

Draft Manuscript for Review

Transition from plume-driven to plate-driven magmatism in the evolution of Main Ethiopian Rift

Journal:	Journal of Petrology
Manuscript ID	JPET-Sep-18-0118.R2
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	28-Jun-2019
Complete List of Authors:	Feyissa, Dejene; Institute for Planetary Materials, Okayama University Kitagawa, Hiroshi; Institute for Planetary Matetials, Okayama University, Bizuneh, Tesfaye; Ethiopian Space Science and Technology Institute Tanaka, Ryoji; Okayama University, Institute for Study of the Earth's Interior Kabeto, Kurkura; Addis Ababa Science and Technology University Nakamura, Eizo; Okayama University, Institute for Study of the Earth's Interior
Keyword:	Ethiopian Plateau, Ethiopian Rift, Afar Depression, mantle source, mantle melting

SCHOLARONE[™] Manuscripts

3 4		
5 6 7	1	Transition from plume-driven to plate-driven magmatism in the
8 9 10	2	evolution of the Main Ethiopian Rift
12 13	3	
15 16 17	4	Dejene Hailemariam Feyissa ¹ , Hiroshi Kitagawa ^{1*} , Tesfaye Demissie
18 19 20	5	Bizuneh ^{1, 2} , Ryoji Tanaka ¹ , Kurkura Kabeto ^{1, 3†} and Eizo Nakamura ¹
21 22 23	6	
24 25 26	7	¹ Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University,
27 28 29	8	Yamada 827, Misasa, Tottori 682-0193, Japan
30 31 32	9	² Ethiopian Space Science and Technology Institute, Addis Ababa (5 kilo)
33 34 35	10	³ Addis Ababa Science and Technology University, Addis Ababa, Ethiopia, P.O Box 1647
36 37 38	11	†Deceased
39 40 41	12	
42 43 44	13	*Corresponding author. Email: kitaga-h@okayama-u.ac.jp
45 46 47	14	
48 49		
50 51		
52 52		
55 54		
55 56		
57		
58 59		
60		

16 ABSTRACT

New K-Ar ages, major and trace element concentrations, and Sr-Nd-Pb isotope data are presented for Oligocene to recent mafic volcanic rocks from the Ethiopian Plateau, the Main Ethiopian Rift (MER), and the Afar depression. Chronological and geochemical data from this study are combined with previously published data sets to reveal secular variations in magmatism throughout the entire Ethiopian volcanic region. The mafic lavas in these regions show variability in terms of silica-saturation (i.e., alkaline and sub-alkaline series) and extent of differentiation (mafic through intermediate to felsic). The P-T conditions of melting, estimated using the least differentiated basalts, reveal a secular decrease in the mantle potential temperature, from when the flood basalt magmas erupted (up to 1550 °C) to the time of the rift-related magmatism (<1500 °C). Variations in the Sr-Nd-Pb isotopic compositions of the mafic lavas can account for the involvement of multiple end-member components. The relative contributions of these end-member components vary in space and time owing to changes in the thermal condition of the asthenosphere and the thickness of the lithosphere. The evolution of the Ethiopian rift is caused by a transition from plume-driven to plate-driven mantle upwelling, although the present-day mantle beneath the MER and the Afar depression is still warmer than normal asthenosphere.

33 KEY WORDS: Ethiopian Plateau, Ethiopian Rift; Afar Depression; mantle source; mantle
 34 melting

36 INTRODUCTION

Understanding of the genesis of basaltic magmas in relation to tectonic setting is fundamental
in the petrologic and geochemical disciplines. It is generally accepted that basaltic magmas

are derived, to a first order, by melting of asthenospheric mantle that adiabatically upwells to the base of the lithosphere (McKenzie, 1984). Magma productivity is primarily controlled by the temperature of the melting region; thus voluminous emplacement of basalt, as in Large Igneous Provinces (LIPs), is generally attributed to melting of anomalously hot mantle (White & McKenzie, 1989; White et al., 2008). Compositional heterogeneity is also considered to be an important factor in enhancing magma productivity and diminishing the need for extremely high temperatures in the mantle (Korenaga, 2004; Kitagawa et al., 2008). The LIP basalts in intra-continental plate settings show geochemical evidence for interaction with sub-continental lithosphere, which could result in high magma production through enrichment of volatiles in the melting regions (Arndt & Christensen, 1992; Furman et al., 2016). The Afar province in eastern Africa and adjacent regions is one example of a recent

terrestrial LIP (Fig. 1; White & McKenzie, 1989). Magmatism in the region began with
Oligocene trap formation at about 30 Ma (Jones & Rex, 1974; Hofmann *et al.*, 1997;
Rochette *et al.*, 1998; Ukstins *et al.*, 2002; Coulié *et al.*, 2003; Kieffer *et al.*, 2004; Prave *et al.*, 2016). The ensuing rift-related magmatism has been active over the last *c*. 27–24 Myr in
the Main Ethiopian Rift (MER) and Afar (WoldeGabriel *et al.*, 1990; Chernet *et al.*, 1998;
Ukistins *et al.*, 2002; Bonini *et al.*, 2005; Wolfenden *et al.*, 2005; Feyissa *et al.*, 2017). Trap-

phase magmatism is thought to be the surface manifestation of melting of actively upwelling mantle (i.e., a plume; Hart et al., 1989; Marty et al., 1996; Pik et al., 1998, 1999; Furman et al., 2006a; Beccaluva et al., 2009; Natali et al., 2016). The present-day rift magmatism is also considered to be influenced by the mantle plume (Afar mantle plume), and its thermochemical effect has been intensively discussed in petrologic, geochemical, and geophysical studies. For example, the excess temperature in the mantle has been estimated to be 100-200 °C by petrologic models (Ayalew & Gibson, 2009; Rooney et al., 2012a; Ferguson et al., 2013a; Pinzuti et al., 2013; Armitage et al., 2015), which are consistent with the estimates based upon seismic tomography and receiver function analysis, if the uncertainty of compositional effects is taken into account (e.g., Nyblade et al., 2000; Rychert et al., 2012; Hammond et al., 2013). Persistent upwelling of a buoyant mantle plume is also suggested by the geochemistry of Oligocene to Recent mafic volcanic rocks, such as the occurrence of high ³He/⁴He or high-T magmas throughout this period (Marty et al., 1996; Scarsi & Craig, 1996; Pik et al., 2006; Furman et al., 2006a; Ayalew & Gibson, 2009; Rooney et al., 2012a; Rogers et al., 2010).

Magmatism related to rifting in Ethiopia is still ongoing, and young volcanic activity (early Pleistocene, <2 Ma) occurs in the axial sectors of the MER and Afar. Numerous studies have addressed the petrogenesis of mafic magmas in these sectors in conjunction with

Oligocene trap-phase magmatism (e.g., Hart et al., 1989; Deniel et al., 1994; Pik et al., 1998, 1999, 2006; Kieffer et al., 2004; Furman et al., 2004, 2006a, 2016; Furman, 2007; Rooney et al., 2007, 2012a, 2012b, 2013, 2014a, 2014b; Ayalew & Gibson, 2009; Beccaluva et al., 2009; Shinjo et al., 2011; Natali et al., 2011, 2016; Nelson et al., 2012; Feyissa et al., 2017). However, although temporal variation may provide important constraints on the evolution of magmatism in continental rift regions, it remains uncertain how magmatic activity varied with time. In particular, the relationship between the compositions of erupted magmas and thermal conditions of melting regions beneath this volcanic province needs to be evaluated in more detail. Recent advances in thermobarometry, calibrated using numerous data sets from melting experiments, allows us to estimate the thermal condition of the melting region in the mantle (e.g., Putirka et al., 2007; Putirka, 2008; Lee et al., 2009; Herzberg & Asimow, 2015). Rooney et al. (2012a) applied this approach, and demonstrated that the upwelling of hotterthan-normal mantle has been persistent beneath the Afar and MER regions since 30 Ma. However, the temporal variations in the entire Ethiopian and in adjacent volcanic fields were not fully examined, suggesting the need for further evaluation using data sets including recently published studies (e.g., Ayalew et al., 2016, 2018; Rooney et al., 2014b; Natali et al., 2016).

In this study, we present new K-Ar ages, whole-rock major and trace element

> analyses, and Sr-Nd-Pb isotope data for mafic volcanic rocks from the Ethiopian volcanic province. Our samples include Oligocene mafic rocks from the Maychew area in the northwestern (NW) Ethiopian Plateau and Oligocene to Recent mafic rocks from the rift zones in the southern and northern MER and Afar (Fig. 1). The Maychew rocks include a peculiar type of basalt not yet reported in the NW Plateau (Rooney, 2017), that is strongly alkaline (basanite) and occurs in the basal unit of a lava succession. Such a strongly alkaline basalt provides important constraints on melting conditions and source composition during the onset of Oligocene trap magmatism. We apply thermobarometric calculations to the samples of this study and those presented in previous studies, with careful screening to select the least differentiated magma types, and attempt to constrain the thermal conditions in relation to the chemical variability of the magma source.

- 105 GEOLOGICAL BACKGROUND

Eocene to Quaternary volcanic fields are distributed in three different geological domains in
Ethiopia (Fig. 1; Kazmin, 1979; Berhe *et al.*, 1987; Hart *et al.*, 1989; Ebinger & Sleep, 1998;
GSE, 2005): (1) the rift-bounding plateaus (northwestern, southwestern, and southeastern),
(2) the rift zones (MER) and (3) the rift junction with an associated geological depression

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
∠ I วว
∠∠ วว
23
24 25
25
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
4/
48
49 50
50
57
52 53
54
55
56
57
58
59
60

(Afar). The MER is subdivided into northern, central, and southern sectors, each sector is
denoted as Northern MER (NMER), Central MER (CMER), and Southern MER (SMER),
respectively (Hayward & Ebinger, 1996; Bonini *et al.*, 2005; Corti, 2009). The Afar is also
subdivided three sectors, Northern Afar, Eastern Central Afar, and Southern Afar (Hayward
& Ebinger, 1996; Stab *et al.*, 2015). The geological and geochronological features of each
volcanic region are briefly described below.

117

118 Rift-bounding plateaus (45 Ma to 10 Ma)

Magmatism related to the formation of basalt plateaus occurred during the period from 45–10 119Ma (Rooney, 2017). In the initial phase, the volcanism occurred at 45-34 Ma in southern 120Ethiopia and northern Kenya (Davidson & Rex, 1980; Ebinger et al., 1993; George et al., 1211998). This volcanism was characterized by bimodal eruptions of basalt and rhyolite 122producing intercalated piles of lavas in the Yabello and Amaro areas located in the southeast 123of the southwestern (SW) plateau (Figs 1 and Supplementary Data S1; Amaro-Gamo 124sequence following Ebinger et al., 1993). The lowest unit of the Amaro-Gamo sequence is 125composed mainly of subalkaline basalts (Amaro basalts; Fig. 2b) with ages of 45-40 Ma 126127(Ebinger et al., 1993, George et al., 1998; Yemane et al., 1999). The upper unit of the Amaro-Gamo sequence consists of alkaline basalts (Fig. 2b), termed Gamo basalts, which 128

3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42 42	
43 44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	

1 2

> conformably overlie the Amaro basalts and have been dated at 40-34 Ma (Ebinger et al., 1291993; George et al., 1998; Yemane et al., 1999). The Eocene-Oligocene rhyolitic tuff, termed 130 the Amaro tuff (37.0-35.5 Ma; Ebinger et al., 1993; George et al., 1998), is distributed 131132widely in the Amaro-Kele and Gedeb areas (Supplementary Data Fig. S1) and composed of welded ignimbrites, commonly interbedded or overlain by pyroclastic breccias and ash-fall 133tephra. The second period of flood-basaltic eruptions occurred at 15–7 Ma, and produced lava 134piles of 200-400 m thickness overlying the Amaro-Gamo sequence in the SW plateau. These 135mafic rocks are termed Wollega basalts in reference to their type locality (Fig. 1) and consist 136 of subalkaline and alkaline mafic rocks (Ayalew et al., 1999; Conticelli et al., 1999; Bonini et 137al., 2005). 138In the early Oligocene (c. 31–25 Ma), intense eruptions of basalt (i.e., flood basalt 139140volcanism) occurred in northwest and southeast Ethiopia and western Yemen (Fig. 1; Baker et al., 1996a, b; Hofmann et al., 1997; Rochette et al., 1998; Ukstins et al., 2002; Coulié et 141 al., 2003; Kieffer et al., 2004; Wolfenden et al., 2005; Prave et al., 2016; Rooney et al., 1422018), referred to as the "Oligocene Traps phase" (Rooney, 2017). In Ethiopia, the lava piles 143produced during this phase have thicknesses of 500-3000 m and cover an area of 600,000 144145km² (Mohr & Zanettin, 1988; Rooney, 2017). Voluminous magma production in this region

- is generally attributed to melting of anomalously hot mantle delivered by the Afar plume
 - http://www.petrology.oupjournals.org/

147	(e.g., Ebinger & Sleep, 1998; Pik et al., 2006; Beccaluva et al., 2009; Natali et al., 2016).
148	Several studies have also pointed out the role of volatiles in the magma source region. These
149	components could have enhanced magma production, and been derived either by deep
150	devolatilization in the plume stem (e.g., Beccaluva et al., 2009) or by delamination of sub-
151	continental lithosphere into the plume (e.g., Furman <i>et al.</i> , 2016). The majority of Oligocene
152	plateau basalts in Ethiopia are classified as transitional or tholeiitic series (Fig. 2), and are
153	associated with felsic volcanic and pyroclastic rocks (30-22 Ma) in the upper part of the lava
154	successions (Ayalew et al., 2002; Ukstins et al., 2002; Coulié et al., 2003; Kieffer et al.,
155	2004; Prave et al., 2016; Rooney et al., 2018). The type locality of Oligocene flood basalts is
156	the NW Ethiopian plateau, divided from the SW plateau by the Yerer-Tullu Wellel volcano-
157	tectonic lineament (YTVL in Fig. 1; Abebe et al., 1998). Previous studies provide details
158	about its stratigraphy in some regions (e.g., Adigrat, Lalibela; Hofmann et al., 1997; Kieffer
159	et al., 2004; Fig. 1). Based on spatiotemporal relationships of the distribution and
160	composition, Pik et al. (1998) sub-divided the Oligocene Trap phase basalts into: (1) low-Ti
161	basalts (LT, with Ti/Y = 288–437 and Nb/Y = $0.1-0.41$); (2) high-Ti1 basalts (HT1, with
162	Ti/Y = 352-814 or Nb/Y = 0.52-1.1); and (3) high-Ti2 basalts (HT2, with Ti/Y = 670-885)
163	and Nb/Y = $0.9-1.44$). The LT basalts mainly occur in the western periphery of the NW
164	Ethiopian and northern Yemen plateaus, whereas the HT1 and HT2 basalts are distributed in

the eastern part of the NW plateau (e.g., Lalibela and Maychew) and the southern Yemen plateau (Fig 1; Baker et al., 1996a, b; Pik et al., 1998; Beccaluva et al., 2009). The samples from Maychew described here include the HT1 and HT2 varieties (Supplementary Data Text S1, Table S2 and Figs S2 and S3). Following the emplacement of the flood basalts, a number of shield volcanoes were formed during Oligocene to Miocene times, locally creating an additional 1000 to 2000 m of relief (Berhe et al., 1987). The shield volcanoes show a range of eruption ages, 30–19 Ma for the northernmost Simien volcano (Coulié et al., 2003; Kieffer et al., 2004), 23-22 Ma for the Choke and Guguftu volcanoes and 11 Ma for the Guna volcano on the central NW Ethiopian plateau (Kieffer et al., 2004), and 25-24 Ma for the Gerba Guracha volcano in the southern part of the NW plateau (Rooney et al., 2014a, 2017a). Miocene volcanoes also occur on the plateau margins (i.e., rift shoulders), e.g., the 16-10 Ma old volcanic rocks in the Tarmaber-Megezez Formation at the southeastern margin of the NW plateau (e.g., Zanettin & Justin-Visentin, 1974; Zanettin et al., 1978; Chernet et al., 1998; Wolfenden et al., 2004).

180 Main Ethiopian rift (30 Ma to present)

181 The Getra-Kele basalts in the SMER are syn-rift alkaline rocks, distributed in the 182 northwestern and southwestern parts of the Amaro-Yabello areas and unconformably

overlying the Amaro-Gamo sequence (Supplementary Data Fig. S1). These basalts have been dated at 20-11 Ma by the K-Ar method (this study; Ebinger et al., 1993, 2000; George et al., 1998; Shinjo et al., 2011) and 19.8–11.9 Ma by the ⁴⁰Ar/³⁹Ar method (Yemane et al., 1999; Rooney, 2010). The Quaternary volcanic rocks, termed the Nech Sar basalts and Bobem trachybasalts (Ebinger et al., 1993) or Tosa-Sucha volcanics (George, 1999), overlie the Getra-Kele basalts. The ages of Getra-Kele basalts indicate that the volcanism followed a period of marked extension in the SMER from 19-18 Ma (Ebinger et al., 2000). The K-Ar ages of the Tosa-Sucha basalts range from 1.94 to 0.29 Ma (Ebinger et al., 1993, Shinjo et al., 2011; this study), and indicate Quaternary volcanic activity. This mafic volcanism produced basanite flows and accompanied eruptions of widespread ignimbrites from 1.6-0.5 Ma (Ebinger et al., 1993; Bonini et al., 2005; Corti, 2009; Rooney, 2010; Shinjo et al., 2011). The basanites contain mantle xenoliths consisting of anhydrous and hydrous (amphibole- and mica-bearing) spinel lherzolites (Meshesha et al., 2011).

Volcanic activity in the CMER and NMER has been active since 16–10 Ma,
coincident with the onset of rifting (Supplementary Data Fig. S4; WoldeGabriel *et al.*, 1990;
Chernet *et al.*, 1998; Ukstins *et al.*, 2002; Wolfenden *et al.*, 2004; Bonini *et al.*, 2005). The
Miocene volcanism is characterized by voluminous felsic rocks (e.g., 9–6 Ma Nazret Group
and 4–3 Ma Butajira ignimbrite) with associated mafic volcanic rocks (e.g., Justin-Visentin *et*

al., 1974; WoldeGabriel et al., 1990; Wolfenden et al., 2004). A riftward-younging trend of the ages of volcanic rocks has been well documented in the NMER and CMER (e.g., Morton et al., 1979). The rift-margin volcanic rocks yield K-Ar and ⁴⁰Ar/³⁹Ar ages of c. 30–10 Ma; they are variably named in reference to their type localities (WoldeGabriel et al., 1990; Chernet et al., 1998; Ukistins et al., 2002; Wolfenden et al., 2004; Bonini et al., 2005; GSE, 2005; Feyissa et al., 2017; see Supplementary Data Fig. S5). In ascending stratigraphic order, the mafic rock series are termed Alaje (or Alage) and Kella (Oligocene-Miocene), Tarmaber-Megezez (middle Miocene), Anchar or Guraghe (middle-late Miocene), Kessem or Nazret (late Miocene), Mursi, Bofa, and Mathabila (or Metehbila, early Pliocene). The late Miocene to Pliocene mafic volcanic rocks occur in the transition of marginal regions to axial regions in the rift, commonly associated with widespread ignimbrites. In CMER, the late Miocene to Pliocene volcanic activity also occurred in the rift embayment (Bishoftu embayment; Supplementary Data Fig. S4); e.g., Miocene Addis Ababa basalts (Morton et al., 1979; Chernet et al., 1998) and Miocene Guraghe basalts (Bonini et al., 2005). Pliocene-Quaternary volcanic activity mainly occurred at monogenetic vents located in the fault belts in the MER (Figs 1, S4 and S5), e.g., Wonji Fault Belt (WFB; Mohr, 1967)

and Silti-Debre Zeyit Fault Zone (SDFZ; WoldeGabriel *et al.*, 1990). Off-axis vents parallel

to the rift axis also occur locally, e.g., Akaki magmatic zone and Galema range in the CMER

(Rooney et al., 2014b; Chiasera et al., 2018). The WFB is a 20 km wide system of bounding faults that developed since 2 Ma and forms a structural link between the MER and Afar (Mohr, 1967; Bonini et al., 2005; Kier et al., 2015; Mazzarini et al., 2016). En-echelon segments in the WFB form individual magmatic plumbing systems, e.g., Fantale, Dofan, Boset, and Kone (Supplementary Data Fig. S4, WoldeGabriel et al., 1990, 1992a, b; Ebinger & Casey, 2001; Rooney et al., 2007, 2011). These volcanic complexes are characterized by the occurrence of mafic to felsic lavas (e.g., Boccaletti et al., 1999; Peccerillo et al., 2003; Abebe et al., 2007; Rooney et al., 2012c; Rooney et al., 2007, 2011, 2012c, 2014b; Corti, 2009; Giordano et al., 2014), resulting from the development of shallow and mature magma reservoirs (Rooney et al., 2007). In contrast, the SDFZ lacks the development of intense faulting and has less evolved magmatic plumbing systems (Rooney et al., 2007).

231 Afar depression (5 Ma to present)

The Afar depression is a down-faulted lowland plain bounded by uplifted basement (Danakil Range) in the north, Oligocene flood basalt plateaus in the southeast and west, and the Red Sea in the northeast (Figs. 1, S6 and S7). At its margin, rift-parallel basins are imposed on the Oligocene flood basalt piles (Wolfenden *et al.*, 2005; Rooney *et al.*, 2013; Corti *et al.*, 2015). The Afar depression is divided into three rift systems, the Southern, Central, and Northern

2
3
4
5
6
7
8
0
10
10
11
12
13
14
15
16
17
18
19
20
21
21 22
∠∠ วว
∠3 24
24
25
26
27
28
29
30
31
37
J∠ 22
22
34
35
36
37
38
39
40
41
42
43
11
-1-1 1 E
45
46
47
48
49
50
51
52
53
54
55
56
50
5/
28
59
60

Afar sectors (Hayward & Ebinger, 1996). The Central and Southern Afar are divided by a 237238Quaternary fault zone known as Tendaho-Goba'ad Discontinuity (TGD), whereas the Central and Northern Afar are divided at 12-13 °N, corresponding to the landward extension of the 239240Red Sea Rift through the Gulf of Zula. Crustal thickness varies from 16 km in Northern Afar through 25 km in Central Afar to 26 km in Southern Afar (Hayward & Ebinger, 1996). The 241TGD also marks an abrupt change in the rate and direction of extension. Rifting is faster in 242the north of the TGD (20 mm/yr) and NNE-SSW directed, whereas rifting is slower (3-8 243mm/yr) and NW-SE directed in the south of the TGD, similar to that in the NMER. 244The stratigraphy of the Afar depression consists of six units in the ascending order 245(Bosworth et al., 2005) of: (1) Neoproterozoic metamorphic rocks; (2) Mesozoic strata and 246*Early* Tertiary volcanic rocks; (3) Oligocene trap basalts (Aiba and Alaje basalts); (4) 247248Miocene volcanic rocks; (5) Plio-Pleistocene volcanic rocks; and (6) Quaternary volcanic rocks. The Miocene volcanic units (Mabla rhyolites and Adolei-Dalha basalts) are distributed 249in the margin of the depression, and are dated to 23-5 Ma (e.g., Barberi et al., 1975; Zumbo 250et al., 1995; Audin et al., 2004; Stab et al., 2015). The Pliocene-Pleistocene mafic volcanic 251rocks are widely distributed in the Afar depression, and termed the Afar stratoid series 252253(Supplementary Data Fig. S6; Barberi et al., 1974; Barberi & Varet, 1975; Varet, 1978; Berhe, 1986). The Quaternary volcanic rocks occur in internal grabens and marginal zones 254

(Chernet et al., 1998; Deniel et al., 1994; Pinzuti et al., 2013; Stab et al., 2015). They consist

of basalt lava flows [Gulf basalts (Kidane et al., 2003) and axial range basalts, e.g., Erta'Ale and Manda Inakir], scoria cones, and some felsic rocks (Varet, 1978). According to the geological map of Stab et al. (2015), our samples consist of mafic rocks corresponding to the Afar stratoid basalts, Gulf basalts, and axial range basalts (Supplementary Data Fig. S6). **GEOPHYSICAL PROPERTIES** Seismic and gravity data provide constraints on the properties of the lithosphere and asthenosphere beneath the volcanic regions in this area. The lithosphere-asthenosphere boundary (LAB) lies at c. 60-80 km depth beneath the plateaus, and at c. 50 km depth beneath the MER and Afar (Dugda et al., 2007; Rychert et al., 2012; Hammond et al., 2013). The LAB boundary is well-defined beneath the plateau regions, whereas it is obscured beneath the rift axes due to thermal erosion of the base of the lithosphere (Rychert et al., 2012; Armitage et al., 2015). The crustal thickness beneath the eastern and western Ethiopian plateaus is estimated at 30–45 km, whereas beneath the rift it shows lateral variation, from 35 km in the SMER, through 25-30 km in the CMER, and 25 km in the NMER to 16-26 km beneath the Afar depression (Dugda et al., 2005; MacKenzie et al., 2005; Maguire et al., 2006; Hammond et al., 2011; Lavayssière et al., 2018).

Seismic tomography detects broad low-velocity anomalies in the upper mantle beneath Ethiopia, extending from the base of lithosphere to the mantle Transition Zone (e.g., Hammond *et al.*, 2013; Civiero *et al.*, 2015). The pronounced low-velocity zone at 75–150 km depth, aligned along the Afar and MER axial zones, is interpreted to reflect the presence of partially molten mantle (Bastow *et al.*, 2008), whereas the low-velocity anomaly at greater depth is thought to be due to a weak thermal anomaly (<150 K) and hydrated mantle materials (Thompson *et al.*, 2015).

281 SAMPLES AND ANALYTICAL METHODS

Samples analyzed in this study were collected from several volcanic fields in the Ethiopian volcanic provinces including the MER (NMER and SMER), Afar, and the NW Plateau (Supplementary DatA Figs S1, S2, S4–S7). These fields are the same or close to the fields investigated in previous studies [e.g., Plateau region by Beccaluva et al. (2009), Afar by Barrat et al. (1998), NMER by Furman et al. (2006a), and SMER by George & Rogers (2002)]. We therefore integrate our new data sets with the existing data and provide an update of geochemical information about Ethiopian volcanism. The geodetic coordinates and altitude of sampling locations were obtained using GPS (Global Positioning System), or estimated from maps. Efforts were made to sample the least altered rocks for geochemical and

geochronological analyses. The geochronological and other geochemical work was performed at the Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University at Misasa, Japan (see Nakamura et al., 2003). Details of analytical methods are given in the Supplementary Data Text S2.

K-Ar ages and petrography

K-Ar dating was used to constrain the age of mafic volcanic rocks from the NW Plateau (n =11), SMER (n = 10), NMER (n = 13), and the Afar Depression (n = 19); the results of these analyses are summarized in Table 2. Samples were selected to represent the spatial, stratigraphic, and chemical diversities in each region (Supplementary Data Figs S1, S2, S4 and S7). Our data are combined with previously published ages to reconstruct the volcanic history of these regions. Careful comparison was also made between our ages and published ones, in particular ⁴⁰Ar/³⁹Ar dates to confirm the reliability of our dates. Below, we summarize the geochronological data, together with petrographic features (Supplementary Data Table S1), of basaltic rocks from the individual volcanic regions.

308	Rift-bou	nding	plateau	basalts	from	Maychew
		<u> </u>	1		/	

Eleven K-Ar ages were determined for mafic rocks from the lava successions in the Maychew area (Figs 1 and S2). We defined six volcanic units, referred to as the sequences 1, 2, 3, 4, 5 and 6 in ascending stratigraphic order (see details in Supplementary Data Text S1). The majority of them yield K-Ar ages of 28 Ma, irrespective of stratigraphic unit (Table 2 and Supplementary Data Fig. S2). The younger ages (25–21 Ma) for some samples are inconsistent with their stratigraphic positions (BK06, TS12, TS35, TS43 and TS45). Although there are no systematic differences in the extents of alteration between samples showing two age populations (28 and 25–21 Ma), including loss on ignition and petrographic texture, the younger ages are considered to be inaccurate as a result of post-eruptive processes. Recent precise and more reliable ⁴⁰Ar/³⁹Ar ages for basalts in the other regions on the NW Ethiopian Plateau suggest that the trap-phase magmatism occurred between 31–25 Ma (e.g., Hofmann et al., 1997; Ukstins et al., 2002; Coulié et al., 2003). We therefore consider that the volcanism in Maychew likely occurred at 28 Ma or older (c. 30 Ma). The HT2 basanites (sequence 1) are aphyric with microphenocrysts of clinopyroxene.

The HT2 and HT1 alkaline basalts (sequences 2–6) are porphyritic with clinopyroxene and olivine as major phenocryst phases. Occasionally, they show sub-ophitic to doleritic textures. In the upper stratigraphic units (sequences 4–6), mafic rocks include plagioclase-phyric

basalts (HT1 type). The relationship among magma types, petrographic features and
stratigraphic positions is similar to that observed in the other regions of the NW Ethiopian
Plateau (Pik *et al.*, 1998; Beccaluva *et al.*, 2009; Natali *et al.*, 2016; Krans *et al.*, 2018;
Rooney *et al.*, 2018).

331 Getra-Kele basalts in SMER

Six basaltic samples from Getra-Kele yield ages of 16.4-10.8 Ma (Table 2 and Supplementary Data Fig. S1). With the published K-Ar and ⁴⁰Ar/³⁹Ar ages (WoldeGabriel *et* al., 1991; Ebinger et al., 1993, 2000; George et al., 1998; Rooney, 2010; Shinjo et al., 2011), the eruptions of Getra-Kele mafic rocks are likely to have occurred from 20-11 Ma, coinciding with the northward propagation of the SMER (Ebinger et al., 1993, 2000; George et al., 1998; Bonini et al., 2005). The Getra-Kele mafic rocks are commonly porphyritic, consisting of euhedral to subhedral phenocrysts of olivine, plagioclase, augite, and opaque minerals (Supplementary Data Table S1). The groundmass shows a pilotaxitic texture consisting of plagioclase, olivine, clinopyroxene, and Fe-Ti-oxides.

342 Tosa-Sucha basalts in SMER

343 Four basalts from lavas or volcanic cones in the Arba Minch area yield ages of 1.26–0.56 Ma

(Table 2 and Supplementary Data Fig. S1), consistent with K-Ar dates of 1.34–0.68 Ma by Ebinger et al. (1993). Shinjo et al. (2011) also obtained comparable K-Ar ages of 1.94-0.29 Ma for mafic volcanic rocks in the south of Yabello. The Quaternary age is consistent with the volcanic morphology and occurrence of these mafic rocks overlying the Amaro and Gamo basalts (Ebinger et al., 1993). The Tosa-Sucha mafic rocks are porphyritic with phenocrysts mostly of plagioclase (20–42 vol.%), olivine (2–11 vol.%), and augite (up to 4 vol.%) (Supplementary Data Table S1). Plagioclase crystals are euhedral and 0.5–3 mm in size. Olivine and augite exhibit subhedral, rounded shapes (0.5-1.5 mm). Abundant plagioclase crystals are considered to be xenocrysts, based on their zoning patterns and resorption textures (Rooney, 2010). The groundmass is composed of feldspars, olivine, Lien clinopyroxene, and Fe-Ti oxides.

Syn-rift basalts from NMER

Fevissa et al. (2017) referred to the late Oligocene to early Pliocene mafic volcanic rocks from the NMER as Mathabila basalts. These mafic rocks are commonly subdivided into six major formations: Alage, Tarmaber-Megezez, Nazret-Afar, Cholalo-Bishoftu, and the Quaternary Formations (GSE, 2005; Supplementary Data Fig. S5). The oldest rocks are distributed in the western escarpment of the NMER, and dated at 27-25 Ma (DBZ-22 and

DBZ-30; Table 2). Considering their localities (Supplementary Data Fig. S5), these basalts are equivalent to the Alage basalts. The ages obtained in this study is consistent with the existing K-Ar and ⁴⁰Ar/³⁹Ar ages for Alage basalts or intercalated pyroclastic rocks (Chernet et al., 1998; Ukstins et al., 2002; Supplementary Data Fig. S4). Two samples, DBZ-8 and DH-429, collected in the east of Debre Birhan (Supplementary Data Figs S4 and S5), yield ages of 20–15 Ma. Based on the ages and localities, they are classified as Tarmaber-Megezez basalts (GSE, 2005). Similar ages (19.8–10.0 Ma) were obtained by the ⁴⁰Ar/³⁹Ar method for this formation (basalt and associated ignimbrites: Ukstins et al., 2002; Wolfenden et al., 2004). The K-Ar ages of mafic rocks from the rift floors (n = 7) fall within the range 6.5–2.7 Ma, consistent with the eruptive products of the Miocene-Pliocene Nazret Series and the overlying Pliocene Formations, i.e., the Bofa and Bishoftu basalts (Chernet et al., 1998). These samples were collected in regions surrounding the Fantale-Dofan magmatic segment (Supplementary Data Figs S4 and S5), and the ages obtained here are consistent with the ⁴⁰Ar/³⁹Ar ages (7–2 Ma) for intercalated ignimbrites (WoldeGabriel *et al.*, 1992a; Chernet *et*

al., 1998; Wolfenden *et al.*, 2004). We refer to these basalts as Nazret series.

378 Two basalts from Fantale volcano yield ages of 0.24 and 0.20 Ma (DHDH-4 and 379 DBAG-115). These ages are consistent with a fission-track age of 0.17 ± 0.04 Ma for a

welded tuff in the caldera of this volcano (Williams *et al.*, 2004) and also fall within the
range of an explosive volcanic pulse (0.32–0.17 Ma) in the NMER and CMER (Peccerillo *et al.*, 2003; Hutchison *et al.*, 2016; Siegburg *et al.*, 2018). We refer to these basalts as
Quaternary Fantale basalts.

Mafic rocks in the NMER show similar petrographic features, irrespective of eruption ages. They are porphyritic with a phenocryst assemblage of plagioclase (*c*. 14 vol%), olivine (2–12 vol%), and rare clinopyroxene (2–3 vol%). An exception are the mineral modes of the older mafic lavas with ages of 25 and 15 Ma (Alage and Tarmaber-Megezez series, respectively). These rocks are highly porphyritic with 20–25 vol% plagioclase phenocrysts (Supplementary Data Table S1). Groundmasses of all rocks are composed of olivine, clinopyroxene, feldspars, and Fe-Ti oxides, with dark interstitial glass.

392 Afar basalts

The K-Ar ages of nineteen mafic samples range from 4.5 to 0.1 Ma (Table 2 and Supplementary Data Fig. S7). Our results are consistent with existing K-Ar and 40 Ar/ 39 Ar ages (5.4 to <0.1 Ma) for mafic volcanic rocks from the Pliocene and Quaternary formations in this region (Zumbo *et al.*, 1995; Manighetti *et al.*, 1998; Kidane *et al.*, 2003; Lahitte *et al.*, 2003; Audin *et al.*, 2004; Daoud *et al.*, 2010; Ferguson *et al.*, 2013b; Stab *et al.*, 2015).

Following Stab *et al.* (2015), our samples are subdivided into stratoid basalts, Gulf basalts, and Afar axial range basalts in ascending stratigraphic order (Supplementary Data Fig. S6).

Our K-Ar ages for the Afar stratoid basalts range from 4.50 to 1.18 Ma (n = 17). Combined with previous geochronological studies (Supplementary Data Fig. S7), the majority of ages for the stratoid series fall within the range 4.0–1.1 Ma, as suggested by Stab et al. (2015). Among the stratoid series, the rocks in the west and southwest of the TGD tend to have older ages (4.5–2.7 Ma) than those in the east and northeast of the TGD (2.3–1 Ma). The ages of the stratoid series also show different spatial variations within these two regions. In the north of the TGD, ages become older from the axial range towards the northeast or southwest, consistent with NNE-SSW directed rifting (Hayward & Ebinger, 1996). In the south of the TGD, ages become older towards the northwest of the rift axis, consistent with NW-SE directed extension.

The K-Ar age of 0.79 Ma obtained for a basalt (DHA-17) from the Tendaho Graben corresponds to that of Gulf basalts (1.1–0.6 Ma) of Lahitte *et al.* (2003), Kidane *et al.* (2003) and Daoud *et al.* (2010), whereas the age of 0.12 Ma for basalt DHA-1 is consistent with the existing K-Ar and 40 Ar/³⁹Ar dates for the axial range basalts (< 0.6 Ma; Manighetti *et al.*, 1998; Kidane *et al.*, 2003; Lahitte *et al.*, 2003; Audin *et al.*, 2004; Ferguson *et al.*, 2013b). The Afar mafic rocks are mostly aphyric and vesicular (up to 30 vol. % vesicles). A

few samples are porphyritic, consisting of phenocrysts of plagioclase (28 vol. %), olivine (up to 11 vol. %) and clinopyroxene (5 vol. %, except one sample with 31 vol. %; Supplementary Data Table S1). Some olivines are altered to iddingsite. Rocks without olivine phenocrysts tend to have relatively fine-grained groundmasses composed of olivine, clinopyroxene, plagioclase, and Fe-Ti oxides. Zeolites, silica, and carbonate are also found in some vesicles and interstitial parts of the groundmass in some rocks.

423 Major element compositions

The Ethiopian volcanic rocks studied here are classified as basanite, picro-basalt, basalt, basaltic andesite, trachybasalt or basaltic trachyandesite (Fig. 2; Le Bas et al., 1986), and as belonging to either the alkaline or the sub-alkaline rock series (Irvine & Baragar, 1971). The Oligocene mafic rocks in Maychew include basanites (classified into HT2) from the lowest sequence (Figs 2a and S3). These basanites show a strong deficiency of SiO₂, quite different from the other HT2 mafic rocks from the NW Plateau which have a sub-alkaline affinity (Figs 2a and S3; Pik et al., 1998, 1999; Kieffer et al., 2004; Beccaluva et al., 2009; Natali et al., 2011, 2016). To our knowledge, the silica-deficient HT suite is found only in Oligocene mafic rocks in the Yemen Plateau (Baker et al., 1996a; Beccaluva et al., 2009; Natali et al., 2016) and from a Miocene shield volcano, Gerba Guracha (25-24 Ma), in the western

Ethiopian Plateau (Rooney et al., 2014a, 2017a). Compositions of the Maychew HT1 group largely overlap with the other HT1 rocks in the NW Ethiopian and Yemen Plateaus, and are more alkaline than the LT samples. Mafic volcanic rocks from Wollega in the SW Plateau (15–7 Ma; Ayalew et al., 1999; Conticelli et al., 1999) have higher Na₂O + K₂O abundances than the LT-type mafic rocks from the NW Plateau. Mafic rocks from the SMER (Miocene Getra-Kele and Quaternary Tosa-Sucha) are classified into alkaline series (Fig. 2b), consistent with data obtained in previous studies (Yemane et al., 1999; George & Rogers, 2002; Rooney, 2010; Shinjo et al., 2011). These rocks have similar alkali enrichment to the Eocene Gamo basalts (Yemane et al., 1999; George & Rogers, 2002). Mafic rocks from the NMER and Afar province include both alkaline and sub-alkaline series, irrespective of eruption ages (Figs 2d, e); sub-alkaline rocks are dominant in the Afar region. These features are consistent with those reported in previous studies (Deniel et al., 1994; Wolde, 1996; Barrat et al., 1998; Boccaletti et al., 1999; Furman et al., 2006a; Daoud et al., 2010; Rooney et al., 2012b; Pinzuti et al., 2013; Giordana et al., 2014; Ayalew et al., 2016, 2018; Alene et al., 2017). Quaternary mafic volcanic rocks in the CMER also show transitional compositions between the alkaline and sub-alkaline series (Fig. 2c; Boccaletti et al., 1999; Rooney et al., 2007, 2011, 2014b; Rooney, 2010; Giordana et al., 2014; Ayalew et al., 2016; Tadesse et al., 2019). CMER mafic rocks from three Quaternary magmatic zones, the WFB, SDFZ, and

Akaki segments, have composition overlapping with each other (Gasparon *et al.*, 1993; Wolde, 1996; Rooney, 2010; Rooney et al., 2005, 2007, 2014b; Ayalew et al., 2016). The composition of Miocene Addis Ababa basalts from the Bishoftu embayment largely overlap with mafic rocks from the SDFZ and Akaki (Wolde, 1996; Furman et al., 2006a). In this study, we define mafic rocks as those with SiO₂ and MgO concentrations of 42-54 wt % and 20-2 wt %, respectively (Figs 3 and S8a). The Maychew HT2 basanites in the lowest sequence have the highest TiO₂ (c. 6 wt %) and FeO^T (total Fe as FeO; c. 19 wt %) among the studied mafic rocks, as well as the existing data sets for Ethiopian volcanic rocks. These basanites are also different from the other HT suites in the NW Ethiopian Plateau in terms of their low SiO₂ (c. 41–43 wt %) and high CaO (c. 15 wt %). Such features are similar to those of the HT basanites and picro-basalts in the Yemen Plateau (Baker et al., 1996b; Natali et al., 2016) and the Oligocene HT mafic rocks from the Gerba Guracha shield volcano in the southern part of the NW Plateau (except for their high P2O5; Rooney et al., 2014a, 2017a). Major element abundances of Maychew HT1 samples are similar to those of other HT1 mafic rocks from the NW Plateau (Pik et al., 1998; Beccaluva et al., 2009; Natali et al., 2016) and the Yemen Plateau (Baker et al., 1996b; Natali et al., 2016). Miocene Wollega basalts from the SW Ethiopian Plateau have major element compositions that largely overlap with those of LT mafic rocks in the NW Plateau, except for their higher Na₂O, K₂O

470 and P_2O_5 abundances.

Abundances of major elements in Miocene Getra-Kele and Quaternary Tosa-Sucha mafic rocks largely overlap with each other, except for FeO^T and MnO (Figs 3 and S8b). These oxides are more abundant in Miocene Getra-Kele mafic rocks than in Quaternary Tosa-Sucha mafic rocks. Rooney (2010) also found a similar relationship for Miocene (Chencha, Fe-rich) and Quaternary (Arba Minch, Fe-poor) mafic rocks from the vicinity of the Amaro-Yabello area in the SMER. Eocene Gamo basalts show significant overlaps with Miocene Getra-Kele samples, except for TiO₂, whereas Eocene Amaro basalts show the highest abundances of SiO₂ and the lowest abundances of TiO₂ and Na₂O at a given MgO among the Eocene-recent mafic rocks in this region (Yemane et al., 1999; George & Rogers, 2002; Rooney, 2010; Shinjo et al., 2011). Major element abundances of Quaternary mafic rocks from the CMER (Rooney et al., 2007; 2014b) are similar to those of the SMER (Supplementary Data Fig. S8c). Abundances of Na₂O for CMER rocks are slightly lower than those for Tosa-Sucha mafic rocks, and thus CMER rocks are classified as transitional rock series (Fig. 2). Rocks from the WFB and SDFZ show significant differences in abundances of CaO, Na₂O and K₂O at a given MgO, and Akaki mafic rocks exhibit intermediate compositions between those of the WFB and SDFZ. Compositions of Miocene Addis Ababa basalts largely overlap with these Quaternary

488 mafic rocks (Furman *et al.*, 2006a).

Mafic rocks in the NMER have major element compositions similar to those in the CMER (Figs 3 and S8d). Our data are consistent with the existing data sets for mafic rocks in adjacent regions (e.g., Boccaletti et al., 1999; Furman et al., 2006a; Giordana et al., 2014). The older mafic rocks (Oligocene Alage and Miocene Tarmaber-Megezez series) have higher TiO₂ and K₂O at a given MgO than the younger mafic rocks (Miocene-Quaternary). Our data for the Quaternary Fantale magmatic segment falls within the ranges of the existing data sets for this segment and the other Quaternary magmatic segments in the NMER (Dofan, Kone, and Boset; Furman et al., 2006a; Giordana et al., 2014; Ayalew et al., 2016). Major element compositions of the stratoid, Gulf, and axial range series in the Afar region largely overlap with each other (Figs 3 and S8e). Our data are essentially consistent with the existing data for mafic rocks collected from the entire Afar province, including Djibouti (Deniel et al., 1994; Barrat et al., 1998, 2003; Daoud et al., 2010; Pinzuti et al., 2013; Ayalew et al., 2016; Alene et al., 2017). The literature data for the Gulf basalt is that for mafic rocks in the vicinity of the Gulf of Tadjoura in Djibouti (Deniel et al., 1994; Daoud et al., 2010), which have a more mafic composition (MgO > 9 wt %) than our samples from the Tendaho Graben (MgO of c. 7 wt %).

505	Trace element	compositions
-----	---------------	--------------

506	Nickel and Cr concentrations in the studied volcanic rocks show wide variations ([Cr] to c .
507	1700 ppm and [Ni] to c. 940 ppm), and a monotonous decrease with decreasing MgO (Figs 4
508	and S9a). Variations of these elements in the Maychew HT1 and HT2 groups largely overlap
509	with each other, as do HT1 and HT2 in the other regions on the NW Ethiopian Plateau (Pik et
510	al., 1998, 1999; Kieffer et al., 2004; Beccaluva et al., 2009; Natali et al., 2016). Abundances
511	of Sr, Zr, Nb and Ba in Maychew HT2 basanites are significantly higher than those of the
512	other HT2 rocks in the NW Ethiopian Plateau. The high-Ti mafic rocks from the Gerba
513	Guracha shield volcano also show similar enrichment patterns for these elements (Rooney et
514	al., 2014a, 2017a; see Supplementary Data Fig. S10). Abundances of moderately
515	incompatible elements (e.g., Y and Yb) are similar between Maychew HT1 and HT2, as well
516	as the other LT, HT1, and HT2 groups. The Wollega basalts from the SW Plateau (Ayalew et
517	al., 1999) display trace element compositions overlapping with HT1 and HT2 rocks.
518	The SMER mafic rocks show similar trace element compositions within different
519	sequential units (Figs 4 and S9b), except for the sub-alkaline Amaro basalts (Yemane et al.,
520	1999; George & Rogers, 2002). Our data for the Getra-Kele and Tosa-Sucha mafic rocks

show variations consistent with the existing data for these rocks (Yemane et al., 1999;

522 George & Rogers, 2002; Rooney, 2010; Shinjo et al., 2011). The NMER mafic rocks of this

study show smaller variations in trace element compositions, due to the lack of data for highly magnesian rocks. Our data for Quaternary rocks from the Fantale segment fall within the range of data sets for this and the other magmatic segments in the literature (Dofan, Kone, Boset; Boccaletti et al., 1999; Furman et al., 2006a; Giordana et al., 2014; Ayalew et al., 2016). Afar mafic rocks also show trace element variations similar to those of NMER mafic rocks. Our data for three groups of Afar rocks, stratoid series, Gulf basalt, and axial range series, show greater overlap with each other, and fall within the range of literature data sets (Deniel et al., 1994; Barrat et al., 1998, 2003; Daoud et al., 2010; Ayalew et al., 2016; Alene et al., 2017). Mafic rocks with MgO > 6 wt % from different regions in Ethiopian volcanic fields show variable extents of incompatible trace element enrichment (Figs 5 and S10–S12). The Maychew HT2 plateau samples show higher Nb and Ta abundances relative to U and K (Fig. 5a). The (La/Yb)_N ratios of Maychew HT2 samples are 7.7-24 (subscript N denotes chondrite-normalized abundance), comparable to the other HT2 rocks from the Ethiopian and Yemen Plateaus (8.7–24), and higher than those of the HT1 samples in this region (4.7–10) and the other HT1 (6.1-14) and LT (1.0-3.9) basalts from the NW Ethiopian Plateau (Supplementary Data Fig. S11a; data sources are the same as in Fig. 5). Strong enrichments

of Nb, Ta, and LREE in Maychew HT2 samples are similar to high-Ti mafic rocks from the

Gerba Guracha shield volcano $[(La/Yb)_N = 18-32;$ Rooney *et al.*, 2017a; Supplementary Data Fig. S12a]. These two rock types show similar depletion of K (Fig. S10). The Wollega basalts from the SW Plateau (Ayalew *et al.*, 1999) display LREE abundance similar to HT1 rocks, but HREE abundance similar to LT samples from the NW Ethiopian Plateau $[(La/Yb)_N =$ 6.0–10]. Among the mafic rocks from the SMER, the subalkaline Amaro basalts have the

547lowest abundances of incompatible elements and low LREE/HREE ratios [Figs 5b and S11b;548 $(La/Yb)_N = 1.9-6.0$ (George & Rogers, 2002)]. Irrespective of eruption age, the other SMER549mafic rocks (Eocene Gamo, Miocene Getra-Kele, and Quaternary Tosa-Sucha) show similar550trace element patterns (George & Rogers, 2002; Shinjo *et al.*, 2011). The (La/Yb)_N ratios of551the Gamo, Getra-Kele, and Tosa-Sucha rocks are 7.2-7.6, 7.3-21, and 9.0-17, showing strong552overlap with each other [Figs 5b and S11b; George & Rogers (2002); Shinjo *et al.* (2011);553this study].

The NMER rocks show similar incompatible trace element and REE abundance patterns, irrespective of eruption age (Figs 5c and S11c). The older rocks (Alage and Tarmaber-Megezez series) have higher abundances of these elements, due to their differentiated nature (rocks with MgO 4-6 wt % are included in these plots). The younger mafic rocks analyzed in this study (Nazret series and Fantale segment) show trace element

abundance patterns consistent with previous studies (Wolde, 1996; Boccaletti et al., 1999; Furman et al., 2006a; Rooney et al., 2012b; Ayalew et al., 2018). The (La/Yb)_N ratios of NMER mafic rocks are 4.1-14. The existing data for mafic rocks from the CMER and the Addis Ababa region (Bishoftu embayment) show variations in (La/Yb)_N ratios of 5.1-14 (Fig. S12b; Gasparon et al., 1993; Wolde, 1996; Furman et al., 2006a; Rooney, 2010; Rooney et al., 2005, 2007, 2014b; Giordana et al., 2014; Ayalew et al., 2016; Tadesse et al., 2019), similar to the variations observed in NMER mafic rocks. Trace element abundance patterns for Afar mafic rocks are similar to those of NMER mafic rocks (Fig. 5d). The (La/Yb)_N ratios of these rocks range from 3.4 to 6.8, consistent with the existing data sets (2.6-7.1; Deniel et al., 1994; Barrat et al., 2003). An exception are samples from axial-range series in Manda Hararo (Barrat et al., 2003) and from Gulf basalts in the vicinity of the Gulf of Tadjoura in Djibouti (Deniel et al., 1994; Daoud et al., 2010, see localities in Supplementary Data Figs S6 and S7 and REE patterns in Fig. S11d). These mafic rocks have lower (La/Yb)_N ratios of 0.69-1.3, similar to those reported for submarine ridge-axis basalts in the Gulf of Tadjoura (Barrat et al., 1990, 1993). Overall, our data confirm the northward decreasing trend of (La/Yb)_N ratios in mafic rocks from the MER and Afar axial regions, as pointed out by Furman et al. (2006a), Rooney et al. (2011), and Ayalew et al. (2016).

577 Sr-Nd-Pb isotope compositions

Maychew HT1 and HT2 samples have isotopic compositions largely overlapping with each other, and mostly fall within the range of the existing data for Oligocene HT mafic rocks in the NW Ethiopian and Yemen Plateaus (Figs 6a and S13; Baker et al., 1996b; Pik et al., 1998, 1999; Kieffer et al., 2004; Natali et al., 2011, 2016). The Maychew HT2 basanites have the most radiogenic Pb isotopic compositions $[(^{206}Pb/^{204}Pb)_i = 19.20-19.26]$ among the HT2 rocks in the NW Ethiopian Plateau. Strongly alkaline rocks (basanites, foidites and tephrites) in the Gerba Guracha volcano in the NW Ethiopian Plateau have more radiogenic Pb isotopic compositions than the Maychew HT2 samples $[(^{206}Pb/^{204}Pb)_i \text{ of } c. 20; \text{ Rooney et al. (2017)}].$ The Wollega basalts from the SW Plateau (Ayalew et al., 1999) have lower (⁸⁷Sr/⁸⁶Sr)_i ratios and more radiogenic Pb isotope compositions than the Oligocene Plateau mafic rocks, and their isotopic features are similar to those of SMER mafic rocks (Getra-Kele and Tosa-Sucha).

The Sr-Nd-Pb isotopic compositions of the Getra-Kele and Tosa-Sucha mafic rocks from the SMER largely overlap with each other (this study; George & Rogers, 2002; Rooney, 2010; Shinjo *et al.*, 2011), and significantly differ from those of the Eocene Amaro and Gamo basalts (George & Rogers, 2002). The Getra-Kele and Tosa-Sucha mafic rocks are characterized by radiogenic Pb isotopic compositions $[(^{206}Pb/^{204}Pb)_i > 19]$ and lower

2
3
4
5
2
6
7
8
Q
10
10
11
12
13
14
15
15
16
17
18
19
20
20
21
22
23
24
25
25
26
27
28
29
20
50
31
32
33
34
25
22
36
37
38
39
40
40
41
42
43
44
15
45
46
47
48
49
50
50
51
52
53
54
55
55
20
57
58
59
60
~ ~

595	(⁸⁷ Sr/ ⁸⁶ Sr) _i ratios (=0.703–0.704). Such features are akin to those of Miocene-Quaternary
596	mafic rocks from the Turkana Depression, south of the SMER (Fig. 6b; Furman et al., 2004)
597	2006b). Among the NMER mafic lavas, the Oligocene Alage basalts and Miocene Tarmaber-
598	Megezez mafic rocks have lower (143Nd/144Nd) _i and higher (87Sr/86Sr) _i ratios than those of the
599	younger (Miocene to Quaternary) mafic rocks. In particular, two Alage (DBZ-22 and DBZ-
600	30) and one Tarmaber-Megezez (DH-429) rock show highly radiogenic (87Sr/86Sr) _i ratios of
601	0.7051–0.7068 (Feyissa et al., 2017). They are also characterized by higher SiO ₂ abundances
602	(> 50 wt %), lower (206 Pb/ 204 Pb) _i ratios, and higher (207 Pb/ 204 Pb) _i and (208 Pb/ 204 Pb) _i ratios at a
603	given (²⁰⁶ Pb/ ²⁰⁴ Pb) _i (Figs 6c and S13). The Sr-Nd-Pb isotopic compositions of the Miocene-
604	Quaternary CMER mafic rocks (Fig. S14) largely overlap with those of the Miocene-
605	Quaternary NMER mafic rocks (Gasparon et al., 1993; Furman et al., 2006a; Rooney et al.,
606	2012b; Giordana et al., 2014; Ayalew et al., 2016).

The Sr, Nd and Pb isotopic compositions of Afar mafic rocks partly overlap with those of NMER mafic rocks (except for Oligocene–Miocene rocks) and extend to more radiogenic Nd and less radiogenic Sr compositions (Figs 6d and S13). Overall, the Afar mafic rocks have lower ²⁰⁷Pb/²⁰⁴Pb ratios at a given ²⁰⁶Pb/²⁰⁴Pb than the NMER mafic rocks, and are thus similar to basalts from the Red Sea (Dupré *et al.*, 1988; Volker *et al.*, 1993, 1997). The axial range series in Djibouti and Etra 'Ale (Deniel *et al.*, 1994; Barrat *et al.*, 1998) have

more radiogenic Pb isotope compositions $[(^{206}Pb/^{204}Pb)_i > 19]$ than this series of mafic rocks in the western part of the central Afar region (this study). In contrast, Sr and Nd isotopic compositions do not show such lateral variations within the axial range series. The Sr-Nd-Pb isotopic compositions of the stratoid series and Gulf basalts largely overlap (this study; Deniel et al., 1994; Barrat et al., 1998; Daoud et al., 2010; Alene et al., 2017). Spatial and temporal variations in elemental and isotopic compositions Previous studies have revealed spatial variations in the geochemical characteristics of mafic rocks in the Ethiopian volcanic province (e.g., Furman *et al.*, 2006a; Rooney, 2010; Rooney et al., 2012b; Ayalew et al., 2016). Here, we integrate our data sets with the existing data to provide an up-to-date the view of spatio-temporal variations in the volcanism of this region. Latitudinal variations in (K/Nb)_N, (La/Sm)_N, (Sm/Yb)_N (⁸⁷Sr/⁸⁶Sr)_i, (¹⁴³Nd/¹⁴⁴Nd)_i and $(^{206}Pb/^{204}Pb)_i$ for the mafic volcanic rocks (MgO > 6 wt %) from rift zones (MER and Afar) are shown in Fig. 7 (subscript N denotes primitive mantle normalized abundance). The (La/Sm)_N ratio broadly decreases from the SMER through CMER and NMER to the Afar province, whereas (Sm/Yb)_N does not show any systematic change. A small positive peak in (La/Sm)_N is found at 9 °N, coincident with high (K/Nb)_N and (⁸⁷Sr/⁸⁶Sr)_i as well as a high ³He/⁴He peak on a northward increasing trend reported by Pik et al. (2006) and Rooney et al.
(2012b). Our compilation also reveals that (¹⁴³Nd/¹⁴⁴Nd)_i and (²⁰⁶Pb/²⁰⁴Pb)_i show a concave pattern with peaks or troughs at 9 °N. We note that the LAB boundary beneath the rift has a steep dip there (Kendall et al., 2005; Keir et al., 2015). In Afar, (La/Sm)_N and (Sm/Yb)_N are highly variable due to the occurrence of LREE- and MREE-depleted basalts (Barrat et al., 1993, 2003; Daoud et al., 2010). The NW Plateau mafic rocks show large variations in (K/Nb)_N of 0.04-3.9 and (Sm/Yb)_N of 1.4-7.1. These variations are significantly larger than those found in MER and Afar mafic rocks $[(K/Nb)_N = 0.20-3.1 \text{ and } (Sm/Yb)_N = 0.82-4.5]$ (Supplementary Data Fig. S15). Among the Oligocene mafic rocks in the NW Ethiopian Plateau, the HT2 type has the highest $(La/Sm)_N$ and $(Sm/Yb)_N$, whereas the LT type has the lowest values of these ratios (Pik et al., 1998, 1999; Kieffer et al., 2004; Beccaluva et al., 2009). Given the spatial distributions of LT, HT1 and HT2 (Pik et al., 1998; see Fig. 1), (K/Nb)_N increases and $(La/Sm)_N$ and $(Sm/Yb)_N$ decrease from south to north. The $({}^{87}Sr/{}^{86}Sr)_i$ and $({}^{206}Pb/{}^{204}Pb)_i$ isotopic compositions also show a decrease from south to north, whereas (¹⁴³Nd/¹⁴⁴Nd)_i does not show a clear latitudinal variation. The Wollega basalts from the SW Plateau have $(K/Nb)_{N_2}$ $(La/Sm)_N$ and $({}^{206}Pb/{}^{204}Pb)_i$ comparable to those of HT2 mafic rocks in the NW Plateau, whereas their $(Sm/Yb)_N$, $({}^{87}Sr/{}^{86}Sr)_i$ and $({}^{143}Nd/{}^{144}Nd)_i$ are comparable to those of LT mafic rocks (Ayalew et al., 1999). Overall, the latitudinal variations in (La/Sm)_N and

1

2	
3	
4	
5	
6	
7	
/ 0	
8 o	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27 28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>10</u>	
-77 50	
50	
21	
52	
53	
54	
55	
56	
57	
58	
50	

60

 $(Sm/Yb)_N$ of mafic rocks from the Plateau (Oligocene–Miocene) and rift (Oligocene to Recent) are concordant with each other (Pik *et al.*, 2006; Rooney *et al.*, 2012b; Ayalew *et al.*, 2016).

653 **DISCUSSION**

654 **Origin of geochemical variation**

655 Fractional crystallization

The majority of the mafic rocks for which data are presented in this study are differentiated 656(Figs 3, 4, S8 and S9), with low concentrations of MgO (<8 wt %), low Ni (<200 ppm), and 657low Cr (<400 ppm). Concentrations of MgO, CaO, Ni, and Cr show positive correlations, 658suggesting that variations in major and trace element compositions are controlled primarily 659 by fractional crystallization of mafic phases (olivine, clinopyroxene, and spinel). Plagioclase 660 661is considered to play a minor role in producing the elemental variation, based on petrographic and major and trace element characteristics; a lack of clear linear correlations of Al₂O₃ and Sr 662 with MgO (Supplementary Data Figs S8 and S9), the lack of negative Eu and Sr anomalies in 663trace element abundance patterns (Figs 5, S10 and S11), and the sparse occurrence of 664plagioclase phenocrysts (Supplementary Data Table S1). These features in our samples are 665 consistent with existing data for other Ethiopian mafic rocks (Figs 5 and S8-12). 666

To examine phase assemblages and extents of fractional crystallization, the major element compositions of the Ethiopian mafic volcanic rocks are expressed as normative minerals and compared with the compositions of melts produced in fractional crystallization experiments (Thompson et al., 2001; Supplementary Data Fig. S16). In the normative tetrahedron, the cotectic saturation of olivine + pyroxene + plagioclase at 1 atm forms a curved line (cotectic boundary), which with increasing pressure shifts to the olivine apex of the tetrahedron (Thompson et al., 2001). Most mafic rocks plot below the 1-atm cotectic boundary and form broad arrays subparallel to this line. This variation is interpreted as fractionation at various pressures with a phase assemblage of olivine during early differentiation, then clinopyroxene (cpx) + olivine, in both alkaline and subalkaline magma suites. Subsequently, orthopyroxene begins to crystallize with plagioclase in subalkaline magmas, and melt compositions become more siliceous. This expected phase assemblage has been confirmed by thermodynamic modeling of mafic-felsic magmatic evolution in the MER (e.g., Peccerillo et al., 2003; Rooney et al., 2012c; Feyissa et al., 2017). However, we also note that trace element and isotope compositions within each volcanic region vary significantly, and thus that processes other than fractional crystallization must also be involved (Fig. 8). Below, we discuss other possible mechanisms for the production of the observed compositional variations, including crustal assimilation, variable melting

685 conditions, and mixing of different magma sources.

Crustal contamination Mantle-derived basaltic magmas have temperatures higher than the solidus of crustal materials of intermediate to felsic composition (<1000 °C; Grove et al., 1988). Consequently, the magmas may have reacted to some extent with crustal materials during their ascent to the surface (Baker et al., 1996b; Rogers et al., 2000; Peccerillo et al., 2003; Rooney et al., 2005, 2007; Rooney et al., 2012c). Since Plateau and rift-escarpment regions have thicker continental lithosphere than that beneath the rift-floor (Dugda et al., 2007), a greater extent of crustal assimilation is anticipated in the former. Crustal materials, mainly consisting of evolved igneous rocks (intermediate to felsic intrusives), are expected to have high abundances of incompatible elements (Rudnick & Gao, 2003). Element ratios such as La/Nb, Ba/La, and Ce/Pb and isotope ratios such as ⁸⁷Sr/⁸⁶Sr and ²⁰⁶Pb/²⁰⁴Pb can be useful tracers to detect crustal input to mantle-derived magmas due to the large differences in these ratios between magmas and crustal lithologies (Stewart & Rogers, 1996; Meshesha & Shinjo, 2008; Shinjo et al., 2011; Rooney et al., 2005; Rooney, 2017). The low-Mg LT suite in the NW Ethiopian Plateau (MgO <6 wt %) has higher Ba/La ratios than mantle-derived oceanic basalts [mid-ocean ridge basalts (MORB) or ocean island basalts (OIB) after Willbold &

2
3
4
5
6
7
8
0
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
22
23
24
25
26
27
28
20
29
30
31
32
33
34
25
22
36
37
38
39
40
10
40
42
43
44
45
46
47
10
40
49
50
51
52
53
54
55
55
56
57
58
59

1

703 Stracke (2006); Fig. 8], suggesting that the geochemistry of differentiated LT rocks is affected by crustal contamination (Pik et al., 1998, 1999; Kieffer et al., 2004; Beccaluva et 704al., 2009). In contrast, HT1 and HT2 mafic rocks from the NW Plateau and Wollega basalts 705706 from the SW Plateau have Ba/La ratios mostly falling within the range of OIB and MORB, suggesting minor roles for crustal assimilation during their magmatic evolution. Some mafic 707 rocks from the NMER show geochemical characteristics suggestive of crustal assimilation; 708they are characterized by high SiO₂ abundance and high Ba/La and (⁸⁷Sr/⁸⁶Sr)_i (Figs 6 and 8). 709 Below, the effect of crustal assimilation in these NMER rocks are discussed. 710Crustal assimilation cools the magma and leads to crystallization, whereas the latent 711heat of fractional crystallization promotes assimilation. Such a positive feedback is referred 712to as AFC (assimilation combined with fractional crystallization; DePaolo, 1981). AFC is 713considered to result in co-variation of element abundance (dominantly by crystallization) and 714isotopic compositions (by mixing of crust and magma). In plots of (87Sr/86Sr)_i vs SiO₂ (Fig. 8), 715the differentiated NMER rocks (with $SiO_2 > 50$ wt % or MgO < 6 wt %) exhibit higher 716 (⁸⁷Sr/⁸⁶Sr)_i, suggesting the influence of crustal materials (e.g., Pan-African crust: Stewart & 717Rogers, 2002; Shinjo et al., 2011; Rooney, 2017) in the petrogenesis of these rocks. We 718719exclude low-MgO NMER rocks (MgO < 6 wt %) in the following discussions about melting processes and source characteristics. The other SMER and Afar volcanic rocks do not show 720

725

Melting conditions

1

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
10
20
20
∠ I 22
22
23
24
25
26
27
28
29
30
30
27
2Z
33
34
35
36
37
38
39
40
41
42
43
Δ <u>Λ</u>
44
40
46
47
48
49
50
51
52
53
54
55
56
50
57
20 50
59
60

such correlations (Fig. 8), suggesting that the role of crustal assimilation in these mafic rocks
was insignificant; a conclusion consistent with previous studies (e.g., Furman *et al.*, 2006a;
Rooney *et al.*, 2005).

Since the mantle is compressible, its temperature varies with pressure to conserve heat content along the adiabatic gradient. It is therefore useful to have a conceptual reference, known as "mantle potential temperature" (T_p), which represents the temperature of solid mantle expanded to atmospheric pressure (McKenzie & Bickle, 1988). To estimate T_p for the Ethiopian magmatism, we applied the geothermobarometry approaches of Putrika (2008), Lee *et al.* (2009) and Herzberg & Asimow (2015).

Data for mafic rocks used for this evaluation are from this study and previous studies
(Gasparon *et al.*, 1993; Deniel *et al.*, 1994; Baker *et al.*, 1996b; Wolde, 1996; Barrat *et al.*,
1998, 2003; Pik *et al.*, 1998, 1999; Ayalew *et al.*, 1999, 2016, 2018; George & Rogers, 2002;
Kieffer *et al.*, 2004; Rooney *et al.*, 2005, 2014b; Furman *et al.*, 2006a; Beccaluva *et al.*, 2009;
Daoud *et al.*, 2010; Natali *et al.*, 2011, 2016; Shinjo *et al.*, 2011; Alene *et al.*, 2017; Tadesse *et al.*, 2019) and filtered to exclude rocks with liquidus phases other than olivine. On major
element plots (Supplementary Data Fig. S8), CaO generally shows an increase to MgO of *c.* 8

wt %, then it decreases with decreasing MgO. This variation is interpreted as a result of participation of clinopyroxene in crystallization (e.g., Rooney et al., 2007; Rooney, 2010; Pinzuti *et al.*, 2013). We therefore used data for mafic rocks with MgO > 8.5 wt %. Highly magnesian rocks (MgO > 15 wt %) were avoided as they likely contain accumulated phases which were not equilibrated with the melt. Details of the thermobarometric modeling are described in Supplementary Data Text S3. Results of P-T estimates are summarized in Supplementary Data Table S4 and Fig. S17 [including calculated primary magma composition equilibrated with mantle (Fo_{89}) and mantle potential temperature (T_p) using an adiabatic gradient of 18 K GPa⁻¹ (McKenzie & Bickle, 1988; Katz et al., 2003), or the gradients of Herzberg & Asimow (2015)]. Melting T and P estimated using the methods of Putirka (2008), Lee et al. (2009), and Herzberg & Asimow (2015) are generally consistent with each other, ± 50 °C and ± 1 GPa (mostly < 0.5 GPa), in the ranges Supplementary Data 1300–1600 °C and 1–3 GPa, respectively. Exceptions are thermobarometric estimates for the Maychew basanites (n = 2) from this study (Supplementary Data Fig. S17). The large discrepancy for P (hence T by error propagation from P) for basanites (3 GPa by the Putirka (2008) algorithm and 6 GPa by the Lee et al. (2009) algorithm) is probably due to inaccuracy of the Lee et al. thermobarometry in this case, which is not applicable to SiO₂-deficient magmas formed in the garnet-stability field

757 (Till, 2017).

The Maychew rocks yield T_p of 1400–1550 °C (Fig. 9a) which is significantly higher than the ambient mantle [1340 °C; Cottrell & Kelley (2011)]. In particular, the HT2 basanites from the lower Maychew section show the highest T_p range found in the HT series in previous studies (1600 °C: Rooney et al., 2012a; Beccaluva et al., 2009; Rogers et al., 2010; Natali et al., 2016). We also reaffirm the gradation of T_p in the mantle for the production of HT1 and HT2 (1400-1600 °C) to LT (1350-1400 °C) proposed by Natali et al. (2016), who ascribed this variation to thermal zonation in the Afar mantle plume at 30 Ma, with integration of their earlier model (Beccaluva et al., 2009) and He-Sr-Nd-Pb isotope data. The calculated T_p for the mantle beneath the SW Plateau (Wollega; 11 Ma) is 1380 °C, similar to that for LT rocks from the NW Plateau, and also consistent with T_p determined through a REE inversion model (c. 1375 °C; Ayalew & Gibson, 2009) for Miocene SW Plateau rocks (15-Ma Shewa to the northeast of Addis Ababa; Fig. 1).

The Miocene to Quaternary mafic rocks from the SMER, CMER, NMER and Afar yield T_p values mostly falling within the range of 1350–1500 °C (Fig. 9b). The obtained values are consistent with those of previous studies (1260–1490 °C; Rooney *et al.*, 2012a; Ayalew & Gibson, 2009; Ferguson *et al.*, 2013a; Pinzuti *et al.*, 2013; Armitage *et al.*, 2015). Lateral variation in T_p along the MER-Afar region are less clear (Fig. 9b), but show a slight increase from the CMER and NMER to the south (SMER) and to the north (Afar), as

suggested by Rooney et al. (2012a). The maximum $T_p > 1500$ °C is consistent with melting of adiabatically upwelling mantle for the genesis of the Plateau mafic rocks (Beccaluva et al., 2009; Rogers et al., 2010; Rooney et al., 2012a; Natali et al., 2016). Anomalously hot mantle began to melt at a greater depth, probably in the garnet stability field (P > 3.3 GPa, depth > 100 km; Walter *et al.*, 1995). In addition, the thick lithosphere beneath the Plateau may have acted as a lid on the upwelling mantle, resulting in preferential sampling of melts from the deeper mantle (Ellam, 1992). By contrast, the shallower lithosphere beneath the MER and Afar region may have led to preferential tapping of magmas from shallower regions of the upwelling mantle. To substantiate this inference, we apply a melting model and examine the role of a garnet-bearing source during magma production. Since garnet preferentially hosts the heavy REE (Johnson, 1998), melting of the source leaving garnet in the residue leads to elevated LREE/HREE (La/Yb) and MREE/HREE (Gd/Yb or Dy/Yb; Fig. 10) in the partial melts. Clinopyroxene is also known as a possible phase to fractionate these elements (Blundy et al., 1998). However, it is unlikely that this phase plays a major role in REE fractionation. The "garnet-like" REE partitioning of clinopyroxene occurs only in small-degree melts at shallow depths (F < 5% and P < 1.5 GPa, where F and P denote melting degree and pressure; Blundy

et al., 1998); such conditions are distinctly different from those estimated for the Ethiopian mafic rocks (Supplementary Data Fig. S17 and Table S4). We thus consider that a melting model involving garnet-bearing mantle is appropriate to examine the causes of LREE/HREE and MREE/HREE variations. Superimposed on the plot in Fig. 10 are calculated curves for partial melting of lherzolite in garnet-bearing and garnet-free assemblages (see details regarding the modeling in the caption of Fig. 10). The HT2 mafic rocks have the highest Dy/Yb ratios among the Oligocene Plateau volcanic rocks, and are inferred to contain a greater contribution of melts from mantle in the garnet stability field. Differences in LREE enrichment within the HT2 series are attributed to various extents of melting (F); 1–2% for basanite and 3-7% for basalt and picrite. The LT series have lower La/Sm and Dy/Yb ratios and can be explained by a larger extent of melting in the spinel stability field, consistent with the lower T_p estimates for these samples (Beccaluva *et al.*, 2009; Natali *et al.*, 2016). The MER and Afar mafic rocks show larger contributions of melts formed in the spinel stability field. These mafic rocks, however, may have contributions from melts from

garnet-bearing sources, inferred from elevated Dy/Yb ratios relative to spinel lherzolite melts calculated by our modeling. This inference is consistent with the REE models of Ferguson *et al.* (2013a) and Pinzuti *et al.* (2013). Since T_p is essentially constant among the MER mafic rocks (Fig. 9b), LREE enrichment in the SMER mafic rocks (Figs. 7) is largely due to the

http://www.petrology.oupjournals.org/

geochemistry of the magma sources rather than LREE/HREE fractionation during partial melting (George & Rogers, 2002). As a possible origin of this source, localized lithosphere enriched by metasomatism has been proposed (Furman & Graham, 1999; George & Rogers, 2002; Rooney, 2010). Evolution of Ethiopian magmatism: interplay between melting conditions and source composition Previous studies have identified multiple end-member components in the genesis of mafic magmas in Ethiopia and adjacent regions (e.g., Marty et al., 1996; Pik et al., 1999, 2006; Rogers et al., 2000; George & Rogers, 2002; Furman et al., 2006a; Rooney et al., 2012b). Pik et al. (1999) first identified four end-member components for Oligocene Plateau magmatism. Subsequently, Meshesha & Shinjo (2008) identified five end-member components for Oligocene to Recent magmatism across the entire region in Ethiopia. Since then, numerous isotope data have been published (e.g., Shinjo et al., 2011; Rooney et al., 2012b, 2014a; Natali et al., 2016; Ayalew et al., 2016, 2018; Alene et al., 2017). Here we examine the end-member compositions proposed by Meshesha & Shinjo (2008) using data from the present study and complied from the recent literature. We used principal component analysis (PCA) to inspect the geometries of the data on

2
2
3
л
-т с
5
6
7
<i>'</i>
8
9
10
10
11
12
13
1.4
14
15
16
17
17
18
19
20
20
21
22
 วว
25
24
25
26
20
27
28
20
29
30
31
21
52
33
34
25
22
36
37
20
38
39
40
11
41
42
43
44
45
45
46
47
т/ 40
48
49
50
50
51
52
53
55
54
55
56
5/
58
59
<u> </u>
60

843

844

845

846

the plot. Details about the method are outlined in Supplementary Data Text S4; PCA score 829 plots are given in Supplementary Data Fig. S18 in which the mantle end-member components 830 of Meshesha & Shinjo (2008) are projected. The PCA outputs demonstrate that these end-831832 member components explain the variability of Sr-Nd-Pb isotope data sets well, including those presented in the more recent studies, and in this study. It is noted that this evaluation 833 does not include ³He/⁴He data, as was done by Meshesha & Shinjo (2008). Based on the Sr-834 Nd-Pb isotopic compositions of high-³He/⁴He lavas (Marty et al., 1996; Pik et al., 2006), 835 Meshesha & Shinjo (2008) defined an additional end-member component (their C4, and its 836 subtype C4'), and we used this composition to examine the effect of this source. 837 Meshesha & Shinjo (2008) inferred the origin of five end-member components as: 838 C1, recycled gabbro in the Afar plume (in the Oligocene); C2, enriched lithospheric materials 839 beneath the SMER (or lithosphere metasomatized by C2-dominated melts); C3, EM-1-like 840 recycled crustal material in the Afar plume; C4, crust-mantle hybrid rocks from the lower 841 mantle [essentially identical to the "C" component of Hanan & Graham (1996) or "FOZO" of 842

Stracke et al. (2005)]; C5, unpolluted upper mantle (Schilling et al., 1992). Furman (2007)

and Rooney et al. (2014a, 2017a) argued for an origin of C2 as a 'metasome' within

lithosphere formed by reaction with asthenosphere-derived melts. Ayalew et al. (2016) also

suggested a similar scenario for the C3 isotopic signature; the EM1-like isotopic signature of

this source is preserved as veins in the lithosphere, presumably formed by infiltration of asthenosphere-derived melts into the lithosphere. Based on these inferences, the fusibility, i.e., how easy it is to be melted, is roughly estimated as C2 = C3 > C4 > C1 > C5. Thus, to a first order, contributions of C1 (Oligocene) or C5 (Miocene to recent) relative to the other end-member component are interpreted to reflect the dominance of a refractory source domain in the melting process. When more than three end-member components are involved in mixing, the relative mass fraction of them cannot be solved mathematically (e.g., Schilling et al., 1992). Instead, we use the PCA score as a proxy for the relative contribution from a specific end-member component. For Oligocene magmas, Meshesha & Shinjo (2008) suggested that C1 is the most depleted, hence considered to be the most refractory source. From the location of C1 in isotope correlation space, its contribution can be seen as a positive score of PC1 (first principal component; Supplementary Data Fig. S18). Figure 11 shows a clear negative correlation between the PC1 score and (La/Sm)_N ratio. Such a relationship can be interpreted as reflecting different averaging of melts sampled from a heterogeneous mantle consisting of materials with different fusibilities (e.g., Stracke et al., 2003). The HT2 rocks represent melts sampled preferentially from a fusible source in the deep melting region, whereas LT mafic rocks represent melts sampled preferentially from a refractory source (C1) in the shallower

2	
3	
4	
5	
5 6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠∪ ⊃1	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
22 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
- 1 0 //7	
47	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

melting region (Fig. 12a). This inference is consistent with Pik et al. (1998), Furman et al. 865 (2006a), Beccaluva et al. (2009), and Natali et al. (2016). A Maychew HT2 sample from the 866 basal section (TR1V3) is one of the deepest melts sampled during Oligocene trap magmatism 867868 (estimated to have segregated at a pressure of 3 GPa; Supplementary Data Fig. S17), and its isotopic composition is similar to C4' of Meshesha & Shinjo (2008) (see also Figs 6 and 869 S13). Meshesha & Shinjo (2008) argued that C4' observed in the Quaternary Afar basalts 870 would have evolved from C4 over time. Instead, our data for HT2 basanites suggests that the 871 composition of this end-member component did not change over time. To advance the 872 knowledge of the evolution of this magma source, further studies on Maychew basanites, 873 including ³He/⁴He analysis, are necessary. 874In the subsequent period (<30 Ma), volcanic activity coincided with rifting, and 875 magma production was driven by adiabatic decompression of asthenospheric mantle through 876 plate divergence (e.g., Deniel et al., 1994; Rooney et al., 2007, 2013; Rooney, 2010; Ayalew 877 & Gibson, 2009; Pinzuti et al., 2013; Feyissa et al., 2017; Ayalew et al., 2018). Previous 878 studies have documented temporal and spatial changes in the melting regime associated with 879 the development of the rift system; deeper melting occurred in regions of incipient rift zones 880 881 such as Oligocene-Miocene rift axes and the Quaternary SDFZ, whereas shallow melting occurred in the regions of axial and mature rift zones (e.g., Rooney, 2010; Ferguson et al., 882

883 2013a; Feyissa et al., 2017; Ayalew et al., 2018).

The Miocene to Recent mafic rocks in the MER have contributions from the C2 and C3 end-member components of Meshesha & Shinjo (2008) (Figs 6, S13, and S14). The C2 end-member component mainly contributed to mafic rocks from the SEMR and Turkana region (Furman et al., 2004, 2006b; Shinjo et al., 2011), whereas the C3 component mainly contributed to the CMER and NMER mafic rocks (Furman et al., 2006a; Ayalew et al., 2016). The C2 end-member component is characterized by radiogenic Pb isotopic compositions, and the C3 end-member component is clearly defined by higher ⁸⁷Sr/⁸⁶Sr (Fig. 6). The compositions of these end-member components of Meshesha & Shinjo (2008) are located on the lower extension of PC1 and PC2 in PCA score plots (Supplementary Data Fig. S18; PC1 and PC2 denote first and second principal components). The contribution of the C2 end-member component (represented as a negative PC1 score) and (La/Sm)_N ratio show a correlation, as seen in Oligocene Plateau mafic rocks. The decreasing effect of this end-member component in mafic rocks along the MER from south to north could be related to shallow melting of more refractory source (C5). The southward increase in LAB depth is documented as along-strike depth variation of a mid-lithosphere reflector (Maguire et al., 2006; Keir et al., 2015). We suggest that thick lithosphere may act as an obstruction to the upwelling asthenospheric flow to shallower depths (Fig. 12b), resulting in preferential

sampling of melt from fusible sources. Lateral changes in the lithospheric structure (e.g., dip of its base; Kendall et al., 2005; Keir et al., 2015) may also enhance melt extraction and produce melt from refractory sources, as observed in the NMER at 9 °N (Fig. 7). The presence of two different fusible sources (C2 and C3) must be an intrinsic feature in the mantle beneath the MER, and may be attributed to a difference in phase assemblages in these sources, depending on the conditions of their formation [e.g., amphibole- vs phlogopite-bearing assemblage: Furman (2007); Rooney et al. (2017)]. Temporal and spatial variations of basalt compositions in Oligocene to Recent Ethiopian magmatism require changes in the relative contributions of multiple end-member components in the mantle. Correlations between major and trace element and isotopic compositions suggest that melting integrated chemically-variable melts formed across a range of pressures. Secular and lateral changes in magma compositions are probably due to changes in the melting regime related to the influence of the Afar plume in space and time (Furman et al., 2006a; Rooney, 2010; Rooney et al., 2012b; Ayalew et al., 2016). The ongoing rifting in Ethiopia may represent the transition from a plume-driven to a plate-driven setting for the upwelling of asthenospheric mantle.

918 CONCLUSIONS

Geochronological and geochemical results from this study are combined with existing data
and yield constraints on petrologic processes and magma sources for Ethiopian magmatism
since 30 Ma. The conclusions of this study are as follows.

- The K-Ar ages of this study are essentially consistent with the existing K-Ar and 40 Ar/³⁹Ar ages. The ages range from *c*. 30 Ma to Recent (*c*. 0.1 Ma), and represent volcanism transitional from an Oligocene trap phase to a Miocene to Recent riftrelated phase.
- Maychew basanites record the highest range of mantle potential temperature among Oligocene Plateau rocks ($T_p = c. 1600$ °C), and are considered to be the melting product of the starting Afar plume head. Oligocene to Recent mafic rocks from the MER and Afar regions yield lower T_p (1500–1340 °C), suggesting a decrease in T_p by 100–260 °C in the post trap-phase magmatism.
- Our new Sr-Nd-Pb isotope data for Plateau and rift-related mafic lavas reaffirm the
 involvement of the end-member source components defined by Meshesha & Shinjo
 (2008). Temporal and spatial changes in lava geochemistry can be explained by
 changes in the relative contributions these end-member components.
- Relative contributions of these end-member components are primarily attributed to

2 3 4		
5 6 7	936	change in sampling of melts derived from a heterogeneous mantle, as related to the
8 9	937	thermal condition of the asthenosphere (for Oligocene magmatism) and the thickness
10 11 12	001	
13 14	938	of the lithosphere (for MER magmatism).
15 16 17	939	• The ongoing rifting in Ethiopia may represent a transitional phase from a plume-
18 19	940	driven to a plate-driven setting of magmatism.
20 21 22	941	
23 24 25 26	942	ACKNOWLEDGEMENTS
27 28 29	943	We are grateful to Gray E. Bebout and Tyrone O. Rooney for discussion and improving the
30 31 32	944	manuscript. We would also like to thank Tazue Nogi for help in K-Ar analysis. All members
33 34 35	945	of the Pheasant Memorial Laboratory are thanked for their constructive discussion, technical
36 37 38	946	support, and encouragement. Tanya Furman and two anonymous reviewers are acknowledged
39 40 41	947	for their constructive review of the manuscript and Georg Zellmer is thanked for editorial
42 43 44	948	handling. This study was supported by the MEXT (Ministry of Education, Culture, Sports,
45 46 47	949	Science and Technology). We appreciate the Geological Survey of Ethiopia (GSE), in
48 49 50	950	particular the Basic Geoscience Mapping Core Processes for their comprehensive support
51 52 53	951	during the fieldwork. Figures were prepared using GMT (Wessel et al., 2013) and R (R Core
54 55 56 57 58	952	Team, 2019).

953 SUPPLEMENTARY DATA

954 Supplementary data are available at Journal of Petrology online.

13 955

 REFERENCES

Abebe, T., Mazzarini, F., Innocenti, F. & Manetti, P. (1998). The Yerer-Tullu Wellel
volcanotectonic lineament: A transtensional structure in central Ethiopia and the
associated magmatic activity. Journal of African Earth Sciences, 26(1), 135-150, doi:
10.1016/S0899-5362(97)00141-3.
Abebe, B., Acocella, V., Korme, T. & Ayalew, D. (2007). Quaternary faulting and volcanism

962 in the Main Ethiopian Rift. Journal of African Earth Sciences, 48(2-3), 115-124, doi:

963 10.1016/j.jafrearsci.2006.10.005.

Alene, M., Hart, W. K., Saylor, B. Z., Deino, A., Mertzman, S., Haile-Selassie, Y. & Gibert,
L. B. (2017). Geochemistry of Woranso–Mille Pliocene basalts from west-central
Afar, Ethiopia: Implications for mantle source characteristics and rift evolution.
Lithos, 282, 187-200, doi: 10.1016/j.lithos.2017.03.005.

Armitage, J. J., Ferguson, D. J., Goes, S., Hammond, J. O., Calais, E., Rychert, C. A. &
Harmon, N. (2015). Upper mantle temperature and the onset of extension and breakup in Afar, Africa. Earth and Planetary Science Letters, 418, 78-90, doi:

2 3 4	
5 6 7	971
8 9 10 11	972
12 13 14	973
15 16 17	974
18 19 20	975
21 22 23	976
24 25 26	977
27 28 29	978
30 31 32	979
33 34 35	980
36 37 38	981
39 40 41	982
42 43 44	983
45 46 47	984
48 49 50	985
51 52 53	986
54 55 56	987
57 58 59	988

60

10 1016/	i epsl 2015 02 039
10.1010/	[.epsi.2010.02.02).

Arndt, N. T., & Christensen, U. (1992). The role of lithospheric mantle in continental flood
volcanism: thermal and geochemical constraints. Journal of Geophysical Research:
Solid Earth, 97(B7), 10967-10981, doi: 10.1029/92JB00564.

975 Audin, L., Quidelleur, X., Coulié, E., Courtillot, V., Gilder, S., Manighetti, I., Gillot, P.-Y.,

Tapponnier, P. & Kidane, T. (2004). Palaeomagnetism and K-Ar and ⁴⁰Ar/³⁹Ar ages
in the Ali Sabieh area (Republic of Djibouti and Ethiopia): constraints on the
mechanism of Aden ridge propagation into southeastern Afar during the last 10 Myr.
Geophysical Journal International, 158(1), 327-345, doi: 10.1111/j.1365246X.2004.02286.x.

Ayalew, D., Yirgu, G. & Pik, R. (1999). Geochemical and isotopic (Sr, Nd and Pb)
characteristics of volcanic rocks from southwestern Ethiopia. Journal of African Earth
Sciences, 29(2), 381-391, doi: 10.1016/S0899-5362(99)00104-9.

Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G. & Pik, R. (2002). Source, genesis,
and timing of giant ignimbrite deposits associated with Ethiopian continental flood
basalts. Geochimica et Cosmochimica Acta, 66(8), 1429-1448, doi: 10.1016/S00167037(01)00834-1.

988 Ayalew, D. & Gibson, S. A. (2009). Head-to-tail transition of the Afar mantle plume:

2 3		
4 5 6		
7 8	989	Geochemical evidence from a Miocene bimodal basalt-rhyolite succession in the
9 10 11	990	Ethiopian Large Igneous Province. Lithos, 112(3-4), 461-476, doi:
12 13 14	991	10.1016/j.lithos.2009.04.005.
15 16 17	992	Ayalew, D., Jung, S., Romer, R. L., Kersten, F., Pfänder, J. A. & Garbe-Schönberg, D.
18 19 20	993	(2016). Petrogenesis and origin of modern Ethiopian rift basalts: Constraints from
20 21 22 23	994	isotope and trace element geochemistry. Lithos, 258, 1-14, doi:
23 24 25 26	995	10.1016/j.lithos.2016.04.001.
20 27 28	996	Ayalew, D., Jung, S., Romer, R. L. & Garbe-Schönberg, D. (2018). Trace element
30 31	997	systematics and Nd, Sr and Pb isotopes of Pliocene flood basalt magmas (Ethiopian
32 33 34	998	rift): A case for Afar plume-lithosphere interaction. Chemical Geology, 493, 172-188,
35 36 37	999	doi: 10.1016/j.chemgeo.2018.05.037.
39 40	1000	Baker, J., Snee, L. & Menzies, M. (1996a). A brief Oligocene period of flood volcanism in
41 42 43	1001	Yemen: implications for the duration and rate of continental flood volcanism at the
44 45 46	1002	Afro-Arabian triple junction. Earth and Planetary Science Letters, 138(1-4), 39-55,
47 48 49	1003	doi: 10.1016/0012-821X(95)00229-6.
50 51 52	1004	Baker, J. A., Thirlwall, M. F. & Menzies, M. A. (1996b). Sr-Nd-Pb isotopic and trace
53 54 55	1005	element evidence for crustal contamination of plume-derived flood basalts: Oligocene
50 57 58 59 60	1006	flood volcanism in western Yemen. Geochimica et Cosmochimica Acta, 60(14),
00		

1 2		
3 4		
5 6 7 8	1007	2559-2581, doi: 10.1016/0016-7037(96)00105-6.
9 10 11	1008	Barberi, F., Bonatti, E., Marinelli, G. & Varet, J. (1974). Transverse tectonics during the split
12 13 14	1009	of a continent: data from the Afar rift. Tectonophysics, 23(1-2), 17-29, doi:
15 16 17	1010	10.1016/0040-1951(74)90108-5.
18 19 20	1011	Barberi, F. & Varet, J. (1975). Nature of the Afar crust: a discussion. In: Pilger, A. & Rösler,
21 22 23	1012	A. (Eds.), Afar depression of Ethiopia, Proceedings of an International Symposium on
24 25 26	1013	the Afar Region and Related Rift Problems, Bad Bergzabern, F. R. Germany, April 1–
27 28 29	1014	6, vol. 1, E. Schweizerbart'sche Verlagsbunchhandlung, Stuttgart, pp. 375-378.
30 31 32	1015	Barberi, F. Santacroce, R. & Varet, J. (1975). Structural evolution of the Afar triple junction,
33 34 35	1016	In: Pilger, A. & Rösler, A. (Eds.), Afar depression of Ethiopia, Proceedings of an
36 37 38	1017	International Symposium on the Afar Region and Related Rift Problems, Bad
39 40 41	1018	Bergzabern, F. R. Germany, April 1-6, vol. 1, E. Schweizerbart'sche
42 43 44	1019	Verlagsbunchhandlung, Stuttgart, pp. 38–54.
45 46 47	1020	Barrat, J. A., Jahn, B. M., Joron, J. L., Auvray, B. & Hamdi, H. (1990). Mantle heterogeneity
48 49 50	1021	in northeastern Africa: evidence from Nd isotopic compositions and
51 52 53	1022	hygromagmaphile element geochemistry of basaltic rocks from the Gulf of Tadjoura
54 55 56	1023	and southern Red Sea regions. Earth and Planetary Science Letters, 101(2-4), 233-
58 59 60	1024	247, doi: 10.1016/0012-821X(90)90156-R.

+		
5 7 8	1025	Barrat, J. A., Jahn, B. M., Fourcade, S. & Joron, J. L. (1993). Magma genesis in an ongoing
)	1026	rifting zone: The Tadjoura Gulf (Afar area). Geochimica et cosmochimica acta,
2	1027	57(10), 2291-2302, doi: 10.1016/0016-7037(93)90570-M.
5 6	1028	Barrat, J. A., Fourcade, S., Jahn, B. M., Cheminée, J. L. & Capdevila, R. (1998). Isotope (Sr,
7 8 9	1029	Nd, Pb, O) and trace-element geochemistry of volcanics from the Erta'Ale range
21 22	1030	(Ethiopia). Journal of Volcanology and Geothermal Research, 80(1-2), 85-100, doi:
23 24 25 26	1031	10.1016/S0377-0273(97)00016-4.
27 28	1032	Barrat, J. A., Joron, J. L., Taylor, R. N., Fourcade, S., Nesbitt, R. W. & Jahn, B. M. (2003).
30 31	1033	Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in
32 33 34	1034	Central Afar. Lithos, 69(1-2), 1-13, doi: 10.1016/S0024-4937(03)00044-6.
35 36 37	1035	Bastow, I. D., Nyblade, A. A., Stuart, G. W., Rooney, T. O. & Benoit, M. H. (2008). Upper
88 89 10	1036	mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the
+1 +2 +3	1037	African low-velocity anomaly. Geochemistry Geophysics Geosystems, 9(12),
14 15 16	1038	Q12022, doi: 10.1029/2008GC002107.
17 18 19	1039	Beccaluva, L., Bianchini, G., Natali, C. & Siena, F. (2009). Continental flood basalts and
50 51 52	1040	mantle plumes: a case study of the Northern Ethiopian Plateau. Journal of Petrology,
53 54 55	1041	50(7), 1377-1403, doi: 10.1093/petrology/egp024.
56 57 58 59 50	1042	Berhe, S. M. (1986). Geologic and geochronologic constraints on the evolution of the Red

1 ว		
2 3		
4 5		
6 7	1043	Sea-Gulf of Aden and Afar Depression. Journal of African Earth Sciences (1983),
8 9 10	1044	5(2), 101-117, doi: 10.1016/0899-5362(86)90001-1.
12 13 14	1045	Berhe, S. M., Desta, B., Nicoletti, M. & Teferra, M. (1987). Geology, geochronology and
15 16 17	1046	geodynamic implications of the Cenozoic magmatic province in W and SE Ethiopia.
18 19 20	1047	Journal of the Geological Society, 144(2), 213-226, doi: 10.1144/gsjgs.144.2.0213.
21 22 23	1048	Blundy, J. D., Robinson, J. A. C. & Wood, B. J. (1998). Heavy REE are compatible in
24 25 26	1049	clinopyroxene on the spinel lherzolite solidus. Earth and Planetary Science Letters,
27 28 29	1050	160(3-4), 493-504, doi: 10.1016/S0012-821X(98)00106-X.
30 31 32	1051	Boccaletti, M., Mazzuoli, R., Bonini, M., Trua, T. & Abebe, B. (1999). Plio-Quaternary
33 34 35	1052	volcanotectonic activity in the northern sector of the Main Ethiopian Rift:
36 37 38	1053	relationships with oblique rifting. Journal of African Earth Sciences, 29(4), 679-698,
39 40 41	1054	doi: 10.1016/S0899-5362(99)00124-4.
42 43 44	1055	Bonini, M., Corti, G., Innocenti, F., Manetti, P., Mazzarini, F., Abebe, T. & Pecskay, Z.
45 46 47	1056	(2005). Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts
48 49 50	1057	propagation. Tectonics, 24(1), TC1007, doi: 10.1029/2004TC001680.
51 52 53	1058	Bosworth, W., Huchon, P. & McClay, K. (2005). The Red Sea and Gulf of Aden basins.
54 55 56	1059	Journal of African Earth Sciences, 43(1-3), 334-378, doi:
57 58 59 60	1060	10.1016/j.jafrearsci.2005.07.020.

2 3		
4 5 6		
7 8	1061	Boynton, W. V. (1983). Cosmochemistry of the rare earth elements: Meteorite studies. In:
9 10 11	1062	Henderson, P. (Ed.) Rare earth element geochemistry, 63-114, New York, Elsevier,
12 13 14	1063	doi: 10.1016/B978-0-444-42148-7.50008-3.
15 16 17	1064	Chernet, T., Hart, W. K., Aronson, J. L. & Walter, R. C. (1998). New age constraints on the
18 19 20	1065	timing of volcanism and tectonism in the northern Main Ethiopian Rift-southern Afar
21 22 23	1066	transition zone (Ethiopia). Journal of Volcanology and Geothermal Research, 80(3-4),
24 25 26	1067	267-280, doi: 10.1016/S0377-0273(97)00035-8.
27 28 29	1068	Chiasera, B., Rooney, T. O., Girard, G., Yirgu, G., Grosfils, E., Ayalew, D., Mohr, P.,
30 31 32	1069	Zimbelman, J. R. and Ramsey, M. S., (2018). Magmatically assisted off-rift
32 33 34 35	1070	extension—The case for broadly distributed strain accommodation. Geosphere, 14(4),
36 37 38	1071	1544–1563, doi: 10.1130/GES01615.1.
39 40	1072	Civiero, C., Hammond, J. O. S., Goes, S., Fishwick, S., Ahmed, A., Ayele, A., Doubre, C.,
42 43	1073	Goitom, B., Keir, D., Kendall, JM., Leroy, S., Ogubazghi, G., Rümpker, G. &
44 45 46	1074	Stuart, G. W. (2015), Multiple mantle upwellings in the transition zone beneath the
47 48 49	1075	northern East-Africa Rift system from relative P-wave travel-time tomography,
50 51 52	1076	Geochemistry Geophysics Geosystems, 16, 2949–2968, doi: 10.1002/2015GC005948.
55 54 55	1077	Conticelli, S., Sintoni, M. F., Abebe, T., Mazzarini, F., & Manetti, P. (1999). Petrology and
57 58 59	1078	geochemistry of ultramafic xenoliths and host lavas from the Ethiopian Volcanic
60		

1 2		
_ 3 ∡		
5		
0 7	1079	Province: An insight into the upper mantle under eastern Africa. Acta Vulcanologica,
8 9 10 11	1080	11, 143-160.
12 13	1081	Corti, G. (2009). Continental rift evolution: from rift initiation to incipient break-up in the
14 15 16	1082	Main Ethiopian Rift, East Africa. Earth-science reviews, 96(1-2), 1-53, doi:
17 18 19	1083	10.1016/j.earscirev.2009.06.005.
20 21 22	1084	Corti, G., Bastow, I. D., Keir, D., Pagli, C. & Baker, E. (2015), Rift-related morphology of
23 24 25	1085	the Afar Depression, In: P. Billi (Ed.)., Landscapes and Landforms of Ethiopia, World
26 27 28 29 30 31 32	1086	Geomorphological Landscapes, doi: 10.1007/978-94-017-8026-1_15, Sprinfer
	1087	Science Business Media Dordrecht 2-15.
32 33 34	1088	Cottrell, E. & Kelley, K. A. (2011). The oxidation state of Fe in MORB glasses and the
35 36 37	1089	oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3-4),
38 39 40	1090	270-282, doi: 10.1016/j.epsl.2011.03.014.
41 42 43	1091	Coulié, E., Quidelleur, X., Gillot, P. Y., Courtillot, V., Lefèvre, J. C. & Chiesa, S. (2003).
44 45 46	1092	Comparative K-Ar and Ar/Ar dating of Ethiopian and Yemenite Oligocene
47 48 49	1093	volcanism: implications for timing and duration of the Ethiopian traps. Earth and
50 51 52	1094	Planetary Science Letters, 206(3-4), 477-492, doi: 10.1016/S0012-821X(02)01089-0.
53 54 55	1095	Dalton, C. A., Langmuir, C. H. & Gale, A. (2014). Geophysical and geochemical evidence
56 57 58 59 60	1096	for deep temperature variations beneath mid-ocean ridges. Science, 344(6179), 80-83,

1 2		
3 4		
5 6 7 8	1097	doi: 10.1126/science.1249466.
9 10 11	1098	Daoud, M. A., Maury, R. C., Barrat, JA., Talyor, R. N., Gall, B. L., Guillou, H., Cotton, J.
12 13 14	1099	& Rolet, J. (2010). A LREE-depleted component in the Afar plume: Further evidence
15 16 17	1100	from Quaternary Djibouti basalts, Lithos, 114(3-4), 327-336, doi:
10 19 20 21	1101	10.1016/j.lithos.2009.09.008.
22 23 24	1102	Davidson, A. & Rex, D. C. (1980). Age of volcanism and rifting in southwestern Ethiopia.
25 26 27	1103	Nature, 283(5748), 657, doi: 10.1038/283657a0.
28 29 30	1104	Deniel, C., Vidal, P., Coulon, C., Vellutini, P. J. & Piguet, P. (1994). Temporal evolution of
31 32 33	1105	mantle sources during continental rifting: the volcanism of Djibouti (Afar). Journal of
34 35 36	1106	Geophysical Research: Solid Earth, 99(B2), 2853-2869, doi: 10.1029/93JB02576.
37 38 39	1107	DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation
40 41 42	1108	and fractional crystallization. Earth and Planetary Science Letters, 53(2), 189-202,
43 44 45	1109	doi: 10.1016/0012-821X(81)90153-9.
46 47 48	1110	Dugda, M. T., Nyblade, A. A., Julia, J., Langston, C. A., Ammon, C. J. and Simiyu, S.
49 50 51	1111	(2005). Crustal structure in Ethiopia and Kenya from receiver function analysis:
52 53 54	1112	Implications for rift development in eastern Africa. Journal of Geophysical Research:
55 56 57 58 59 60	1113	Solid Earth, 110(B1), B01303, doi:10.1029/2004JB003065.

1 2	
3 4 5	
6 7 8	11
9 10 11	11
12 13	11
14 15 16	11
17 18 19	11
20 21 22	11
23 24 25	11
26 27 28	11
29 30 31	11
32 33 34	11
35 36 37	11
38 39 40	11
41 42 43	11
44 45 46	11
47 48 49	11
50 51 52	11
53 54	11
55 56 57	11
58 59 60	

Dugda, M. T., Nyblade, A. A., & Julia, J. (2007). Thin lithosphere beneath the Ethiopian 114 Plateau revealed by a joint inversion of Rayleigh wave group velocities and receiver 115 functions. Journal of Geophysical Research: Solid Earth, 112(B8), B08305, doi: 116 117 10.1029/2006JB004918. Dupré, B., Blanc, G., Boulègue, J. & Allègre, C. J. (1988). Metal remobilization at a 118 spreading centre studied using lead isotopes. Nature, 333(6169), 165, doi: 119 10.1038/333165a0. 20Ebinger, C. J., Yemane, T., WoldeGabriel, G., Aronson, J. L. & Walter, R. C. (1993). Late 121Eocene–Recent volcanism and faulting in the southern main Ethiopian rift. Journal of 22the Geological Society, 150(1), 99-108, doi: 10.1144/gsjgs.150.1.0099. 23Ebinger, C. J. & Sleep, N. H. (1998). Cenozoic magmatism throughout east Africa resulting 24from impact of a single plume. Nature, 395(6704), 788-791, doi: 10.1038/27417. 25Ebinger, C. J., Yemane, T., Harding, D. J., Tesfaye, S., Kelley, S. & Rex, D. C. (2000). Rift 126deflection, migration, and propagation: Link of the Ethiopian and Eastern rifts, Africa, 27Geological Society of America Bulletin, 112(2), 163-176, doi: 10.1130/0016-28

1129 7606(2000)112<163:RDMAPL>2.0.CO;2.

1130Ebinger, C.J. & Casey, M. (2001). Continental breakup in magmatic provinces: An Ethiopian1131example.Geology,29(6),527-530,doi:10.1130/0091-

1 2		
3		
4 5		
6 7 8	1132	7613(2001)029<0527:CBIMPA>2.0.CO;2.
9 10 11	1133	Ellam, R. M. (1992). Lithospheric thickness as a control on basalt geochemistry. Geology,
12 13 14	1134	20(2), 153-156, doi: 10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2.
15 16 17 18	1135	Ferguson, D. J., Maclennan, J., Bastow, I. D., Pyle, D. M., Jones, S. M., Keir, D., Blundy, J.
19 20	1136	D., Plank, T. & Yirgu, G. (2013a). Melting during late-stage rifting in Afar is hot and
21 22 23 24	1137	deep. Nature, 499(7456), 70-73, doi: 10.1038/nature12292.
25 26 27	1138	Ferguson, D. J., Calvert, A. T., Pyle, D. M., Blundy, J. D., Yigru, G. & Wright, T. J. (2013b),
27 28 29 30	1139	Constraining timescales of focused magmatic accretion and extension in the Afar
31 32	1140	crust using lava geochronology, Nature Communications, 4(1416), doi:
33 34 35	1141	10.1038/ncomms2410.
37 38 39	1142	Feyissa, D. H., Shinjo, R., Kitagawa, H., Meshesha D. & Nakamura, E. (2017). Petrologic
40 41 42	1143	and geochemical characterization of rift-related magmatism at the northernmost Main
43 44 45	1144	Ethiopian Rift: Implications for plume-lithosphere interaction and the evolution of rift
45 46 47	1145	mantle sources. Lithos, 282, 240-261, doi: 10.1016/j.lithos.2017.03.011.
48 49 50	1146	Fram, M. S., Lesher, C. E. & Volpe, A. M. (1998). Mantle melting systematics: transition
51 52 53	1147	from continental to oceanic volcanism on the southeast Greenland margin. In
54 55 56	1148	Saunders, A. D., Larsen, H. C. & Wise, S. W. (Eds.), Proceedings of the Ocean
57 58 59 60	1149	Drilling Program, Scientific Results, 152, pp. 373-386, doi:

1 2		
3 4		
5 6 7	1150	10.2973/odp.proc.sr.152.236.1998.
o 9 10 11	1151	Furman, T. & Graham, D. (1999). Erosion of lithospheric mantle beneath the East African
12 13	1152	Rift system: geochemical evidence from the Kivu volcanic province, Lithos, 48(1-4),
15 16 17	1153	237-262, doi: 10.1016/S0024-4937(99)00031-6.
17 18 19	1154	Furman, T., Bryce, J. G., Karson, J. & Iotti, A. (2004). East African Rift System (EARS)
20 21 22	1155	plume structure: insights from Quaternary mafic lavas of Turkana, Kenya. Journal of
23 24 25	1156	Petrology, 45(5), 1069-1088, doi: 10.1093/petrology/egh004.
26 27 28 29 30 31 32	1157	Furman, T., Bryce, J., Rooney, T., Hanan, B., Yirgu, G. & Ayalew, D. (2006a). Heads and
	1158	tails: 30 million years of the Afar plume. Geological Society, London, Special
32 33 34	1159	Publications, 259(1), 95-119, doi: 10.1144/GSL.SP.2006.259.01.09.
35 36 37	1160	Furman, T., Kaleta, K. M., Bryce, J. G., & Hanan, B. B. (2006b). Tertiary mafic lavas of
38 39 40	1161	Turkana, Kenya: constraints on East African plume structure and the occurrence of
41 42 43 44 45 46	1162	high-µ volcanism in Africa. Journal of Petrology, 47(6), 1221-1244, doi:
	1163	10.1093/petrology/egl009.
47 48 49	1164	Furman, T. (2007). Geochemistry of East African Rift basalts: an overview. Journal of
50 51 52	1165	African Earth Sciences, 48(2-3), 147-160, doi: 10.1016/j.jafrearsci.2006.06.009.
53 54 55	1166	Furman, T., Nelson, W. R. & Elkins-Tanton, L. T. (2016). Evolution of the East African rift:
56 57 58 59 60	1167	Drip magmatism, lithospheric thinning and mafic volcanism. Geochimica et

4 5		
6 7 8	1168	Cosmochimica Acta, 185, 418-434, doi: 10.1016/j.gca.2016.03.024.
9 10 11	1169	Gasparon, M., Innocenti, F., Manetti, P., Peccerillo, A. & Tsegaye, A. (1993). Genesis of the
12 13 14	1170	Pliocene to Recent bimodal mafic-felsic volcanism in the Debre Zeyt area, central
15 16 17	1171	Ethiopia: Volcanological and geochemical constraints. Journal of African Earth
18 19 20	1172	Sciences (and the Middle East), 17(2), 145-165, doi: 10.1016/0899-5362(93)90032-L.
21 22 23	1173	George, R., Rogers, N., & Kelley, S. (1998). Earliest magmatism in Ethiopia: Evidence for
24 25 26	1174	two mantle plumes in one flood basalt province. Geology, 26(10), 923-926, doi:
27 28 29	1175	10.1130/0091-7613(1998)026<0923:EMIEEF>2.3.CO;2.
30 31 32	1176	George, R. (1999). The petrogenesis of Plio-Pleistocene alkaline volcanic rocks from the
33 34 35	1177	Tosa Sucha region, Arba Minch, southern main Ethiopian rift. Acta Vulcanologica,
36 37 38	1178	11, 121-131.
39 40 41	1179	George, R. & Rogers, N. (2002). Plume dynamics beneath the African plate inferred from the
42 43	1180	geochemistry of the Tertiary basalts of southern Ethiopia. Contributions to
44 45 46	1181	Mineralogy and Petrology, 144(3), 286-304, doi: 10.1007/s00410-002-0396-z.
47 48 49	1182	Giordano, F., D'Antonio, M., Civetta, L., Tonarini, S., Orsi, G., Ayalew, D., Yirgu, G.,
50 51 52	1183	Dell'Erba, F., Di Vito, M. A. & Isaia, R. (2014). Genesis and evolution of mafic and
53 54 55	1184	felsic magmas at Quaternary volcanoes within the Main Ethiopian Rift: Insights from
56 57 58 59 60	1185	Gedemsa and Fanta'Ale complexes. Lithos, 188, 130-144, doi:

1 2		
3 4		
5 6 7	1186	10.1016/j.lithos.2013.08.008.
8 9 10 11	1187	Grove, T. L., Kinzler, R. J., Baker, M. B., Donnelly-Nolan, J. M. & Lesher, C. E. (1988).
12 13 14	1188	Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake
14 15 16 17	1189	volcano, northern California: decoupling of heat and mass transfer. Contributions to
18 19 20	1190	Mineralogy and Petrology, 99(3), 320-343, doi: 10.1007/BF00375365.
21 22 23	1191	GSE (2005), Geological Map of Ethiopia, Ethiopian Ministry of Mines, Geological Survey of
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	1192	Ethiopia (GSE).
	1193	Hammond, J. O., Kendall, J. M., Stuart, G. W., Keir, D., Ebinger, C., Ayele, A., & Belachew,
	1194	M. (2011). The nature of the crust beneath the Afar triple junction: Evidence from
	1195	receiver functions. Geochemistry Geophysics Geosystems, 12(12), Q12004, doi:
	1196	10.1029/2011GC003738.
	1197	Hammond, J. O. S., Kendall, JM., Stuart, G. W., Ebinger, C. J., Bastow, I. D., Keir, D.,
	1198	Ayele, A., Belachew, M., Goitom, B., Ogubazghi, G. & Wright, T. J. (2013). Mantle
	1199	upwelling and initiation of rift segmentation beneath the Afar Depression. Geology,
	1200	41(6), 635-638, doi: 10.1130/G33925.1.
50 51 52	1201	Hanan, B. B. & Graham, D. W. (1996). Lead and helium isotope evidence from oceanic
53 54 55	1202	basalts for a common deep source of mantle plumes. Science, 272(5264), 991-995,
50 57 58	1203	doi: 10.1126/science.272.5264.991.
60		

2 3 4	
5 6 7	12
8 9 10	12
11 12 13	12
14 15 16 17	12
17 18 19 20	12
20 21 22 23	12
23 24 25 26	12
27 28 29	12
30 31 32	12
33 34 35	12
36 37 38	12
39 40 41	12
42 43 44	12
45 46 47	12
48 49 50	12
51 52 53	12
54 55 56	12
57 58 59	12
60	

204	Hart, W. K., WoldeGabriel, G., Walter, R. C. & Mertzman, S. A. (1989). Basaltic volcanism
205	in Ethiopia: constraints on continental rifting and mantle interactions. Journal of
206	Geophysical Research: Solid Earth, 94(B6), 7731-7748, doi:
207	10.1029/JB094iB06p07731.
208	Hayward, N. J. & Ebinger, C. J. (1996). Variations in the along-axis segmentation of the Afar
209	Rift system. Tectonics, 15(2), 244-257, doi: 10.1029/95TC02292.
210	Herzberg, C. & Asimow, P. D. (2015). PRIMELT3 MEGA.XLSM software for primary
211	magma calculation: peridotite primary magma MgO contents from the liquidus to the
212	solidus. Geochemistry Geophysics Geosystems, 16(2), 563-578, doi:
213	10.1002/2014GC005631.
214	Hofmann, C., Courtillot, V., Feraud, G., Rochette, P., Yirgu, G., Ketefo, E. & Pik, R. (1997).
215	Timing of the Ethiopian flood basalt event and implications for plume birth and global
216	change. Nature, 389(6653), 838-841, doi: 10.1038/39853.
217	Hutchison, W., Fusillo, R., Pyle, D. M., Mather, T. A., Blundy, J. D., Biggs, J., Yigru, G.,
218	Cohen, B. E., Brooker, R. A., Barford, D. N. & Calvert, A. T. (2016), A pulse of mid-
219	Pleistocene rift volcanism in Ethiopia at the dawn of modern humans, Nature
220	communications, 7(13192), doi: 10.1038/ncomms13192.
221	Irvine, T. N. J., & Baragar, W. R. A. (1971). A guide to the chemical classification of the

2 3 4	
5 6 7	12
8 9 10	12
11 12 13	12
14 15 16	12
17 18 19 20	12
20 21 22 23	12
24 25 26	12
27 28 29	12
30 31 32	12
33 34 35	12
36 37 38	12
39 40 41 42	12
43 44 45	12
46 47 48	12
49 50 51	12
52 53 54	12
55 56 57	12
58 59 60	

1222 common volcanic rocks. Canadian journal of earth sciences, 8(5), 523-548, doi:1223 10.1139/e71-055.

JICA (2012). The study on groundwater resources assessment in the Rift Valley lakes basin 224in the Federal Democratic Republic of Ethiopia. Japan International Cooperation 225Agency (JICA), Kokusai Kogyo, Co. Ltd. [with supplementary documents 226"Geological of Konso-Yabelo 227map area" (http://open_jicareport.jica.go.jp/pdf/12066361_06.pdf) and "Geological map of Arba 228Minch-Agre Marryam area" (http://open_jicareport.jica.go.jp/pdf/12066395_09.pdf)]. 229Johnson, K. T. (1998). Experimental determination of partition coefficients for rare earth and 230high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high 231pressures. Contributions to Mineralogy and Petrology, 133(1-2), 60-68, doi: 23223310.1007/s004100050437.

Jones, P. W. & Rex, D. C. (1974). New dates from the Ethiopian plateau volcanics. Nature,
 235 252(5480), 218, doi: 10.1038/252218a0.

Justin-Visentin, E., Nicoletti, M., Tolomeo, L. & Zanettin, B. (1974), Miocene and Pliocene
volcanic rocks of the Addis Ababa-Bebre Berhan area (Ethiopia). Geo-petrographic
and radiometric study, Bulletin Volcanologique, 38(1), 237–253, doi:

1 2		
3 4		
5		
7	1239	10.1007/BF02599406.
8 9		
10 11 12	1240	Katz, R. F., Spiegelman, M. & Langmuir, C. H. (2003). A new parameterization of hydrous
12 13 14	1241	mantle melting. Geochemistry Geophysics Geosystems, 4(9), 1073,
15 16 17	1242	doi:10.1029/2002GC000433.
18		
19 20 21	1243	Kazmin, V. (1979). Stratigraphy and correlation of Cenozoic volcanic rocks in Ethiopia.
22 23 24	1244	Reports of Ethiopian Institute of Geological Survey, 106, 1-26.
25 26	1245	Kelemen, P. B., Yogodzinski, G. M. & Scholl, D. W. (2003). Along-strike variation in lavas
27 28 29	1246	of the Aleutian island arc: Implications for the genesis of high Mg# andesite and the
30 31 32	1247	continental crust. In Eiler, J. (Ed.) Inside the subduction factory, Geophysical
33 34		
35 36	1248	Monograph, 138, 223-276, doi: 10.1029/138GM11.
37 38 39	1249	Kendall, J. M., Stuart, G. W., Ebinger, C. J., Bastow, I. D. & Keir, D. (2005). Magma-
40 41 42	1250	assisted rifting in Ethiopia. Nature, 433(7022), 146-148, doi: 10.1038/nature03161.
43 44 45	1251	Kidane, T., Courtillot, V., Manighetti, I., Audin, L., Lahitte, P., Quidelleur, X., Gillot, PY.,
46 47 48	1252	Gallet, Y., Carlut, J. & Haile, T. (2003), New paleomagnetic and geochronological
49 50 51	1253	results from Ethiopian Afar: Block rotations linked to rift overlap and propagation and
52 53 54	1254	determination of a ~2 Ma reference pole for stable Africa, Journal of Geophysical
55 56 57	1255	Research, 108(B2), 2102, doi: 10.1029/2001JB000645.
58 59 60	1256	Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., Pecher, A., Yirgu, G., Ayalew, D.,

1 2 3	
4 5	
6 7	1
8 9 10	1
11 12 13	1
14 15 16	1
17 18 19	1
20 21 22 22	1
25 24 25 26	1
20 27 28 20	1
30 31 32	1
33 34 35	1
36 37 30	1
39 40 41	1
41 42 43	1
45 46 47	1
48 49 50	1
51 52 53	1
54 55 56	1
57 58 59	1
60	

Weis, D., Jerram, D.A., Keller, F. & Meugniot, C. (2004). Flood and shield basalts 257from Ethiopia: magmas from the African superswell. Journal of Petrology, 45(4), 258793-834, doi: 10.1093/petrology/egg112. 259Keir, D., Bastow, I. D., Corti, G., Mazzarini, F. & Rooney, T. O. (2015). The origin of along-260rift variations in faulting and magmatism in the Ethiopian Rift. Tectonics, 34(3), 464-261477, doi: 10.1002/2014TC003698. 262Kitagawa, H., Kobayashi, K., Makishima, A. & Nakamura, E. (2008). Multiple pulses of the 263mantle plume: evidence from Tertiary Icelandic lavas. Journal of Petrology, 49(7), 2641365-1396, doi: 10.1093/petrology/egn029. 265Korenaga, J. (2004). Mantle mixing and continental breakup magmatism. Earth and Planetary 266 Science Letters, 218(3-4), 463-473, doi: 10.1016/S0012-821X(03)00674-5. 267 Krans, S. R., Rooney, T. O., Kappelman, J., Yirgu, G. & Ayalew, D. (2018). From initiation 268to termination: a petrostratigraphic tour of the Ethiopian Low-Ti Flood Basalt 269Province. Contributions Mineralogy and Petrology, 173(5), 37, 270to doi: 10.1007/s00410-018-1460-7. 271Lahitte, P., Gillot, P. Y. & Courtillot, V. (2003). Silicic central volcanoes as precursors to rift 272273propagation: the Afar case. Earth and Planetary Science Letters, 207(1-4), 103-116, doi: 10.1016/S0012-821X(02)01130-5. 274
2 3		
4 5		
6 7 8	1275	Lavayssière, A., Rychert, C., Harmon, N., Keir, D., Hammond, J. O. S., Kendall, JM.,
9 10 11	1276	Doubre, C. & Leroy, S. (2018), Imaging lithospheric discontinuities beneath the
12 13 14	1277	northern East African Rift using S-to-P receiver functions, Geochemistry Geophysics
15 16 17	1278	Geosystems, 19, 4048–4062, doi: 10.1029/2018GC007463.
17 18 19	1279	Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettin, B. & IUGS Subcommission on the
20 21 22	1280	Systematics of Igneous Rocks. (1986). A chemical classification of volcanic rocks
23 24 25	1281	based on the total alkali-silica diagram. Journal of petrology, 27(3), 745-750, doi:
20 27 28	1282	10.1093/petrology/27.3.745.
29 30 31	1283	Lee, C. T. A., Luffi, P., Plank, T., Dalton, H. & Leeman, W. P. (2009). Constraints on the
32 33 34	1284	depths and temperatures of basaltic magma generation on Earth and other terrestrial
35 36 37	1285	planets using new thermobarometers for mafic magmas. Earth and Planetary Science
38 39 40	1286	Letters, 279(1-2), 20-33, doi: 10.1016/j.epsl.2008.12.020.
41 42 43	1287	Mackenzie, G. D., Thybo, H., & Maguire, P. K. H. (2005). Crustal velocity structure across
44 45 46	1288	the Main Ethiopian Rift: results from two-dimensional wide-angle seismic modelling.
47 48 49	1289	Geophysical Journal International, 162(3), 994-1006, doi: 10.1111/j.1365-
50 51 52	1290	246X.2005.02710.x.
53 54 55	1291	Maguire, P. K. H., Keller, G. R., Klemperer, S. L., Mackenzie, G. D., Keranen, K., Harder,
56 57 58 59 60	1292	S., O'Reilly, B., Thybo, H., Asfaw, L., Khan, M. A. & Amha, M. (2006). Crustal

3 4 5		
6 7 8	1293	structure of the northern Main Ethiopian Rift from the EAGLE controlled-source
9 10 11	1294	survey; a snapshot of incipient lithospheric break-up. In Yigru, G., Ebinger, C. J., &
12 13	1295	Maguire, P. K. H. (Eds.) The Afar Volcanic Province within the East African Rift
14 15 16	1296	System, Geological Society of London, Special Publications, 259, 269-291, doi:
17 18 19	1297	10.1144/GSL.SP.2006.259.01.21.
20 21 22	1298	Manighetti, I., Tapponnier, P., Gillot, P. Y., Jacques, E., Courtillot, V., Armijo, R., Ruegg, J.
23 24 25 26	1299	C. & King, G. (1998). Propagation of rifting along the Arabia - Somalia plate
26 27 28	1300	boundary: Into Afar. Journal of Geophysical Research: Solid Earth, 103(B3), 4947-
29 30 31	1301	4974, doi: 10.1029/97JB02758.
32 33 34	1302	Marty, B., Pik, R. & Gezahegn, Y. (1996). Helium isotopic variations in Ethiopian plume
35 36 37	1303	lavas: nature of magmatic sources and limit on lower mantle contribution. Earth and
38 39 40	1304	Planetary Science Letters, 144(1-2), 223-237, doi: 10.1016/0012-821X(96)00158-6.
41 42 43	1305	Mazzarini, F., Le Corvec, N., Isola, I. & Favalli, M. (2016), Volcanic field elongation, vent
44 45 46	1306	distribution, and tectonic evolution of a continental rift: The Main Ethiopian Rift
47 48 49	1307	example, Geosphere, 12(3), 706–720, doi: 10.1130/GES01193.1.
50 51 52	1308	McDonough, W. F. & Sun, Ss. (1995). The composition of the Earth. Chemical Geology,
53 54 55	1309	120(3-4), 223-253, doi: 10.1016/0009-2541(94)00140-4.
56 57 58 59 60	1310	McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of

3 4		
5 6 7	1311	Petrology, 25(3), 713-765, doi: 10.1093/petrology/25.3.713.
8 9 10	1312	McKenzie, D. & Bickle, M. J. (1988). The volume and composition of melt generated by
11 12 13 14	1313	extension of the lithosphere, Journal of Petrology, 29(3), 625-679, doi:
15 16 17	1314	10.1093/petrology/29.3.625
18 19 20	1315	Meshesha, D. & Shinjo, R. (2008). Rethinking geochemical feature of the Afar and Kenya
21 22 23	1316	mantle plumes and geodynamic implications. Journal of Geophysical Research, 113,
24 25 26	1317	B09209, doi:10.1029/2007JB005549.
27 28 29	1318	Meshesha, D., Shinjo, R., Matsumura, R. & Chekol, T. (2011), Metasomatized lithospheric
30 31 32	1319	mantle beneath Turkana depression in southern Ethiopia (the East Africa Rift):
33 34 35	1320	geochemical and Sr-Nd-Pb isotopic characteristics. Contributions to Mineralogy and
36 37 38	1321	Petrology, 162, 889–907, doi: 10.1007/s00410-011-0630-7.
39 40 41	1322	Mohr, P. A. (1967). Major volcano-tectonic lineament in the Ethiopian rift system. Nature,
42 43 44	1323	213(5077), 664-665, doi: 10.1038/213664a0.
45 46 47	1324	Mohr, P. & Zanettin, B. (1988). The Ethiopian Flood Basalt Province. In McDougall, J. D.
48 49 50	1325	(Eds.) Continental Flood Basalts. Petrology and Structural Geology, vol 3. Springer,
51 52 53	1326	Dordrecht, pp. 63–110, doi: 10.1007/978-94-015-7805-9_3.
54 55 56	1327	Morton, W. H., Rex, D. C., Mitchell, J. G. & Mohr, P. (1979). Riftward younging of volcanic
57 58 59 60	1328	units in the Addis Ababa region, Ethiopian rift valley. Nature, 280(5720), 284-288,

1 2 3	
4 5	
6 7]
8 9 10]
11 12 12]
14 15	-
16 17 18	_
19 20]
21 22 23]
24 25]
26 27 28]
29 30 31]
32 33	-
34 35 36	-
37 38 20	-
39 40 41	-
42 43 44]
45 46]
47 48 49]
50 51 52]
53 54	1
55 56 57	_
58 59]
60	

1329	doi: 10.1038/280284a0.
1330	Nakamura, E., Makishima, A., Moriguti, T., Kobayashi, K., Sakaguchi, C., Yokoyama, T.,
1331	Tanaka, R., Kuritani, T & Takei, H. (2003). Comprehensive geochemical analyses of
1332	small amounts (< 100 mg) of extraterrestrial samples for the analytical competition
1333	related to the sample return mission MUSES-C. The Institute of Space and
1334	Astronautical Science report. SP, 16, 49-101.
1335	Natali, C., Beccaluva, L., Bianchini, G. & Siena, F. (2011). Rhyolites associated to Ethiopian
1336	CFB: clues for initial rifting at the Afar plume axis. Earth and Planetary Science
1337	Letters, 312(1-2), 59-68, doi: 10.1016/j.epsl.2011.09.059.
1338	Natali, C., Beccaluva, L., Bianchini, G., Ellam, R. M., Savo, A., Siena, F. & Stuart, F. M.
1339	(2016). High-MgO lavas associated to CFB as indicators of plume-related
1340	thermochemical effects: the case of ultra-titaniferous picrite-basalt from the Northern
1341	Ethiopian-Yemeni Plateau. Gondwana Research, 34, 29-48, doi:
1342	10.1016/j.gr.2016.02.009.
1343	Nelson, W. R., Furman, T., van Keken, P. E., Shirey, S. B. & Hanan, B. B. (2012). Os-Hf
1344	isotopic insight into mantle plume dynamics beneath the East African Rift System.
1345	Chemical Geology, 320, 66-79, doi: 10.1016/j.chemgeo.2012.05.020.
1346	Nyblade, A. A., Knox, R. P. & Gurrola, H. (2000). Mantle transition zone thickness beneath

3 4		
5 6 7	1347	Afar: implications for the origin of the Afar hotspot. Geophysical Journal
8 9 10	1348	International, 142(2), 615-619, doi: 10.1046/j.1365-246x.2000.00179.x.
11 12 13	1349	Peccerillo, A., Barberio, M. R., Yirgu, G., Ayalew, D., Barbieri, M. & Wu, T. W. (2003).
14 15 16 17	1350	Relationships between mafic and peralkaline silicic magmatism in continental rift
17 18 19 20	1351	settings: a petrological, geochemical and isotopic study of the Gedemsa volcano,
20 21 22 23	1352	central Ethiopian rift. Journal of Petrology, 44(11), 2003-2032, doi:
23 24 25 26	1353	10.1093/petrology/egg068.
20 27 28	1354	Pik, R., Deniel, C., Coulon, C., Yirgu, G., Hofmann, C. & Ayalew, D. (1998). The
29 30 31	1355	northwestern Ethiopian Plateau flood basalts: classification and spatial distribution of
33 34 25	1356	magma types. Journal of Volcanology and Geothermal Research, 81(1-2), 91-111,
36 37	1357	doi: 10.1016/S0377-0273(97)00073-5.
39 40	1358	Pik, R., Deniel, C., Coulon, C., Yirgu, G. & Marty, B. (1999). Isotopic and trace element
41 42 43	1359	signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions.
44 45 46	1360	Geochimica et Cosmochimica Acta, 63(15), 2263-2279, doi: 10.1016/S0016-
47 48 49	1361	7037(99)00141-6.
50 51 52	1362	Pik, R., Marty, B. & Hilton, D. R. (2006). How many mantle plumes in Africa? The
53 54 55	1363	geochemical point of view. Chemical Geology, 226(3-4), 100-114, doi:
56 57 58 59 60	1364	10.1016/j.chemgeo.2005.09.016.

Pinzuti, P., Humler, E., Manighetti, I. & Gaudemer, Y. (2013). Petrological constraints on

melt generation beneath the Asal Rift (Djibouti) using Quaternary basalts.

Geochemistry Geophysics Geosystems, 14(8), 2932-2953, doi: 10.1002/ggge.20187.

D. (2016). Geology and geochronology of the Tana Basin, Ethiopia: LIP volcanism,

super eruptions and Eocene–Oligocene environmental change. Earth and Planetary

mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chemical

& Tepley III, F. J. (Eds) Minerals, Inclusions and Volcanic Processes, Reviews in

Mineralogy and Geochemistry, 69(1), 61-120, Mineralogical Society of America and

Prave, A. R., Bates, C. R., Donaldson, C. H., Toland, H., Condon, D. J., Mark, D. & Raub, T.

Putirka, K. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. (2007). Ambient and excess

Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. In Putirka, K. D.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation

Robinson, J. A. C., Wood, B. J. & Blundy, J. D. (1998). The beginning of melting of fertile

and depleted peridotite at 1.5 GPa. Earth and Planetary Science Letters, 155(1-2), 97-

for Statistical Computing, Vienna, Austria (https://www.R-project.org/).

Science Letters, 443, 1-8, doi: 10.1016/j.epsl.2016.03.009.

Geology, 241(3-4), 177-206, doi: 10.1016/j.chemgeo.2007.01.014.

Geochemical Society, doi: 10.2138/rmg.2008.69.3.

1 2 3	
4 5	
6 7	1365
8 9 10	1366
11 12 13	1367
14 15 16	1368
17 18 19	1369
20 21 22	1370
23 24 25	1371
26 27 28	1372
29 30 31	1373
32 33 34	1374
35 36 37	1375
38 39 40	1376
41 42 43	1377
44 45 46	1378
47 48 49	1379
50 51 52	1380
53 54 55	1381
56 57 58	1382
59 60	

ו ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
55	
54	
55	
56	
57	
58	
59	

1383 111, doi: 10.1016/S0012-821X(97)00162-3.

1384 Rochette, P., Tamrat, E., Féraud, G., Pik, R., Courtillot, V., Ketefo, E., Coulon, C., Hofmann,

C., Vandamme, D. & Yirgu, G. (1998). Magnetostratigraphy and timing of the
Oligocene Ethiopian traps. Earth and Planetary Science Letters, 164(3-4), 497-510,
doi: 10.1016/S0012-821X(98)00241-6.

Rogers, N., Macdonald, R., Fitton, J. G., George, R., Smith, M. & Barreiro, B. (2000). Two
mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence
from Kenya Rift basalts. Earth and Planetary Science Letters, 176(3-4), 387-400, doi:
10.1016/S0012-821X(00)00012-1.

Rogers, N. W., Davies, M. K., Parkinson, I. J. & Yirgu, G. (2010). Osmium isotopes and
Fe/Mn ratios in Ti-rich picritic basalts from the Ethiopian flood basalt province: No
evidence for core contribution to the Afar plume. Earth and Planetary Science Letters,
296(3-4), 413-422, doi: 10.1016/j.epsl.2010.05.027.

Rooney, T. O., Furman, T., Yirgu, G. & Ayalew, D. (2005). Structure of the Ethiopian
lithosphere: Xenolith evidence in the Main Ethiopian Rift. Geochimica et
Cosmochimica Acta, 69(15), 3889-3910, doi: 10.1016/j.gca.2005.03.043.

Rooney, T., Furman, T., Bastow, I., Ayalew, D. & Yirgu, G. (2007). Lithospheric
modification during crustal extension in the Main Ethiopian Rift. Journal of

2 3 4		
5 6 7	1401	Geophysical Research: Solid Earth, 112(B10), B10201, doi:10.1029/2006JB004916.
8 9 10 11	1402	Rooney, T. O. (2010). Geochemical evidence of lithospheric thinning in the southern Main
12 13 14	1403	Ethiopian Rift. Lithos, 117(1-4), 33-48, doi: 10.1016/j.lithos.2010.02.002.
15 16 17	1404	Rooney, T. O., Bastow, I. & Keir, D. (2011), Insights into extensional processes during
18 19 20	1405	magma assisted rifting: Evidence from aligned scoria cones, Journal of Volcanology
21 22 23	1406	and Geothermal Research, 201, 83–96, doi: 10.1016/j.jvolgeores.2010.07.019.
24 25 26	1407	Rooney, T. O., Herzberg, C. & Bastow, I. D. (2012a). Elevated mantle temperature beneath
27 28 29	1408	East Africa. Geology, 40(1), 27-30, doi: 10.1130/G32382.1.
30 31 32	1409	Rooney, T. O., Hanan, B. B., Graham, D. W., Furman, T., Blichert-Toft, J. & Schilling, JG.
33 34 35	1410	(2012b). Upper mantle pollution during Afar plume-continental rift interaction.
36 37 38	1411	Journal of Petrology, 53(2), 365-389, doi: 10.1093/petrology/egr065.
39 40 41	1412	Rooney, T. O., Hart, W. K., Hall, C. M., Ayalew, D., Ghiorso, M. S., Hidalgo, P., & Yirgu,
42 43 44	1413	G. (2012c). Peralkaline magma evolution and the tephra record in the Ethiopian Rift.
45 46 47	1414	Contributions to Mineralogy and Petrology, 164(3), 407-426, doi: 10.1007/s00410-
48 49 50	1415	012-0744-6.
51 52 53	1416	Rooney, T. O., Mohr, P., Dosso, L. & Hall, C. (2013). Geochemical evidence of mantle
54 55 56	1417	reservoir evolution during progressive rifting along the western Afar margin.
57 58 59 60	1418	Geochimica et Cosmochimica Acta, 102, 65-88, doi: 10.1016/j.gca.2012.08.019.

	1419	Rooney, T. O., Nelson, W. R., Dosso, L., Furman, T. & Hanan, B. (2014a). The role of
)	1420	continental lithosphere metasomes in the production of HIMU-like magmatism on the
1 2 3	1421	northeast African and Arabian plates. Geology, 42(5), 419-422, doi:
4 5 5	1422	10.1130/G35216.1.
7 3 9	1423	Rooney, T. O., Bastow, I., Keir, D., Mazzarini, F., Movsesian, E., Grosfils, E. B.,
) 1 2	1424	Zimbelman, J. R., Ramsey, M. S., Ayalew, D. & Yirgu, G. (2014b), The protracted
3 4 5	1425	development of focused magmatic intrusion during continental rifting, Tectonics, 33,
5 7 3	1426	875–897, doi: 10.1002/2013TC003514.
9) 1	1427	Rooney, T. O. (2017). The Cenozoic magmatism of East-Africa: Part I-flood basalts and
2 3 4	1428	pulsed magmatism. Lithos, 286, 264-301, doi: 10.1016/j.lithos.2017.05.014.
5 5 7	1429	Rooney, T. O., Nelson, W. R., Ayalew, D., Hanan, B., Yirgu, G., & Kappelman, J. (2017).
3 9 0	1430	Melting the lithosphere: Metasomes as a source for mantle-derived magmas. Earth
1 2 3	1431	and Planetary Science Letters, 461, 105-118, doi: 10.1016/j.epsl.2016.12.010.
4 5 5	1432	Rooney, T. O., Krans, S. R., Mège, D., Arnaud, N., Korme, T., Kappelman, J. & Yirgu, G.
7 3 9	1433	(2018), Constraining the magmatic plumbing system in a zoned continental flood
) 1 2	1434	basalt province, Geochemistry Geophysics Geosystems, 19, 3917-3944, doi:
3	1435	10.1029/2018GC007724.
57	1436	Rudnick, R. L. & Gao, S. (2003). Composition of the continental crust. In Heinrich D.
3 9 1	_ 100	

2 3 4		
5 6 7	1437	Holland, D. & Turekian, K. K. (Eds.) Treatise on Geochemistry, 3, 659, pp. 1-64,
8 9 10	1438	Elsevier, doi: 10.1016/B0-08-043751-6/03016-4.
11 12 13	1439	Rychert, C. A., Hammond, J. O. S., Harmon, N., Kendall, J.M., Keir, D., Ebinger, C.,
14 15 16 17	1440	Bastow, I.D., Ayele, A., Belachew, M. & Stuart, G. (2012). Volcanism in the Afar
17 18 19 20	1441	Rift sustained by decompression melting with minimal plume influence. Nature
21 22 23	1442	Geoscience, 5(6), 406-409, doi: 10.1038/ngeo1455.
24 25 26	1443	Sarafian, E., Gaetani, G. A., Hauri, E. H. & Sarafian, A. R. (2017). Experimental constraints
27 28 29	1444	on the damp peridotite solidus and oceanic mantle potential temperature. Science,
30 31 32	1445	355(6328), 942-945, doi: 10.1126/science.aaj2165.
33 34 35	1446	Scarsi, P. & Craig, H. (1996). Helium isotope ratios in Ethiopian Rift basalts. Earth and
36 37 38	1447	Planetary Science Letters, 144(3-4), 505-516, doi: 10.1016/S0012-821X(96)00185-9.
39 40 41	1448	Schilling, JG., Kingsley, R. H., Hanan, B. B. & McCully, B. L. (1992). Nd-Sr-Pb isotopic
42 43 44	1449	variations along the Gulf of Aden: Evidence for Afar mantle plume - continental
45 46 47	1450	lithosphere interaction. Journal of Geophysical Research: Solid Earth, 97(B7), 10927-
48 49 50	1451	10966, doi: 10.1029/92JB00415.
51 52 53	1452	Shinjo, R., Chekol, T., Meshesha, D., Itaya, Y. & Tatsumi, Y. (2011), Geochemistry and
54 55 56	1453	geochronology of the mafic lavas from the southern Ethiopia rift (the East African
57 58 59 60	1454	Rift System): assessment of models on magma sources, plume-lithosphere interaction

1 2		
3		
4 5		
6 7 8	1455	and plume evolution, Contributions to Mineralogy and Petrology, 162, 209-230, doi:
8 9 10 11	1456	10.1007/s00410-010-0591-2.
12 13 14	1457	Siegburg, M., Gernon, T. M., Bull, J. M., Kier, D., Barfod, D. N., Taylor, R. N., Abede, B. &
15 16 17	1458	Ayele, A. (2018), Geological evolution of the Boset-Bercha Volcanic Complex, Main
18 19 20	1459	Ethiopian Rift: ⁴⁰ Ar/ ³⁹ Ar evidence for episodic Pleistocene to Holocene volcanism,
21 22 23	1460	Journal of Volcanology and Geothermal Research, 351, 115-133, doi:
24 25 26	1461	10.1016/j.jvolgeores.2017.12.014.
27 28 29 30	1462	Stab, M., Bellahsen, N., Pik, R., Quidelleur, X., Ayalew, D. & Leroy, S. (2015). Modes of
31 32 33	1463	rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar,
34 35 36	1464	Tectonics, 35(1), 2-38, doi:10.1002/2015TC003893.
37 38 39 40	1465	Stewart, K. & Rogers, N. (1996). Mantle plume and lithosphere contributions to basalts from
41 42 43	1466	southern Ethiopia. Earth and Planetary Science Letters, 139(1-2), 195-211, doi:
44 45 46	1467	10.1016/0012-821X(96)00015-5.
47 48 49	1468	Stracke, A., Zindler, A., Salters, V. J. M., McKenzie, D., Blichert-Toft, J., Albarède, F. &
50 51 52	1469	Grönvold, K. (2003). Theistareykir revisited. Geochemistry Geophysics Geosystems,
53 54 55 56	1470	4(2), 8507, doi: 10.1029/2001GC000201.
57 58 59 60	1471	Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle

1 2													
3 4 5													
6 7 8	1472	zoo. Geochemistry Geophysics Geosystems, 6(5), Q05007, doi:											
9 10 11	1473	10.1029/2004GC000824.											
12 13 14 15	1474	Tadesse, A. Z., Ayalew, D., Pik, R., Yigru, G. & Fontijn, K. (2019). Magmatic evolution of											
15 16 17	1475	the Boku volcanic complex, Main Ethiopian Rift, Journal of African Earth Sciences,											
19 20 21	18 19 1476 149, 109-130, doi: 10.1016/j.jafrearsci.2018.08.003.												
21 22 23 24	1477	Thompson, R. N., Gibson, S. A., Dickin, A. P. & Smith, P. D. (2001). Early Cretaceous											
 24 25 1478 basalt and picrate dykes of the Southern Etendeka region, NW Nami 													
27 28 29 30	1479	into the role of the Tristan mantle plume in Paraná–Etendeka magmatism, Journal of											
31 32 33	³⁰ ³¹ 1480 Petrology, 42(11), 2049–2081, doi: 10.1093/petrology/42.11.2049.												
34 35 36	1481	Thompson, D. A., Hammond, J. O., Kendall, J. M., Stuart, G. W., Helffrich, G. R., Keir, D.,											
37 38 39	1482	Ayele, A. & Goitom, B. (2015). Hydrous upwelling across the mantle transition zone											
40 41 42	beneath the Afar Triple Junction. Geochemistry Geophysics Geosystems, 16(3), 83												
43 44 45	1484	484 846, doi: 10.1002/2014GC005648.											
46 47 48	1485	Till, C. B. (2017). A review and update of mantle thermobarometry for primitive arc											
49 50 51	1486	magmas. American Mineralogist, 102(5), 931-947, doi: 10.2138/am-2017-5783.											
52 53 54	1487	Ukstins, I. A., Renne, P. R., Wolfenden, E., Baker, J., Ayalew, D. & Menzies, M. (2002).											
55 56 57	1488	Matching conjugate volcanic rifted margins: ⁴⁰ Ar/ ³⁹ Ar chrono-stratigraphy of pre-and											
58 59 60	1489	syn-rift bimodal flood volcanism in Ethiopia and Yemen. Earth and Planetary Science											

3 4		
5 6 7 8	1490	Letters, 198(3-4), 289-306, doi: 10.1016/S0012-821X(02)00525-3.
8 9 10	1491	Varet, J. (1978). Geology of central and southern Afar (Ethiopia and Djibouti Republic), pp.
11 12 13 14	1492	124, Centre National de la Recherche Scientifique (CNRS), Paris.
15 16 17	1493	Volker, F., McColloch, M. T. & Altherr, R. (1993). Submarine basalts from the Red Sea: new
17 18 19 20	1494	Pb, Sr, and Nd isotopic data, Geophysical Research Letters, 20(10), 927-930, doi:
20 21 22 23	1495	10.1029/93GL00050.
23 24 25 26	1496	Volker, F. Altherr, R., Jochum, K. P. & McCulloch, M. T. (1997). Quaternary volcanic
20 27 28	1497	activity of the southern Red Sea: new data and assessment of models on magma
30 31	1498	sources and Afar plume-lithosphere interaction, Tectonophysics, 278(1-4), 15-29,
33 34 35	1499	doi: 10.1016/S0040-1951(97)00092-9.
36 37	1500	Walter, M. J., Sisson, T. W. & Presnall, D. C. (1995). A mass proportion method for
39 40	1501	calculating melting reactions and application to melting of model upper mantle
41 42 43	1502	lherzolite. Earth and Planetary Science Letters, 135(1-4), 77-90, doi: 10.1016/0012-
44 45 46 47	1503	821X(95)00148-6.
47 48 49 50	1504	Wessel, P., Smith, W. H., Scharroo, R., Luis, J. & Wobbe, F. (2013). Generic Mapping
51 52 53	1505	Tools: Improved version released. Eos, Transactions American Geophysical Union,
54 55 56	1506	94(45), 409–410, doi: 10.1002/2013EO450001.
57 58 59 60	1507	White, R. S., Smith, L. K., Roberts, A. W., Christie, P. A. F. & Kusznir, N. J. (2008). Lower-

2	
3	
4	
5	
7	1508
8	
9	1509
10	1003
11	
13	1510
14	
15	1511
16	1011
17 18	
19	1512
20	
21	1519
22	1010
23 24	
24 25	1514
26	
27	1515
28	1919
29	
30 31	1516
32	
33	1 2 1 7
34	1917
35	
30 37	1518
38	
39	1
40	1919
41	
42	1520
43 44	
45	1 201
46	1521
47	
48	1522
49 50	
51	
52	1523
53	
54 57	1524
55 56	
57	
58	1525
59	
60	

crustal intrusion on the North Atlantic continental margin. Nature, 452(7186), 460464, doi: 10.1038/nature06687.
White, R. & McKenzie, D. (1989). Magmatism at rift zones: the generation of volcanic
continental margins and flood basalts. Journal of Geophysical Research: Solid Earth,

1512 94(B6), 7685-7729, doi: 10.1029/JB094iB06p07685.

¹ 1513 Willbold, M. & Stracke, A. (2006). Trace element composition of mantle end-members: ³ ⁴ 1514 Implications for recycling of oceanic and upper and lower continental crust,

1515 Geochemistry Geophysics Geosystems, 7(4), Q04004, doi: 10.1029/2005GC001005.

Williams, F. M., Williams, M. A. J. & Aumento, F. (2004), Tensional fissures and crustal
extension rates in the northern part of the Main Ethiopian Rift, Journal of African

1518 Earth Sciences, 38(2), 183-197, doi: 10.1016/j.jafrearsci.2003.10.007.

Wolde, B. (1996). Spatial and temporal variations in the compositions of upper Miocene to
recent basic lavas in the northern Main Ethiopian rift: implications for the causes of
Cenozoic magmatism in Ethiopia, Geologische Rundaschau, 85, 380-389, doi:
10.1007/BF02422243.

WoldeGabriel, G., Aronson, J. L. & Walter, R. C. (1990). Geology, geochronology, and rift
basin development in the central sector of the Main Ethiopia Rift. Geological Society
of America Bulletin, 102(4), 439-458, doi: 10.1130/0016-

3 1 -		
57	1526	7606(1990)102<0439:GGARBD>2.3.CO;2.
) 0	1527	WoldeGabriel, G., Yemane, T., Suwa, G., White, T. & Asfaw, B. (1991). Age of volcanism
2	1528	and rifting in the Burji-Soyoma area, Amaro Horst, southern Main Ethiopian rift:
4 5 6	1529	Geo-and biochronologic data. Journal of African Earth Sciences (and the Middle
7 8 9	1530	East), 13(3-4), 437-447, doi: 10.1016/0899-5362(91)90107-A.
20 21 22	1531	WoldeGabriel, G., Walter, R. C., Aronson, J. L. & Hart, W. K. (1992a). Geochronology and
23 24 25	1532	distribution of silicic volcanic rocks of Plio-Pleistocene age from the central sector of
26 27 28	1533	the Main Ethiopian Rift. Quaternary International, 13-14, 69-76, doi: 10.1016/1040-
29 80 81	1534	6182(92)90011-P.
32 33 34	1535	WoldeGabriel, G., White, T., Suwa, G., Semaw, S., Beyene, Y., Asfaw, B., & Walter, R.
85 86 87	1536	(1992b). Kesem-Kebena: a newly discovered paleoanthropological research area in
38 39 10	1537	Ethiopia. Journal of Field Archaeology, 19(4), 471-493, doi: 10.2307/530428.
+1 +2 +3	1538	Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A. & Ayalew, D. (2004). Evolution of the
14 15 16	1539	northern Main Ethiopian rift: birth of a triple junction. Earth and Planetary Science
17 18 19	1540	Letters, 224(1-2), 213-228, doi: 10.1016/j.epsl.2004.04.022.
50 51 52	1541	Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R. & Kelley, S. P. (2005). Evolution of a
53 54 55	1542	volcanic rifted margin: Southern Red Sea, Ethiopia. Geological Society of America
56 57 58	1543	Bulletin, 117(7-8), 846-864, doi: 10.1130/B25516.1.
59 50		

2 3 4											
- 5 6											
7 8	1544	Yemane, T., WoldeGabriel, G., Testaye, S., Berhe, S. M., Durary, S., Ebingher, C. & Kelley,									
9 10 11	1545	S. (1999). Temporal and geochemical characteristics of Tertiary volcanic rocks and									
12 13 14	1546	tectonic history in the southern Main Ethiopian Rift and the adjacent volcanic fields.									
15 16 17	1547	Acta Vulcanologica, 11, 99–120.									
18 19 20	1548	Zanettin, B. & Justin-Visentin, E. (1974). The volcanic succession in central Ethiopia: the									
21 22 23	1549	volcanics of the western Afar and Ethiopian rift margins. Memoirs of the Institute of									
24 25 26	1550	Geology and Mineralogy, University of Padova, 31, 1-19.									
27 28 29	1551	Zanettin, B., Justin-Visentin, E. & Piccirillo, E. M. (1978). Volcanic succession, tectonics									
30 31 32	1552	and magmatology in central Ethiopia. Atti e Memorie Accademia Patavina di Scienze									
33 34 35	1553	Lettere ed Arti, 90(Parte II): 5–19									
36 37 38	1554	Zindler, A., & Hart, S. (1986). Chemical geodynamics. Annual Review of Earth and									
39 40 41	1555	Planetary Sciences, 14(1), 493-571, doi: 10.1146/annurev.ea.14.050186.002425.									
42 43 44	1556	Zumbo, V., Féraud, G., Vellutini, P., Piguet, P. & Vincent, J. (1995), First ⁴⁰ Ar/ ³⁹ Ar dating									
45 46 47	1557	on Early Pliocene to Plio-Pleistocene magmatic events of the Afar - Republic of									
48 49 50	1558	Djibouti, Journal of Volcanology and Geothermal Research, 65(3-4), 281-295, doi:									
51 52 53	1559	10.1016/0377-0273(94)00107-R.									
54 55 56	1560										
57 58 59 60	1561	FIGURE CAPTIONS									

Figure 1. Geological map of the Horn of Africa and the southwestern Arabian Peninsula 1562showing the distribution of volcanic rocks erupted from 45 Ma to Recent (Hayward & 1563Ebinger, 1996; Rooney, 2017). The border of low-Ti (LT) and high-Ti (HT) sub-provinces in 15641565the NW Plateau is after Pik et al. (1998) and that in Yemen is after Beccaluva et al. (2009). Abbreviations are as follows: MER, Main Ethiopian Rift; WFB, Wonji Fault Belt (a 1566Quaternary bounding fault belt; Mohr, 1967); YTVL, Yerer-Tullu Wellel volcanotectonic 1567lineament (a reactivated Precambrian suture zone; Abebe et al., 1998). The inset map shows 1568the location of the Ethiopian volcanic province. The base maps were created using Generic 1569Mapping Tools (Wessel et al., 2013). 1570

1571

Figure 2. Total alkali-silica (TAS) diagrams. Nomenclature of volcanic rocks after Le Bas et 15721573al. (1986). The alkaline-subalkaline divide is from Irvine & Baragar (1971). (a) Oligocene flood basalts from the Maychew area at the eastern margin of the NW Ethiopian Plateau in 1574comparison with mafic rocks from the rift-bounding plateaus in Ethiopia and Yemen. The 1575classification of Plateau mafic rocks [LT (low-Ti type), HT1 (high-Ti1) and HT2 (high-Ti2 1576type)] is after Pik et al. (1998). Data for Oligocne mafic rocks from other regions in NW 15771578Ethiopia are from Pik et al. (1998, 1999), Kieffer et al. (2004), Beccaluva et al. (2009), and Natali et al. (2011, 2016). Data for Oligicene Yemen Plateau basalts (HT1 and HT2 types; 1579

Baker et al., 1996b) and Miocene SW Ethiopian basalts (Wollega basalt; Ayalew et al., 1999; Conticelli et al., 1999) are shown as compositional fields enclosed by lines. Data for the Oligocene-Miocene shield volcanoes [Simien (30 Ma and 19 Ma), Choke (22 Ma), Guguftu (23 Ma), and Gerba Guracha (25–24 Ma)] are from Keiffer et al. (2004) and Rooney et al. (2014a, 2017a). (b) Mafic-intermediate rocks from the southern Main Ethiopian Rift (SMER; Miocene Getra-Kele and Quatenary Tosa-Sucha mafic rocks) in comparison with literature data for mafic rocks from the SMER and surrounding regions. Data sources are as follows: Amaro-Gamo basalts (Eocene), Yemane et al. (1999) and George & Rogers (2002); Getra-Kele (Miocene), George & Rogers (2002), Rooney (2010) and Shinjo et al. (2011); Tosa-sucha (Quaternary), Rooney (2010) and Shinjo et al. (2011). (c) Mafic-intermediate rocks from the central Main Ethiopian Rift (CMER) and adjacent regions, reported in the literature. Data sources: SDFZ (Silti-Debre Zeyit Fault Zone), Gasparon et al. (1993), Wolde (1996), Rooney et al. (2005) and Rooney (2010); WFB (Wonji Fault Belt), Boccaletti et al. (1999), Rooney et al. (2007), Rooney (2010), Giordana et al. (2014), Ayalew et al. (2016) and Tadesse et al. (2019); Akaki magmatic zone, Wolde (1996) and Rooney et al. (2014b); Miocene Addis Ababa basalts from the Bishoftu embayment, Wolde (1996) and Furman et al. (2006a). (d) Oligocene-Recent mafic rocks from the northern Main Ethiopian Rift (NMER) and its escarpments. Data sources for Miocene-Plio/Pleistocene rocks (Nazret

2
3
4
5
6
0
/
8
9
10
11
12
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
11
41
42
43
44
45
46
47
48
10
49
50
51
52
53
54
55
56
50
57
58
59
60

1598	series) are from Wolde et al. (1996), Boccaletti et al. (1999), Furman et al. (2006a) and
1599	Ayalew et al. (2018). Data sources for Quaternary mafic rocks from rift floor and magmatic
1600	segments (Dofan, Fantale, Kone, Boset, enclosed by line) are from Wolde (1996), Boccaletti
1601	et al. (1999), Furman et al. (2006a), Rooney et al. (2012b), Giordana et al. (2014) and
1602	Ayalew et al. (2016). (e) Mafic rocks from the Afar region. The classification of Pliocene to
1603	Recent volcanic rocks (stratoid, 4–1.1 Ma; Gulf basalt, 1.1–0.6 Ma; axial range, <0.6 Ma) is
1604	after Stab et al. (2015). Compositional variations in the literature data are shown as fields
1605	enclosed by lines: stratoid series, Deniel et al., (1994) and Alene et al. (2017); Gulf basalts,
1606	Deniel et al. (1994); axial range series, Deniel et al. (1994), Barrat et al. (1998, 2003), Daoud
1607	et al. (2010) and Pinzuti et al. (2013). All data in Figs 2(a)-(e) are normalized to a 100%
1608	volatile-free basis.
1609	
1610	Figure 3. Concentrations of SiO ₂ , TiO ₂ and FeO ^T (total Fe as FeO) in mafic volcanic rocks
1611	plotted against MgO concentration (in wt %). Sources of literature data are the same as in Fig.
1612	2. Variations of all major element concentrations are shown in Supplementary Data Fig. S8.
1613	
1614	Figure 4. Concentrations of Ni, Nb and Y (in ppm) in mafic volcanic rocks plotted against
1615	MgO concentration (in wt %). Sources of literature data are the same as in Fig. 2. Variations

2 3		
4		
6 7 8	1616	of the
9 10	1617	and Y
11 12 12	1618	
13 14 15	1619	Figur
16 17 18	1620	mafic
19 20 21	1621	and A
22 23 24	1622	the rif
25 26 27	1623	Quater
28 29 30	1624	Eleme
31 32 33	1625	McDo
34 35 36	1626	compa
37 38 39	1627	(1998,
40 41 42	1628	HT1 a
43 44 45	1629	rocks
46 47 48	1630	Ethiop
49 50 51	1631	Sucha
52 53 54	1632	Roone
55 56 57	1633	(Nazre
58 59 60	1634	Ayale

other trace element concentrations (Cr, Rb, Sr, Zr, La and Nd) are shown with Ni, Nb, b in Supplementary Data Fig. S9.

e 5. Primitive mantle-normalized incompatible trace element diagrams for Ethiopian volcanic rocks (MgO > 6 wt %, except for Oligocene and Miocene NMER mafic rocks far axial-range series with MgO = 4-6 wt %): (a) Oligocene-Miocene mafic rocks from t-bounding plateaus; (b) Eocene–Quaternary mafic rocks in the SMER; (c) Oligocene– rnary mafic rocks in the NMER; (d) Pliocene–Quaternary mafic rocks from Afar. ent abundances of the primitive (upper) mantle (PUM) for normalization are from mough & Sun (1995). Data for mafic rocks from previous studies are shown for arison: LT, HT1, and HT2 mafic rocks in the NW Ethiopian Plateau from Pik et al. 1999), Kieffer et al. (2004), Beccaluva et al. (2009), and Natali et al. (2011, 2016); and HT2 mafic rocks in the Yemen Plateau from Baker et al. (1996b); Wollega mafic in the SW Plateau from Ayalew et al. (1999); Amaro and Gamo basalts in southern bia from Yemane et al. (1999) and George & Rogers (2002); Getra-Kele and Tosamafic rocks in the SMER from Yemane et al. (1999), George & Rogers (2002), ey (2010) and Shinjo et al. (2011); Miocene to Quaternary mafic rocks in the NMER et and Afar stratoid series) from Boccaletti et al. (1999), Furman et al. (2006a) and w et al. (2018); Quaternary mafic rocks in rift floor and magmatic segments along the

WFB from Wolde (1996), Boccaletti et al. (1999), Furman et al. (2006a), Rooney et al. (2012b) and Ayalew et al. (2016); Afar mafic rocks (stratoid, Gulf basalt, axial range series) from Deniel et al. (1994), Barrat et al. (1998, 2003), Daoud et al. (2010) and Alene et al. (2017). **Figure 6.** Sr-Nd-Pb isotope compositions of the Ethiopian mafic volcanic rocks (MgO > 6wt %, except for Oligocene and Miocene NMER mafic rocks and Afar axial-range series with MgO = 4-6 wt %): (a) Maychew HT1 and HT2 in comparison with the Oligocene-Miocene flood basalts in the other regions of the Ethiopian and Yemen Plateaus and the shield volcanoes on the plateaus (Baker et al.; 1996b; Pik et al., 1998, 1999; Ayalew et al., 1999; Kieffer et al., 2004; Natali et al., 2011, 2016; Rooney et al., 2014a); (b) Miocene Getra-Kele and Quaternary Tosa-Sucha mafic rocks in comparison with the existing data sets for these rocks (George & Rogers, 2002; Rooney, 2010; Shinjo et al., 2011), Eocene Amaro and Gamo basalts (George & Rogers, 2002), and Miocene-Quaternary Turkana mafic rocks (Furman et al., 2004, 2006b). (c) Oligocene–Quaternary mafic rocks in the NMER in comparison with the existing data sets for these rocks and adjacent regions (Furman et al. 2006a; Rooney et al., 2012b; Ayalew et al., 2016, 2018). (d) Afar stratoid series, Gulf basalts, and axial range mafic rocks, in comparison with the existing data sets for these mafic rocks [shown by gray

colored symbols with the same shapes as the samples from this study; data sources are Deniel et al. (1994), Barrat et al. (1998, 2003), Daoud et al. (2010), Ayalew et al. (2016) and Alene et al. (2017)]. In all plots, the compositions of seafloor basalts from the Red Sea (Dupré et al., 1998; Volker et al., 1993, 1997) and the Gulf of Aden (West Sheba Ridge; Schilling et al., 1992) are shown for comparison (gray shaded fields). Literature data are normalized using reference standard materials with the values obtained in this study. The mantle end-member components of DMM, EM1, EM2, and HIMU are from Zindler & Hart (1986), and FOZO from Stracke et al. (2005). The end-member components postulated for the sources of the Ethiopian mafic volcanic rocks are also shown for reference [C1, C2, C3, C4, C4' and C5] from Meshesha & Shinjo (2008); PAL (Pan-African lithospheric material) from Rooney Lie (2017)].Figure 7. Latitudinal variations of $(K/Nb)_N$, $(La/Sm)_N$, $(Sm/Yb)_N$, $(^{87}Sr/^{86}Sr)_i$, $(^{143}Nd/^{144}Nd)_i$ and (206Pb/204Pb); for mafic lavas in the MER and Afar. Subscript N denotes element abundances of samples normalized to those of primitive mantle for K/Nb (Sun & McDonough, 1989) and those of chondrite for La/Sm and Sm/Yb (Boynton, 1983). Large and small symbols denote data obtained in this study and those from the literature, respectively. Sources for literature data are the same as in Figs 2–6.

Figure 8. Variation of MgO versus Ba/La and (87Sr/86Sr); for Ethiopian volcanic rocks. Sources of literature data are the same as in Figs 2-6. The range of Ba/La ratios for MORB and OIB is from Willbold & Stracke (2006), and the range of (87Sr/86Sr); values for Pan-African crustal materials (0.710 or higher) is from Stewart & Rogers (2002) and Shinjo et al. (2011).Figure 9. Latitudinal variations in mantle potential temperature (T_p) estimated from primitive mafic rocks (MgO > 8.5 wt %) using the method of Putirka (2008): (a) Oligocene to Miocene magmatism in the rift-bounding plateaus; (b) Miocene to Quaternary magmatism in the MER. The literature data for mafic volcanic rocks used for calculation are from Gasparon et al. (1993), Deniel et al. (1994), Wolde (1996), Pik et al. (1998, 1999), Ayalew et al. (1999, 2016, 2018), George & Rogers (2002), Barrat et al. (1998, 2003), Kieffer et al. (2004), Rooney et al. (2005, 2014b), Furman et al. (2006a), Beccaluva et al. (2009), Rooney (2010), Natali et al. (2011, 2016), Daoud et al. (2010), Shinjo et al. (2011), Alene et al. (2017), Tadesse et al. (2019); see Supplementary Data Table S4 [in which calculated compositions of primary magmas and the estimated T_p by the methods of Lee et al. (2009) and Herzberg & Asimow (2015) are also shown]. The T_p estimated by Rooney *et al.* (2012a) for the Oligocene Plateau mafic rocks and Miocene to Recent mafic rocks from the MER and Afar are shown for

comparison. The ambient mantle temperature of 1338 °C is from Cottrell & Kelley (2011), which is used for estimation of excess mantle temperature (ΔT_p). **Figure 10.** Variation of (La/Sm)_N and (Dy/Yb)_N for Ethiopian mafic volcanic rocks (MgO > 6 wt %, except for Oligocene–Miocene NMER rocks with MgO >4 wt %). Subscript N for these ratios denotes normalization to abundances of these elements in chondrite (Boynton, 1983). Trajectories of melt composition with various extents of melting under spinel and garnet stability conditions are calculated using non-modal batch partial melting (Shaw, 1970) with the following variables: (1) primitive mantle of McDonough & Sun (1995) as the magma source; (2) source mineral modes under spinel and garnet stability conditions from Robinson *et al.* (1998) and Fram *et al.* (1998), respectively; (3) partition coefficients compiled by Kelemen *et al.* (2003). The extent of melting is shown as dots on the curves (1 to

20% in 1% increments), and the melts formed under the same melting extents in garnet andspinel stability conditions are connected by broken lines.

Figure 11. Variation of $(La/Sm)_N$ and the score of principal component 1 (PC1) for Pbisotope correlation for Ethiopian mafic volcanic rocks (MgO > 6 wt %). The subscript N for La/Sm denotes chondrite normalization (Boynton, 1983). PC1 is calculated for the 206Pb/²⁰⁴Pb-²⁰⁷Pb/²⁰⁴Pb-²⁰⁸Pb/²⁰⁴Pb correlation (Supplementary Data Fig. S18), and regarded as a proxy of the contribution from the mantle end-member component C2 of Meshesha &

1709	Shinjo (2008; see Figs 6 and 13). The negative correlation of $(La/Sm)_N$ with the score of PC1								
1710	suggests that sampling of melts from isotopically distinct end-member components is not a								
1711	random process, rather it occurs systematically as a function of pressure and temperature (i.e.,								
1712	melting degree). Fusible and isotopically enriched C2 would have been sampled								
1713	preferentially by small-degree partial melts formed at deeper levels in the mantle, and more								
1714	refractory sources (C1 and C5) are dominant in melts formed by larger extent of melting at								
1715	shallower depths.								
1716									
1717	Figure 12. (a) Schematic model for the generation of Oligocene flood basalts [modified after								
1718	Beccaluva et al. (2009) and Natali et al. (2016) with data for Maychew mafic rocks from this								
1719	study]. The Afar mantle plume impinged on the base of lithosphere. The isothermal contours								
1720	are estimated from thermobarometric calculations in this study, and essentially consister								
1721	with those by Natali et al. (2016). The Maychew HT2 mafic rocks yield the estimate of								
1722	highest pressure and temperature condition of melting among the Oligocene flood basalts,								
1723	and place constraints on the mantle potential temperature of the plume core ($T_p > 1500$ °C).								
1724	The Maychew HT2 rocks have a greater contribution from the C4 or C4' end-member								
1725	components of Meshesha & Shinjo (2008), suggesting that this end-member component may								
1726	have been distributed as streaks or blobs within the plume in the Oligocene. (b) Schematic								
1727	model for the generation of magmas in the MER from Oligocene to Recent times. Along-rift								
	1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1720 1721 1722 1723 1724 1723								

variation in crustal thickness is from Dugda et al. (2005). The asthenospheric mantle beneath the MER includes fusible streaks or blobs [C2 and C3 end-member components of Meshesha & Shinjo (2008)] in matrix of a refractory component [C5 of Meshesha & Shinjo (2008)]. Deep melting in the region with thicker crust (SMER and off-rift of CMER) preferentially samples melts from the C2 or C3 domains. Shallow melting in the region with thinner crust (NMER and Afar) samples melt from a refractory domain (C5). See text for a full discussion.

Table 1. Isotopic data for mafic volcanic rocks from Maychew in NW Plateau	, Getra-Kele and Tosa-
Sucha in SMER NMER and Afar	

Sample	Latitude	Longitude	*Age (Ma)	⁸⁷ Sr/ ⁸⁶ Sr	143Nd/144Nd	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	$({}^{87}Sr/{}^{86}Sr)_i$	$(^{143}Nd/^{144}Nd)_i$	ε _{Ndi}	$(^{206}Pb/^{204}Pb)_i$	(²⁰⁷ Pb/ ²⁰⁴ Pb) _i	$(^{208}Pb/^{204}Pb)_i$
Maychew (NW Pl	ateau)													
HT2 basalt														
MH12A	12°47'N	39°35'E	30	0.703610	0.512869	19.378	15.640	39.512	0.703584	0.512847	4.86	19.255	15.635	39.334
MH12B	12°47'N	39°35'E	30	0.703662	0.512851	19.344	15.652	39.555	0.703607	0.512830	4.52	19.261	15.648	39.413
MH11B	12°47'N	39°35'E	30	0.703797	0.512912	18.319	15.568	38.610	0.703784	0.512885	5.60	18.222	15.563	38.504
MH14	12°47'N	39°35'E	30	0.703879	0.512984	18.812	15.564	38.552	0.703761	0.512958	7.01	18.689	15.558	38.418
MH15	12°47'N	39°35'E	30	0.703855	0.512964	19.034	15.593	38.929	0.703814	0.512938	6.63	18.947	15.589	38.826
TR3V23	12°50'N	39°34'E	30	0.703535	0.512912	19.257	15.614	39.256	0.703472	0.512891	5.71	19.148	15.609	39.102
MA1905	12°52'N	39°33'E	28.3	0.703878	0.512927	18.776	15.560	38.149	0.703831	0.512902	5.92	18.681	15.556	38.055
MA1907	12°52'N	39°33'E	30	0.703918	0.512930	18.939	15.570	38.452	0.703850	0.512905	5.98	18.795	15.563	38.285
BK01	12°46'N	39°31'E	27.8	0.703674	0.512867	19.299	15.640	39.443	0.703602	0.512846	4.84	19.216	15.637	39.311
BK02	12°46'N	39°31'E	30	0.703678	0.512856	19.270	15.643	39.416	0.703635	0.512834	4.60	19.204	15.640	39.285
TR1V3	12°46'N	39°31'E	29	0.703577	0.512916	19.379	15.655	39.608	0.703549	0.512896	5.80	19.259	15.650	39.444
TR1V38	12°46'N	39°31'E	29	0.703554	0.512973	18.795	15.558	38.514	0.703528	0.512947	6.81	18.726	15.554	38.414
BK07	12°50'N	39°30'E	29	0.704273	0.512937	18.844	15.568	38.546	0.704266	0.512912	6.12	18.747	15.564	38.432
TS06	12°52'N	39°30'E	29	0.703979	0.512942	19.045	15.592	38.986	0.703956	0.512915	6.19	18.929	15.586	38.848
HT1 basalt														
MA06A	12°50'N	39°34'E	28.0	0.705073	0.512816	18.502	15.550	38.509	0.705017	0.512791	3.73	18.445	15.547	38.428
MA08	12°50'N	39°34'E	28	0.704591	0.512900	18.618	15.552	38.367	0.704554	0.512875	5.38	18.557	15.549	38.294
MA01	12°50'N	39°34'E	28	0.703512	0.512914	18.887	15.555	38.895	0.703476	0.512889	5.62	18.784	15.550	38.772
MA02A	12°50'N	39°34'E	28	0.703715	0.512931	18.947	15.563	38.958	0.703700	0.512907	5.97	18.841	15.558	38.830
MA1810c	12°52'N	39°33'E	29	0.704209	0.512943	18.593	15.554	38.465	0.704170	0.512918	6.24	18.533	15.551	38.388
MA1810a	12°52'N	39°33'E	29	0.704488	0.512898	18.538	15.548	38.416	0.704426	0.512873	5.35	18.472	15.545	38.340
A3	12°52'N	39°33'E	29	0.703594	0.512917	18.533	15.550	38.527	0.703538	0.512891	5.71	18.433	15.546	38.414
A5	12°52'N	39°33'E	27.9	0.704091	0.512964	18.906	15.576	38.660	0.704069	0.512938	6.64	18.823	15.572	38.568
A2	12°52'N	39°33'E	28	-	-	18.602	15.554	38.211	-	-	-	18.522	15.550	38.124
MA1815	12°52'N	39°33'E	28	0.704100	0.512949	18.597	15.554	38.202	0.704055	0.512923	6.32	18.506	15.550	38.104
1283	12°52'N	39°33'E	28	0.703541	0.512832	18.938	15.560	38.941	0.703474	0.512807	4.03	18.846	15.555	38.848
BK10	12°46'N	39°31'E	30	0.703721	0.512922	18.600	15.553	38.343	0.703699	0.512896	5.80	18.511	15.549	38.240
BK06	12°50'N	39°30'E	29	0.704690	0.512911	-	-	-	0.704656	0.512886	5.61	-	-	-
TS03	12°52'N	39°30'E	30	0.704204	0.512985	-	-	-	0.704166	0.512959	7.05	-	-	-

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1															
2															
3	TS12	12*52'N	39°30'E	28	0.703803	0.512905	18.403	15.541	38.033	0.703762	0.512880	5.47	18.334	15.537	37.963
4	TS13	12°52'N	39°30'E	28	0.704159	0.512922	18.638	15.556	38.150	0.704079	0.512897	5.81	18.560	15.552	38.076
5	TS16	12*52'N	39°30'E	28	0.704933	0.512826	18.532	15.545	38.456	0.704875	0.512801	3.92	18.472	15.543	38.380
6	B2	12°52'N	39°30'E	28	0.703566	0.512917	18.825	15.555	38.805	0.703529	0.512893	5.69	18.724	15.551	38.682
7	TS36	12°52'N	39°30'E	28	0.703878	0.512894	18.415	15.558	38.235	0.703836	0.512868	5.22	18.353	15.555	38.164
8	TS41	12°52'N	39°30'E	28	0.703813	0.512953	18.931	15.572	38.640	0.703769	0.512926	6.34	18.841	15.568	38.546
9	TS44	12°52'N	39°30'E	28	0.704065	0.512915	19.157	15.584	38.677	0.704027	0.512888	5.61	19.067	15.580	38.588
10	TS45	12°52'N	39°30'E	28	0.703766	0.512929	19.039	15.573	38.748	0.703736	0.512902	5.88	18.938	15.569	38.642
11	TS46	12°52'N	39°30'E	28	0.703994	0.513003	19.045	15.570	38.746	0.703894	0.512976	7.32	18.963	15.566	38.649
12	T\$35	12°52'N	39°30'E	28	0 704244	0.512866	18 867	15 568	38 393	0 704161	0 512841	4 69	18 779	15 564	38 308
13	TS39	12°52'N	39°30'E	28	0 704065	0.512864	18 597	15 560	38 154	0 704039	0 512838	4 62	18 528	15 557	38.082
14	T\$40	12*52'N	30°30'E	28	0.703956	0.512883	18 809	15 565	38 544	0 703898	0.512857	5.01	18 726	15 561	38.456
15	TS42	12 52 N	30°30'E	20	0.702828	0.512003	10.007	15.505	50.544	0.703771	0.512006	5.05	18.720	15.501	50.450
10	1542	12 32 N	39 30 E	28	0.703828	0.312933		-	-	0.703771	0.512900	3.95	-	-	-
17	Getra-Kele (SMER)														
10	TD-1815	5°00'30"N	37°45'56"E	11.0	-	-	19.604	15.632	39.385	-	-	-	19.554	15.630	39.320
20	TD-1816A	5°01'11"N	37°44'47"E	11	0.702969	0.512895	19.662	15.632	39.422	0.702950	0.512887	5.14	19.603	15.629	39.342
20	TD-1816B	5°01'11"N	37°44'47"E	11	-	-	19.660	15.632	39.420	-	-	-	19.600	15.629	39.340
27	TD-1817	5°42'56"N	37°42'56"E	11.3	0.703012	0.512901	19.793	15.681	39.601	0.702998	0.512891	5.22	19.752	15.679	39.543
23	TD-1825	5°50'32"N	37°54'04"E	10.8	0.703075	0.512881	19.553	15.639	39.339	0.703055	0.512872	4.84	19.515	15.637	39.287
24	TD-1826A	5°50'32"N	37°54'04"E	16.4	0.703061	0.512879	19.677	15.646	39.422	0.703032	0.512868	4.89	19.613	15.643	39.330
25	TD-1826B	5°50'32"N	37°54'04"E	16.4	0.703062	0.512882	19.700	15.652	39.458	0.703032	0.512871	4.96	19.632	15.648	39.361
26	TD-1833	5°37'58"N	37°37'26"E	12.2	0.703401	0.512797	19.081	15.630	39.088	0.703378	0.512788	3.23	19.036	15.628	39.021
27	Tosa-Sucha (SMER)														
28	TD-1836	5°59'32"N	37°32'23"E	0.58	0.703415	0.512858	19.029	15.609	39.041	0.703414	0.512857	4.29	19.027	15.609	39.037
29	TD-1837A	5°59'37"N	37°32'21"E	0.56	0.703299	0.512878	19.250	15.625	39.225	0.703297	0.512878	4.69	19.249	15.625	39.221
30	TD-1838	5°58'17"N	37°35'29"E	0.56	0.703317	0.512867	19.142	15.622	39.148	0.703315	0.512867	4.47	19.140	15.622	39.143
31	TD-1839	5°58'06"N	37°36'00"E	0.57	0.703376	0.512851	19.103	15.618	39.123	0.703374	0.512850	4.16	19.101	15.618	39.119
32	TD-1841	5°58'04"N	37°39'12"E	1.2	0.703200	0.512826	19.933	15.660	39.728	0.703198	0.512826	3.69	19.927	15.659	39.721
33	TD-1842	5°57'53"N	37°39'19"E	1.26	0.703360	0.512867	19.523	15.638	39.412	0.703358	0.512866	4.48	19.519	15.638	39.403
34 .	NMER														
35	Quaternary														
36	DBDH-4	9°08'58"N	39°57'14"E	0.20	0.703949	0.512857	18.757	15.597	38.814	0.703949	0.512857	4.27	18.757	15.597	38.814
3/ 20	DBAG-115	9°08'22"N	39°56'14"E	0.24	0.703839	0.512893	18.783	15.595	38.915	0.703839	0.512893	4.98	18.782	15.595	38.914
30 20	TG-31	9°08'06"N	39°56'18"F	0.25	0 704536	0 512807	18 698	15 592	38 774	0 704536	0 512807	3 30	18 698	15 592	38 773
39 40		. 000014	27 2010 L		5.70 1550					5.751250		5.50	-0.070		
40															

http://www.petrology.oupjournals.org/

Afar Stratoid/Nazret ser	ies/Bofa/Bishoftu													
DBAG-74	9°58'35"N	40°33'59"E	6.54	0.703880	0.512873	18.588	15.576	38.732	0.703872	0.512868	4.64	18.577	15.575	38.712
DBZ-34	9°55'52"N	40°16'10"E	3.0	0.703528	0.512924	19.121	15.582	39.041	0.703524	0.512921	5.60	19.113	15.582	39.028
DBAG-77	9°58'23"N	40°11'36"E	2.95	0.703630	0.512915	18.647	15.574	38.762	0.703627	0.512912	5.43	18.640	15.574	38.753
DBAG-72A	9°56'26"N	40°04'24"E	4.20	0.703906	0.512861	18.508	15.569	38.706	0.703902	0.512857	4.38	18.500	15.569	38.695
)BAG-73	9°58'26"N	40°05'45"E	4.2	0.703994	0.512854	18.548	15.595	38.794	0.703991	0.512850	4.25	18.539	15.595	38.782
3-51	9°02'27"N	40°23'32"E	4.95	0.704326	0.512823	18.631	15.585	38.890	0.704325	0.512819	3.65	18.626	15.585	38.883
3-54	9°07'19"N	40°27'26"E	5.53	0.704457	0.512793	19.090	15.641	39.302	0.704454	0.512788	3.07	19.085	15.641	39.295
AG-63	9°45'20"N	40°01'51"E	5.05	0.703860	0.512843	18.546	15.572	38.715	0.703855	0.512839	4.04	18.534	15.572	38.700
560	9°05'45"N	40°01'01"E	2.7	0.703960	0.512866	18.685	15.594	38.715	0.703957	0.512864	4.47	18.678	15.594	38.707
I-534	9°01'16'N	39°33'00"E	2.7	0.704004	0.512779	18.452	15.586	38.540	0.704001	0.512777	2.78	18.446	15.586	38.532
M-559B	9°01'26"N	39°33'13"E	2.68	0.704378	0.512799	18.446	15.546	38.572	0.704376	0.512797	3.16	18.441	15.546	38.566
J-14	9°00'38"N	39°44'39"E	2.7	0.704249	0.512834	18.848	15.608	38.890	0.704248	0.512832	3.84	18.842	15.608	38.883
rmaber Megezez For	mation													
3Z-8	9°50'21"N	39°50'51"E	14.7	0.703844	0.512844	18.546	15.591	38.570	0.703827	0.512832	4.16	18.509	15.589	38.524
H-429	9°33'21"N	39°51'40"E	19.9	0.706270	0.512559	17.859	15.563	38.837	0.706236	0.512542	-1.38	17.832	15.562	38.789
H-438	9°32'51"N	39°53'33"E	20	0.703806	0.512864	18.681	15.597	38.715	0.703773	0.512848	4.59	18.625	15.594	38.645
i-24B	9°15'07"N	39°42'53"E	10	0.704913	0.512757	18.472	15.593	38.784	0.704877	0.512749	2.42	18.451	15.592	38.755
27C	9°09'44"N	39°43'14"E	10	0.704144	0.512818	18.928	15.611	39.022	0.704139	0.512810	3.60	18.908	15.610	38.995
J-50	9°01'12"N	40°21'53"E	10	0.704451	0.512744	17.959	15.555	38.268	0.704431	0.512735	2.15	17.944	15.554	38.249
age basalt														
BZ-22	9°52'51"N	39°48'55"E	26.7	0.705188	0.512581	17.909	15.589	38.723	0.705134	0.512559	-0.88	17.877	15.587	38.664
BZ-30	9°57'57"N	39°51'54"E	24.6	0.706864	0.512588	18.624	15.636	39.486	0.706827	0.512570	-0.71	18.556	15.633	39.379
.far														
atoid Series														
0HA-16	12°20'26"N	41°09'57"E	1.18	0.703763	0.512912	18.395	15.551	38.389	0.703762	0.512911	5.35	18.391	15.551	38.385
HA-13	12°04'51"N	41°15'09"E	1.25	0.703810	0.512856	-	-	-	0.703808	0.512855	4.26	-	-	-
HA-12	12°02'42"N	41°15'38"E	1.3	0.703701	0.512905	18.562	15.572	38.709	0.703700	0.512904	5.22	18.559	15.572	38.706
HA-11	11°59'56"N	41°17'25"E	1.3	0.703827	0.512905	18.537	15.565	38.669	0.703826	0.512904	5.22	18.535	15.565	38.666
IA-10	11°58'17"N	41°18'08"E	1.32	0.703745	0.512906	18.569	15.573	38.740	0.703739	0.512905	5.24	18.565	15.573	38.735
HA-4	11°57'46"N	41°22'59"E	1.65	0.703843	0.512890	18.743	15.587	38.967	0.703841	0.512889	4.93	18.738	15.587	38.960
HA-6A	11°55'09"N	41°33'49"E	1.35	0.703667	0.512894	18.614	15.566	38.803	0.703664	0.512893	5.00	18.609	15.566	38.797
HA-31	11°53'27"N	41°38'02"E	1.66	0.703489	0.512923	18.669	15.566	38.820	0.703485	0.512922	5.57	18.664	15.566	38.813
HA-34	11°53'24"N	41°39'18"E	1.85	0.703503	0.512911	18.989	15.566	39.034	0.703501	0.512909	5.34	18.982	15.566	39.024

http://www.petrology.oupjournals.org/

DHA-36A	11°53'26"N	41°42'56"E	2.87	0.703510	0.512933	18.995	15.566	39.031	0.703506	0.512931	5.78	18.984	15.565	39.017	
DHA-9	11°50'51"N	41°41'11"E	1.54	0.703656	0.512887	18.711	15.568	38.840	0.703652	0.512886	4.87	18.706	15.568	38.833	
DHA-20	11°42'04"N	40°56'10"E	1.53	0.704100	0.512872	18.342	15.573	38.715	0.704099	0.512871	4.58	18.339	15.573	38.710	
DHA-24	11°36'01"N	40°56'01"E	2.00	0.703573	0.512911	18.990	15.568	39.058	0.703569	0.512909	5.34	18.982	15.568	39.048	
DHA-26	11°26'59"N	40°45'10"E	2.77	0.703280	0.512982	18.540	15.512	38.523	0.703279	0.512979	6.73	18.532	15.512	38.514	
DHA-29	11°25'20"N	40°40'34"E	4.06	0.703582	0.512887	18.599	15.573	38.720	0.703580	0.512883	4.88	18.590	15.573	38.708	
DHA-30	11°25'29"N	40°38'23"E	2.95	0.703503	0.512928	18.434	15.561	38.631	0.703496	0.512925	5.68	18.425	15.561	38.619	
DHA-40	11°22'07"N	40°43'57"E	3.02	0.703326	0.512957	18.551	15.515	38.539	0.703319	0.512954	6.24	18.540	15.514	38.526	
DHA-41	11°12'53"N	40°44'27"E	2.57	0.703261	0.512992	18.528	15.506	38.495	0.703259	0.512989	6.92	18.519	15.506	38.486	
DHA-45	10°43'33"N	40°40'59"E	4.50	0.703556	0.512951	18.640	15.558	38.780	0.703548	0.512947	6.14	18.625	15.557	38.760	
DHA-46	10°32'05"N	40°43'49"E	4.5	0.703625	0.512914	18.478	15.547	38.699	0.703613	0.512910	5.42	18.465	15.546	38.682	
Gulf basalt															
DHA-18	11°37'56"N	41°24'32"E	0.79	0.703441	0.512956	18.512	15.560	38.659	0.703440	0.512955	6.21	18.510	15.560	38.657	
DHA-17	11°40'04"N	41°22'40"E	0.79	0.703460	0.512921	18.502	15.557	38.648	0.703459	0.512920	5.53	18.501	15.557	38.646	
Axial Range series															
DHA-43	11°02'08"N	41°11'08"E	0.12	0.703482	0.512929			-	0.703482	0.512929	5.68	_	-	_	
DHA-39	11°46'27"N	41°00'22"E	0.12	0.703608	0.512897	18.505	15.569	38.657	0.703608	0.512897	5.05	18.505	15.569	38.657	
DHA-15	12°11'42"N	40°44'51"E	0.12	0.703750	0.512884	18.363	15.552	38.353	0.703750	0.512884	4.80	18.363	15.552	38.353	
DHA-3	11°55'30"N	41°12'32"E	0.12	0.703683	0.512871	18.432	15.570	38.596	0.703683	0.512871	4.55	18.432	15.570	38.596	
DHA-2	11°54'37"N	41°10'46"E	0.12	0.703752	0.512896	_	_		0.703752	0.512896	5.03	_	-	_	
DHA-1	11°48'21"N	41°00'58"F	0.12	0.703600	0.512924	18,506	15.567	38,653	0.703600	0.512924	5.58	18.506	15.567	38.653	
		11 0020 12		0.705000		10.000	10.007	50.025	3.103000	0.012927	5.50	10.500	15.507	50.055	
* 4	A in the state of the test to	· · · · · · · · · · · · · · · · · · ·	· · · · · C · · · · · · · · · · · · · ·	1											-

*Age: bold, dated by K-Ar in this study; italic, inferred from K-Ar ages for the other samples from the adjacent locality or literatures.

Internal precisions (2m) of 87Sr/86Sr and 143Nd/144Nd are better than 0.000010 and 0.000009, respectively.

The values are reported relative to the following values for the reference standard materials:

NIST SRM 987 87Sr/66Sr=0.710240, La Jolla ¹⁴³Nd/¹⁴⁴Nd=0.511860, and NIST SRM 981 ²⁰⁶Pb/²⁰⁴Pb = 16.9424, ²⁰⁷Pb/²⁰⁴Pb=15.5003 and ²⁰⁸Pb/²⁰⁴Pb = 36.7266, respectively.

Initial isotope ratios of Sr, Nd, and Pb are denoted as $(^{87}\text{Sr}/^{86}\text{Sr})_{i_2}$ $(^{143}\text{Nd}/^{144}\text{Nd})_{i_2}$ ϵ_{Ndi} , $(^{206}\text{Pb}/^{204}\text{Pb})_{i_2}$, $(^{207}\text{Pb}/^{204}\text{Pb})_{i_2}$ and $(^{208}\text{Pb}/^{204}\text{Pb})_{i_2}$ respectively.

Ch.

Manuscript submitted to Journal of Petrology

3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
19
20
∠∪ ว1
∠ I 22
22
23
24
25
26
27
28
20
29
20
31
32
33
34
35
36
37
38
30
40
40 41
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
59

60

Table 2. Results of K-Ar dating for maf	ic volcanic rocks from NW	plateau (Maychew), SMER	(Getra-Kele and Tosa-Sucha), NMER and Afar

Sample	Location	[K]	[³⁶ Ar]	$\left[^{40}\mathrm{Ar}_{\mathrm{rad}} ight]$	⁴⁰ Ar/ ³⁶ Ar	age (Ma)	air fraction
	(section)	(wt%)	(10 ⁻⁹ ccSTP·g ⁻¹)	(10 ⁻⁹ ccSTP·g ⁻¹)			(%)
NW plateau (Mayo	chew)						
BK01	12°46' N	1.26	2.905 ± 0.049	1359 ± 23	757.7 ± 3.7	27.55 ± 0.72	38.8
(HT2, Seq. 1)	39°31' E		2.198 ± 0.047	1379 ± 23	761.5 ± 3.8	27.95 ± 0.72	38.5
	(Bekura)				mean	27.8 ± 0.6	
			2.45 ± 0.03	1330 ± 23	839±6	27.0 ± 0.7	35.3
			2.45 ± 0.04	1355 ± 51	849 ± 19	27.5 ± 1.2	34.9
					mean	27.2 ± 0.7	
MA1905	12°52' N	1.16	0.729 ± 0.012	1279 ± 20	1952 ± 11	28.16 ± 0.71	14.4
(HT2, Seq. 2)	39°33' E		0.639 ± 0.011	1295 ± 21	2186 ± 22	28.52 ± 0.73	12.8
	(Aygi)				mean	28.3 ± 0.5	
			0.694 ± 0.018	1245 ± 36	2090 ± 24	27.4 ± 1.0	14.2
			0.694 ± 0.017	1270 ± 39	2126 ± 32	28.0 ± 1.0	13.9
					mean	<i>27.7</i> ± <i>0.7</i>	
MA1809	12°50' N	1.12	0.701 ± 0.011	1230 ± 18	1939 ± 7	28.06 ± 0.70	14.4
(HT1, Seq. 2)	39°34' E		0.608 ± 0.010	1237 ± 19	2185 ± 15	28.21 ± 0.71	12.7
	(Bolonta)				mean	$\textbf{28.1} \pm \textbf{0.5}$	
			0.890 ± 0.017	1219 ±28	1665 ± 18	27.8 ± 0.9	17.8
			0.828 ± 0.021	1219 ± 42	1768 ± 36	27.8 ± 1.1	16.7
					mean	27.8 ± 0.7	
A5	12°52' N	1.20	0.560 ± 0.009	1318 ± 20	2464 ± 18	28.05 ± 0.70	11.2
(HT1, Seq. 3)	39°33' E		0.539 ± 0.009	1307 ± 21	2531 ± 16	27.82 ± 0.70	10.9
	(Aygi)				mean	27.9 ± 0.5	
			1.91 ± 0.02	1266 ± 16	959 ± 4	26.9 ± 0.6	30.9
			1.85 ± 0.02	<i>1316</i> ± <i>37</i>	1008 ± 18	28.0 ± 1.0	29.4
					mean	27.5 ± 0.6	
BK06	12°50' N	1.15	1.380 ± 0.024	1018 ± 16	1010 ± 15	22.64 ± 0.57	28.6
(HT1, Seq. 3)	39°30' E		1.445 ± 0.023	1029 ± 16	987.4 ± 4.5	22.88 ± 0.58	29.4
	(Debri)				mean	22.8 ± 0.4	
			1.24 ± 0.02	1017 ± 20	1116 ± 12	22.6 ± 0.6	26.5
			1.24 ± 0.03	1014 ± 34	1134 ± 18	22.6 ± 0.9	26.1
					mean	22.6 ± 0.6	

Manuscript submitted to Journal of Petrology

2								
3 4	MA06A	12°50' N	1.69	0.973 ± 0.016	1862 ± 30	2121 ± 13	28.15 ± 0.71	13.4
5	(HT1, Seq. 4)	39°34' E		1.271 ± 0.021	1843 ± 30	1697 ± 10	27.86 ± 0.72	17.0
6 7		(Bolonta)				mean	28.0 ± 0.5	
8 9				1.67 ± 0.07		1317 ± 21	25.8 ± 1.3	22.5
10				1.67 ± 0.02	1701 ± 19	1315 ± 6	25.7±0.6	22.5
11 12						mean	25.8 ± 0.8	
13	TS12	12°52' N	1.02	0.628 ± 0.010		1817 ± 10	25.64 ± 0.65	15.4
15	(HT1, Seq. 4)	39°30' E		0.668 ± 0.011	1031 ± 17	1749 ± 11	25.82 ± 0.66	16.1
16 17		(Tsibet)				mean	25.7 ± 0.5	
18		. ,		0.615+0.015		1930 + 44	25 2 + 1 1	153
19 20	Т\$35	12°52' N	1.05	1 594 + 0 041	890 + 22	849 5 + 2 2	21.68 ± 0.63	34.7
21	(UT1 Sec 5)	208201 E	1.05	1.624 + 0.041	877 + 22	929 7 ± 2.2	21.00 ± 0.05	25.5
23	(H11, Seq. 5)	39-30 E		1.634 ± 0.041	8//±22	828.7 ± 2.2	21.39 ± 0.62	35.5
24 25		(Tsibet)		1.665 ± 0.042	887±22	824.6 ± 1.8	21.62 ± 0.62	35.7
26						mean	21.6 ± 0.2	
27 28	TS38	12°52' N	0.789	0.862 ± 0.014	879 ± 14	1267 ± 7	28.46 ± 0.72	22.5
29	(HT1, Seq. 6)	39°30' E		0.791 ± 0.013	866 ± 14	1336 ± 7	28.05 ± 0.71	21.3
31		(Tsibet)			-	mean	28.3 ± 0.6	
32 33				1.67 ± 0.05	866 ± 38	815 ± 18	28.0 ± 1.3	36.3
34				1.67 ± 0.02	851 ± 35	806 ± 20	27.6 ± 1.3	36.7
35 36						mean	27.8 ± 0.9	
37	TS43	12°52' N	0.370	1.004 ± 0.026	342.9 ± 8.7	635.1 ± 1.4	23.70 ± 0.70	46.4
38 39	(HT1, Seq. 6)	39°30' E		0.998 ± 0.026	345.1 ± 8.8	639.3 ± 1.9	23.85 ± 0.70	46.1
40 41		(Tsibet)		0.961 ± 0.025	344.3 ± 8.9	649.6 ± 1.2	23.80 ± 0.70	45.3
42				0.976 ± 0.025	345.2 ± 8.8	645.4 ± 1.5	23.86 ± 0.70	45.5
43 44						mean	23.8 ± 0.1	
45	TS45	12°52' N	0.497	1.119 ± 0.018	-405.4 ± 6.6	645.5 ± 2.9	20.88 ± 0.54	45.0
40 47	(HT1, Seq. 6)	39°30' E		1.153 ± 0.019	412.5 ± 6.8	641.5 ± 2.9	21.24 ± 0.55	45.3
48 49		(Tsibet)				mean	21.1 ± 0.4	
50				0.953 ± 0.015	- 410 ± 12	727 ± 10	21.7 ± 0.7	40.7
51 52 -								
53	SMER							
55	Getra-Kele							
56 57	TD-1815	5°00'30" N	1.95	0.489 ± 0.013	837 ± 10	2008 ± 41	11.01 ± 0.25	14.7
58		37°45'56" E		0.418 ± 0.008	827 ± 9	2278 ± 14	10.88 ± 0.24	13.1
59 60				0.429 ± 0.006	836 ± 9	2247 ± 14	11.00 ± 0.25	13.2

					mean	11.0 ± 0.1	
TD-1817	5°42'56" N	0.765	0.656 ± 0.008	335 ± 4	806.8 ± 9.7	11.24 ± 0.26	36.7
	37°42'56" E		0.295 ± 0.004	337 ± 4	1439 ± 6.0	11.32 ± 0.25	20.6
					mean	11.3 ± 0.2	
TD-1825	5°50'32" N	0.789	1.35 ± 0.01	327 ± 5	538.4 ± 3.0	10.64 ± 0.26	55.0
	37°54'04" E		1.13 ± 0.01	334 ± 5	592.1 ± 4.0	10.87 ± 0.27	50.0
					mean	10.8 ± 0.2	
TD-1826A	5°50'32" N	1.40	0.459 ± 0.010	893 ± 9	2243 ± 15	16.33 ± 0.37	13.2
	37°54'04" E		0.587 ± 0.008	897 ± 9	1824 ± 9.0	16.40 ± 0.37	16.2
					mean	16.4 ± 0.3	
			0.364 ± 0.004	841 ± 26	2607±66	15.4 ± 0.6	11.4
			0.364 ± 0.009	<i>902</i> ± <i>39</i>	2774 ± 89	16.5 ± 0.8	10.7
					mean	16.0±0.5	
TD-1826 B	5°50'32" N	1.37	0.959 ± 0.014	883 ± 10	1216 ± 14	16.51 ± 0.38	24.3
	37°54'04" E		0.835 ± 0.012	875 ± 10	1344 ± 17	16.37 ± 0.37	22.0
					mean	16.4 ± 0.3	
TD-1833	5°37'58" N	1.22	2.46 ± 0.03	591 ± 8	536.5 ± 2.0	12.39 ± 0.29	55.2
	37°37'26" E		2.38 ± 0.03	573 ± 7	537.3 ± 1.8	12.02 ± 0.28	55.1
					mean	12.2 ± 0.3	
Tosa-Sucha							
TD-1836	5°59'32" N	1.33	0.392 ± 0.005	28.7 ± 0.7	369.3 ± 1.0	0.55 ± 0.02	80.2
	37°32'23" E		0.340 ± 0.005	31.7 ± 1.2	389.1 ± 2.5	0.61 ± 0.03	76.1
					mean	$\textbf{0.58} \pm \textbf{0.03}$	
TD-1837A	5°59'37" N	2.38	1.38 ± 0.02	49.8 ± 1.9	332.0 ± 0.6	0.54 ± 0.02	89.2
	37°32'21" E		1.37 ± 0.03	53 ± 11	334.9 ± 5.8	0.58 ± 0.12	88.4
					mean	0.56 ± 0.06	
TD-1839	5°58'06" N	2.03	0.548 ± 0.008	45.0 ± 1.5	378.0 ± 0.6	0.57 ± 0.02	78.3
	37°36'00" E		0.432 ± 0.011	44.7 ± 4.3	399.4 ± 7.7	0.57 ± 0.06	74.1
					mean	0.57 ± 0.03	
TD-1842	5°57'53" N	1.41	0.389 ± 0.005	68.1 ± 1.2	471.0 ± 2.7	1.25 ± 0.03	62.8
	37°39'19" E		0.494 ± 0.006	67.7 ± 1.5	433.1 ± 4.0	1.24 ± 0.04	68.3
			0.457 ± 0.012	69.4 ± 1.8	445.8 ± 1.7	1.27 ± 0.04	66.1
			0.332 ± 0.009	68.3 ± 1.8	497.7 ± 1.8	1.25 ± 0.04	59.0
			0.330 ± 0.009	71.2 ± 1.8	503.6 ± 3.1	1.30 ± 0.04	57.9

Manuscript submitted to Journal of Petrology

					mean	1.26 ± 0.02	
NMER							
Quaternary basalt							
DBDH-4	9°08'58" N	0.704	0.834 ± 0.014	5.4 ± 0.5	302.4 ± 0.6	0.20 ± 0.02	97.
	39°57'14" E		0.705 ± 0.012	5.3 ± 0.4	303.6 ± 0.6	0.20 ± 0.02	97.
					mean	$\boldsymbol{0.20\pm0.01}$	
DBAG-115	9°08'22" N	0.540	1.176 ± 0.019	5.0 ± 0.5	300.2 ± 0.4	0.24 ± 0.03	98.
	39°56'14" E		1.175 ± 0.019	5.3 ± 0.5	300.5 ± 0.4	0.25 ± 0.03	98
					mean	$\textbf{0.24} \pm \textbf{0.02}$	
Afar Stratoid/Nazr	et series/Bofa/Bishof	tu					
DBAG-74	9°58'35" N	0.482	1.312 ± 0.022	123.3 ± 2.3	387.8±1.4	6.57 ± 0.35	75.
	40°33'59" E		1.314 ± 0.021	122.0 ± 2.2	386.6±1.4	6.51 ± 0.34	76
					mean	6.54 ± 0.25	
DBAG-77	9°58'23" N	0.432	1.580 ± 0.025	49.8 ± 1.0	327.5 ± 0.4	2.97 ± 0.16	90
	40°11'36" E		1.603 ± 0.025	49.2 ± 1.0	326.7 ± 0.5	2.93 ± 0.16	90
					mean	2.95 ± 0.11	
DBAG-72A	9°56'26" N	0.347	0.902 ± 0.015	56.0 ± 1.1	357.8±0.7	4.16 ± 0.22	82
	40°04'24" E		0.603 ± 0.011	57.4 ± 1.0	386.7±1.3	4.25 ± 0.22	75
					mean	$\textbf{4.20} \pm \textbf{0.16}$	
TG-51	9°02'27" N	0.447	1.867 ± 0.032	83.1 ± 3.2	340.2±2.0	4.79 ± 0.30	87
	40°23'32" E		1.866 ± 0.031	88.5 ± 4.1	343.0±2.4	5.10 ± 0.35	86
					mean	$\textbf{4.95} \pm \textbf{0.28}$	
TG-54	9°07'19" N	0.606	1.012 ± 0.017	130.4 ± 2.3	420.7±1.7	5.53 ± 0.29	69.
	40°27'26" E		1.246 ± 0.021	131.4 ± 2.4	398.9±1.6	5.57 ± 0.30	73.
					mean	5.53 ± 0.21	
DBAG-63	9°45'20" N	0.521	0.958 ± 0.016	101.3 ± 1.6	398.4±0.9	5.00 ± 0.26	73.
	40°01'51" E		0.916 ± 0.015	103.1 ± 1.7	405.1±1.1	5.11 ± 0.27	72
					mean	5.05 ± 0.20	
MM-559B	9°01'26" N	0.649	1.040 ± 0.017	66.9 ± 1.3	360.0 ± 0.8	2.65 ± 0.14	82.
	39°33'13" E		0.823 ± 0.014	68.4 ± 1.1	375.9 ± 0.9	2.71 ± 0.14	78
					mean	$\textbf{2.68} \pm \textbf{0.10}$	
Tarmaber Megezez	z Formation						_
DBZ-8	9°50'21" N	0.893	2.452 ± 0.039	510 ± 8	501.0±0.5	14.6 ± 0.8	58.

					mean	14.7 ± 0.5	
DH-429	9°33'21" N	0.990	1.695 ± 0.027	766 ± 12	738.2±1.3	19.8 ± 1.0	39.6
	39°51'40" E		1.669 ± 0.027	770 ± 12	747.5±1.2	19.9 ± 1.0	39.1
					mean	19.9 ± 0.7	
Alage basalt							
DBZ-22	9°52'51" N	0.725	1.784 ± 0.029	760 ± 12	713.7±2.8	26.8 ± 1.4	41.0
	39°48'55"		1.824 ± 0.029	757 ± 12	701.5±2.4	26.6 ± 1.4	41.7
					mean	26.7 ± 1.0	
DBZ-30	9°57'57" N	0.958	1.475 ± 0.024	927 ± 15	910.1±6.5	24.7 ± 1.3	32.0
	39°51'54" E		1.645 ± 0.026	921 ± 15	844.2±5.9	24.6 ± 1.3	34.6
					mean	24.6 ± 0.9	
Afar							
Stratoid series							
DHA-16	12°20'26" N	0.979	2.13 ± 0.03	47.2 ± 1.5	318.2 ± 0.7	1.24 ± 0.07	93.0
	41°09'57" E		2.15 ± 0.03	42.8 ± 1.2	315.9 ± 0.5	1.13 ± 0.06	93.7
					mean	1.18 ± 0.08	
DHA-13	12°04'51" N	0.698	2.27 ± 0.04	34.0 ± 2.9	310.9 ± 1.3	1.25 ± 0.12	95.2
	41°15'09" E		2.19 ± 0.03	34.1 ± 2.7	311.6 ± 1.3	1.26 ± 0.12	95.0
					mean	1.25 ± 0.09	
DHA-10	11°58'17" N	1.52	1.51 ± 0.02	80.1 ± 1.8	349.0 ± 1.0	1.36 ± 0.07	84.8
	41°18'08" E		1.41 ± 0.02	75.6 ± 1.8	349.3 ± 1.1	1.28 ± 0.07	84.7
					mean	1.32 ± 0.06	
DHA-4	11°57'46" N	0.556	2.18 ± 0.04	35.2 ± 2.2	312.1 ± 1.0	1.63 ± 0.13	94.8
	41°22'59" E		2.12 ± 0.03	36.2 ± 2.1	313.1 ± 1.0	1.68 ± 0.13	94.5
					mean	1.65 ± 0.09	
DHA-6A	11°55'09" N	0.828	2.21 ± 0.04	42.8 ± 4.1	315.3± 2.0	1.33 ± 0.14	93.9
	41°33'49" E		2.36 ± 0.04	43.9 ± 4.4	314.6 ± 2.0	1.37 ± 0.15	94.1
					mean	1.35 ± 0.10	
DHA-31	11°53'27" N	1.04	3.37 ± 0.05	67.2 ± 3.8	315.9 ± 1.2	1.67 ± 0.13	93.7
	41°38'02" E		3.32 ± 0.05	66.8 ± 1.2	316.1 ± 1.2	1.66 ± 0.12	93.6
					mean	1.66 ± 0.09	
DHA-34	11°53'24" N	0.626	1.47 ± 0.02	46.2 ± 1.9	327.3 ± 1.3	1.90 ± 0.12	90.4
	41°39'18" E		1.37 ± 0.02	43.9 ± 1.6	328.1 ± 1.2	1.81 ± 0.11	90.2

Page 107 of 120

1

Manuscript submitted to Journal of Petrology

2								
3						mean	$\textbf{1.85} \pm \textbf{0.10}$	
5	DHA-36A	11°53'26" N	0.463	1.87 ± 0.03	52.1 ± 1.3	333.9±0.6	2.90 ± 0.16	91.4
7		41°42'56" E		1.89 ± 0.03	50.9 ± 1.3	322.9 ± 0.6	2.83 ± 0.16	91.7
8 9						mean	2.87 ± 0.12	
10 11	DHA-9	11°50'51" N	0.823	1.39 ± 0.02	49.2 ± 1.1	331.2 ± 0.7	1.54 ± 0.08	89.4
12		41°41'11" E		1.44 ± 0.02	49.2 ± 1.1	333.0 ± 0.7	1.54 ± 0.09	89.7
14						mean	1.54 ± 0.06	
15 16	DHA-20	11°42'04" N	0.694	1.05 ± 0.02	42.0 ± 1.2	336.1 ± 1.0	1.56 ± 0.09	88.1
17 18		40°56'10" E		1.09 ± 0.02	40.3 ± 1.1	333.0 ± 1.1	1.49 ± 0.09	88.9
19						mean	1.53 ± 0.07	
20 21	DHA-24	11°36'01" N	0.695	2.78 ± 0.05	53.5± 2.6	315.2 ± 0.9	1.98 ± 0.14	93.9
22 23		40°56'01" E		2.86 ± 0.04	54.6 ± 2.6	315.1 ± 0.9	2.02 ± 0.14	93.9
24						mean	2.00 ± 0.10	
25 26	DHA-26	11°26'59" N	0.182	1.21 ± 0.02	20.8 ± 1.2	313.1 ± 1.0	2.94 ± 0.22	94.5
27 28		40°45'10" E		1.17 ± 0.02	18.5 ± 1.1	311.8 ± 1.0	2.61 ± 0.22	94.9
29) .	mean	2.77 ± 0.22	
30 31	DHA-29	11°25'20" N	0.273	1.89 ± 0.03	41.7 ± 1.9	318.0 ± 1.0	3.93 ± 0.27	93.1
32 33		40°40'34" E		2.02 ± 0.03	44.3 ± 2.0	318.0 ± 1.0	4.18 ± 0.28	93.1
34						mean	4.06 ± 0.23	
35 36	DHA-30	11°25'29" N	0.617	2.92 ± 0.05	71.2 ± 3.4	320.4 ± 1.2	2.97 ± 0.21	92.4
37 38		40°38'23" E		2.86 ± 0.05	70.0 ± 1.2	320.5 ± 1.2	2.92 ± 0.20	92.4
39 40					C	mean	2.95 ± 0.15	
41	DHA-40	11°22'07" N	0.539	2.33 ± 0.04	63.9 ± 2.7	323.4 ± 1.2	3.05 ± 0.20	91.5
42 43		40°43'57" E		2.34 ± 0.04	62.6 ± 2.7	322.7 ± 1.2	2.99 ± 0.20	91.7
44 45						mean	3.02 ± 0.14	
46	DHA-41	11°12'53" N	0.284	1.41 ± 0.02	29.0 ± 1.3	316.6 ± 0.9	2.63 ± 0.18	93.5
47 48		40°44'27" E		1.44 ± 0.02	27.8 ± 1.3	315.2 ± 0.9	2.52 ± 0.17	93.9
49 50						mean	2.57 ± 0.14	
51	DHA-45	10°43'33" N	0.532	1.84 ± 0.03	64.4 ± 1.9	330.9±1.0	4.51 ± 0.26	89.5
52 53		40°40'59" E		1.77 ± 0.03	64.3 ± 1.9	332.2 ± 1.0	4.50 ± 0.26	89.1
54 55						mean	4.50 ± 0.19	
56	Gulf basalt							
57	DHA-18	11°37'56" N	0.323	1.16 ± 0.02	8.9 ± 2.9	303.7 ± 2.5	0.71 ± 0.23	97.5
59 60		41°24'32" E		1.10 ± 0.02	10.9 ± 2.0	305.9 ± 1.9	0.87 ± 0.17	96.8
					mean	0.79 ± 0.16		
--------------------	-------------	-------	---------------	---------------	---------------	---------------	------	
Axial Range series								
DHA-1	11°48'21" N	0.827	1.76 ± 0.03	4.7 ± 1.5	298.7 ± 0.9	0.15 ± 0.05	99.1	
	41°00'58" E		1.85 ± 0.03	2.7 ± 1.6	297.5 ± 0.9	0.09 ± 0.05	99.5	
					mean	0.12 ± 0.05		
							_	

40Arrad, radiogenic component in 40Ar

Values expressed in italic are obtained by the unspiked method.

to peep peries

figure 3

451x299mm (300 x 300 DPI)

figure 4

435x299mm (300 x 300 DPI)

figure 5

447x293mm (300 x 300 DPI)

http://www.petrology.oupjournals.org/

- 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49

- 58 59
- 60

figure 6

290x451mm (300 x 300 DPI)

NMER

CMER

Afa

SMER

O SDFZ O WFB + Akaki

Alage
 Tarmal
 Nazret
 WFB
 magma

Afar Stratoid
 Gulf basalt
 Axial range

•

NMER

Getra-Kele
 O Tosa-Sucha
 CMER

2.0

1.0

0.5

5 0.2

(¹⁴³Nd/¹⁴⁴Nd)_i

(²⁰⁶Pb/²⁰⁴Pb)_i

0.5128

20.00.5126

19.0

18.0

(K/Nb)_N

SMER

8 10 latitude (°N) figure 7

197x298mm (300 x 300 DPI)

http://www.petrology.oupjournals.org/

241x299mm (300 x 300 DPI)

figure 10 298x298mm (300 x 300 DPI)

