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SUMMARY

2-Methylthio-N6-isopentenyl modification of adenosine (ms2i6A) is an evolutionally conserved modifi-

cation found in mitochondrial (mt)-tRNAs. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1)

specifically converts N6-isopentenyladenosine (i6A) to ms2i6A at position A37 of four mt-DNA-en-

coded tRNAs, and the modification regulates efficient mitochondrial translation and energy meta-

bolism in mammals. Here, we report that the ms2 conversion mediated by CDK5RAP1 in mt-tRNAs

is required to sustain glioma-initiating cell (GIC)-related traits. CDK5RAP1maintained the self-renewal

capacity, undifferentiated state, and tumorigenic potential of GICs. This regulation was not related to

the translational control of mt-proteins. CDK5RAP1 abrogated the antitumor effect of i6A by convert-

ing i6A toms2i6A and protectedGICs fromexcessive autophagy triggered by i6A. The elevated activity

of CDK5RAP1 contributed to the amelioration of the tumor-suppressive effect of i6A and promoted

GIC maintenance. This work demonstrates that CDK5RAP1 is crucial for the detoxification of endog-

enous i6A and that GICs readily utilize this mechanism for survival.

INTRODUCTION

In cancer biology, mitochondria are key organelles for understanding the behavior of cancer cells. Mito-

chondria are involved in fine-tuning cellular metabolism, oxygen consumption, and energy production,

and they control cell death programs such as apoptosis (Cogliati et al., 2016; Pernas and Scorrano,

2016). Moreover, mitochondria play key roles in cancer stem cells (CSCs), which are believed to confer his-

topathological heterogeneity and drug and/or radiation resistance in cancer tissues. The structure and dy-

namics of mitochondria are related to CSC-related traits such as self-renewal capacity and tumorigenic po-

tential (Guha et al., 2014; Xie et al., 2015), and the translation of mitochondrial (mt) DNA-encoded genes

can be a potential target for anticancer drugs (Skrti�c et al., 2011). However, our knowledge regarding

the molecular mechanism underlying the mitochondrial control of CSC fate is limited.

Nucleoside modifications have two roles in cancer biology: as an input for cellular decisions and as an

output from nucleotide metabolism. The former is known to control cell growth and differentiation through

epigenetic regulation (Brien et al., 2016; Lacadie et al., 2016; Zaidi et al., 2014), whereas the latter is known

as a by-product of nucleotide metabolism. However, previous studies have shown that modified nucleo-

sides can regulate the fate of cancer cells. When artificially applied, N6-isopentenyladenosine (i6A), a modi-

fied nucleoside derived from tRNAs, induces cell-cycle arrest and cell death in many types of cancer cells,

including glioblastoma cells (Castiglioni et al., 2013; Ciaglia et al., 2017; Laezza et al., 2009; Rajabi et al.,

2010; Ranieri et al., 2018). Nevertheless, whether endogenous i6A exerts the same effect and inhibits tumor

growth remains unknown. Endogenous i6A may also attenuate antitumor effects on cancer cells.

i6A modifications exist only on the adenosine at position 37, which is a nucleotide neighboring the anti-

codon region in tRNAs (Wei et al., 2015). TRIT1 is an isopentenyl transferase that converts A into i6A inmam-

mals (Schweizer et al., 2017). Moreover, i6A is converted to 2-methylthio (ms2) i6A (ms2i6A) by cyclin-depen-

dent kinase 5 regulatory subunit associated-protein 1 (CDK5RAP1) in the mitochondria of mammalian cells

(Wei et al., 2015). CDK5RAP1, a mitochondria-localizing methylthio-modifying enzyme, is essential for the

conversion of i6A to ms2i6A in mt-RNAs that read codons for Trp, Tyr, Phe, and Ser (Wei et al., 2015). This

enzyme contributes to the maintenance of cellular respiration and metabolism in skeletal and cardiac

muscles via the precise translation of mt-DNA-encoded genes. Therefore, CDK5RAP1 deficiency reduces
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OXPHOS-related protein levels and triggers myopathy in mice and humans (Wei et al., 2015). Because in-

tramitochondrial translation is a key element for sustaining malignancy and CSC-related properties, we hy-

pothesized that CDK5RAP1 contributes to intramitochondrial translation and is essential for malignancy.

Although the importance of mitochondrial translation in malignant tumors has been emphasized, the role

of CDK5RAP1 in this process is not fully understood. A previous study suggested that CDK5RAP1 deficiency

induces cell-cycle arrest and apoptosis in breast cancer via the ROS/JNK signaling pathway (Wang et al.,

2015). In the present study, however, we demonstrated that CDK5RAP1 deficiency induced excessive auto-

phagy but not apoptosis and was sufficient to repress glioma-initiating cell (GIC)-related capacities. Mech-

anistically, CDK5RAP1 deficiency caused an intracellular accumulation of i6A, which needs to be converted

to ms2i6A to avoid the tumor-suppressive effects of i6A. The results of the present study revealed a novel

role of mitochondria in cancer biology, that is, a modification of mitochondrial tRNAs functions as an an-

tidotal machinery to sustain the GIC-related traits.

RESULTS

CDK5RAP1 Is Required to Sustain GIC-Related Traits

Because GICs have been proposed to contribute to the malignant properties of glioma tissues (Lathia

et al., 2015), we first examined whether CDK5RAP1 controlled the stemness of patient-derived GICs. In gli-

oma biology, GIC-related traits are usually defined by self-renewal capacity measured using sphere forma-

tion assay, the expression of stem cell markers, and tumor-propagating potential assessed by xenograft

tumor models (Suvà et al., 2014). We prepared three types of GIC cell lines categorized by their molecular

subtype: JKGIC1 (mesenchymal), JKGIC2 (proneural), and JKGIC5 (proneural) (Figures S1A and S1B). Upon

CDK5RAP1 knockdown by infection with lentiviruses containing shCDK5RAP1, the sphere-forming capacity

of these GICs was significantly reduced (Figures 1A and S1C). Single cell-sphere formation assay showed

that CDK5RAP1 was required for the in vitro self-renewal capacity of JKGIC2 and JKGIC5 (Figure 1B).

CDK5RAP1 deficiency suppressed the protein and mRNA levels of the transcriptional factors essential

for GIC (e.g., Sox2, Oig2, POU3F2, and SALL2, Suvà et al., 2014) and GIC-related markers (Figures 1C,

S1D, S1F, and S1G). Immunofluorescence analyses revealed that CDK5RAP1 was required to sustain the

undifferentiated state of GICs, as indicated by the loss of Sox2, Nestin, and CD133 expression in

shCDK5RAP1-infected cells (Figures 1D and S1E).

We then asked whether CDK5RAP1 was required to sustain tumor-propagating capacity in subcutaneous

xenograft model in immunocompromised mice (BALB/c-nu). As shown in Figure 1E, CDK5RAP1 deficit

significantly reduced tumor size in all types of xenograft models. For the orthotopic glioma model, we in-

jected JKGIC2-shControl (JKGIC2 cells infected with lentiviruses containing pLKO.1-shControl) or JKGIC2-

shCDK5RAP1 (pLKO.1-shCDK5RAP1#2) cells into the left cerebral hemisphere of ICR-nu mice. The loss of

CDK5RAP1 attenuated tumor growth of JKGIC2 (Figure 1F) and prolonged the overall survival of mice with

brain tumors (Figure 1G). These data clearly show that CDK5RAP1 is crucial for sustaining GIC-related

characteristics.

CDK5RAP1 Controls GIC Properties Independently of Mitochondrial Translation, Dynamics,

and Functions

Because mitochondrial function is essential for the maintenance of GIC properties (Seyfried et al., 2015)

and because CDK5RAP1 is required for the efficient translation of mitochondrial proteins encoded by

mitochondrial DNA (Wei et al., 2015), we hypothesized that the loss of GIC-related traits upon CDK5RAP1

knockdown was caused by mitochondrial dysfunction, probably by a deficiency in intramitochondrial trans-

lation (Figure 2A). To test this hypothesis, we analyzed the effect of CDK5RAP1 knockdown on mitochon-

drial function as measured by the oxygen consumption rate (OCR) in GICs. In GICs, differentiation cues

(e.g., 10% FBS) induce a regulatory switch in mitochondrial functions (Figure S2A). For this assay, we pre-

pared three types of JKGIC2 cells: JKGIC2-shControl, JKGIC2-shCDK5RAP1#2, and JKGIC2-

shCDK5RAP1#5 (the knockdown efficiency of each shRNA is shown in Figure 2B). Surprisingly, CDK5RAP1

knockdown did not affect the OCR, indicating that CDK5RAP1 is not essential for mitochondrial respiration

in GICs (Figure 2B). This was specific to GICs because we observed a significant change in the OCR in

shCDK5RAP1-infected U87MG cells, a non-GIC line (Figure S2B). Moreover, CDK5RAP1 deficiency did

not alter mitochondrial shape or dynamics, which are considered crucial for controlling GIC-related traits

(Xie et al., 2015) (Figure 2C). Electron microscopy analysis showed that there was no significant difference

in the mitochondrial shape or length between control and CDK5RAP1-deficient GICs (Figure 2D).
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Figure 1. CDK5RAP1 Is Required to Sustain GIC-Related Traits

(A) Left: Quantification of primary and secondary spheres formed by JKGIC2-shControl, JKGIC2-shCDK5RAP1#1, JKGIC2-shCDK5RAP1#2 and JKGIC5-

shControl, JKGIC5-shCDK5RAP1#1, JKGIC5-shCDK5RAP1#2 cells. CDK5RAP1 is required to sustain the anchorage-independent growth capacity of GICs.

The data are presented as the number of spheres formed from 2,000 seeded cells. Each bar represents the SD value of four independent replicates. *p < 0.05.

Sequence information of shRNAs is show in Table S1. Right: Representative phase contrast images of these cells. Scale bars, 100 mm.

(B) Quantification of primary spheres initiated from the single cells of JKGIC2-shControl, JKGIC2-shCDK5RAP1#1, JKGIC2-shCDK5RAP1#2, JKGIC2-

shCDK5RAP1#5 and JKGIC5-shControl, JKGIC5-shCDK5RAP1#1, JKGIC5-shCDK5RAP1#2, JKGIC5-shCDK5RAP1#5. CDK5RAP1 is required for sustaining

the sphere formation capacity of GICs. The data are presented as the percentage of spheres formed from 48 wells of single cells. Each bar represents the SD

value of four independent replicates. *p < 0.05.

(C) Left: Representative immunoblotting images of GIC markers in shControl- and shCDK5RAP1-transfected JKGIC2 cells. Sox2, Olig2, POU3F2, and SALL2

levels were determined 4 days after infection with respective shRNA-encoding lentivirus. GAPDH served as a loading control. The experiment was repeated

44 iScience 21, 42–56, November 22, 2019



Figure 1. Continued

three times. The information of antibodies used in the present study is shown in Table S2. Right: Relative expression levels of CDK5RAP1 4 days after the

lentiviral transduction of shRNAs. Each bar represents the SD value from three independent replicates. Sequence information of the primers for qPCR is

shown in Table S1.

(D) Representative immunostaining images of JKGIC2-shControl and JKGIC2-shCDK5RAP1 cells. Transfection with shCDK5RAP1 reduced the number of

Sox2-and Nestin-positive cells. Scale bars, 20 mm.

(E–G) CDK5RAP1 is required to sustain the tumorigenic potential of GICs. After shRNA induction, JKGIC1, JKGIC2, and JKGIC5 cells were subcutaneously

injected (E, n = 3 per condition) and JKGIC2 were intracranially (F, n = 5 per condition) injected. Notably, CDK5RAP1 knockdown prolonged the overall

survival of the mice with brain tumors (G). *p < 0.05. Scale bars: 1 cm in (E) and 2 mm in (F).

Also see Figure S1.
We then investigated whether CDK5RAP1 deficiency induced translation failure in mitochondrial proteins

in GICs. As a positive control, we transduced shRNAs against the mitochondrial translation elongation

factors TUFM or TSFM, which are crucial for the translation of mitochondrial proteins encoded by mito-

chondrial DNA (Belostotsky et al., 2012; Christian and Spremulli, 2012). In JKGIC1 cells, knockdown of

TUFMor TSFM but not of CDK5RAP1 resulted in the profound loss of mitochondrially encoded cytochrome

c oxidase I (MTCO1) (Figure 2E). Importantly, TUFM or TSFM knockdown had no effect on the sphere-form-

ing capacity of GICs, whereas CDK5RAP1 knockdown significantly reduced the number of spheres formed

(Figure 2F). We also confirmed these phenomena in JKGIC2 cells (Figures S2C and S2D). Interestingly, we

noticed that CDK5RAP1 deficit reduced the level of NDUFB8 (a component of mitochondrial complex I

encoded by nuclear gene) and thus induced the loss of complex I activity but did not attenuate the levels

of mitochondrial proteins encoded by mitochondrial genome such as ND6, cytochrome b, and MTCO1

(Figures S2E and S2F). These data clearly show that intramitochondrial translation is not fundamental for

sustaining GIC-related properties in glioblastoma cells and indicate that CDK5RAP1 deficiency affects

the properties of GICs in an intramitochondrial translation-independent manner.

CDK5RAP1 Knockdown Induces Excessive Autophagy, which Critically Determines GIC Fate

A previous study showed that CDK5RAP1 knockdown induced cell-cycle arrest and apoptosis in breast

cancer cell lines via the activation of the JNK signaling pathway (Wang et al., 2015). Therefore, we examined

whether CDK5RAP1 knockdown induced apoptosis in GICs. However, CDK5RAP1 knockdown did not

induce the activation of caspase 3 in JKGIC1, JKGIC2, and JKGIC5 cells (Figure 3A) and did not increase

the number of TUNEL-positive cells in JKGIC2 cell lines (Figure S3A). Instead, we found that CDK5RAP1

knockdown induced autophagy as indicated by an increased presence of autophagosomes and autoly-

sosomes in electron microscopy experiments (Figure 3B). We further validated the induction of the auto-

phagic response in GICs upon CDK5RAP1 knockdown by immunofluorescence analysis of LC3 puncta for-

mation and by immunoblotting analysis of LC3-II induction, AMPK activation, andmTOR inhibition (Figures

3C, 3D, S3B, and S3C).

Previous studies have demonstrated that mTOR inhibition suppresses the stemness of GICs (Garros-Reg-

ulez et al., 2016; Sunayama et al., 2010). Indeed, rapamycin treatment attenuated the cellular growth and

promoted the autophagic program in GICs (Figures 3E and S3D). We then investigated whether the auto-

phagic response triggered by CDK5RAP1 knockdown could be rescued by knocking down Atg5, which is

essential for the autophagy pathway. Although Atg5 knockdown slightly reduced the number of spheres

formed by JKGIC2 and JKGIC5 cells, it successfully rescued the loss of anchorage-independent growth

driven by CDK5RAP1 knockdown (Figures 3F and S3E). Excessive autophagy results in the growth inhibition

of GICs (Ueda et al., 2012). In agreement with our previous study, CDK5RAP1 knockdown significantly in-

hibited the growth of JKGIC1 and JKGIC2 cells (Figure S3F). These data demonstrate that GICs require

CDK5RAP1 to avoid excessive autophagy, which critically represses the GICs’ cell growth.

Treatment with N6-Isopentenyladenosine (i6A) Induces Excessive Autophagy and Loss of

GIC-Related Traits

Thus far, the present study has revealed that CDK5RAP1maintains GIC-related traits by inhibiting excessive

autophagy but not by controlling intramitochondrial translation. How does CDK5RAP1 maintain the char-

acteristics by inhibiting excessive autophagy? CDK5RAP1 is a mitochondrial enzyme that modifies nucleo-

sides by addingmethylthio groups and is crucial for the conversion of i6A toms2i6A at A37 of mt-tRNAs (Wei

et al., 2015). Consistent with this, the intracellular distribution of ms2i6A-containing tRNAs was limited to

the mitochondria of GICs, as confirmed by immunofluorescence analysis with an anti-ms2i6A antibody,

which specifically recognizes ms2i6A-containing tRNAs (Figure 4A). This result led us to hypothesize that
iScience 21, 42–56, November 22, 2019 45



A

C

F

E

D

B

G

Figure 2. CDK5RAP1 Deficiency Has No Effect on Mitochondrial Translation, Dynamics, or Function

(A) An initial hypothesis suggesting that the loss of GIC-related traits by CDK5RAP1 deficiency is caused by the failure of intramitochondrial translation.

(B) Left: Representative oxygen consumption rates in shControl- and shCDK5RAP1-transfected JKGIC2 cells. Respiratory coupling was not affected by

CDK5RAP1 knockdown. n = 5 per condition. Right: Relative expression levels of CDK5RAP1 4 days after the lentiviral transduction of shRNAs. Each bar

represents the SD value from three independent replicates.

(C) MitoTracker staining shows that mitochondrial shape was not altered upon CDK5RAP1 knockdown in JKGIC2.

(D) Left: Representative electron microscopy images of mitochondrial structures. Scale bars, 500 nm. Right: Mitochondrial length was not altered upon

CDK5RAP1 knockdown. n = 38 for shControl and n = 87 for shCDK5RAP1#2.

(E) The level of MTCO1 encoded by mitochondrial DNA was determined 4 days after shRNA lentiviral infection. GAPDH served as a loading control. The

same results were reproduced three times.

(F) Quantification of primary spheres formed from 2,000 JKGIC1 cells, which were transfected with shRNAs against CDK5RAP1, TUFM, or TSFM. Only shRNAs

against CDK5RAP1 reduced the number of spheres formed. Each bar represents the SD value from four independent replicates. *p < 0.05.

Also see Figure S2.
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Figure 3. CDK5RAP1 Knockdown Induces Excessive Autophagy, Which Critically Determines GIC Fate

(A) CDK5RAP1 knockdown did not activate caspase-3 in JKGIC1, JKGIC2, and JKGIC5 cells. CDDP-treated cells served as a positive control of apoptotic

status.

(B) Left: Representative electron microscopy images of the autophagic response. JKGIC2 cells were fixed after 4 days of lentiviral transduction of each

shRNAs. Right: CDK5RAP1 knockdown increased the number of autophagosomes and autolysosomes. n = 5 per condition. *p = 0.0391 versus shControl.

Scale bars, 1 mm.

(C) Representative immunostaining images for LC3 in JKGIC2 cells. CDK5RAP1 knockdown induces LC3 puncta formation. Rapamycin-treated cells served

as a positive control of LC3 puncta formation. Scale bars, 10 mm.

(D) Immunoblotting analyses of mTOR, AMPK, and LC3 show that CDK5RAP1 knockdown activates the autophagic program in JKGIC2 cells.
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Figure 3. Continued

(E) Left: mTOR inhibition with rapamycin triggers the autophagic response and decreases Nestin expression in JKGIC2 cells. n = 5 per condition. Right: Dose-

dependent effect of rapamycin on the number of spheres formed from 2,000 JKGIC2 cells. Each bar represents the SD value from four independent

replicates. *p < 0.05.

(F) Comparison of sphere formation by JKGIC2 and JKGIC5 cells transfected with shRNAs against CDK5RAP1 in the presence or absence of shRNAs against

ATG5. ATG5 knockdown reduces the sphere-forming capacity but successfully rescues the shCDK5RAP1-mediated decrease in the anchorage-independent

growth of GICs. Each bar represents the SD value from four independent replicates. *p < 0.05.

Also see Figure S3.
CDK5RAP1 enhances the conversion of i6A to ms2i6A in mt-tRNAs of GICs, resulting in the inhibition of

excessive autophagy.

Because previous studies have shown that treatment with exogenous i6A induces tumor-suppressive ef-

fects such as apoptotic or autophagic cell death in cancer cells (Castiglioni et al., 2013; Ciaglia et al.,

2017; Laezza et al., 2009; Rajabi et al., 2010; Ranieri et al., 2018), we examined whether i6A treatment

induced excessive autophagy and consequent loss of GIC-related traits. In JKGIC2 cells, i6A treatment

increased the intracellular concentration of i6A in a dose-dependent manner, and the intracellular

concentration of i6A in the cells treated with 4 mM i6A reached the same level as that in JKGIC2 cells trans-

fected with shCDK5RAP1 (Figure S4A). However, exogenous i6A did not induce a consequent increase in

ms2i6A (Figure S4A), suggesting that CDK5RAP1 could not convert free i6A to ms2i6A. i6A treatment acti-

vated the autophagic program, as shown by LC3-II induction, AMPK activation, mTOR signaling pathway

inhibition in JKGIC2 and JKGIC5 cells (Figures 4B, 4C, and S4B), and LC3 puncta formation in JKGIC2 cells

(Figure 4D). i6A also attenuated the anchorage-independent cell growth and reduced the expression of

GIC markers such as Sox2 and Nestin (Figures 4E–4G, S4B, and S4C). To validate that the loss of GIC-

related traits driven by i6A treatment was in the context of autophagy, we prepared shControl- and

shATG5-transfected JKGIC2 cells and treated them with variable concentrations of i6A. As expected,

ATG5 knockdown successfully mitigated the phenotypic outcome of i6A (Figure 4H). In contrast, ms2i6A

treatment induced neither autophagy nor loss of GIC-related traits and did not prevent the phenotypic

outcomes triggered by i6A treatment (Figures 4B–4G). Moreover, N6-isopentenyladenine (i6Adenine)

did not repress the anchorage-independent growth of JKGIC2 cells (Figure S4D). These data suggest

that isopentenyl modification only on adenosine molecules elicits tumor-suppressive effects and that

this increase in isopentenyl groups can be ameliorated via detoxification by CDK5RAP1-mediated methyl-

thiolation (Figure S4E).

We next investigated whether the elevated expression levels of CDK5RAP1 conferred an antiautophagic

phenotype to GICs. For this purpose, we transduced control red fluorescent protein (RFP) (pTomo-RFP)

or murine Cdk5rap1 (pTomo-mCdk5rap1) into JKGIC2 cells (Figure 4I). Cdk5rap1 promoted the growth ca-

pacity of JKGIC2 and elevated the expression levels of the undifferentiated marker Nestin (Figures 4I and

4J). Exogenous Cdk5rap1 significantly attenuated the inhibitory effect of 3–4 mM i6A on the anchorage-in-

dependent growth ability and cell viability of JKGIC2 cells (Figures 4K and S4F). However, overexpression

of Cdk5rap1 failed to attenuate the inhibitory effect of higher concentrations (>6 mM) of exogenous i6A

(Figures 4K and S4F). Taken together, these results suggest that treatment with exogenous i6A induces

excessive autophagy and loss of GIC-related traits. Cdk5rap1 overexpression induces the conversion of

endogenous i6A to ms2i6A on tRNA species, resulting in a decrease in total i6A (endogenous + exogenous

i6A) levels in GICs and consequent attenuation of the inhibitory effect of i6A on the anchorage-independent

growth ability and cell viability of GICs when treated with 3–4 mM i6A. In contrast, when cells are treated with

a high concentration (>6 mM) of i6A, the intracellular i6A level may reach the concentration corresponding to

an antitumor effect. Therefore, the overexpression of Cdk5rap1 fails to attenuate the inhibitory effect of

excessive exogenous i6A.

CDK5RAP1 Balances i6A and ms2i6A Concentrations in GICs in Response to the

Microenvironment

To demonstrate whether CDK5RAP1 regulates endogenous concentrations of i6A and ms2i6A in GICs, we

analyzed [i6A] and [ms2i6A] in mock-, shCDK5RAP1-, and mCdk5rap1-transduced JKGIC1, or JKGIC2 cells

by mass spectrometry. The results showed that the ratio of total [i6A]/[i6A + ms2i6A] was increased in

shCDK5RAP1-transfected cells but decreased in murine Cdk5rap1-overexpressing cells (Figures 5A

and S5A).
48 iScience 21, 42–56, November 22, 2019
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Figure 4. Treatment with N6-isopentenyladenosine (i6A) Induces Excessive Autophagy and Loss of GIC-Related Traits

(A) Representative images of immunostaining with an anti-ms2i6A antibody andMitoTracker in JKGIC2 cells. Note that the intracellular distribution of ms2i6A

is limited to the mitochondria. Scale bars, 20 mm.

(B) Treatment with i6A, but not ms2i6A, for 24 h induces increases in LC3-II levels in JKGIC2 cells. GAPDH served as a loading control. The same results were

reproduced three times.

(C) Treatment with i6A, but not ms2i6A, activates the autophagic program in JKGIC2 cells.

(D) Treatment with i6A for 24 h induces LC3 puncta formation in JKGIC2 cells.

(E) Quantification of primary spheres formed by JKGIC2 cells treated with i6A or ms2i6A. Treatment with i6A reduces the number of spheres, but this reduction

is not rescued by the further addition of ms2i6A. Each bar represents the SD value from four independent replicates. *p < 0.05.

(F and G) Immunoblotting (F) and immunostaining (G) indicate that treatment with i6A, but not ms2i6A, decreases the protein levels of Nestin and Sox2 in

JKGIC2 cells.
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Figure 4. Continued

(H) Quantification of primary spheres formed by JKGIC2 cells (2,000/well) transfected with shRNAs against ATG5 and i6A. ATG5 knockdown successfully

rescues the i6A-induced loss of stemness in JKGIC2 cells. Each bar represents the SD value from four independent replicates. *: p < 0.05.

(I and J) Exogenous transduction of murine Cdk5rap1 increases the amount of Nestin protein (I) and the number of spheres formed by JKGIC2 cells

(2,000/well) (J). Each bar represents the SD value from four independent replicates. *p < 0.05.

(K) Ectopic expression of murine Cdk5rap1 prevents the loss of anchorage-independent growth ability in JKGIC2 due to exogenous treatment with 4 and

8 mM i6A. The data are presented as the number of spheres formed from 2,000 cells. Each bar represents the SD value from four independent replicates.

*p < 0.05.

Also see Figure S4.
Because the biochemical reaction of CDK5RAP1-mediated 2-methylthio conversion of i6A is strictly regu-

lated within the mitochondria and is detected solely in mt-tRNAs (Fakruddin et al., 2017) and because

ms2i6A is predominantly enriched in cell culture medium (�9.6 times more than the concentration inside

cells, Figure S5B), these data suggest that CDK5RAP1 decreases [i6A] by promoting the 2-methylthio con-

version of i6A in the mitochondria and that the consequent ms2i6A derived from degraded mt-tRNAs is

excreted (Figure S5C).

Two conserved domains in CDK5RAP1, namely, UPF0004 and the radical SAM domain, are essential for

CDK5RAP1 activity (Fakruddin et al., 2017). The cysteine residues in these domains are required for the

interaction with both [4Fe-4S] clusters, which provide the sulfur atoms for interactions with i6A molecules

(Figure 5B). Given that [4Fe-4S] clusters are stable under anoxic conditions (Crack et al., 2007), we specu-

lated that CDK5RAP1 was activated under hypoxic conditions. To test this possibility, we performed

quantitative PCR measurements of tRNA 2-methylthio modifications. We extracted total RNA from GICs

cultured in the presence of either 21% or 1%O2. Thems2i6Amodifications in eachmt-tRNA are represented

as a modification index (M.I.) as reported previously (Figure S5D) (Xie et al., 2013). As expected, hypoxic

culture conditions significantly increased the M.I. of each CDK5RAP1-targeted mt-tRNA, whereas hypoxic

conditions had no effect on the expression of the tRNAs (Figures 5C and S5E). Consistent with this

outcome, as observed in mCdk5rap1-overexpressing JKGIC1 and JKGIC2 cells, the ratio of total [i6A]/

[i6A + ms2i6A] under hypoxic conditions was decreased, whereas the ratio of [ms2i6A]/[i6A + ms2i6A]

was increased (Figures 5D and S5F). Hypoxia-inducible factor 1a (HIF-1a) is the inducible subunit of the

HIF-1 transcription factor that regulates the expression of genes involved in the response to hypoxia.

Vascular endothelial growth factor (VEGF) is one of the genes upregulated by HIF-1 (Lin et al., 2004).

VEGF expression was significantly increased in GICs cells cultured under 1% O2 (Figures 5E, S5G, and

S5I). In contrast, there was no difference in the expression level of CDK5RAP1 in cells cultured in the

presence of 21% to 1% O2 (Figures 5F, S5H, and S5J). To further validate that [4Fe-4S] clusters are required

for this reaction, we treated cells with deferoxamine (100 mM) to chelate intracellular Fe ions and measured

the M.I. of the mt-tRNAs, and we found that Fe chelation reduced the M.I (Figure S5K). These data indicate

that CDK5RAP1 activity is controlled by the microenvironment, such as hypoxic conditions and the concen-

tration of intracellular Fe ions.
CDK5RAP1 Activity Is Upregulated in the Hypoxic Region of Human Glioblastoma and Is

Required to Sustain the Sphere-forming Capacity of Malignant Cells but Not Normal Brain

Cells

To gain insights into the contribution of CDK5RAP1 to human glioblastoma multiforme (GBM) pathophys-

iology, we harvested several specimens, including the ‘‘tumor core’’ and ‘‘peritumor normal area,’’ from

three patients with GBM and analyzed the concentrations of i6A and ms2i6A by mass spectrometry. Intrigu-

ingly, [i6A] was significantly increased in the tumor core compared with that in the peritumor normal area in

all cases (Figure 6A). Following the logic established by these observations and the above-mentioned data,

we hypothesized that glioblastoma cells require CDK5RAP1 activity to detoxify i6A to protect cells from

excessive autophagy. However, the expression level of CDK5RAP1 in the tumor core was the same as

that in the peritumor normal area (Figure 6B). Because the GBM core is known to be hypoxic (Fujimura

et al., 2013), we speculated that CDK5RAP1 activity was upregulated in the tumor core of GBM specimens.

RT-PCR analysis of a HIF target gene, VEGF, indicated that the tumor core was more hypoxic than the peri-

tumor normal area (Figure 6C). As expected, mass spectrometry analysis showed that [ms2i6A] in the tumor

core was higher than that in the peritumor normal area (Figure 6D). Immunofluorescence analysis revealed

that Nestin-positive tumor cells overlapped with ms2i6A-positive tumor cells in the tumor core area,

whereas ms2i6A-negative tumor cells did not overlap with Nestin-positive cells (Figure 6E), suggesting
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Figure 5. CDK5RAP1 Balances i6A and ms2i6A Concentrations in GICs in Response to the Microenvironment

(A) Mass spectrometry analysis of [i6A] and [ms2i6A] from the lysates of shControl- and shCDK5RAP1-, RFP-, mCdk5rap1-

transfected JKGIC2 cells. Note that CDK5RAP1 knockdown induces an increase in the relative [i6A] in GICs, whereas

CDK5RAP1 overexpression reduces the relative [i6A]. Each bar represents the SD value from three independent

replicates. *p < 0.05.

(B) Schematic representation of the molecular characteristics of CDK5RAP1. Cysteine residues in the UPF0004 and radical

SAM domains are crucial for the stabilization of the [4Fe-4S] clusters. The mitochondria localization signal (MLS) allows

CDK5RAP1 to localize to the mitochondria. The TRAM domain is predicted to interact with tRNA species.

(C) The M.I. of ms2i6A corresponding to each mt-tRNA and tRNA expression level in JKGIC2 cells cultured in the presence

of 21% and 1% O2. The M.I.s in all CDK5RAP1-targeted tRNA species are increased under hypoxic conditions, but tRNA

expression is not. The data are presented as theM.I. relative to the cells cultured under normoxia. Each bar represents the

SD value from two independent replicates. For the procedure regarding the measurement of M.I., also see Figure S5D.

(D) Hypoxic conditions decrease intracellular [i6A] and increase the secretion of ms2i6A by JKGIC2 cells. The data are

presented as the percentage of the levels under normoxia. Each bar represents the SD value from three independent

replicates. *p < 0.05.

(E and F) Hypoxic conditions significantly increased the expression levels of VEGFmRNA (E) but not CDK5RAP1mRNA (F)

in JKGIC2 cells. Each bar represents the SD value from four independent replicates. *p < 0.05.

Also see Figure S5.
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Figure 6. CDK5RAP1 Is Essential for Sustaining the GIC-Related Traits of GICs but Not That of Normal Brain Cells

(A) Left: Representative MR image and H&E staining of the brain tissue in a patient (case 1) with GBM. Tumor core and peritumor samples were harvested to

extract RNA and nucleosides. Right: Mass spectrometry analysis of relative [i6A] shows that [i6A] is increased in the tumor core. Each bar represents the SD

value from three independent replicates. *p < 0.05 versus the peritumor sample.

(B) Expression levels of CDK5RAP1 in human GBM specimens from the tumor core and peritumor areas are not significantly different. n = 5 per sample type.

(C) Expression level of VEGF in the peritumor and tumor core areas of patients with GBM. n = 5 per sample type.

(D) Mass spectrometry analysis of relative [ms2i6A] in the peritumor and tumor core areas of specimens from patients with GBM. Each bar represents the SD

value from three independent replicates. *p < 0.05 versus the peritumor sample.

(E) Representative images of immunofluorescence analysis with anti-ms2i6A and anti-Nestin antibodies in the tumor core of patients with GBM. Note that the

ms2i6A-positive cells and Nestin-positive cells overlap.

(F) Untreated NSCs, NSCs transformed with oncogenic lentiviruses, and mouse primary neurons transformed with oncogenic lentiviruses (all from

Cdk5rap1fl/fl mouse brains) either with or without transduced adenoviruses harboring Cre recombinase were subjected to the sphere formation assay.
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Figure 6. Continued

Transformed cells but not NSCs require Cdk5rap1 to sustain their anchorage-independent growth capacity. The data are presented as the number of

spheres formed from 2,000 cells. Each bar represents the SD value from four independent replicates. *p < 0.05.

(G) Representative data of the gliosphere initiation assay. Primary astrocytes from wild-type or Cdk5rap1fl/fl mouse brains were infected with Cre-inducible

HRasG12V-expressing pTomo lentiviruses. The cells were further infected with adenoviruses harboring Cre recombinase to activate HRasG12V and recombine

out the Cdk5rap1 alleles and were cultured in GIC medium for 7–10 days. The numbers of initiated spheres from 50,000 cells were counted. n = 4 per

condition. For the procedure of the gliosphere initiation assay, see Figure S6. Cdk5rap1 is required to initiate the formation of gliospheres from primary

astrocytes.

(H) Quantification of secondary, tertiary, and quaternary spheres formed by the transformed astrocytes harvested from the gliosphere initiation assay

described in (G). Cdk5rap1 is required to sustain the self-renewal capacity of the transformed cells. The data are presented as the number of spheres formed

from 2,000 cells. Each bar represents the SD value from four independent replicates. *p < 0.05.

Also see Figure S6.
that CDK5RAP1, upon activation under hypoxic conditions, promotes the maintenance of GIC-related

traits.

To demonstrate whether CDK5RAP1 activity was required for the traits of only GICs but not normal neural

stem cells (NSCs), we prepared NSCs and primary neurons from Cdk5rap1fl/fl mouse pups and infected

these cells with control pTomo lentivirus or pTomo-shNF1-shp53 lentivirus. Dual knockdown of NF1

and p53 allowed the neural cells to acquire GIC-related properties within 1–2 weeks as previously re-

ported (Friedmann-Morvinski et al., 2012). After several passages, we further infected the cells with ade-

noviruses harboring Cre recombinase to knockout the Cdk5rap1 alleles from these cells, after which the

cells were subjected to the sphere formation assay. The Cdk5rap1 knockout resulted in a significant reduc-

tion of the anchorage-independent growth in the transformed NSCs and neurons, but not in normal NSCs

(Figure 6F). We further investigated whether Cdk5rap1 was required for the acquisition of GIC-related

traits (i.e., gliomagenesis). We transduced Cre-inducible HRasG12V/shp53 into astrocytes from wild-type

and Cdk5rap1fl/fl mouse pups. The infected cells were subjected to sphere formation assays upon ad-

eno-Cre infection, which further recombined out the loxP-RFP-loxP cassette to induce HRasG12V expres-

sion (Figure S6). In the astrocytes from Cdk5rap1fl/fl mice, adeno-Cre infection recombined the Cdk5rap1

alleles out. Using the gliosphere initiation assay, we found that wild-type astrocytes with HRas induction

and p53 knockdown (HRas/shp53) formed numerous spheres, suggesting that the primary astrocytes ac-

quired GIC-related properties. In contrast, the number of spheres in primary astrocytes from Cdk5rap1fl/fl

mice was lower than that in HRas/shp53 astrocytes, suggesting that astrocytes required Cdk5rap1 to

achieve gliomagenesis (Figure 6G). We then harvested and trypsinized the formed spheres and conduct-

ed the sphere formation assay. Similar to the transformed neurons, the anchorage-independent growth of

the cells was reduced upon Cdk5rap1 deletion (Figure 6H). These data clearly demonstrate that

CDK5RAP1 is essential for acquiring and sustaining the GIC-related traits of malignant and transformed

cells but not that of normal NSCs.
DISCUSSION

We previously reported that CDK5RAP1 was responsible for the ms2 modification of mammalian mt-

tRNAs for the Ser (UCN), Phe, Tyr, and Trp codons (Wei et al., 2015). Under stress condition, deficiencies

in ms2 modification impaired mitochondrial protein synthesis, OXPHOS activity, and ATP synthesis in

normal tissues. Although the canonical role of CDK5RAP1 is to regulate the precise translation of mito-

chondrial DNA-encoded genes, even in the knockout mice the effect of loss-of-CDK5RAP1 can be

observed mainly in complex I but not markedly in the other complexes in steady state (Wei et al.,

2015). In the present study, we demonstrate that CDK5RAP1 deficiency induces excessive autophagy

and the consequent loss of GIC-related traits. Importantly, we reveal that these phenomena are indepen-

dent from the regulation of intramitochondrial translation by CDK5RAP1 in GICs, and moreover, we show

that the intramitochondrial translation seems not to contribute to sustain the GIC-related traits (Figures 2

and S2). In GICs, CDK5RAP1 deficiency attenuates the antidotal effect of ms2i6A against i6A in the mito-

chondria, resulting in the promotion of tumor-suppressive effects of i6A. The present study suggests a

novel function of CDK5RAP1-mediated ms2 modification corresponding to the detoxification of i6A

in the mitochondria; GICs readily exploit this function to survive. We propose mitochondria as the sole

antidotal machinery against i6A, which causes excessive autophagy and the consequent loss of GIC-

related traits. The data presented here add a new layer of the function of chemical modification in mito-

chondrial tRNAs.
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The present study showed that CDK5RAP1 was essential for acquiring and sustaining the GIC-related traits

of malignant and transformed cells but not that of normal NSCs by the conversion of i6A toms2i6A. A recent

study showed lower proliferation and differentiation capabilities in NSCs in an adult rodent model of se-

vere motor deprivation and a significant reduction in Cdk5rap1 expression in NSCs in the model (Adami

et al., 2018). Although it is unclear that a reduction in Cdk5rap1 expression impairs proliferation and differ-

entiation capabilities in NSCs, the canonical function and the regulation of precise translation of the mito-

chondrial protein may be involved in the proliferation and differentiation of NSCs. Thus, the functions of

CDK5RAP1 may differ between NSCs and GICs.

In glioblastoma specimens, i6Awas enriched in the tumor core area. Consistentwith this, the expression levels of

TRIT1, amitochondrial tRNA isopentenyl transferase, were elevated inmalignant tissues from the REMBRANDT

cohort (REpository for Molecular BRAin Neoplasia DaTa, http://www.betastasis.com/glioma/rembrandt/). Such

environmental conditions can promote excessive autophagy in GICs and consequently repress GIC-related

properties, as demonstrated by the present study. To survive in this microenvironment, GICs require robust

CDK5RAP1 activity. However, the expression of CDK5RAP1 in the tumor core was the same as that in the peri-

tumoral normal area. Therefore, it may be important for GICs to survive under hypoxic conditions, such as those

in the tumor core, to activate CDK5RAP1. CDK5RAP1 has two [4Fe-4S] clusters, which are essential for its enzy-

matic activity and are sensitive to oxygen (Wei et al., 2015). As shown in the present study, the activity of

CDK5RAP1 was drastically increased under hypoxic conditions, although its expression was not induced under

these conditions (Figures 5C–5F). The hypoxic area is known to harbor a subset of cells, known as CSCs, that

have stem cell-like properties due to the induction of stemness genes such as Oct4, c-myc, and Nanog. More-

over, hypoxia induces drug resistance in GICs by activating several pathways mediated by COX-2, the PI3K

pathway, AP1, c-Jun, Pim1, or Stat3 (Jalota et al., 2018). Our findings suggest a novel importance of the hypoxic

environment for the survival and maintenance of GIC-related traits. Thus, GICs likely require continuous activa-

tion of CDK5RAP1.

The results of the present study show that CDK5RAP1 deficiency induces excessive autophagy and the

consequent loss of stemness in GICs but not in normal neurons or NSCs. The Warburg effect is a metabolic

phenomenon characterized by increased glycolytic activity, decreased mitochondrial oxidative phosphor-

ylation, and lactate production and is often observed in GICs (Koppenol et al., 2011). Functional differences

in CDK5RAP1 between normal cells and GICs may be due to the difference in the metabolic phenotypes of

the mitochondria in the cells.

A number of studies have shown that exogenous application of i6A has a strong antitumor effect in vitro

(Castiglioni et al., 2013; Ciaglia et al., 2017; Laezza et al., 2009; Rajabi et al., 2010; Ranieri et al., 2018). In

agreement with previous studies, the present study showed that i6A inhibited the GIC-related traits and

induced autophagic cell death and that exogenous i6A was not converted to ms2i6A by CDK5RAP1. These

results suggest that i6A is a promising therapeutic molecule to target GICs. However, a higher concentra-

tion (>4 mM) of exogenous i6A was required for the antitumor effect against GICs. The effective concentra-

tion of exogenous i6A seems to be much higher than endogenous i6A produced from degraded tRNAs.

Importantly, the level of intracellular i6A when treated with 4 mM i6A was consistent with that in

shCDK5RAP1-transfected JKGIC2 cells (Figure S4A). These results suggest that the membrane perme-

ability of i6A is poor and/or that exogenous i6A is rapidly excreted after entering GICs. It may be important

for clinical applications to develop delivery systems that can effectively deliver and maintain i6A in GICs.

Moreover, i6A was significantly enriched in the tumor core where GICs are abundant, suggesting that

i6A alone may be ineffective in combating GICs in the hypoxic tumor core that have constitutively active

CDK5RAP1. Despite the antitumor effect of i6A in vitro, few studies have shown this effect in vivo. It may

be important to combine i6A administration with CDK5RAP1 downregulation by either an iron chelator

or shRNAs against CDK5RAP1.

In conclusion, CDK5RAP1-mediated modification of mitochondrial tRNAs is crucial for not only the precise

translation of mitochondrial DNA-encoded proteins in normal tissues but also the detoxification of endog-

enous i6A in GICs. GICs readily utilize this mechanism to survive.
Limitations of the Study

In this study, we were unable to generate CDK5RAP1 knockout GICs because the cells could not grow.

Therefore, we used the knockdown cells in all experiments.
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All methods can be found in the accompanying Transparent Methods supplemental file.
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TRANSPARENT METHODS 

 

Cell Lines and Culture 

Japan Kumamoto glioma-initiating cell (JKGIC) lines 1, 2, and 5 were used; these are 

patient-derived cell lines established at the Department of Neurosurgery, Kumamoto 

University Hospital. JKGIC1 cells were obtained from a 68-year-old male GBM patient, 

JKGIC2 cells were obtained from a 78-year-old female GBM patient, and JKGIC5 cells 

were obtained from a 70-year-old female GBM patient. The patients underwent tumor 

resection at our department, and primary GICs were cultured from the tumors. The 

tumors were washed with PBS (Thermo Fisher Scientific, Waltham, MA), cut into 

small pieces and minced. The minced tumors were subjected to trypsinization with 

0.05% trypsin-EDTA (Wako, Tokyo, Japan) for 10 min at 37°C and plated. Study 

approval was obtained from the research ethics committee of Kumamoto University 

(Approval number: genome 231). GICs were grown in DMEM/Ham’s F-12 with 

L-glutamine (Wako) supplemented with 10% BIT9500 (STEMCELL Technologies, 

Vancouver, Canada), 20 ng/ml basic fibroblast growth factor (Wako), 20 ng/ml 

epidermal growth factor (Wako), and 100 U/ml penicillin and streptomycin (Thermo 

Fisher Scientific) at 37°C in an environment containing 5% CO2. 

 

Xenograft experiments with patient-derived GICs. 

For the xenograft tumor models, we used patient-derived GICs. We injected cells into 

6-week-old female ICR-nu nu/nu mice and 6-week-old male BALB/c-nu 



 

(CAnN.Cg-Foxn1nu/CrlCrl)) mice to establish intracranial tumor xenograft models and 

subcutaneous xenograft models, respectively (all mice were obtained from Charles 

River Laboratories Japan, Yokohama, Japan). For the Kaplan-Meier analysis of survival, 

we defined endpoints as the time when the mice began to display neurological 

dysfunctions such as hemiparesis, were moribund or exhibited more than 20% weight 

loss. All procedures were approved by the Animal Ethics Committee of Kumamoto 

University (Approval ID: A29-016). 

To generate the subcutaneous tumor xenograft model, we transduced JKGIC1, 

JKGIC2, and JKGIC5 cells with lentiviral vectors expressing shCDK5RAP1 or 

shControl. Equal numbers of cells (5 X 106 cells/100 µl) in PBS with 50% Matrigel® 

Matrix (Corning, Bedford, MA) were injected into both flanks (100 µl/side). 

 To generate the intracranial tumor xenograft model, we transduced JKGIC2 cells with 

lentiviral vectors expressing shCDK5RAP1 or shControl. The cells were diluted to 

equal concentrations (1 X 105 cells/µl) in PBS. At 1 to 2 weeks before cell injection, an 

implantable guide-screw system for intracranial injection was established as previously 

described (Lal et al., 2000). A 2.6-mm guide screw was implanted into a cranial hole 

made 2.5 mm lateral and 1 mm anterior to the bregma. Cells were injected (5 µl/hole of 

the guide screw) using a Hamilton syringe (Hamilton, Reno, Nevada). 

 

Human Tissue Sample Collection and Studies 



 

Tumor and peritumor (adjacent normal) tissues were collected from GBM patients 

treated at Kumamoto University Hospital. Tissues were used to assess gene expression 

levels, immunofluorescence staining, and mt-tRNA modifications as well as to perform 

LC-MS/MS. Approval was sought and obtained from the research ethics committee of 

Kumamoto University (Approval number: genome 231). 

 

Mass spectrometry analysis of A, i6A and ms2i6A. 

Mass spectrometry analysis was performed to measure the levels of adenosine (A), 

N6-isopentenyladenosine (i6A) and 2-methylthio-N6-isopentenyladenosine (ms2i6A) in 

the cell culture medium and tumor tissues. To extract nucleosides from the culture 

medium, we used a MonoSpinTM C18 (GL Sciences, Tokyo, Japan) according to the 

manufacturer’s instructions. To extract intracellular nucleosides, we washed the cells 

three times with PBS and then homogenized them with 500 µl methanol. To extract 

nucleosides from tumor tissues, we homogenized the tissues by TissueRuptor (Qiagen, 

Venlo, Netherlands) in 500 µl methanol. The extracts were cleared by centrifugation at 

10,000 rpm for 5 min. The supernatant was evaporated with a Savant Speed Vac 

SPD1010 (Thermo Fisher Scientific), and the pellet was resuspended in ultrapure water 

(Wako). The samples were analyzed with a triple-quadruple mass spectrometer 

(LCMS-8050, Shimazu, Kyoto, Japan) equipped with an electrospray ionization (ESI) 

source and a liquid chromatography system (Shimazu). A, i6A and ms2i6A were 

detected by a multiple reaction monitoring (MRM) method in the positive ion mode. 



 

The MRM parameters were as follows: A (precursor ion: m/z 268.0, product ion: m/z 

136.0, collision energy: 17.0), i6A (precursor ion: m/z 336.2, product ion: m/z 204.0, 

collision energy: 15.0), and ms2i6A (precursor ion: m/z 382.2, product ion: m/z 182.0, 

collision energy: 29.0). 

 

i6A and ms2i6A Treatment 

GICs were seeded at approximately 80% confluence. The medium was removed and 

replaced with new medium containing different concentrations of i6A (Wako) or ms2i6A 

(Wako). After 24 hours, immunocytochemical analysis was performed. Total proteins 

and nucleosides were extracted from cells 24 hours after i6A and ms2i6A treatment. 

Sphere formation assays were performed one week after the treatment. 

 

Lentiviral Preparation and Infection 

Lentiviral vectors were used for gene silencing or gene expression. For lentivirus 

production, we cultured 293FT cells in DMEM (Thermo Fisher Scientific) 

supplemented with 10% FBS (Corning) and 100 U/ml penicillin and streptomycin 

(Thermo Fisher Scientific) at 37°C and 5% CO2. Lentiviral vectors (10 µg) with the 

packaging vectors psPAX2 (7.5 µg) and pMD2.G (2.5 µg) were transiently transfected 

into 293FT cells using TransIT®-LT1 Transfection Reagent (Mirus Bio, Madison, WI) 

and Opti-MEM™ (Thermo Fisher Scientific). At 8-12 hours after transfection, the 

medium was changed. On the third day after transfection, viral supernatant was 



 

collected and filtered through a 0.45 µm sterile filter unit containing a Durapore® PVDF 

membrane (Millipore, Darmstadt, Germany). Approximately 500-1,000 µl viral 

supernatant was used to infect GICs in a 25 cm2 flask. The shRNA sequences are shown 

in the SUPPLEMENTAL TABLE (Table S1: Sequences). 

 

Sphere Formation Assay 

GICs were plated at 2,000 cells per well and grown at 37°C in an atmosphere containing 

5% CO2. After 1 week, the number of spheres per well (from 2,000 cells) was counted. 

To distinguish between independent spheres and improve our ability to count the 

number of spheres, we used ultra-low attachment 24-well plates (Corning). After the 

primary assay, the cells were replated at 2,000 cells per well, and secondary sphere 

formation assays were performed. For each condition, we prepared 4 technical 

replicates and performed 3 independent experiments unless otherwise noted. 

 

Immunofluorescence Staining 

Tissues were fixed overnight in formalin, embedded in paraffin and sliced into 

4-µm-thick sections. After deparaffinization, Protease XXV (Thermo Fisher Scientific) 

was added to the sections for antigen retrieval, and the sections were then processed for 

immunofluorescence staining. The cells were fixed for 15 min at room temperature with 

4% PFA, after which they were subjected to the following process: blocking with 5% 

donkey serum in PBST (0.2% Triton X-100 in PBS) for 1 hour at room temperature, 



 

incubation with primary antibodies diluted with 5% donkey serum in PBST at 4°C 

overnight, and incubation with secondary antibodies diluted with 5% donkey serum in 

PBST at room temperature for 2 hours. The dilutions of primary and secondary 

antibodies were set according to the manufacturers’ instructions. To label cell nuclei, 

we counterstained the samples with ProLong™ Gold Antifade Mountant with DAPI 

(Thermo Fisher Scientific). Images were obtained with an FV3000 confocal microscope 

(Olympus, Tokyo, Japan). A Fluorescein In Situ Cell Death Detection Kit 

(Sigma-Aldrich, St. Louis, Missouri) was used for the detection of apoptosis based on 

labeling of DNA strand breaks (TUNEL). The antibodies used are shown in the 

SUPPLEMENTAL TABLE (Table S2: Antibodies). For each experiment, we prepared 

2 technical replicates and performed at least 2 independent experiments unless 

otherwise noted. 

 

Immunoblotting (Western Blotting) 

Proteins were extracted from cells with lysis buffer (20 mM Tris-HCL (pH 7.5), 1 mM 

EDTA-2Na, 1% Triton X-100, and PhosSTOP cocktail (1 tablet/10 ml)). The collected 

and lysed cells were homogenized with SONIFIER 250 (BRANSON, Danbury, CT) 

and cleared by centrifugation at 15,000 rpm and 4°C for 15 min. Protein concentrations 

were determined using a Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific). 

Equal amounts of proteins were electrophoresed on a 6-12% gradient acrylamide gel 

with Precision Plus ProteinTM Dual Color Standards (Bio-Rad, Hercules, CA) and 



 

transferred to PVDF membranes (Millipore). The membranes were blocked with 0.5% 

skim milk in TBST at room temperature for 1 hour, and blotting was performed by 

incubating the membranes with primary antibodies at 4°C overnight. Secondary 

antibodies were then incubated with the membranes at room temperature for 1 hour. 

Detection was performed with AmershamTM ECLTM Prime Western Blotting Detection 

Reagent (GE Healthcare, Fairfield, CT). The dilutions of the primary and secondary 

antibodies were used according to the manufacturers’ instructions. The antibodies used 

are shown in the SUPPLEMENTAL TABLE (Table S2: Antibodies). We performed at 

least 2 independent experiments unless otherwise noted. 

 

RNA Isolation and Quantitative RT-PCR 

Total RNA from cells and tissues were isolated using TRIzol reagent (Thermo Fisher 

Scientific) and processed according to the manufacturer’s instructions. The isolated 

RNA was diluted to 50 ng/µl. Recombinant DNase I (Takara, Shiga, Japan) was added 

to the isolated RNA and incubated for 20 min at 37°C. The RNA was then 

reverse-transcribed into cDNA using PrimeScriptTM RT Master Mix (Takara). 

Quantitative RT-PCR was performed using gene-specific primers and SYBR Premix Ex 

TaqTM (Takara). The sequences of gene-specific primers (18S as a reference) are shown 

in the SUPPLEMENTAL TABLE (Table S1: Sequences). For each condition, we 

prepared 2 technical replicates and performed 2 independent experiments unless 

otherwise noted. 



 

 

Modification Index of mitochondrial tRNA 

To determine the ms2i6A modification in mitochondrial tRNAs, we adopted the 

quantitative PCR-based method, which we previously reported (Xie et al., 2013). 

Briefly, DNase I-treated total RNA were denatured at 65°C for 10min, and were used 

for cDNA synthesis with mitochondrial tRNA-specific primers (reverse r1 or reverse r2). 

Then, qPCR was performed with a primer set of forward (fw) and reverse r1 (rev1). The 

Ct number was obtained from the qPCR with cDNA templates of fw/rev1 and fw/rev2. 

The difference of the number of Ct(fw/rev1) and Ct(fw/rev2) is defined as the M.I. We 

reported that the M.I. reflected the absolute quantification of ms2 measured by 

mass-spectrometry.  

 

Histology 

Tumor and brain tissues were fixed overnight in formalin, embedded in paraffin and 

sliced into 4-µm-thick sections for histological examination. Hematoxylin and eosin 

(H&E) staining was performed with a standard method. 

 

Assays to examine mitochondrial functions 

The oxygen consumption rate (OCR) was determined with a Seahorse XF24 Analyzer 

(Agilent Technologies, Santa Clara, CA). JKGIC2 cells were plated at a density of 

70,000 cells per well for measurement. Oligomycin (6.3 µM), FCCP (9 µM), rotenone 



 

(5 µM) and antimycin (5 µM) were used as metabolic inhibitors. All assays were 

performed according to the manufacturer’s instructions. 

 

Electron microscopy 

JKGIC2 cells were transduced with lentiviral vectors expressing shCDK5RAP1 or 

shControl. At 4 days after infection, the cells were fixed with 2% glutaraldehyde and 

2% paraformaldehyde, further fixed with osmium tetroxide, embedded in epoxy resin, 

sliced, and examined with an electron microscope (HITACHI Electron Microscope 

Model H-7650). 

 

Quantification and statistical analyses. 

The data were analyzed using Microsoft Excel (Microsoft, Washington), GraphPad 

Prism (GraphPad, La Jolla, CA) and StatMate III (ATMS, Tokyo, Japan) software. Data 

are expressed as the mean ± SD. Student’s t test was used to assess the differences 

between two groups. One-way analysis of variance (ANOVA) was used to assess the 

differences among multiple groups followed by t-test with Bonferroni correction of the 

P value between two groups. The log-rank test and Kaplan-Meier method were used to 

compare the survival distributions between two groups. P < 0.05 was considered 

statistically significant. 
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Table S1. Sequences of Primer and shRNA. Related to methods. 
The ribosomal 18S gene was used as a reference gene for quantitative RT-PCR. 
Primers Sequences 
Cdk5rap1 
(Human) forward 

ATGGCTGCCAGATGAATGTGA 

Cdk5rap1 
(Human) reverse 

CTCTTGGAGGTTACTGGTCCG 

Cdk5rap1 (Mouse) 
forward 

CCATGTGCTGGGTGTTGCTTA 

Cdk5rap1 (Mouse) 
reverse 

TCTGCCTTCCTAGAAGTTCATCC 

18S forward GTAACCCGTTGAACCCCATT 
18S reverse CCATCCAATCGGTAGTAGCG 
Sox2 forward TACAGCATGTCCTACTCGCAG 
Sox2 reverse GAGGAAGAGGTAACCACAGGG 
Olig2 forward TGGCTTCAAGTCATCCTCGTC 
Olig2 reverse ATGGCGATGTTGAGGTCGTG 
POU3F2 forward CGGCGGATCAAACTGGGATTT 
POU3F2 reverse TTGCGCTGCGATCTTGTCTAT 
SALL2 forward CCCCTGATCTTGGAAGAGCTA 
SALL2 reverse CACCGTCTGGCCTAAGGAG 
CD44 forward TCCAACACCTCCCAGTATGACA 
CD44 reverse GGCAGGTCTGTGACTGATGTACA 
CD133 forward TTCTTGACCGACTGAGACCCA 
CD133 reverse TCATGTTCTCCAACGCCTCTT 
VEGF forward AGGGCAGAATCATCACGAAGT 
VEGF reverse AGGGTCTCGATTGGATGGCA 
DLL3 forward ACATGTGCAGATGGACCCTG 
DLL3 reverse AAAAGGTAGCGCTGAGGGTC 
BCAN forward ACCTAGCATCCCCATCACCT 
BCAN reverse GAAGTCCTGTTCCTCGGGTG 
NCAM1 forward CCTATCCCAGTGCCACGATC 
NCAM1 reverse ATCCTCTCCCATCTGCCCTT 
NKX2.2 forward ACCAACACAAAGACGGGGTT 
NKX2.2 reverse TGTAGCGGTGGTTCTGGAAC 
ASCL1 forward CAGCCTGTTTCTTTGCCACG 



ASCL1 reverse GTCGTTGGAGTAGTTGGGGG 
CHI3L1 forward TACGGCATGCTCAACACACT 
CHI3L1 reverse TGCCCATCACCAGCTTACTG 
VIM forward CTCTGGCACGTCTTGACCTT 
VIM reverse ACGAAGGTGACGAGCCATTT 
RelB forward CATCAGAGCTGCGGATTTGC 
RelB reverse GACACGGTGCCAGAGAAGAA 
TRADD forward CAGCAGAAGGTGGCAGTGTA 
TRADD reverse CACCTTGCGCCATTTGAGAC 
PDPN forward AGGTGCCGAAGATGATGTGG 
PDPN reverse GCGAGTACCTTCCCGACATT 
mt-tRNATyr 
forward 

GCTGAGTGAAGCATTGGACT 

mt-tRNATyr 
reverse r1 

AACCCCTGTCTTTAGATTTACA 

mt-tRNATyr 
reverse r2 

AGAGGCCTAACCCCTGTCTT 

mt-tRNASer 
forward 

GAGGCCATGGGGTTGG 

mt-tRNASer 
reverse r1 

CCCAAAGCTGGTTTCAAGC 

mt-tRNASer 
reverse r2 

AATCGAACCCCCCAAAGC 

mt-tRNATrp 
forward 

GGTTAAATACAGACCAAGAGC 

mt-tRNATrp 
reverse r1 

CAACTTACTGAGGGCTTTGAA 

mt-tRNATrp 
reverse r2 

TTAAGTATTGCAACTTACTGAGG 

shRNA Sequences 
shCDK5RAP1 #1 
(Human) 

CCGGGGCTTTACCACCAACTATAAACTCGAGTTTATAGTTGG
TGGTAAAGCCTTTTT 

shCDK5RAP1 #2 
(Human) 

CCGGCCAATCTCAGTCGTGGCTTTACTCGAGTAAAGCCACGA
CTGAGATTGGTTTTT 

shCDK5RAP1 #5 
(Human) 

CCGGTGGAGTTAGTTCACCATATTACTCGAGTAATATGGTGA
ACTAACTCCATTTTT 



shTUFM #1 
(Human) 

CCGGGCTCACCGAGTTTGGCTATAACTCGAGTTATAGCCAAA
CTCGGTGAGCTTTTT 

shTUFM #2 
(Human) 

CCGGCAGCCAATGATCTTAGAGAAACTCGAGTTTCTCTAAGA
TCATTGGCTGTTTTT 

shTSFM #1 
(Human) 

CCGGCTCCTTTGTAAATTGCAAGAACTCGAGTTCTTGCAATTT
ACAAAGGAGTTTTT 

shTSFM #2 
(Human) 

CCGGCAGGAAGGAAACACAACTGTACTCGAGTACAGTTGTGT
TTCCTTCCTGTTTTT 

shAtg5 #1 
(Human) 

CCGGCCTGAACAGAATCATCCTTAACTCGAGTTAAGGATGAT
TCTGTTCAGGTTTTT 

shAtg5 #2 
(Human) 

CCGGCCTTTCATTCAGAAGCTGTTTCTCGAGAAACAGCTTCT
GAATGAAAGGTTTTT 

  



Table S2. The antibodies used. Related to methods. 
 
Antibodies SOURCE IDENTIFIER Dilutions 

Anti-GAPDH 
Santa Cruz 
Biotechnology  

Catalog # sc-47724 
WB (1:1000) 

Anti-Nestin Sigma-Aldrich  Catalog # N5413 
WB (1:1000) 
IF (1:200) 

Anti-Sox2 
Santa Cruz 
Biotechnology  

Catalog # sc-17320 
WB (1:1000) 
IF (1:100) 

Anti-Olig2 R&D Systems Catalog # AF2418 WB (1:1000) 

Anti-Brn2/POU3F2 
Cell Signaling 
Technology  

Catalog # 12137S 
WB (1:1000) 

Anti-SALL2 Bethyl 
Catalog # 
A303-208A 

WB (1:1000) 

Anti-YAP/TAZ 
Cell Signaling 
Technology 

Catalog # 8418 
IF (1:100) 

Anti-MTCO1 Abcam Catalog # ab14705 WB (1:1000) 

Anti-Cleaved Caspase-3 
Cell Signaling 
Technology  

Catalog # 9661 
WB (1:1000) 

Anti-mTOR 
Cell Signaling 
Technology  

Catalog # 2983 
WB (1:1000) 

Anti-mTOR, phospho 
Cell Signaling 
Technology  

Catalog # 2976 
WB (1:1000) 

Anti-p70 S6 Kinase 
Cell Signaling 
Technology  

Catalog # 2708 
WB (1:1000) 

Anti-p70 S6 Kinase, 
phospho 

Cell Signaling 
Technology  

Catalog # 9208S 
WB (1:1000) 

Anti-Human LC3 MBL International  Catalog # PM036 
WB (1:1000) 
IF (1:200) 

Anti-AMPK alpha 
Cell Signaling 
Technology  

Catalog # 2535 
WB (1:1000) 

Anti-AMPK-alpha, 
phospho 

Cell Signaling 
Technology  

Catalog # 5831 
WB (1:1000) 

Anti-ms2i6A Millipore 
Catalog # 
MABS1280 

IF (1:100) 

Anti-Cytochrome b Santa Cruz Catalog # sc-9509 WB (1:1000) 



Anti-ND6 Santa Cruz 
Catalog # 
sc20510-R 

WB (1:1000) 

Anti-Mouse IgG Dako Catalog # P0447 WB (1:2000) 

Anti-Rabbit IgG 
Thermo Fisher 
Scientific 

Catalog # 
P2771MP 

WB (1:2000) 

Anti-Goat IgG Dako Catalog # P0449 WB (1:2000) 
Anti-Goat IgG, Alexa 
Fluor 555 

Thermo Fisher 
Scientific 

Catalog # A-21432 
IF (1:500) 

Anti-Rabbit IgG, Alexa 
Fluor 488 

Thermo Fisher 
Scientific 

Catalog # A-11034 
IF (1:500) 

Anti-Rabbit IgG, Alexa 
Fluor 555 

Thermo Fisher 
Scientific 

Catalog # A-21429 
IF (1:500) 

Anti-Mouse IgG, Alexa 
Fluor 488 

Thermo Fisher 
Scientific 

Catalog # A-11029 
IF (1:500) 
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