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Abstract—A previously proposed optimal detector for bias-
based fingerprinting codes such as Tardos and Nuida requires
two kinds of important information: the number of colluders
and the collusion strategy used to generate the pirated codeword.
An estimator has now been derived for these two parameters.
The bias in the pirated codeword is measured by observing
the number of zeros and ones and compared with possible bias
patterns calculated using information about the collusion strategy
and number of colluders. Computer simulation demonstrated
that the collusion strategy and number of colluders can be
estimated with high probability and that the traceability of a
detector using the proposed estimator is extremely close to being
optimal.

Index Terms—fingerprinting code, optimal detector, collusion
strategy, number of colluders, estimator

I. INTRODUCTION

IN the field of collusion-secure codes [1]–[5], Tardos
code [6] is known to produce bias-based fingerprinting in

which each symbol of a colluder’s codeword is determined
by a certain biased probabilistic distribution. As the code
length is theoretically of minimum order, the performance of
a Tardos code has been intensively investigated to improve
its traceability. In particular, Nuida et al. [7], [8] constructed
an interesting variant using a discrete probabilistic (Gauss–
Legendre) distribution to customize the bias-based finger-
printing code for a fixed number of possible colluders. For
convenience, their fingerprinting code is referred to as the
Nuida code in this paper.

To identify illegal users (colluders) from the pirated code-
word, a tracing algorithm (detector) is used to find suspi-
cious users by calculating the similarity among the colluder’s
codewords. Existing detectors can be classified into three
types: catch-one, catch-many, and catch-all [9]. With the catch-
one technique, the most suspicious user is the one with the
maximum similarity score and is assumed to be guilty. The
assumption here is that there is collusion among several illegal
users, so a catch-many type detector is desirable because it
can identify as many illegal users as possible. Although all
colluders can be identified using a catch-all approach, the
false-negative rate (i.e., no colluders are detected) is higher.
Therefore, we focus here on catch-many detectors.
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A good tracing algorithm can catch as many colluders as
possible with a constant and small false-positive rate. The
tracing algorithm is essentially composed of two operations:
scoring, which calculates similarity scores, and classification
using a threshold. The colluders can choose an arbitrary
collusion strategy, such as majority and minority voting, to
generate a pirated codeword. As Tardos and its revised scoring
functions [10] are independent of the collusion strategy, the
functions cannot achieve high performance. Furon and Perez-
Freire [11] proposed an optimal detector based on information
theoretical analysis that calculates the highest score using
information about the collusion strategy and the number of
colluders. Because of the difficulty of estimating these parame-
ters [11], several researcher groups [12]–[16] have investigated
a defense strategy to minimize the performance gap from this
optimal detector. For instance, scoring functions that adjust
their weighting parameters on the basis of each symbol have
been developed [15], [16]. These scoring functions require no
information about the collusion strategy because they use only
the symbol combination of the colluders’ codewords and the
pirated codeword.

We have developed an effective estimator for these parame-
ters that uses the characteristics of the discretized probabilistic
distribution of the Nuida code. A preliminary version of this
paper appeared in the proceedings of APSIPA 2018 [17]. This
estimator has two steps.

In the first step, the estimator observes the bias of the “1”
symbols in the pirated codeword and then forms a feature
vector in accordance with the characteristics of the bias-based
fingerprinting code. Essentially, each symbol in the codeword
is determined by each assigned bias probability as a secret
sequence. Therefore, the bias of symbol “1” in each innocent
user codeword is statistically stable and depends only on the
bias probability. In contrast, the bias in the pirated codeword
differs as it is affected by the collusion strategy and number
of colluders. Because the number of candidates for the bias
probability in the Nuida code is finite, the symbols in the
pirated codeword can be classified into groups having the
same bias probabilities. The expected probability of each of
the symbols in a group becoming 1 after a collusion attack
is then calculated. For each collusion strategy and number of
colluders, almost all sets of expected probabilities are different.
For convenience, such a set is defined as a Collusion Strategy
Characteristic Vector (CSCV).

In the second step, the estimator identifies the CSCV closest
to the feature vector, i.e., the one at a minimum distance from
the CSCV, and estimates the collusion strategy and number
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of colluders. Use of this technique enabled a detector to
achieve estimation accuracy greater than 90% against seven
well-known collusion strategies, with near-optimal traceability.

We also investigated a noisy case representing a realistic
scenario [18], [19]. A codeword embedded in multimedia
content using a watermarking technique was considered. If
a pirated copy is produced by a coalition of illegal users, the
codeword is further modified by signal processing operations
such as lossy compression and filtering. This results in the
addition of noise to the pirated codeword. As a result, the
number of “1” and “0” symbols cannot be derived directly
from the codeword. Thus, an additional estimator is required
to adjust the parameters. The experimental results show that
the traceability of the proposed method is still very near to
optimal in the presence of noise.

The remainder of this paper is organized as follows. Section
II reviews some basic information about fingerprinting codes
and collusion attacks. Related studies are then discussed in
Section III. Section IV introduces three proposed estimators.
A noisy case is considered in Section V, and the experimental
results are presented in Section VI. Finally, the key points are
summarized in Section VII.

II. FINGERPRINTING CODES

This section reviews the process of constructing bias-based
fingerprinting codes such as Tardos and Nuida and the design
of tracing algorithms. It also introduces several collusion
strategies that can be used to generate a pirated codeword.

A. Construction of Tardos Codes

A Tardos code is a binary bias-based fingerprinting code
composed of N codewords with L symbols. Let xj,i ∈
{0, 1}(1 ≤ i ≤ L) represent the j-th user’s codeword,
where xj,i is generated from an independent and identically
distributed set of random numbers with probability pi such
that Pr[xj,i = 1] = pi and Pr[xj,i = 0] = 1 − pi. This
probability pi needs to satisfy the following conditions, where
the maximum number cmax of colluders should be determined
during the construction of the codeword. We select pi in
accordance with continuous f(p), where f(p) is given by

f(p) =
1

2 sin−1(1− 2t)

1√
p(1− p)

. (1)

Both the codeword xj = (xj,1, xj,2, . . . , xj,L) and the se-
quence P = (p1, p2, . . . , pL) must be kept as secret parame-
ters.

B. Construction of Nuida Codes

To improve the performance of the Tardos code, Nuida
et al. presented a discrete version of the bias distribution
that is customized for a given maximum number of colluders
cmax [7], [8]. Let Lk(x) = ( d

dx )
k(x2−1)k/(k!2k) be the k-th

Legendre polynomial, and set L̃k(x) = Lk(2x−1). We define
PGL
2k−1 = PGL

2k to be the finite probability distribution whose
values are the k zeros of L̃k, with each value p selected with
probability η(p(1− p))−3/2L̃′

k(p)
−2, where η is a normalized

TABLE I
EXAMPLE OF DISCRETE NUIDA CODE BIAS DISTRIBUTION.

cmax Pξ Qξ cmax Pξ Qξ

1, 2 0.50000 1.00000

7, 8

0.06943 0.24833

3, 4
0.21132 0.50000 0.33001 0.25167
0.78868 0.50000 0.66999 0.25167

5, 6
0.11270 0.33201 0.93057 0.24833
0.50000 0.33598
0.88730 0.33201

constant that ensures the sum of the probabilities is equal to
1. Similar to the Tardos code, the codewords of the Nuida
code are generated using the bias probability sequence P .
Because of the discrete values, the candidate values for pi ∈ P
are finite, and the number of candidates is ng = ⌈cmax/2⌉.
Each probability pi can be classified into ξ groups. Numerical
examples are presented in Table I, where Pξ and Qξ, for
1 ≤ ξ ≤ ng , denote the values of the discretized probabilities
and their emerging probabilities, respectively. For example,
when cmax = 8 and length L of sequence P is 10000,
the number of elements for which pi = P2 = 0.33001 is
approximately L · Q2 ≈ 2517 on average. As each symbol
xj,i of the users’ codewords is independently and identically
selected under the constraint Pr[xj,i = 1] = pi, the symbols
of a codeword xj can be separated into ng groups on the basis
of pi ∈ P .

C. Collusion Attacks

Suppose that c colluders attempt to produce a pirated
copy from their fingerprinting codes. Under the marking
assumption [1], a pirated codeword y = (y1, y2, . . . , yL) is
constructed using a collusion strategy. A group of colluders is
denoted by C = {j1, j2, . . . , jc}. The collusion attack is the
process of taking sequences in Ii = {xj1,i, xj2,i, . . . , xjc,i}
as inputs and the pirated sequence y as an output. When a
pirated codeword is produced from the colluders’ codewords,
the marking assumption [1] states that the colluders have
yi ∈ Ii. They cannot change the bit in the position where
all of the indexes in Ii are identical because their positions
are undetectable.

Furon et al. defined a collusion attack as parameter vector
θstr
c = (θstr0 , . . . , θstrc ) with θstrλ = Pr[yi = 1|Φ = λ](0 ≤

λ ≤ c), where Φ ∈ {0, . . . , c} denotes the number of “1” sym-
bols in the colluders’ copies for a given index [20]. Since some
collusion strategies have a greater affect on traceability than
others [20], the worst case attack (WCA), which minimizes the
achievable rate of the code, can be defined from an information
theoretical point of view. The marking assumption enforces
θstr0 = 0 and θstrc = 1 in the collusion strategies. Typical
examples for c = 6 are shown by the following parameters.

• Majority: θmaj
6 = (0,0,0,0.5,1,1,1)

• Minority: θmin
6 = (0,1,1,0.5,0,0,1)

• Coin-flip: θcoin
6 = (0,0.5,0.5,0.5,0.5,0.5,1)

• All-0: θall0
6 = (0,0,0,0,0,0,1)

• All-1: θall1
6 = (0,1,1,1,1,1,1),
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• Interleave: θint
6 = (0, 16 , 26 , 36 , 46 , 56 ,1)

• WCA: θWCA
6 = (0, 0.5641, 0, 0.5, 1, 0.4359, 1)

For the above case, the candidates collusion strategies are
denoted by str = {maj, min, coin, all0, all1, int, WCA}.

D. Tracing Algorithms

A tracing algorithm (a “detector”) is composed of a scoring
function and a classification function. We consider error rates
ϵFP and ϵFN ; tracing algorithm Tr outputs suspicious users,
and C is the group of colluders.

• ϵFP : false positive

ϵFP = Pr[Tr(y) ̸⊂ C|Tr(y) ̸= ∅].

• ϵFN : false negative

ϵFN = Pr[Tr(y) ∩C = ∅].

Tardos proposed the following scoring function [6]:

Sj =

L∑
i=1

Sj,i =

L∑
i=1

yiUj,i, (2)

where

Uj,i =


−
√

pi
1− pi

(xj,i = 1)√
1− pi
pi

(xj,i = 0)

. (3)

For classification, the catch-one approach identifies the suspi-
cious user with the maximum score as an illegal user if the
score exceeds a threshold. The scoring function in Eq. (2) can
be used for Nuida code. Unfortunately, the scoring function
uses only half of the information about the pirated codeword
because the value of score Sj,i is zero when yi = 0. To use
all of the information, Škorić et al. [10] proposed using the
symmetric version of the scoring function:

Ssym
j =

L∑
i=1

Ssym
j,i =

L∑
i=1

(2yi − 1)Uj,i. (4)

This function requires no information about the collusion
strategy or the number c of colluders. To discriminate colluders
from innocent users, an optimal scoring function should be
designed using these parameters from an information theoret-
ical point of view. Furon and Perez-Freire defined the optimal
scoring function for a single detector as a log-likelihood
ratio [11]:

SMAP
j =

L∑
i=1

SMAP
j,i =

L∑
i=1

log

(
Pr[yi|xj,i,θ

str
c ]

Pr[yi|θstr
c ]

)
, (5)

where a single detector computes a score for each user while
a joint detector computes a score for a subset of users. As
this score represents the maximum a posteriori probability,
the optimal scoring function is called the MAP detector. The
denominator Pr[yi|pi,θstr

c ] can be calculated using Pr[1|θstr
c ] =

c∑
λ=0

θstrλ

(
c

λ

)
pλi (1− pi)

c−λ

Pr[0|θstr
c ] = 1− Pr[1|θstr

c ]

. (6)

Similarly, the numerator Pr[yi|xj,i, pi,θ
str
c ] can be calculated

using

Pr[1|1,θstr
c ] =

c∑
λ=1

θstrλ

(
c− 1

λ− 1

)
pλ−1
i (1− pi)

c−λ

Pr[0|1,θstr
c ] = 1− Pr[1|1,θstr

c ]

Pr[1|0,θstr
c ] =

c−1∑
λ=0

θstrλ

(
c− 1

λ

)
pλi (1− pi)

c−λ−1

Pr[0|0,θstr
c ] = 1− Pr[1|0,θstr

c ]

. (7)

Moulin studied the theoretical aspect of a joint detector [21],
and Meerwald and Furon proposed a practical implementa-
tion [13] that can be extended from a single detector. There-
fore, we focus on a single detector here. Both theoretically and
practically, the difficulty in designing such an optimal scoring
function is how to estimate the collusion strategy str and the
number of colluders c, namely θstr

c , from a given codeword
y. Furon and Perez-Freire estimated these parameters using
an expectation-maximization (EM) algorithm [11], but the
accuracy of this approach is not high. To the best of our
knowledge, there have been no other studies of the estimator.

E. Threshold

In a catch-many detector, suspicious users with scores
exceeding a threshold Z are regarded as illegal users. Some
methods approximate the distribution of a user’s score Sj by
using a Gaussian distribution [18] to calculate the threshold
for satisfying a given false-positive probability. Any increase
in the length of the users’ codewords enhances the accuracy
of the approximation. However, it has been reported [22]
that such an approximation is not appropriate for calculating
the threshold so that the false-positive rate is less than ϵFP

because the tail of the Gaussian distribution is not accurate
for short codewords. For accurate measurement in the tail
part, Furon et al. [20] and Cérou et al. [23] proposed an
efficient method for estimating the probability of rare events.
By using this rare event simulator, we can estimate ϵFP for a
given threshold Z, which means that we calculate the mapping
ϵFP = F (Z).

III. RELATED WORK

We first discuss the universal scoring function, which
achieves better performance for an arbitrary collusion strategy
than uninformed methods such as Škorić’s symmetric scoring
function [10]. Because of the difficulty of realizing the MAP
detector, the scoring function has been adjusted so that a
certain collusion strategy can achieve universality [12]–[16].
Bias in symbols “0” and “1” is observed, and the weights
corresponding to the biases in Škorić’s scoring function are
used to calculate the score [24]. In this section, we review
two scoring functions for our proposed estimator.

A. Bias Equalizer

In binary fingerprinting codes, the number of “0” and
“1” symbols is balanced because of the symmetry of bias
probability pi. However, this balance is not always achieved in
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Fig. 1. Number of “0” and “1” symbols in pirated codeword.

a pirated codeword. Škorić’s scoring function can be modified
to compensate for the imbalance created by a collusion attack
by equalizing the balance using weighting parameters, giving
a “bias equalizer” [24]. Let Y1 and Y0 be the set of indices
i satisfying yi = 1 and yi = 0, respectively. Then, the
numbers of elements in Y1 and Y0 are denoted by L1 and L0,
respectively, where L1 + L0 = L. Because of the symmetry
of a bias distribution, it is expected that L1 = L0 unless
the colluders do not know the actual values xj,i of their
codewords. Therefore, in the case of y produced by “all-0” and
“all-1,” L1 is not always equal to L0. As mentioned in Section
II-B, each probability pi can be classified into ξ groups. The
number of elements in the ξ-th group is denoted by ℓξ, where
ℓξ ≥ 0 and

∑ng

ξ=1 ℓξ = L. Additionally, the number of “1” and
“0” symbols are denoted by ℓξ,1 and ℓξ,0, respectively. Note
that ℓξ,1 + ℓξ,0 = ℓξ. As an example, when cmax = 8, the
classification of ng = 4 groups is illustrated in Fig. 1. Using
those parameters, the scoring function in the bias equalizer is
as follows.

SBias
j,i,ξ = yi



U00
j,i =

ℓξ,1
ℓξ

√
pi

1− pi
(xj,i = yi = 0)

U01
j,i = −ℓξ,0

ℓξ

√
pi

1− pi
(xj,i = 1, yi = 0)

U10
j,i = −ℓξ,1

ℓξ

√
1− pi
pi

(xj,i = 0, yi = 1)

U11
j,i =

ℓξ,0
ℓξ

√
1− pi
pi

(xj,i = yi = 1)

(8)
To adjust the above weighting parameters on the basis of
the gap for each collusion strategy, the collusion strategy is
classified into three types (all-0 or all-1 attack, minority or
coin-flip attack, or other) for the bias equalizer [24]. First, the
conditions in Eq. (9) were identified.

{
ℓξ,0 ≈ ℓξ, if pi < 0.5 holds for all ξ
ℓξ,1 ≈ ℓξ, if pi > 0.5 holds for all ξ

(9)

All-0, all-1, and other strategies can be classified by introduc-
ing a threshold T †. For the classification of all-0 and all-1

attacks, the following two cases are checked.
ℓξ,0
ℓξ

> T † (pi < 0.5)

ℓξ,1
ℓξ

> T † (pi > 0.5)
(10)

Note that T † is close to 1 because of Eq. (9). In a previous
study [24], threshold T † was empirically determined to be
0.95. When the minority or coin-flip attack strategy is used,
the following relations can be observed for the ξ-th group.

ℓξ,0
ℓξ,1

<

√
1− pi
pi

(pi < 0.5)

ℓξ,1
ℓξ,0

<

√
pi

1− pi
(pi > 0.5)

(11)

Finally, a pirated codeword that has passed the above two steps
is classified as being generated by one of the strategies used
in majority, interleave, and worst case attacks. In this case,
the collusion strategies are classified into one of three types,
and an improved scoring function is used to revise the weights.
Even though the bias equalizer improves the performance over
that of uninformed scoring functions such as the symmet-
ric decoder [10], the classification of collusion strategies is
heuristic rather than theoretical. It is thus necessary to study
a theoretical derivation for estimating collusion strategies.

B. Estimating the Number of Colluders

Information about the number of colluders is also required
for scoring functions based on the MAP detector. For example,
Meerwald et al. [13] assumed that the number of colluders is
less than or equal to cmax and calculated the correlation scores
for the number of colluders within [1, cmax] for a scoring
function based on the MAP detector. When the function is
adjusted for WCA θWCA

λ (1 ≤ λ ≤ cmax), score SWCA
j,i is

determined by the candidate with the maximum value.

SWCA
j = max

1≤λ≤cmax

(
L∑

i=1

(
log

Pr[yi|xj,i,θ
WCA
λ ]

Pr[yi|θWCA
λ ]

))
.

(12)
This kind of scoring function is called WCA defense because
the score in Eq. (5) is oriented for a WCA attack. The
method first calculates the cmax scores, from which the final
score is produced. Thus, the number of colluders c is not
directly estimated. Meerwald et al. also proposed a maximum
likelihood estimator that guesses the collusion strategy θ from
a given pirated codeword.

IV. PROPOSED ESTIMATOR

This section describes how we estimate vector θstr
c for

the optimal MAP detector. We exploit the bias in a pirated
codeword to generate the estimate.

A. Collusion Strategy Characteristic Vector

When a pirated codeword is produced by a combination of
codewords under the constraint of the marking assumption,
the number of “0” and “1” symbols must have changed. We
measure the number of changes on the basis of the discrete



5

TABLE II
COLLUSION STRATEGY CHARACTERISTIC VECTORS FOR c = 6.

Γstr
6

ξ

γstr
6,1 γstr

6,2 γstr
6,3 γstr

6,4

Γ
maj
6 0.00301 0.20498 0.79502 0.99699

Γmin
6 0.34762 0.70586 0.29414 0.65238

Γcoin
6 0.17531 0.45542 0.54458 0.82469

Γall0
6 0.00000 0.00129 0.09045 0.64937

Γall1
6 0.35063 0.90955 0.99871 1.00000

Γint
6 0.06943 0.33001 0.66999 0.93057

ΓWCA
6 0.16699 0.34689 0.65311 0.83301

bias probability. The emerging probability Pξ, (1 ≤ ξ ≤ ng)
is statistically equivalent to ℓξ,1/ℓξ for each user’s codeword.
Hence, if we observe the number of symbols in a codeword,
the following condition must be satisfied:

(P1, . . . , Pξ, . . . , Png
) ≈

(
ℓ1,1
ℓ1

, . . . ,
ℓξ,1
ℓξ

, . . . ,
ℓng,1

ℓng

)
. (13)

The right-hand term in Eq. (13) will be changed in a pirated
codeword, and the number of changes in each element depends
on the collusion strategy and the number of colluders. For
convenience, the vector observed from a pirated codeword is
denoted by

Γ = (γ1, . . . , γξ, . . . , γng
), (14)

where

γξ =
ℓξ,1
ℓξ

. (15)

The expectation of the elements in Γ can be calculated from
θstr
c and c as

γstr
c,ξ =

c∑
λ=0

(
c

λ

)
Pλ
ξ (1− Pξ)

c−λθstrλ . (16)

The vector Γstr
c = (γstr

c,1 , . . . , γ
str
c,ξ , . . . , γ

str
c,ng

) is called the
CSCV. Under the marking assumption, Eq. (16) enables us
to express Γstr

c for every general collusion strategy we can
conceive. Several example collusion strategies are listed in
Table II, where cmax = 8 for the Nuida code and the
actual number of colluders c is 6. We store the CSCVs
Γstr
c (c̃min ≤ c ≤ c̃max) with the general collusion strategy

into a database, where c̃min and c̃max are the assumed
minimum and maximum number of colluders, respectively.
Apart from these thresholds, we can measure the distance from
feature vector Γ to each CSCV and find the closest Γstr

c for
each possible collusion strategy.

B. Vector Space

We define a vector space ZL
2 for a codeword represented

by a binary vector of length L. The calculation of CSCV
Γstr
c from a given pirated codeword can be regarded as the

mapping from vector space ZL
2 to a rational vector space with

ng dimension Rng . The CSCV’s Γstr
c can be derived from

Fig. 2. Illustration of vector space Rng and estimation process in basic
method.

the following reduced-dimension map f in accordance with
L ≫ ng .

f : ZL
2 7→ Rng (17)

The symmetric decoder computes the correlation score
between the pirated codeword and the users’ codewords. As
mentioned in Section II-D, the realization of the MAP detector
depends on how we estimate the collusion strategy and the
number of colluders. Therefore, the map Eq. (17) implies
that the detection of colluders can be performed in a lower
dimension.

C. Basic Method

Let Dstr,c be the distance between the observed vector Γ
and all CSCVs Γstr

c . Note that Γstr
c can be calculated using

Eq. (16) in advance and stored in a database. The basic method
finds the closest vector Γstr

c that minimizes distance Dstr
c .

Well-known metrics for distance are the Total Variation
distance D1, the Euclidean distance D2, and the Hellinger
distance DHel:

Dstr,c
1 =

∑
ξ

|γstr
c,ξ − γξ|, (18)

Dstr,c
2 =

√∑
ξ

(
γstr
c,ξ − γξ

)2
. (19)

Dstr,c
Hel =

√√√√∑
ξ

(√
γstr
c,ξ −√

γξ

)2
. (20)

In estimating the collusion strategy and number of colluders,
we calculate Dstr,c for all CSCVs and find the combination
that minimizes Dstr,c in vector space Rng :

( ˜str, c̃) = argmin
str,c

Dstr,c. (21)

Fig. 2 shows vector space Rng and illustrates the estimation
process in the basic method. The user’s score Sbasic

j is then
calculated using

Sbasic
j =

L∑
i=1

Sbasic
i,j =

L∑
i=1

log

(
Pr[yi|xj,i,θ

˜str
c̃ ]

Pr[yi|θ ˜str
c̃ ]

)
. (22)
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Fig. 3. Illustration of estimation process in subset method.

D. Subset Method

The proposed estimator searches for possible collusion
attacks using the CSCVs stored in a database using a some-
what exhaustive search. Instead of a fully exhaustive search,
the subset method calculates a set of user scores for some
candidate number of colluders and outputs the number that
maximizes the score.

The vector space Rng of all CSCVs is first separate into
c subsets. A candidate CSCV can then be estimated in the
subset. Fig. 3 illustrates the estimation process. An improve-
ment in the estimation accuracy can be expected because
the number of candidates c̃max − c̃min in the subsets is
reduced. Finally, the candidate user scores S̃c

j,i are calculated
for estimated collusion strategy ˜str and for the number of
colluders c corresponding to its subset. The maximum score
is then determined as the user’s score Ssub

j . This process is
summarized as follows:

1) Initialize c = c̃min.
2) Perform the following operations until c = c̃max.

2-1) Estimate strategy ˜str using Eq. (21) by fixing c̃ =
c.

2-2) Increment c = c+ 1.
2-3) Using estimated vector θ ˜str

c , calculate Sc
j,i for 1 ≤

i ≤ L as

Sc
j,i = log

(
Pr[yi|xj,i,θ

˜str
c ]

Pr[yi|θ ˜str
c ]

)
. (23)

3) Calculate total score Ssub
j by summarizing maximum

scores Sc
j,i for 1 ≤ i ≤ L.

Ssub
j = max

c̃min≤λ≤c̃max

(
L∑

i=1

Sλ
j,i

)
(24)

As c̃max − c̃min increases, the computational cost increases
linearly because step 2 is repeated c̃max − c̃min times. For
example, if c̃min = 2 and c̃max = 10, the computational cost
of the subset method is nine times greater than that of the
basic method. However, the subset method achieves higher
estimation accuracy of the collusion strategy in each subset
because the number of candidates for estimation in a subset
is fewer than in the basic method’s set.

Fig. 4. Illustration of estimation process in dynamic method.

E. Dynamic Method

A preliminary experiment showed that the number of col-
luders detected by the subset method is greater than in the
basic method though the computational cost is proportional
to the number of candidate vectors θ ˜str

c . In short, there is a
trade-off between computational cost and traceability. Hence,
we consider a new method that changes the number of θ ˜str

c

dynamically while maintaining detection accuracy. This is
called the dynamic method.

In vector space Rng , we introduce an (ng − 1)-hypersphere
Ωng−1 = {z ∈ Rng : ∥z∥ = d}, where the radius d is a given
positive number. For ng = 2 and ng = 3, the 1-hypersphere
Ω1 and 2-hypersphere Ω2 are called a circle and a sphere,
respectively. As mentioned in Section IV-B, any CSCV can
be expressed by points in vector space Rng , and the vector
Γ derived from a pirated codeword can be placed at a certain
point in Rng . When we consider the (ng − 1)-hypersphere
Ωng−1 centered at a point in Γ, one of the CSCV candidates
around Γ should have a high probability of being correct. The
CSCV candidates for vector space Rng are illustrated in Fig. 4.
The score in the dynamic method is calculated as follows:

1) Calculate distances Dstr,c for all possible CSCVs.
2) Form a set D of pairs (str, c) for which Dstr,c is less

than d.
3) Perform the following operations if D ̸= {null}.

3-1) Calculate scores Sstr,c
j,i with θstr

c for all pairs
(str, c) ∈ D.

Sstr,c
j,i = log

(
Pr[yi|xj,i,θ

str
c ]

Pr[yi|θstr
c ]

)
(25)

3-2) Calculate total score Sdynamic
j by summing maxi-

mum scores Sstr,c
j,i for 1 ≤ i ≤ L.

Sdynamic
j = max

(str,c)∈D

(
L∑

i=1

Sstr,c
j,i

)
(26)

4) If D = {null}, Sdynamic
j = Sbasic

j .

V. PRACTICAL SITUATIONS

In practical situations, the pirated codeword may be dis-
torted by noise. Noise can be modeled as additive white
Gaussian noise (AWGN) [19]. This section shows how we
estimate the collusion strategy and the number of colluders
using CSCVs from a pirated codeword distorted by AWGN.
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First, an EM algorithm is applied to all symbols of the
pirated codeword for estimating noise variance σ2

e . Then, γξ
is estimated from the symbols in the ξ-th group by using the
estimated variance.

A. Estimating Number of Symbols

As mentioned in Section III-A, the number of “0” and “1”
symbols has a different bias for each group. In the noiseless
case, we can observe the bias by directly counting ℓξ,0 and
ℓξ,1 and derive the feature vector Γ as given by Eq. (14).

In the noisy case, two estimation processes are required to
derive ℓξ,0 and ℓξ,1 from a distorted codeword:

ŷi = yi + ei, (27)

where ei is AWGN with variance σ2
e . The probability density

function pdf(ŷi) is given by the following equation as a
Gaussian mixture model (GMM):

pdf(ŷi) = π0N
(
ŷi; 0, σ

2
e

)
+ π1N

(
ŷi; 1, σ

2
e

)
, (28)

where
∑1

k=0 πk = 1 and πk represent the weights of each
distribution, and

N
(
ŷi;µ, σ

2
e

)
=

1√
2πσ2

e

exp
(
− (ŷi − µ)2

2σ2
e

)
. (29)

First, we estimate σ2
e , π0, and π1 from all symbols ŷi(1 ≤

i ≤ L) in the distorted codeword using the EM algorithm.
The estimated variance is denoted by σ̃2

e . Then, for the ξ-th
group, γξ is estimated from ℓξ = ℓξ,0 + ℓξ,1 symbols using
the EM algorithm. As the symbols ŷi are distorted by noise,
the probability density function in the ξ-th group is

pdf(ŷi)ξ =
ℓξ,0
ℓξ

N
(
ŷi; 0, σ̃

2
e

)
+

ℓξ,1
ℓξ

N
(
ŷi; 1, σ̃

2
e

)
,

= (1− γξ)N
(
ŷi; 0, σ̃

2
e

)
+ γξN

(
ŷi; 1, σ̃

2
e

)
.(30)

As the variance is estimated in the first process, the EM algo-
rithm estimates γξ in the second process. As a consequence,
feature vector Γ̂ is calculated from the distorted codeword ŷ.

B. Optimal Detection in a Noisy Environment

As feature vector Γ̂ is distorted by noise, distance Dstr,c

changes accordingly. We assume that the additive noise fol-
lows a white Gaussian distribution in the CSCV vector space.
Therefore, the feature vector Γ̂ can be estimated using CSCVs
in a noiseless environment.

However, the distortions in the pirated codeword change
vector θstr

c . Hence, the MAP detector must adjust vector
θstr
c in accordance with the noise variance estimated from

the pirated codeword ŷ. As discussed by Meerwald and
Furon [13], the adjusted parameters θ̂λ(0 ≤ λ ≤ c) are given
by

θ̂λ(ŷi) = (1− θλ)N
(
ŷi; 0, σ̃

2
e

)
+ θλN

(
ŷi; 1, σ̃

2
e

)
. (31)

After the above adjustment of collusion strategy θ̂str
c , we can

execute the methods described in Section IV.

VI. EXPERIMENTAL RESULTS

We ran simulation experiments to compare the performance
of the three proposed methods. The experimental setup was as
follows. The number of users in a system was N = 106.
The Nuida code was designed using cmax = 8, and the
number of candidate values ng for pi was 4. The vector
space of codeword ZL

2 as mapped to R4 to calculate the
CSCVs. The false-positive probability was set to ϵ = 10−10

and ϵFP = (1 − ϵ)N ≈ Nϵ = 10−4 using a rare event
simulator [20], [23]. The candidate collusion strategies were
str = {maj, min, coin, all0, all1, int, WCA}, and the number
of colluders ranged from c̃min = 2 to c̃max = 10. There were
63 CSCVs (= 7 × 9). The pirated codewords were produced
by a collusion attack on 102 randomly selected combinations
of c colluders.

A. Estimation Accuracy of Collusion Strategy

Assuming that the number of colluders c is known in
advance, the accuracy of the estimator in the subset method
can be measured. The collusion strategies are exactly the same
or almost the same in some cases. When they are, the θ values
are coincident. Thus, it is not necessary to distinguish such a
strategy. Nevertheless, Table III lists the accuracy with which
the collusion strategy was estimated for distances Dstr,c

1 and
Dstr,c

2 for 2 ≤ c ≤ 8. For c = 2, the CSCVs calculated using
maj, min, coin, int, and WCA were exactly the same, and the
strategies were estimated without error. The greater the number
of colluders and the longer the code, the greater the accuracy.
Additionally, the estimation for each code length was highly
accurate. Comparing the results for L = 1024 and L = 4096,
we see that these code lengths are sufficient for estimating
the collusion strategy. For c = 4, θcoin and θWCA were
very close but not exactly same. The accuracy was lower due
to the similarity between Γcoin

4 and ΓWCA
4 . Table IV com-

pares Γmaj
4 , Γcoin

4 , and ΓWCA
4 . Our preliminary experiment

showed that the effect of misestimation for coin-flip and WCA
was much lower than for the other strategies. As observed
from Table III, there was no remarkable difference among
three metrics for distance. Therefore, we used Dstr,c

1 in the
following experiments because of its calculation simplicity.

B. Determination of Radius for Dynamic Method

To use the dynamic method, it is necessary to determine
radius d. As shown in Fig. 5, d = 0.102 gives the maximum
traceability. The main purpose of the dynamic method is to
reduce the computational cost while maintaining performance.
To compare the computational cost, we measured the number
nstr
c of CSCVs within radius d = 0.102 for each θstr

c and
calculated its average

n̄str =
1

c̃max − c̃min

c̃max∑
c=c̃min

nstr
c (32)

for each strategy using the dynamic method. As the compu-
tational cost for the subset method is rational to the number
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TABLE III
ACCURACY OF ESTIMATOR WHEN c IS KNOWN.

(a) L = 1024

θstr
c

number c of colluders

2 3 4 5 6 7 8

maj
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 99.9 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

min
Dstr,c

1 - 99.0 100 100 100 100 100

Dstr,c
2 - 99.2 100 100 100 100 100

Dstr,c
Hel - 99.3 100 100 100 100 100

coin
Dstr,c

1 - 70.2 58.3 94.9 98.9 100 100

Dstr,c
2 - 71.1 60.4 94.9 98.9 100 100

Dstr,c
Hel - 68.3 59.8 94.9 98.8 100 100

int
Dstr,c

1 - 89.7 99.0 100 100 100 100

Dstr,c
2 - 87.6 98.5 99.9 100 100 100

Dstr,c
Hel - 88.1 98.2 99.6 99.9 100 100

all0
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

all1
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

WCA
Dstr,c

1 - 77.7 59.3 92.8 98.6 100 100

Dstr,c
2 - 78.8 60.6 93.7 99.0 100 100

Dstr,c
Hel - 77.0 58.6 92.3 98.5 99.9 100

average
Dstr,c

1 100 90.9 88.1 98.2 99.6 100 100

Dstr,c
2 100 90.9 88.5 98.4 99.7 100 100

Dstr,c
Hel 100 90.4 88.1 98.1 99.6 99.9 100

(b) L = 2048

θstr
c

number c of colluders

2 3 4 5 6 7 8

maj
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

min
Dstr,c

1 - 99.8 100 100 100 100 100

Dstr,c
2 - 99.8 100 100 100 100 100

Dstr,c
Hel - 99.8 100 100 100 100 100

coin
Dstr,c

1 - 86.7 65.1 98.9 99.9 100 100

Dstr,c
2 - 85.2 67.5 98.9 99.9 100 100

Dstr,c
Hel - 83.5 63.7 99.1 100 100 100

int
Dstr,c

1 - 97.2 100 100 100 100 100

Dstr,c
2 - 96.8 99.8 100 100 100 100

Dstr,c
Hel - 96.7 99.9 100 100 100 100

all0
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

all1
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

WCA
Dstr,c

1 - 87.6 65.9 99.2 100 100 100

Dstr,c
2 - 88.3 67.7 99.3 100 100 100

Dstr,c
Hel - 87.9 66.3 98.8 100 100 100

average
Dstr,c

1 100 95.9 90.1 99.7 99.9 100 100

Dstr,c
2 100 95.7 90.7 99.7 99.9 100 100

Dstr,c
1 100 95.4 90.0 99.7 100 100 100

(c) L = 4096

θstr
c

number c of colluders

2 3 4 5 6 7 8

maj
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

min
Dstr,c

1 - 100 100 100 100 100 100

Dstr,c
2 - 100 100 100 100 100 100

Dstr,c
Hel - 100 100 100 100 100 100

coin
Dstr,c

1 - 97.3 71.6 100 100 100 100

Dstr,c
2 - 96.9 73.6 100 100 100 100

Dstr,c
Hel - 94.8 70.4 99.9 100 100 100

int
Dstr,c

1 - 99.7 100 100 100 100 100

Dstr,c
2 - 99.7 100 100 100 100 100

Dstr,c
Hel - 99.7 100 100 100 100 100

all0
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

all1
Dstr,c

1 100 100 100 100 100 100 100

Dstr,c
2 100 100 100 100 100 100 100

Dstr,c
Hel 100 100 100 100 100 100 100

WCA
Dstr,c

1 - 96.2 73.0 99.9 100 100 100

Dstr,c
2 - 96.2 72.8 99.9 100 100 100

Dstr,c
Hel - 95.1 71.6 100 100 100 100

average
Dstr,c

1 100 99.0 92.1 99.9 100 100 100

Dstr,c
2 100 99.0 92.3 99.9 100 100 100

Dstr,c
1 100 98.5 91.7 99.9 100 100 100
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TABLE IV
COMPARISON OF VALUES CALCULATED USING ESTIMATOR FOR c = 4

(MAJORITY, COIN-FLIP, WCA).

str γ4,1 γ4,2 γ4,3 γ4,4

majority 0.01379 0.25484 0.74516 0.98621
coin-flip 0.12507 0.40518 0.59482 0.87493

WCA 0.11801 0.39565 0.60435 0.88199

Fig. 5. Number of detected colluders versus radius d.

(c̃max − c̃min), as explained in Section IV-D, the cost ratio
Rstr was calculated for the comparison.

Rstr =
n̄str

c̃max − c̃min
(33)

Table V presents the number nstr
c of CSCVs for 2 ≤ c ≤ 10,

its average n̄str, and the cost ratio Rstr. Clearly, the dynamic
method reduces the computational cost with little sacrifice in
performance.

C. Traceability

Table VI presents the sum of detected colluders for 2 ≤
c ≤ 10, where the maximum is 54 =

∑10
c=2 c. With the MAP

detector, the collusion strategy and number of colluders are
known, so the number of detected colluders for MAP is the
theoretical upper limit. Our estimator finds the closest CSCV
among finite candidates, which are the well-known seven
strategies and number of colluders. Hence, we also should
show the performance of the detector when colluders attempt
to attack using an out-of-list strategy so that misestimation
occurred in our estimator. As it is difficult to check all
possibilities, we checked the impact of misestimation for three
collusion strategies:

• mix 1: θmix1
c = (θint

c +θWCA
c )/2

• mix 2: θmix2
c = (θint

c +θmaj
c )/2

• mix 3: θmix3
c = (θint

c +θcoin
c )/2

Table VI (c) shows the traceability with these strategies. The
results indicate that the traceability was very close to that of
the optimal detector informing the actual strategy. From the
results, we can say that, if the feature vector of the pirated
codeword is close to one of the CSCVs of the seven strategies,

the traceability is still close to that of the optimal detector.
Since our final goal is to catch as many colluders as possible, a
mismatch in estimating the collusion strategy is not a problem
if the traceability is very close to that of the optimal detector.

As shown in Table VI, the results with the proposed methods
exceeded the number of detectors in the optimal single detector
for some cases. This is because of the probabilistic algorithm
in the rare event simulator [20], [23] used to calculate the
threshold. If the number of trials were increased, this would
not occur. The table also shows that the traceability of the
basic, subset, and dynamic methods were very close to that of
the optimal MAP detector for all collusion strategies. When
L = 2048, the subset method outperformed the other methods.

D. Noisy Case

The total number of detected colluders for the noisy envi-
ronment case are listed in Table VII. The signal-to-noise ratio
(SNR) ranged from 0 to 10 [dB], and the number of colluders
was set to 6. The values were at most 66 (= 6× 11). For the
MAP detector, the collusion strategy, number of colluders, and
AWGN variance were considered known. To further evaluate
the accuracy of the proposed methods, we used the variance
estimated by the EM algorithm in the MAP detector. Unlike
the noiseless case, the total traceability of the dynamic method
was better than that of the subset method in the presence of
noise. The results of these experiments are illustrated in Fig. 6.
These results clearly show that an optimal detector can be
achieved by using the proposed estimators for the collusion
attack parameters in the presence of noise.

VII. CONCLUSION

The three methods proposed for estimating collusion attack
parameters for the optimal MAP detector use the imbalance
between “0” and “1” symbols in the pirated codeword. In
accordance with the discrete bias probabilities in the Nuida
code, the imbalances are calculated for possible collusion
strategies and numbers of colluders as a Collusion Strategy
Characteristic Vector. In the estimation stage, the distances
between the imbalances observed in the pirated codeword
and the CSCVs stored in a database are examined, and the
closest one is identified as a colluder. Computer simulation
demonstrated that the overall performance of the proposed
methods was superior to that of conventional techniques and
was very close to optimal MAP performance.
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TABLE V
NUMBER OF CSCVS WITHIN RADIUS d = 0.102 MEASURED USING DYNAMIC METHOD AND COMPARISON OF COMPUTATIONAL COST AGAINST THAT OF

SUBSET METHOD.

(a) L = 1024

θstr
c

number c of colluders
2 3 4 5 6 7 8 9 10 n̄str Rstr

maj 4.93 1.55 1.60 3.70 3.76 4.79 4.86 3.41 3.47 3.56 0.40
min 4.93 2.15 1.11 1.01 1.00 1.14 1.21 1.32 1.31 1.69 0.19
coin 4.93 3.29 3.19 2.00 2.49 2.61 2.54 2.13 1.79 2.77 0.31
int 4.93 4.63 4.82 5.01 5.06 5.11 5.18 4.95 4.83 4.95 0.55
all0 1.00 1.01 1.22 1.87 2.43 3.14 3.50 3.26 2.52 2.22 0.25
all1 1.00 1.03 1.23 1.82 2.48 3.04 3.56 3.23 2.53 2.21 0.25
WCA 4.93 3.28 3.21 2.60 1.72 1.70 2.24 2.12 1.87 2.63 0.29

(b) L = 2048

θstr
c

number c of colluders
2 3 4 5 6 7 8 9 10 n̄str Rstr

maj 5.44 1.60 1.46 3.42 3.47 5.06 5.10 3.22 3.24 3.56 0.40
min 5.44 2.86 1.05 1.00 1.02 1.19 1.26 1.52 1.55 1.88 0.21
coin 5.44 3.07 3.62 2.24 3.06 3.42 3.25 2.80 2.17 3.23 0.36
int 5.44 5.47 5.47 5.70 5.57 5.61 5.64 5.53 5.57 5.56 0.62
all0 1.00 1.00 1.17 1.78 2.48 3.11 3.49 3.25 2.51 2.20 0.24
all1 1.00 1.00 1.18 1.74 2.60 3.12 3.51 3.27 2.63 2.23 0.25
WCA 5.44 3.94 3.71 2.80 1.78 2.14 3.04 2.91 2.12 3.10 0.34

TABLE VI
COMPARISON OF SUM OF DETECTED COLLUDERS FOR 2 ≤ c ≤ 10.

(a) L = 1024
maj min coin int all0 all1 WCA total

MAP(optimal) 21.6 53.69 9.31 10.04 30.10 30.47 8.49 163.70
Symmetric [10] 7.14 6.17 6.88 6.87 6.55 6.82 6.79 47.22
WCA defence 9.84 10.99 9.00 8.79 8.82 9.07 8.47 64.98
Meerwald [13] 20.42 52.81 8.83 9.31 26.19 26.15 8.01 151.72

Bias Equalizer [24] 21.34 32.17 7.65 9.59 24.20 24.50 7.70 127.15
Basic Method 21.46 53.71 9.14 9.95 30.08 30.35 8.55 163.24
Subset Method 21.19 53.68 9.11 10.18 30.07 30.88 8.42 163.53

Dynamic Method 21.48 53.70 9.21 10.13 30.14 30.79 8.45 163.90

(b) L = 2048
maj min coin int all0 all1 WCA total

MAP(optimal) 45.51 54.00 23.26 22.08 53.88 53.75 17.39 269.87
Symmetric [10] 14.62 13.14 13.82 14.45 13.86 14.02 14.23 98.14
WCA defense 19.17 22.95 20.24 19.03 19.78 20.05 17.32 138.54
Meerwald [13] 44.82 54.00 22.11 20.65 53.62 53.57 16.63 265.40

Bias Equalizer [24] 45.03 53.86 19.14 21.28 52.43 52.19 16.02 259.95
Basic Method 45.40 54.00 22.86 21.97 53.88 53.78 17.33 269.22
Subset Method 45.44 54.00 22.98 22.08 53.88 53.80 17.32 269.50

Dynamic Method 45.54 54.00 22.97 22.14 53.88 53.80 17.41 269.74

(c) L = 2048 in case of mix strategies
mix1 mix2 mix3 total

MAP(optimal) 18.24 28.2 19.72 66.16
Symmetric [10] 14.06 14.70 14.24 43.00
WCA defence 17.56 18.63 19.44 55.63
Meerwald [13] 17.68 26.80 18.62 63.10

Bias Equalizer [24] 18.12 27.78 17.44 63.34
Basic Method 17.98 27.84 19.51 65.33
Subset Method 18.11 26.03 19.30 63.44

Dynamic Method 17.91 27.82 19.59 65.32
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(a) majority
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(c) coin-flip
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(e) all-1
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(g) WCA

SNR [dB]

n
u

m
b
e
r
 o

f 
d

e
te

c
te

d
 c

o
ll

u
d

e
r
s

 0  2  4  6  8  10
 0

 1

 2

 3

 4

 5

 6

(b) minority
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(d) all-0
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(f) interleave

Basic Method

Dynamic Method

Subset Method

Bias Equalizer

Meerwald

WCA defense

Symmetric

MAP (estimated      )σ
2

e

MAP (known      )σ
2

e

(h) legend

Fig. 6. Comparison of traceability for typical collusion strategies.
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TABLE VII
COMPARISON OF TOTAL DETECTED COLLUDERS IN NOISY CASE FOR SNR FROM 0–10 [DB].

maj min coin int all0 all1 WCA total
MAP (known σ2

e ) [11] 58.57 65.98 29.37 28.85 64.93 64.77 18.10 330.57
MAP (estimated σ2

e ) [11] 58.58 65.99 29.34 28.61 64.92 64.77 17.85 330.06
Symmetric [10] 10.73 6.10 7.76 10.02 8.36 8.54 9.44 60.95
WCA defence 20.42 35.80 24.80 20.42 24.34 25.12 17.94 168.84
Meerwald [13] 57.37 65.90 26.38 24.47 63.32 63.27 15.20 315.91

Bias Equalizer [24] 58.00 64.83 18.49 27.03 63.84 63.51 14.81 310.51
Basic Method 58.52 65.99 27.96 28.28 64.88 64.81 17.94 328.38
Subset Method 58.26 65.98 29.19 28.59 64.79 64.66 17.62 329.09

Dynamic Method 58.44 65.99 29.05 28.75 64.90 64.80 17.83 329.76
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