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Abstract

to treat GBM aggressiveness.

Glioblastoma (GBM) is characterized by extensive tumor cell invasion, angiogenesis, and proliferation. We previously
established subclones of GBM cells with distinct invasive phenotypes and identified annexin A2 (ANXA2) as an
activator of angiogenesis and perivascular invasion. Here, we further explored the role of ANXA2 in regulating
phenotypic transition in GBM. We identified oncostatin M receptor (OSMR) as a key ANXA2 target gene in GBM
utilizing microarray analysis and hierarchical clustering analysis of the vy Glioblastoma Atlas Project and The Cancer
Genome Atlas datasets. Overexpression of ANXA2 in GBM cells increased the expression of OSMR and
phosphorylated signal transducer and activator of transcription 3 (STAT3) and enhanced cell invasion, angiogenesis,
proliferation, and mesenchymal transition. Silencing of OSMR reversed the ANXA2-induced phenotype, and STAT3
knockdown reduced OSMR protein expression. Exposure of GBM cells to hypoxic conditions activated the ANXA2-
STAT3-OSMR signaling axis. Mice bearing ANXA2-overexpressing GBM exhibited shorter survival times compared
with control tumor-bearing mice, whereas OSMR knockdown increased the survival time and diminished ANXA2-
mediated tumor invasion, angiogenesis, and growth. Further, we uncovered a significant relationship between
ANXA2 and OSMR expression in clinical GBM specimens, and demonstrated their correlation with tumor
histopathology and patient prognosis. Our results indicate that the ANXA2-STAT3-OSMR axis regulates malignant
phenotypic changes and mesenchymal transition in GBM, suggesting that this axis is a promising therapeutic target
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Introduction

Glioblastoma (GBM) is the most common and lethal
primary brain malignancy in adults [23]. The defining
aggressive hallmarks of GBM include abundant angio-
genesis and marked proliferative and invasive behavior
[12]. Genome-wide expression profiling has shown that
GBM can be classified into classical, mesenchymal,
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neural, and proneural subtypes [36]. Among these, the
mesenchymal subtype is characterized by a particularly
aggressive phenotype with elevated invasive and angio-
genic potential [5].

Although recent genetic analyses have shed light on
the molecular alterations underlying GBM behaviors [4,
36], molecular targeted therapies have not yet led to im-
provements in the overall survival of GBM patients [10,
39]. One reason is the marked intratumoral genetic
heterogeneity and plasticity exhibited by GBM [26],
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including induction of a mesenchymal transition after
therapy with cytotoxic agents [3]. This tumor also fre-
quently shows changes in biological features upon recur-
rence and progression. Therefore, elucidating the
mechanisms underlying the phenotypic heterogeneity
and transition is necessary to facilitate the development
of curative therapies for GBM [12].

We have previously described two canine GBM cell
lines, J3T-1 and J3T-2 [13, 20], that undergo annexin A2
(ANXA2)-regulated shifts in their angiogenesis and inva-
sion phenotypes [12, 22, 24]. ANXA2 is a 36-kDa
calcium-dependent phospholipid-binding protein [9] lo-
cated mainly in the plasma membrane and cytoplasm,
with low expression in the nucleus [7]. ANXA2 is upreg-
ulated in several tumors and plays critical roles in tumor
development [6]. GBM cells often invade along anatomic
brain structures, including blood vessels and white mat-
ter tracts [30]. We previously established two novel inva-
sive GBM cell line models, J3T-1 and J3T-2 [13, 20],
which imitated mimicked the angiogenic and invasive
phenotypes of human GBM [22]. J3T-1 cells express
high levels of ANXA2 and exhibit marked angiogenesis
and invasion around the neovasculature, whereas J3T-2
cells express low ANXA2 levels and show a diffuse inva-
sion pattern [13, 25]. We also showed that silencing of
ANXAZ2 in J3T-1 cells (J3T-1shA) caused a switch to the
diffuse invasion pattern, and conversely, overexpression
of ANXA2 in J3T-2 cells (J3T-2A) induced a highly an-
giogenic phenotype [22]. Although these results indi-
cated that ANXA2 could regulate the phenotypic shift of
GBM, the molecular mechanisms by which this occurred
remained unclear. In this study, we analyzed the gene
expression profiles regulated by ANXA2 and its down-
stream pathways in GBM. We identified important roles
for an ANXA2-induced signaling pathway involving sig-
nal transducer and activator of transcription 3 (STAT3)
and oncostatin M receptor (OSMR) in regulating the
phenotypic transition in GBM.

Materials and methods

Culture of cell lines and patient-derived GBM cells

The J3T-1 and J3T-2 cell lines were derived from the
same parental canine GBM cells (J3T) and were charac-
terized as previously reported [11, 13]. The J3T cell line
was a gift from Dr. Michael E. Berens (Barrow Neuro-
logical Institute, Phoenix, AZ, USA) [2, 28]. J3T-1shA
and J3T-2A were established as previously reported [22].
The following human GBM cell lines were provided as
follows: A172 was from Dr. E. Antonio Chiocca (Brig-
ham and Women’s Hospital, Boston, MA, USA);
U87AEGFR and U251 were from Dr. Balveen Kaur (Uni-
versity of Texas Health Science Center, Houston, TX,
USA); U87MG was purchased from the American Type
Culture Collection (Manassas, VA, USA); LZN308 was
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gifted from Dr. Hioryuki Michiue (Okayama University,
Okayama, Japan); and the patient-derived neurosphere
GBM cells MGGS8, MGG18, and MGG23 were a gift
from by Dr. Hiroaki Wakimoto (Massachusetts General
Hospital, Boston, MA, USA) and were cultured as previ-
ously described [37]. Human umbilical vein endothelial
cells (HUVECs) were purchased from Takara Bio Inc.
(Shiga, Japan) and cultured in EGM-2 BulletKit medium
(Lonza, Basel, Switzerland). All other cell lines were cul-
tured in Dulbecco’s Modified Eagle’s Medium with 10%
fetal bovine serum, 100U penicillin, and 0.1 mg/ml
streptomycin at 37 °C in a 5% CO, atmosphere. For hyp-
oxic conditions, cells were cultured in a 1% O, atmos-
phere or in medium containing 100 pM deferoxamine
mesylate (Sigma-Aldrich, St. Louis, MO, USA). Cell lines
were authenticated by Promega (Madison, WI, USA)
using short tandem repeat profiling in December 2016.

Human glioblastoma specimens

Forty GBM specimens suitable for qRT-PCR and immu-
nohistochemical staining were obtained from 103 pri-
mary GBM patients treated at the Okayama University
Hospital from 2006 to 2018. A summary of the charac-
teristics of the forty primary GBM specimens is available
in Additional file 1.

Microarray assays

Total RNA was isolated from canine J3T-1, J3T-2, J3T-
1shA, and J3T-2A cells using RNeasy kit (Qiagen, Santa
Clarita, CA, USA) and samples were analyzed using a
GeneChip Canine Genome 2.0 Array (Affymetrix, Santa
Clara, CA, USA). The microarray analyses were per-
formed by Takara Bio Inc. Briefly, biotinylated cRNA
was synthesized from 250 ng total RNA using the Gene-
Chip 3" IVT PLUS Reagent Kit (Affymetrix), according
to the manufacturer’s instructions. Biotinylated cRNA
yields were checked with a NanoDrop ND-2000 spectro-
photometer (Thermo Fisher Scientific, Scotts Valley, CA,
USA). Following fragmentation, 15 pg of cRNA was hy-
bridized for 16 h at 45°C on a GeneChip Canine Gen-
ome 2.0 array, which were then washed and stained
using the GeneChip Fluidics Station 450 instrument
(Affymetrix). Arrays were scanned using the GeneChip
Scanner 3000 7G (Affymetrix). Data from the single-
array analyses were calculated using the Microarray
Suite version 5.0 (MAS 5.0; Affymetrix) with the default
settings and global scaling as the normalization methods.
The trimmed mean target intensity of each array was ar-
bitrarily set to 100. A significant change in gene expres-
sion was defined as an absolute fold change in
expression of >2.0 with a P value of <0.05 compared
with appropriate controls. The microarray data were de-
posited in the Gene Expression Omnibus (GEO) under
accession number GSE138374.
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Invasion assay

Two in vitro invasion assays were performed. Patient-
derived GBM cells were seeded into 96-well Costar
ultra-low attachment plates (Corning Inc., Corning, NY,
USA) at 1.0 x 10° cells/well in 25ul of medium. The
plates were briefly centrifuged to allow formation of cen-
tral spheroids, and growth factor-reduced Matrigel was
then added to each well (25 pg/insert; Becton Dickinson,
Franklin Lakes, NJ, USA). Digital images of the spheroid
midplanes were acquired with a BZ-8100 microscope
(Keyence, Osaka, Japan). After incubation, the radius of
invasion was defined as the distance farthest from the
spheroid edge and was calculated using Image] software
(http://rsb.info.nih.gov/ij/), as previously described [35,
44]. The second assay was performed using Corning Bio-
Coat Matrigel® Invasion Chambers (24-well format;
Corning Inc.) as previously described [25]. Each chamber
was randomly counted at five high-power fields to deter-
mine the mean number of invaded cells.

Animal experiments

Five- to six-week-old female BALB/c-nu/nu mice were
purchased from CLEA Japan Inc. (Tokyo, Japan). GBM
cells (2 x 10°) were stereotaxically injected into the right
frontal lobe of anesthetized mice. Mice were euthanized
when they exhibited neurological symptoms.

Statistical analyses
All analyses were conducted using R version 3.52 (R
Core Team (2018). R: A language and environment for
statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria. URL https://www.R-project.org/
.) and GraphPad Prism 8 (GraphPad, San Diego, CA,
USA). Graphed data are presented as the mean + stand-
ard error (SEM). Differences between group means were
evaluated using two-tailed Student’s t-tests or one-way
ANOVA with Bonferroni’s post hoc test for multiple
comparisons. Correlation analyses were assessed using
Pearson’s correlation method. Survival curves were esti-
mated using the Kaplan—Meier method and compared
using a log-rank test. A P value of < 0.05 was considered
statistically significant.

Additional details about the materials and methods are
available in the supplementary materials and methods
(Additional file 2: Supplementary materials and methods).

Results

Identification of ANXA2-regulated genes by microarray, in
silico, and in vitro analyses

As noted above, J3T-1 and J3T-2A cells express elevated
ANXA2 levels and exhibit a highly angiogenic and inva-
sive phenotype, while J3T-2 and J3T-1shA cells express
low levels of ANXA2 and exhibit a more diffuse invasive
phenotype [22]. To identify genes regulated by ANXAZ2,
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we performed microarray analyses of these four cell lines.
Genes regulated by ANXA2 were defined as those meet-
ing both of the following two criteria: Angiogenesis-1
genes were expressed at > 2-fold higher levels in J3T-2A
cells than in J3T-2 cells, and Angiogenesis-2 genes were
expressed at >2-fold in J3T-1 cells compared with J3T-
1shA cells (Fig. 1a). The number of genes identified as sat-
isfying the Angiogenesis-1 and Angiogenesis-2 criteria
was 303 and 304, respectively, and 15 genes met both cri-
teria (Fig. 1b).

The gene expression profile of GBM cells is known to
depend on the anatomical location of the tumor. Thus,
we examined the anatomical expression pattern of
ANXA2 and these 15 ANXA2-regulated angiogenesis-
invasion-related genes using the Ivy Glioblastoma Atlas
Project (Ivy GAP) dataset. Consistent with our previous
findings [22], high ANXA2 expression was observed in
the perinecrotic zone, pseudopalisading cells around
sites of necrosis, hyperplastic blood vessels, and micro-
vascular proliferation (Fig. 1c). Clustering analysis of the
genes using Ivy GAP dataset revealed that the oncostatin
M receptor (OSMR) had the most similar anatomical ex-
pression pattern to ANXA2 (Fig. 1d).

Next, we validated the relationship between the ex-
pression of ANXA?2 and the 15 identified genes in GBM
molecular subtypes. Cluster analysis using The Cancer
Genome Atlas (TCGA) dataset also revealed a close
similarity between the expression patterns of ANXA2
and OSMR in the molecular subtypes (Fig. 1e). ANXA2
mRNA levels were significantly higher in samples of the
mesenchymal subtype compared with the proneural and
classical subtypes in the TCGA dataset (Additional file 3:
Supplementary Fig. S1A). OSMR mRNA expression was
also elevated in the mesenchymal subtype compared
with the remaining subtypes, though the difference was
not statistically significant between the classical subtype
and the mesenchymal subtype (Additional file 3: Supple-
mentary Fig. S1B). We further used bioinformatic ana-
lyses of single-cell RNA-Seq of primary human GBMs
from the GSE57872 dataset [26].. Each GBM single-cell
subtype was determined by a single sample gene set en-
richment analysis [1, 38], and we found that ANXA2 ex-
pression was significantly elevated in the mesenchymal
subtype compared with the remaining subtypes at the
single-cell level (Additional file 3: Supplementary Fig.
S1C). GSEA of the TCGA dataset confirmed significant
enrichment of genes related to angiogenesis and cell in-
vasion in mesenchymal subtypes (Additional file 4: Sup-
plementary Fig. S2).

We next validated the relationship between the ex-
pression of ANXA2 and the 15 genes in human GBM
specimens. Correlation analyses of the TCGA GBM
dataset showed the strongest correlation was between
ANXA2 and OSMR mRNA expression (Fig. 1f and
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Additional file 5: Supplementary Fig. S3), and this was
confirmed by similar analyses of GBM datasets from the
Repository for Molecular Brain Neoplasia Data (REM-
BRANDT) and Okayama University (Fig. 1g and h). Fi-
nally, we verified the correlation between ANXA2 and

OSMR expression by performing western blot analysis of
five human GBM cell lines (U87MG, U87AEGEFR,
LNZ308, A172, and U251) and three human GBM
patient-derived cell lines (MGG8, MGG18 and MGG23).
This analysis revealed a significant positive correlation
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between ANXA2 and OSMR protein levels (r=0.88, P =
0.002; Fig. 1i and j).

Taken together, these data identify OSMR as a key
ANXA? target gene. The two genes have similar expres-
sion patterns with respect to anatomical location and
molecular subtype, and exhibit significantly correlated
expression at the mRNA and protein levels. Therefore,
we examined whether ANXA2 regulates the phenotypic
transition of GBM via OSMR.

ANXA2 regulates mesenchymal transition, cell
proliferation, and cell motility in GBM via OSMR

GSEA of the GSE4412 dataset [8] revealed a positive as-
sociation between high of OSMR or ANXA2 and expres-
sion of mesenchymal signature genes (Additional file 6:
Supplementary Fig. S4A), supporting a role for OSMR in
ANXAZ2-regulated functions. To investigate this further,
we established stable MGG23 and U87MG GBM cell
lines overexpressing ANXA?2 in the presence or absence
of concomitant shRNA-mediated OSMR silencing. Not-
ably, ANXA2 overexpression alone in MGG23 cells
strongly upregulated OSMR mRNA and protein expres-
sion (Fig. 2a and b) and increased transcription of mes-
enchymal genes (Fig. 2c. Moreover, silencing of OSMR
virtually abolished the ANXA2-mediated increase in
mesenchymal gene expression (Fig. 2c). Similar findings
were observed in the US87MG cell lines (Additional file
6: Supplementary Fig. S4B—S4D). Silencing of OSMR
alone in MGG23 cells decreased transcription of mesen-
chymal genes (Additional file 7: Supplementary Fig.
S5A-S5C).

GSEA of the GSE4412 dataset revealed significant en-
richment of genes related to cell proliferation and inva-
sion in human GBM specimens with high expression of
either ANXA2 or OSMR (Additional file 8: Supplemen-
tary Fig. S6A and S6B). Indeed, we found that while
overexpression of ANXA2 in MGG23 cells significantly
increased cell proliferation (Fig. 2d, P <0.001), the in-
crease was significantly suppressed by concomitant
OSMR knockdown (Fig. 2d, P = 0.0016 and P <0.001,
respectively). Similar results were obtained in analyses of
cell invasion using Matrigel invasion assays. Thus, inva-
sion of MGG23 outside the core spheroid was signifi-
cantly increased by ANXA?2 overexpression (Fig. 2e and
f, P = 0.006), but the increase was abolished by concomi-
tant OSMR knockdown (Fig. 2e and f, P=0.008 and
0.003, respectively). The same proliferation and invasion
phenotypes were observed with U887MG cells (Add-
itional file 9: Supplementary Fig. S7A-C). Silencing of
OSMR alone in MGG23 cells reduced cell proliferation
and invasion (Additional file 9: Supplementary Fig.
S7D-F). Thus, the effects of ANXA2 on the proliferative
and invasive phenotypes of GBM cells are mediated via
OSMR.
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ANXA2 and OSMR modulate angiogenesis in vitro

Our findings suggesting a role for OSMR in ANXA2-
mediated regulation of angiogenesis were supported by
GSEA analysis of dataset GSE4412, which revealed
strong correlations between expression of angiogenesis-
related genes and high ANXA2 or OSMR expression in
human GBM (Fig. 3a). To investigate this directly, we
first examined secretion of the angiogenic cytokine vas-
cular endothelial cell growth factor A (VEGFA) by
MGG23 cells incubated for 24 h in vitro. We found that
VEGFA secretion was significantly elevated by ANXA2
overexpression but this was suppressed by simultaneous
OSMR knockdown (Fig. 3b). As expected, similar results
were obtained in HUVEC tube formation assays per-
formed using conditioned medium from the same
MGG23 cell lines. Thus, both the number of tubes
formed and their length were increased by treatment
with conditioned medium from ANXA2-overexpressing
cells, while silencing of OSMR reversed these effects
(Fig. 3d and e). These data indicate that ANXA2-
mediated regulation of OSMR modulates angiogenesis
in vitro.

ANXA2 controls OSMR expression via phosphorylation of
STAT3

Next, we sought to identify the mechanism by which
ANXA?2 induces OSMR expression in GBM cells. Previous
studies have shown that ANXA?2 increases the phosphor-
ylation of STAT3 on tyrosine 705 (pSTAT3) [17], and that
OSMR is a direct transcriptional target of STAT3 in GBM
[14], suggesting that ANXA2 may upregulate OSMR ex-
pression by inducing STAT3 phosphorylation. In support
of this, GSEA of GSE4412 showed a positive association
between expression of interleukin (IL) —6-JAK-STAT3
pathway signature genes and high ANXA2 or OSMR
expression in human glioma specimens (Fig. 4a). Western
blot analysis of MGG18 «cells, which express high
endogenous levels of both ANXA2 and OSMR, revealed
that depletion of ANXA2 suppressed both OSMR and
pSTATS3 protein expression (Fig. 4b). STAT3 knockdown
in MGG18 cells decreased the expression of OSMR but
not ANXA2 (Fig. 4c). Moreover, STAT3 knockdown in
MGG23 cells overexpressing ANXA?2 also reduced OSMR
protein expression (Fig. 4d). These findings suggest that
ANXA?2 regulates OSMR expression via phosphorylation
of STATS3.

ANXA2 has been reported to affect breast cancer cell
proliferation and invasion via activation of the ERK1/2
signaling pathway [43]. To investigate this, we performed
western blot analysis of ERK1/2 and pERK1/2 in
MGG23 cells and found that knockdown of either
ANXA2 or OSMR reduced ERK1/2 phosphorylation
(Additional file 10: Supplementary Fig. S8A and S8B).
Interestingly, while overexpression of ANXA2 enhanced
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phosphorylation of both STAT3 and ERK, concomitant
OSMR knockdown abolished the enhanced phosphoryl-
ation of both molecules (Fig. 4e). These results suggest
that the ANXA2-STAT3-OSMR axis regulates the
phenotypic transition of GBM cells via STAT3 and ERK
signaling.

Hypoxia, common feature of the microenvironment of
solid tumors, is a well-known inducer of angiogenesis,

invasion, and mesenchymal transition in GBM [15, 32].
Therefore, we investigated the effects of hypoxia on acti-
vation of the ANXA2-STAT3-OSMR axis. GSEA of the
GSE4412 demonstrated a positive association between
expression of hypoxia pathway signature genes and high
ANXA2 or OSMR expression in glioma specimens (Fig.
4f). Incubation of GBM cells in 1% O, or treatment with
deferoxamine mesylate, which mimics the effects of
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hypoxia by stabilizing expression a hypoxia-response
transcription factor, increased the expression of ANXA2,
OSMR, and pSTAT3 (Fig. 4g—j). Depletion of ANXA2
under the same conditions suppressed pSTAT3 and
OSMR expression (Fig. 4g and i), while STAT3 silencing
decreased expression of OSMR but not ANXA2 (Fig. 4h
and j). These data suggest that hypoxia stimulates activa-
tion of the ANXA2-STAT3-OSMR axis.

ANXA2 and OSMR induce a phenotypic transition of GBM
cells in a mouse model

To determine whether our in vitro and in silico findings
thus far translate to in vivo conditions, we examined the
role of ANXA2 and OSMR in the growth of GBM xeno-
grafts in BALB/c-nu/nu mice. We injected one of four
MGG23 cell lines into the brain of athymic mice: control
cells, cells overexpressing ANXA?2, or cells overexpressing
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ANXA2 and one of two OSMR-targeting shRNAs. While
ANXAZ2 overexpression significantly shortened the survival
of tumor-bearing mice compared with control mice (me-
dian survival = 94.5 days vs 101 days, P =0.0094; Fig. 5a),
concomitant silencing of OSMR significantly prolonged
mouse survival (median survival = 131 or 137.5 days, both
P=0.0029; Fig. 5a). We confirmed the maintenance of
ANXA2 overexpression and OSMR silencing in vivo after
sacrifice by qRT-PCR using FFPE tissue sections of intra-
cranial xenograft (Fig. 5b). Immunohistochemical examin-
ation of tumors excised on day 91 of the experiment
showed spreading of control tumors from the injection site

into the adjacent brain tissue and invasion along the corpus
callosum (Fig. 5¢). However, ANXA2-overexpressing tu-
mors showed marked invasion into the cerebral cortex and
increased cell proliferation (MIB-1 index) and angiogenesis
(CD31 labeling; Fig. 5¢ and d). In keeping with the in vitro
results, silencing of OSMR in ANXA2-overexpressing cells
prevented the phenotypic shift (Fig. 5c and d).

To verify these findings, we injected mice intracranially
with control US87AEGER cells, which have high endogen-
ous ANXA2 levels, or with US7AEGER cells expressing
ANXA2- or OSMR-targeting shRNAs. As expected, de-
pletion of ANXA2 significantly increased survival (median



Matsumoto et al. Acta Neuropathologica Communications

(2020) 8:42

Page 9 of 13

8
% .
A MGG23 g 1071
== Empty vector + sh control ::’ 120 1
100 e— * = 100 1
w === ANXA2 OE + sh control X gy
> H €
e === ANXA2 OE + sh OSMR #1 i o 67
=1 = E
n == ANXA2 OE + sh OSMR #2 e 4
b= 504 r 27
Q 0
o
o) Empty vector + - - -
o ANXA2 - + + +
0 N shCTRL + + - -
0 50 100 150  (days) shOSMR_ - - #1 #2
MGG23
c Empty vector ANXA2 OE ANXA2 OE ANXA2 OE
+ sh OSMR #1

mm= ANXA2
m= OSMR

+sh CTRL

+sh CTRL

HLA |,

+ sh OSMR #2

1000 pm

HLA |
(Contralateral)

1100 pm

Ki67 [

100 pm

with Bonferroni’s post hoc test (c)

CD31
" 1100 ym
D — *k g) dkk = *kk
§ 30 * = —~10 ek | deddk O 6 Jededk [ Kok
x % B L2-%
o 8 | E8g
k] = o O
c - D=
= » 3 £33
2 5% 388
T 15 bt :w, 5 H § g 3
2 5 8 24T
~ Qo » O < o
o EQ S
= 2 8
0 0 0
Empty vector 4+ - - - Emptyvector + - - - Emptyvector + - - -
ANXA2 - 4+  + o+ ANXA2 - 4+ o+ 4+ ANXA2 -+ o+ 4
shCTRL + + - - shCTRL + + - - shCTRL + + - -
shOSMR - - #2 shOSMR .- - #1 # shOSMR - .- #1 #2
MGG23

Fig. 5 ANXA2- and OSMR-mediated regulation of tumor growth and phenotypic transition in a mouse xenograft model of GBM. a Kaplan-Meier
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survival: 13.5 vs. 17.5 or 17 days, P =0.0058 or 0.014, re-
spectively; Additional file 11: Supplementary Fig. S9A).
Histological examination showed that control U87AEGFR
tumors had well-defined borders with marked necrosis. In
contrast, tumors formed by ANXA2-knockdown cells
were smaller, exhibited no necrosis. and showed reduced
cell proliferation and vessel formation (Additional file 11:

Supplementary Fig. S9B and S9C). Depletion of OSMR
had similar effects; namely, it significantly prolonged
mouse survival (median survival: 13.5 vs. 21.5 or 22 days,
both P=0.0058; Additional file 11: Supplementary Fig.
S9A), eliminated tumor necrosis, and diminished tumor
growth, proliferation, and vessel density (Additional file 11:
Supplementary Fig. S9B and S9C).
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ANXA2 and OSMR expression levels correlate with human
glioma histopathology and patient prognosis

Finally, we assessed the clinical significance of ANXA2
and OSMR expression on tumor growth and patient prog-
nosis by analyzing the REMBRANDT, TCGA, and Chin-
ese Glioma Genome Atlas (CGGA) dataset. In the
REMBRANDT dataset, we found that ANXA2 and OSMR
expression were associated with the histopathologic grade
of glioma, and higher expression was observed in GBM
than in lower grade glioma (Fig. 6a). In addition, high ex-
pression (> median level) of ANXA2 or OSMR was signifi-
cantly associated with poor survival in the glioma patients
(Fig. 6b). Focusing on the GBM dataset, ANXA2 expres-
sion was significantly associated with poorer survival in
the CGGA GBM dataset (ANXA2 high, median survival =
14.4 months; ANXA?2 low, median survival = 19.8 months;
P =0.01), though the difference was not statistically sig-
nificant in the TCGA GBM dataset (ANXA2 high, median
survival = 12.6 months; ANXA2 low, median survival =
14.9 months; P = 0.097) (Additional file 12: Supplementary
Fig. S10A). In addition, OSMR expression was signifi-
cantly associated with poor survival in the TCGA GBM
dataset (OSMR high, median survival = 12.6 months;
OSMR low, median survival = 14.5 months; P = 0.0097)
and the CGGA GBM dataset (OSMR high, median sur-
vival = 14.2 months; OSMR low, median survival = 19.2;
P =0.017) (Additional file 12: Supplementary Fig. S10B).
Next, we screened a series of human GBM specimens ob-
tained from Okayama University (= 40) and selected 10
samples each with the highest and lowest ANXA2 mRNA
expression. Immunohistochemical examination of these
20 samples showed that tumors with high ANXA2 mRNA
levels also showed higher ANXA2 and OSMR protein ex-
pression (P=0.0015 and P =0.0041, respectively), had a
higher MIB-1 labeling index (P=0.031), and exhibited
more extensive vascularity (P=0.021) compared with
samples expressing low ANXAZ2 levels (Fig. 6¢ and d).
These results suggest that ANXA2 and OSMR play an im-
portant role in the malignant histopathological phenotype
of GBM and patient prognosis.

Discussion

In this study, we sought to identify ANXA2-regulated
genes in GBM. Microarray analysis identified 15 genes
related to the angiogenesis—invasion phenotype. Analysis
of Ivy GAP and TCGA datasets revealed strong correla-
tions between OSMR and ANXA2 expression, and the
functional roles of ANXA2 and OSMR in cell prolifera-
tion, invasion, and angiogenesis were confirmed in vitro
and in vivo. Collectively, our data suggest that ANXA2
regulates OSMR expression via STAT3 phosphorylation,
which drives the transition to a mesenchymal phenotype
with prominent cell proliferation, invasion, and angio-
genesis (Fig. 6e).

(2020) 8:42
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Although some recent studies have reported that sur-
vival time of GBM patients is associated with the extent
of tumor resection [40], aggressive invasion and infiltra-
tion is a characteristic of GBM that makes it difficult to
resect completely. The mesenchymal GBM subtype is
particularly aggressive, with elevated invasive and angio-
genic potential [5]. Recently, Puchalski et al. examined
the transcriptional profiles of GBM subtype according to
the anatomical regions; they identified leading edges as
neural subtype, infiltrative tumors as neural/proneural,
central tumor regions as either classical or neural/pro-
neural subtypes, and pseudopalisading cells around nec-
rotic areas and microvascular proliferation as almost
exclusively mesenchymal subtype [27]. Although some
factors that regulate anatomically related gene expres-
sion in GBM have been reported, the detailed mecha-
nisms remain unclear [27, 34].

Our previous work suggested that ANXA2 may be in-
volved in the shift of GBM towards an invasive phenotype
[22]. Kling et al. reported that ANXA2 is at the apex of a
regulatory cascade that determines GBM mesenchymal
transition, and that ANXA2 knockdown led to a reduction
in phosphorylated STAT3 and suppression of mesenchy-
mal gene expression, cell proliferation, and invasion [17].
In the present study, we further reveal the mechanism of
ANXA2 regulation of these events via OSMR.

OSMR is a member of the type I cytokine receptor
family and forms a heterodimer with the common signal
transducer gp130, which is shared with other members
of the IL-6 family, including leukemia inhibitory factor
(LIF), IL-6, IL-11, ciliary neurotrophic factor, and
cardiotrophin-1 [21]. Previous studies have evaluated the
role of OSMR and its ligand OSM in a range of cancers,
including glioma. The OSM-OSMR axis is known to
drive the epithelial-mesenchymal transition and is asso-
ciated with poor survival [19, 31, 33, 41]. In squamous
cell carcinoma, OSMR overexpression activates cell-
autonomous feed-forward signaling that induces further
expression of OSMR and OSM, leading to a pro-
malignant phenotype [18]. Repovic et al. reported that
OSM induction of VEGF expression is a unique property
of OSM that is not shared with other IL-6 family mem-
bers [29]. Jahani-Asl et al. showed that OSMR is a re-
quired co-receptor for EGFR variant III, which allows
constitutive activation and plays a prominent role in
GBM tumorigenesis [14]. In the present study, we found
that ANXA2 overexpression activates STAT3, OSMR,
and ERK, resulting in enhanced cell proliferation, inva-
sion, angiogenesis, and mesenchymal transition.

Hypoxia is a well-recognized component of the tumor
microenvironment and a known pathogenic driver in a
variety of tumors, including GBM [42]. Hypoxia induces
activation of the STAT3 pathway [16], which leads to en-
hanced expression of angiogenesis and invasion genes.
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However, little is known about the function of ANXA2
and OSMR in GBM under hypoxic conditions. We
showed here that hypoxia induces ANXA2 and OSMR ex-
pression, thereby providing novel insight into the malig-
nant phenotypic change in GBM. GSK2330811, a

humanized anti-OSM blocking antibody, was recently
tested in clinical trials for the treatment of systemic scler-
osis (NCT03041025) and in a preclinical study of tumor-
bearing mice [18]. We speculate that GSK2330811 may
have utility in suppressing ANXA2-STAT3-OSMR
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signaling, thereby reducing malignant progression and im-
proving patient survival.

In conclusion, our findings suggest that the ANXA2-
STAT3-OSMR axis plays a crucial role in the regulation
of the molecular phenotype and pathogenesis of GBM.
The axis regulates the aggressiveness of GBM, including
invasion, proliferation, angiogenesis, and mesenchymal
transition, suggesting that inhibition of this axis may be
an attractive therapeutic strategy for this tumor.
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