is calculated with the system consisting of one ion particle and 511 or 

5119 water molecules. The red and blue arrows indicate the experimental diffusion coefficients of 

Na+ and Cl obtained from the ionic conductivities at infinite dilution.33, 68-69     

 

2.4. Properties of NaCl and KCl crystals  

    The lattice constant, potential energy, and enthalpy of salt are calculated with a cubic simulation 

cell containing 500 cation and 500 anion particles. An equilibration run of 0.1 ns is followed by a 

production run of 0.3 ns. To check the statistical errors, we perform five independent MD 

simulations of NaCl with the SPC/E-JC ion model. The cation-anion distance obtained from the 

lattice constant is 0.2890 nm and the potential energy is 785.5 kJ mol1 for all the five simulations, 

showing that the simulation time is long enough. We also calculate the lattice energy of salt defined 

as the potential energy of the salt in which all ion particles are fixed at their equilibrium lattice 

positions. The density of the salt is set to be the same as that obtained from the MD simulation at 

298 K and 1 bar.  
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2.5. Parameterization 

    The hydration free energy, the ion-oxygen distance defined as the peak position of the RDF of 

the dilute aqueous solution, the cation-anion distance in salt, and the solubility of salt in water are 

considered in the parameterization.  

    First, we calculate the hydration free energy, Ghyd, of an ion particle of I = 0.0001 kJ mol–1 at 

several I values. The obtained Ghyd values are shown by red squares in Figure 4a. The Ghyd value 

increases with increasing I because of the increase in the cavity formation energy and the 

weakening of the ion-water coulomb interactions. The horizontal dotted line indicates the 

experimental Ghyd value for Na+ reported by Schmid, Miah, and Sapunov of –371 kJ mol–1.70 The 

I value at the intersection of the horizontal line and the cubic spline curve (red solid) is 0.4368 

nm. Then, I is multiplied by 2.5 and the I value at the intersection, 0.4092 nm, is determined in 

the same way (green). This process is repeated until I exceeds 5 kJ mol–1. In Figure 4b, the I 

value at the intersection is plotted as a function of I. The I value decreases with increasing I. A 

similar result was reported by Joung and Cheatham.35 As shown in Figure S1, the effect of an 

increase in I on the LJ potential is similar to that of an increase in I. Therefore, an increase in I 

and a simultaneous decrease in I can yield a similar LJ potential that results in the same hydration 

free energy. The relation between I and I is approximated by the following polynomial function:  

𝜎I = ∑ 𝑎𝑖(log10 𝜀I)
𝑖

4

𝑖=0

.       (14)  

The coefficients ai for all the ion species and water models are listed in Table S3. The best fit curve 

is shown in Figure 4b. The experimental Ghyd value is reproduced by a pair of LJ 𝜀I  and 𝜎I 

parameters corresponding to any point on this curve.  
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Figure 4. (a) Hydration free energies of a cation particle of 𝜀𝐼 = 0.0001 kJ mol–1 (red squares) and 

those of a cation particle of 𝜀I = 0.00025 kJ mol–1 (green triangles) in SPC/E water. The solid 

curves are obtained from the cubic spline interpolation method. The horizontal dotted line indicates 

the experimental Ghyd value of Na+, –371 kJ mol–1. (b) 𝜎I value that reproduces the experimental 

Ghyd of Na+ plotted against 𝜀I. The solid curve is the best fit to Eq. 14. 

 

    The solubility of salt in water is determined by the balance between the stability of the ions in 

water and that in salt. In this study, the LJ parameters of the ions are restricted to satisfy Eq. 14, 

meaning that the stability in water is fixed and thus the solubility must be tuned by changing the 

stability in salt. While the SPC/E-JC model reproduces well the experimental Ghyd, the solubility 

of this model (3.6 mol kg–1 for NaCl and 2.8 mol kg–1 for KCl) is lower than the corresponding 

experimental value (6.1 mol kg–1 for NaCl and 4.8 mol kg–1 for KCl) as shown in Table 3. The 

potential energies of crystalline NaCl and KCl are 𝐸salt
NaCl

 = 785 kJ mol1 and 𝐸salt
KCl = 713 kJ mol1 

for the SPC/E-JC model. We attempt ion LJ parameters that reproduce the experimental Ghyd value 

but yield a potential energy of salt somewhat higher than the SPC/E-JC model because the 
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solubility of such parameters is expected to be higher than that of the SPC/E-JC model. As a first 

attempt, we calculate the solubility with (Na, Na) = (0.2094 nm, 2.375 kJ mol1), (K, K) = 

(0.2756 nm, 3.307 kJ mol1), and (Cl, Cl) = (0.4965 nm, 0.03433 kJ mol1).  The potential energies 

of NaCl and KCl for this parameter set are 𝐸salt
NaCl = 777.6 kJ mol1 and 𝐸salt

KCl  = 705.2 kJ mol1. 

We find that it is impossible to reproduce the experimental ion-oxygen distance and the cation-

anion distance simultaneously when Esalt is close to those values. Therefore, the LJ parameters are 

determined so that the squared deviation from the experimental value for the ion-oxygen distance 

becomes almost the same as that for the cation-anion distance. Figure 5a shows the time evolution 

of the salt concentration in the aqueous solutions for the trial LJ parameter set. The initial 

concentration is set to be the same as the experimental solubility value in this direct coexistence 

simulation. As expected, the solubility of this parameter set is higher than that of the SPC/E-JC 

model, but the value is too high compared with the experimental value, especially for KCl. 

Therefore, we attempt a different set of LJ parameters that yields somewhat lower potential 

energies, 𝐸salt
NaCl = 781.4 kJ mol1 and 𝐸salt

KCl = 709.1 kJ mol1. The parameters are (Na, Na) = 

(0.2144 nm, 1.596 kJ mol1), (K, K) = (0.2784 nm, 2.375 kJ mol1), and (Cl, Cl) = (0.5029 nm, 

0.02742 kJ mol1). As shown in Figure 5b, this parameter set reproduces the solubility of KCl but 

underestimates the solubility of NaCl, suggesting that 𝐸salt
NaCl  should be increased leaving 

𝐸salt
KCl almost unchanged. The third trial parameter set is (Na, Na) = (0.2117 nm, 1.973 kJ mol1), 

(K, K) = (0.2791 nm, 2.223 kJ mol1), and (Cl, Cl) = (0.5029 nm, 0.02742 kJ mol1). The 

potential energies of this set are 𝐸salt
NaCl = 778.9 kJ mol1 and 𝐸salt

KCl = 709.9 kJ mol1. Figure 5c 

shows that this parameter set reproduces the solubility very well for both salts. The parameter sets 

for the TIP3P and TIP4P/2005 water models are determined in the same manner. The final 

parameter sets are listed in Table 4.  
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Figure 5. Time evolution of the concentration of NaCl (gray) and KCl (red) for the (a) first, (b) 

second, and (c) third trial parameter sets for SPC/E water. The horizontal dashed lines indicate the 

experimental solubility values.  

 

Table 4. Final LJ parameter sets. 

 
I / nm I / kJ mol–1 

SPC/E 

Na+ 0.2117 1.973 

K+ 0.2791 2.223 

Cl– 0.5029 0.02742 

TIP3P 

Na+ 0.2245 1.275 

K+ 0.2906 1.847 

Cl– 0.6522 0.0002458 

TIP4P/2005 

Na+ 0.2032 1.871 

K+ 0.2723 1.973 

Cl– 0.5244 0.01750 

 

    In standard classical MD simulations, including this study, neither nuclear quantum effects nor 

multi-body interactions arising from polarization and charge transfer are not explicitly included. 

These effects are included effectively in the ion LJ parameters to reproduce the experimental 
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properties. In such a case, the LJ energy parameter, I, cannot be considered as a parameter that 

solely represents the strength of the van der Waals (vdW) interactions. Therefore, I for Cl– can be 

smaller than those for the cations as a result of parameterization. As shown in Table S1, this feature 

is not unique to our parameter sets.  

 

3. RESULTS AND DISCUSSIONS 

    We compare the ion models listed in Table 2. Experimentally, not the hydration free energy of 

each ion, Ghyd, but that of the cation-anion pair, Gpair = Gcation + Ganion, is measured. Experimental 

Ghyd values depend strongly on assumptions made to determine them from a set of Gpair values. 

For example, Ghyd of Cl determined by Schmid et al. is lower than that of Marcus by 33 kJ mol1.70-

71 Ghyd of an ion potential model can be different from that of another model when the two models 

are parameterized on the basis of different experimental Ghyd values. To avoid this problem, we 

compare the ion models using Gpair as shown in Figure 6 (the calculated Ghyd values are listed in 

Table S4). A large deviation from the experimental value is observed for relatively old ion models 

such as SPC/E-Dang because they were parameterized without free energy calculations that had 

been computationally expensive. The Gpair value of the TIP4P/2005-Madrid model is much higher 

than the experimental value because the charge on the ion is scaled by 0.85. 
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Figure 6. Hydration free energies of NaCl (black circles) and KCl (red squares). The horizontal 

dotted lines indicate the experimental values.70 The corresponding numerical data are given in 

S5. It is possible to estimate the Henry’s law standard state chemical potential of salt, μ†, from 

Gpair and the dielectric permittivity of water.72 The calculated μ† values are listed in table S6 

together with the experimental values.73 The dielectric permittivity of water is taken from ref. 74. 

The deviation from the experimental μ† value is small for models that reproduce Gpair. 

 

    Figure 7a shows the hydration enthalpies of NaCl and KCl. This figure is quite similar to Figure 

6. Figure 7b shows the hydration entropies. This property seems to depend rather on the water 

model than on the ion parameters: the entropies calculated with SPC/E and TIP4P/2005 tend to be 

higher than those calculated with TIP3P. The negative entropy is mainly because of the water 

molecules in the first hydration shell that are tightly bound to the ion due to the strong ion-water 

Coulomb attractions. However, the tight first hydration shell can be disturbed by water molecules 

in outer hydration shells. This disturbance, which results in increase in the entropy, would be 

significant when the water-water attractive interactions are strong. The vaporization enthalpy, 

which reflects the strength of the water-water attraction, is 50.2, 49.3, and 42.1 kJ mol1 for 
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TIP4P/2005, SPC/E, and TIP3P, respectively.74 Therefore, the hydration entropy is higher for 

TIP4P/2005 and SPC/E than for TIP3P. 

 

Figure 7. (a) Hydration enthalpy and (b) entropy for NaCl (black circles) and KCl (red squares). 

The horizontal dotted lines indicate the experimental values.70 The corresponding numerical data 

are given in Table S5. 

 

    The self-diffusion coefficients of Na+, K+, and Cl– at infinite dilution are shown in Figure 8. 

This property also depends more on the water model than on the ion model. An ion particle moves 

in liquid water as a cluster consisting of the solute particle and tightly bound surrounding solvent 

molecules.75-76 The interactions between the water molecules in the first hydration shell and those 
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in outer hydration shells are more important than the ion-water interactions for the diffusion 

process of this cluster. The diffusion coefficient of ion is very large in TIP3P water because of its 

weak water-water interactions. The SPC/E model reproduces well the self-diffusion coefficient of 

water molecules in pure water.74 The diffusion coefficient of ion in SPC/E water is also close to 

the experimental value. 

 

Figure 8. Self-diffusion coefficients of Na+ (black circles), K+ (red squares), and Cl (green 

triangles) at infinite dilution including the finite-size correction of Yeh and Hummer.66 The 

viscosities of pure water used to estimate the corrections are 0.738, 0.329, and 0.884 mPa s for the 

SPC/E, TIP3P, and TIP4P/2005 models, respectively. The horizontal dotted lines indicate the 

experimental values.33, 68-69 The corresponding numerical data are given in Table S7. The diffusion 

coefficients at 3 mol kg1 are also shown in the table. 

 

    Figure 9a presents the ion-oxygen distance in the solution at infinite dilution. The horizontal 

dotted lines indicate the average of experimental values reported in a review paper of Ohtaki and 

Radnai.3 As mentioned above, it is impossible to reproduce simultaneously the solubility, 

hydration free energy, ion-oxygen distance, and cation-anion distance. Therefore, we allow for 

deviations from the experimental values for the ion-oxygen distance and the cation-anion distance 
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to the same extent. The ion-oxygen distance predicted by our model is shorter than the 

experimental value for all the ion species and the water models. However, the deviation is 

satisfactorily small. 

 

Figure 9. (a) Ion-oxygen distance and (b) coordination number for Na+ (black circles), K+ (red 

squares), and Cl (green triangles) in water. The horizontal dotted lines indicate the average of 

experimental values reported in a review paper of Ohtaki and Radnai.3 The solid lines in panel 

(b) are the averages of QM MD simulations.77-79 The corresponding numerical data are given in 

Table S8.  
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    The coordination number is defined as the number of solvent molecules in the first solvation 

shell of the solute. Experimental coordination numbers are not so accurate for monovalent ions 

due to the low sensitivity at the distance corresponding to the first minimum in the RDF.1, 3, 80-81 

In addition, the coordination number depends on the concentration and combination of ions in 

aqueous solutions. As a result, reported experimental coordination numbers are widespread. For 

example, the coordination number for Na+ listed in the review of Ohtaki and Radnai ranges from 

4.0 to 8.0.3 The coordination number averaged over the experimental values in the review is shown 

by the dotted line in Figure 9b. The average is smaller for K+ than for Na+. This is quite strange. 

Several very old experimental results are excluded in a review paper of Marcus,1 and relatively 

new values are summarized in a different review of the same author.2 The coordination number of 

Na+ averaged over the values in the two reviews of Marcus, 5.6, is smaller than that of K+, 6.7. 

However, the range of the reported coordination numbers, which is 4 to 8 for Na+, is still very 

wide. Quantum mechanical (QM) MD simulations might be more reliable than experiments as for 

this property. The coordination number calculated using the second order Møller-Plesset method 

and the values obtained from density function theory (DFT) based MD simulations with vdW 

corrections fall in a narrow range of 5.6-6.1 for Na+ (we do not consider Hartree-Fock or DFT-

based MD simulations without vdW corrections because such simulations underestimate the 

coordination number for small monovalent ions).77-79 The coordination number averaged over the 

QM MD studies is shown by the solid line in Figure 9b. It was suggested that the small difference, 

say ~1, in the coordination numbers between Na+ and K+ plays an important role in the selectivity 

of potassium channels.82-84 Roughly half of the classical ion models, including our models, 

reproduce this difference precisely. The coordination numbers of Cl calculated from the classical 

ion models are higher than those from the QM MD studies except for the TIP4P/2005-Madrid 



25 

 

model. Some special treatment such as the scaling of the ion-water Coulomb interactions and 

inclusion of polarization would be necessary to reproduce this property. 

    We calculate the viscosity, diffusion coefficient, and density at a finite concentration. We 

choose m = 3 mol kg1 as an intermediate concentration both for NaCl and KCl. The numbers of 

salt and water molecules are 25 and 462, respectively. The simulation time is 100 ns. The viscosity 

is presented in Figure 10a. The results of SPC/E-RH2 for NaCl, SPC/E-HMN1 and TIP3P-

AMBER for NaCl and KCl are not shown because formation of crystalline salt is observed in the 

simulation. Each value is divided by the value at m = 0 mol kg1 in order to focus on the effect of 

salt. All the ion models overestimate significantly the increase in the viscosity caused by the 

increase in salt concentration. Figure 10b shows the ratio of the diffusion coefficient of water at 3 

mol kg1 to that of pure water. As expected from the viscosity, the ratio of the diffusion coefficient 

is much lower than the corresponding experimental value for all the models. An increase in the 

salt concentration causes too much slowing down of dynamics of the solution in classical MD 

simulations.85 This problem can be solved when the charge transfer effect is explicitly included, 

although the computational cost of such a model is much higher than that of the 12-6-1 type 

models.86 The use of scaled charge also improve this problem.49, 87-88 Indeed, the TIP4P/2005-

Madrid model is one of the best models for those properties, though the deviation from the 

experimental value, ~20%, is still large compared with the error for most of the other properties 

examined in this study. Figure 10c presents the ratio of the density at 3 mol kg1 to that of pure 

water. Unlike the dynamic properties, the change in the density is well predicted by the classical 

12-6-1 type models. The error is only ~2.5% even for TIP3P-CHARMM.  
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Figure 10. (a) Viscosity, (b) diffusion coefficient of water, and (c) density of the NaCl (black 

circles) and KCl (red squares) solutions at 3 mol kg1. Each value is divided by the value at 0 
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mol kg1. The horizontal dotted lines indicate the experimental values.89-91 The corresponding 

numerical data and the values at 0 mol kg1 are given in Table S9. 

 

    Figure 11a presents the cation-anion distance in salt. Our models overestimate the Na-Cl and 

K-Cl distances, but the deviation is small for both salt. The lattice energies of the two crystals are 

shown in Figure 11b. The lattice energy of the TIP4P/2005-Madrid model is much higher than the 

experimental one again because of the charge scaling. Our models reproduce well the lattice energy 

both for NaCl and KCl although this property is not a parametrization target. Figure 11c shows the 

enthalpy of solution at infinite dilution calculated from the enthalpy of salt, Hsalt, and the hydration 

enthalpy shown in Figure 7a, Hpair: 

∆𝐻sol = 𝐻pair − 𝐻salt.        (15) 

Dissolution of NaCl in water is endothermic in experiments. However, this process becomes 

exothermic for many models including our models. The discrepancy from the experimental value 

is also large for KCl. It is difficult to reproduce ∆𝐻sol because this property is determined by the 

difference between the two much larger values, Hpair and Hsalt, which are approximately 800 kJ 

mol1 for NaCl and 700 kJ mol1 for KCl. 
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Figure 11. (a) Cation-anion distance in salt, (b) lattice energy, and (c) enthalpy of solution at 

infinite dilution for NaCl (black) and KCl (red). The horizontal dotted lines indicate the 
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experimental values.33, 92 The corresponding numerical data are given in Table S10. The enthalpy 

of solution at 0.5, 1.0, and 3 mol kg1 are shown in Figure S2 for several models. 

 

    Figure 12a shows the solubility of salt. Most of the ion models underestimate this property 

significantly. Our models and the TIP4P/2005-Madrid model reproduce well the solubility by 

design. The deviation from experiment is not so large for the SPC/E-JC model because the lattice 

energy was taken into account in the parameterization. The SPC/E-RDVH model and the SPC/E-

RH2 model reproduce the solubility of NaCl and that of KCl, respectively, although they are 

parameterized without considering this property.  
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Figure 12. (a) Solubility of NaCl (black circles) and KCl (red squares) in water. The horizontal 

dotted lines indicate the experimental values.33 The corresponding numerical data are given in 

Table 3. (b) Number of contact ion pairs in the aqueous solution at 6.1 mol kg1 for NaCl and 4.8 

mol kg1 for KCl. The horizontal dotted line indicates the threshold value for supersaturation 

suggested by Benavides et al.93  

 

    The number of contact ion pairs (CIP) is defined as 

𝑛CIP = 4𝜋𝜌± ∫ 𝑔±(𝑟)𝑟2𝑑𝑟′
𝑟𝑚𝑖𝑛

0

,      (16) 

where 𝜌±  is the number density of cation or anion particles, 𝑔±(𝑟) is the cation-anion radial 

distribution function, and 𝑟𝑚𝑖𝑛 is the position of the first minimum of 𝑔±(𝑟).22, 49, 93 This property 

is closely related to the solubility of salt. In order to calculate 𝑛CIP, we perform MD simulations 

of the aqueous solutions for 50 ns near the experimental solubility limit, 6.1 mol kg1 for NaCl and 

4.8 mol kg1 for KCl. Figure 12b shows that 𝑛CIP  is large for models that underestimate the 

solubility. Formation of a large salt cluster is observed when 𝑛CIP  is very large (Figure S3). 

Benavides et al. proposed an empirical rule for classical MD simulations that the solution is 

supersaturated if 𝑛CIP is larger than 0.5.22, 93  This simple rule is satisfied for most of the models 

employed in this study, indicating that 𝑛CIP is a useful property to roughly estimate the solubility 

without heavy computation as suggested by Benavides et al. 

    We compare the overall performance of the 20 ion models listed in Table 2 using the scheme of 

Vega and Abascal.74 In this scheme, a score is given for each property and model. The score is 

defined as 

𝑀 = min {anint (10 − |
100(𝑋 − 𝑋exp)

𝑃tol 𝑋exp
|) , 0},      (17) 
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where anint is the nearest integer function, X is the value of the property predicted by the model, 

Xexp is the corresponding experimental value, and Ptol is the tolerance given as a percentage. The 

score is 10 when the value predicted by the model is within 0.5 times the tolerance. The score is 0 

when the deviation is larger than ten times of the tolerance. The tolerance is set to Ptol = 1% except 

for the ion-oxygen distance whose score is evaluated with Ptol = 5% reflecting the experimental 

uncertainty.94 The score is not evaluated for the coordination number and the number of contact 

ion pairs because of the absence of accurate experimental data. We categorize the properties into 

five blocks: 1) thermodynamic properties of hydration at infinite dilution, i.e., Gpair, Hpair, and TSpair, 

2) self-diffusion coefficient of ion and ion-oxygen distance at infinite dilution, 3) viscosity, 

diffusion coefficient of water, and density at 3 mol kg1, 4) cation-anion distance, lattice energy, 

and enthalpy of solution of salt, and 5) solubility. The average over the scores of properties in each 

block is shown in Table 5 together with the global score, i.e., the average over all the blocks. The 

global score is also shown in Figure 13. Our three models are better than the other 17 models not 

only because of the quite good prediction for the solubility but also because of the relatively high 

score for the other blocks of properties. Among our ion parameter sets, the best one is that 

parameterized for SPC/E water because of the good score for the diffusion coefficient of ion at 

infinite dilution. It should be noted that the global score depends on the selection of properties. For 

example, if we focus only on the properties at infinite dilution, the best model becomes SPC/E-

LSM. If the osmotic pressure of the aqueous solutions is considered, the score of TIP4P/2005-

Madrid would be improved.48 
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Table 5. Scores of the five blocks of the properties and the average over them.   

 Gpair, Hpair, 

and TSpair 

Dion and 

IOD 
3 mol kg-1 a) Saltb) Solubility Global score 

SPC/E This work 6.3 8.2 3.0 5.8 8.0 6.3  

JC 6.3 7.3 3.0 6.2 0.0 4.6  

LSM 8.8 7.8 3.2 4.5 0.0 4.9  

HMN1 6.7 5.5 0.0 3.7 0.0 3.2  

HMN2 7.0 7.2 3.3 5.3 0.0 4.6  

HMN3 6.5 6.8 3.3 6.8 0.0 4.7  

RH1 6.3 6.0 3.2 5.5 0.0 4.2  

RH2 6.3 4.7 1.5 5.5 4.0 4.4  

RH3 6.2 4.2 2.7 5.2 0.0 3.7  

Dang 6.5 5.2 2.8 4.2 0.0 3.7  

RDVH 6.7 8.2 2.7 4.0 3.5 5.0  

KBFF 5.7 7.0 3.2 5.7 0.0 4.3  

TIP3P This work 6.0 4.8 2.7 5.8 9.0 5.7  

JC 6.0 4.7 3.0 6.0 0.0 3.9  

LSM 6.2 4.5 3.0 4.8 0.0 3.7  

CHARMM 3.7 4.5 2.5 3.8 0.0 2.9  

AMBER 4.0 4.8 0.0 5.8 0.0 2.9  

OPLS 3.5 4.7 1.5 5.0 0.0 2.9  

TIP4P

/2005 

This work 6.3 4.7 3.0 5.8 8.0 5.6  

Madrid 0.0 5.8 3.3 3.3 8.0 4.1  
a) Viscosity, diffusion coefficient of water, and density at 3 mol kg1. 
b) Cation-anion distance, lattice energy, and enthalpy of solution of salt. 

 

 

Figure 13. Global score.  
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4. CONCLUSIONS 

    We have determined LJ parameters of Na+, K+, and Cl for the SPC/E, TIP3P, and TIP4P/2005 

water models. The target properties are the hydration free energy, ion-oxygen distance in the 

solution phase, cation-anion distance in salt, and solubility. The relation between LJ energy 

parameter and the LJ size parameter that reproduces the experimental hydration free energy is 

approximated by a polynomial. The values of the LJ parameters are restricted to satisfy this 

polynomial in the parameterization. For each of the three water models, a set of ion LJ parameters 

is determined to reproduce the solubility using the potential energy of salt as a guide. The solubility 

is calculated from direct coexistence simulations in which a slab of salt is in contact with an 

aqueous solution. 

    The optimized LJ parameter sets are compared with 17 ion models using the scheme of Vega 

and Abascal.74 The deviation from the experimental value is evaluated for 12 properties. The global 

score, which represents the overall performance of the ion model, is better for our models than for 

any of the 17 model.  

    All the simulations are performed at 298 K. The temperature dependence of the properties 

should be investigated in future work. There are some important properties other than those 

examined in this study. We have not calculated the activity of water in aqueous solutions which is 

related to colligative properties such as osmotic pressure and freezing-point depression.48, 72 The 

activity coefficient of salt is also not calculated. The performance of our models with respect to 

those properties should also be investigated in future work. 

    The self-diffusion coefficient and hydration entropy of ion in water are determined mainly by 

the water-water interactions. MD simulation using the TIP3P water model cannot reproduce these 

properties because of the too weak water-water interactions. It is known that the performance of 
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the TIP3P model is also not good for pure water.74 However, this water model has been frequently 

used in MD simulations of biomolecules because the CHARMM and AMBER force fields were 

designed to work with this water model. The solubility values predicted by the CHARMM and 

AMBER models are almost zero both for NaCl and KCl. In contrast, the LJ parameter set 

optimized for TIP3P in this study reproduces precisely the experimental solubility. This parameter 

set would be useful to examine properties of biomolecules in dense aqueous NaCl or KCl solutions 

without artifacts arising from ion aggregation.95-98  

    The SPC/E model reproduces well various thermodynamic and dynamic properties of pure 

water due to the so called self-polarization term that results in water-water interactions stronger 

than those of water models without this correction.74 The ion parameter set optimized for the 

SPC/E model in this study, which exhibits the highest global score, is recommended for MD 

simulations of aqueous NaCl and KCl solutions without biomolecules. In particular, the model 

would be useful to study kinetics of precipitation of salt in water.99-103 A drawback is that the 

melting temperature of ice Ih described by SPC/E, 215 K, is much lower than the experimental 

value. The coexistence of ice and dense aqueous electrolyte solutions can be seen not only in 

laboratory but also in nature.104-108 Our parameter set for the TIP4P/2005 model might be useful 

for MD simulations of such systems because TIP4P/2005 reproduces the melting temperature and 

ice properties fairly well.47, 53  

 

ACKNOWLEDGMENTS 

The present work was supported by JSPS KAKENHI Grant Number 17K19106 and MEXT as 

“Priority Issue on Post-Kcomputer” (Development of new fundamental technologies for high-



35 

 

efficiency energy creation, conversion/storage and use). MD simulations were performed on the 

computers at Research Center for Computational Science, Okazaki, Japan. 

 

SUPPORTING INFORMATION  

The supporting information is available free of charge via the Internet at http://pubs.acs.org 

Effects of changes in  and  on the LJ potential (Figure S1), enthalpy of solution at 0.5, 1, and 
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