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Abstract  

(E)-N-Benzylidenepicolinohydrazide (Hbphz) was used to synthesize a series of hydrazonato-

bridged homodinuclear LnIII
2 dithiocarbamato (RR'dtc–) complexes of the form [{Ln(RR' 

dtc)2}2(µ-bphz)2] {Ln = La, Pr, Nd, Sm or Eu; RR' = dimethyl- (Me2) or pyrrolidine- (pyr)}. 

X-ray crystallographic studies revealed that these complexes possessed a common head-to-tail 

type dinuclear structural motif in which two hydrazonato ligands bridged two LnIII centers in 

the -12N(py),O:22O,N(imine) mode and two RR'dtc ligands coordinated to each LnIII center. 

Interestingly, while the SmIII and EuIII complexes crystallized as simple 8:8-coordinate 

dinuclear molecules, the lighter LnIII (i.e. LaIII, PrIII and NdIII) complexes afforded in some 

cases 9:9-coordinate molecules, where the ninth coordination site was occupied by a solvent 

ethanol or methanol molecule. Even for the lighter LnIII complexes, the complexes were solved 

in dichloromethane or chloroform as the 8:8-coordinate dimer, as revealed by 1H NMR 

spectroscopy. In the UV-visible absorption and magnetic circular dichroism (MCD) spectra of 

the complexes, similar spectral patterns for ligand-centered and Laporte forbidden f–f 

transitions were observed. The MCD spectral studies demonstrated the characteristic magneto-

optical behavior of the complexes.  
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1. Introduction 

The coordination chemistry of hydrazones is an active research area in view of their 

general interests and application of hydrazone complexes [1,2]. Hydrazones can coordinate to 

a metal center either as neutral molecules or deprotonated anionic forms; therefore, the 

hydrazone complexes often exhibit interesting reversible properties dependent on the solvent 

acidity [3,4]. In addition, the exploitation of possible ligating substitutional groups affords a 

variety of coordination modes of the hydrazones which would give the complexes with 

interesting structural diversity, magnetic and spectroscopic properties [5].  

Lanthanoid complexes of hydrazones are being investigated for potential applications in 

various fields including supramolecular assemblies and magnetic materials. Chandrasekhar et 

al. have prepared a series of hydrazone-based homodinuclear lanthanoid complexes and 

revealed the presence of weak antiferromagnetic coupling between the LnIII centers at low 

temperature [6]. Thompson and co-authors have investigated the coordination chemistry of 

tritopic pyridinebis(hydrazone) with some LnIII ions [7]. Klouras, Perlepes and their 

collaborators characterized dinuclear 2-acetylpyridine-substituted hydrazone complexes with 

four bridging acetate groups [8]. The structural characterizations and magnetic properties of 

other hydrazone-based dinuclear DyIII
2 [9] and tetranuclear LnIII

4 [10] complexes have also 

been reported. In addition, several mixed-ligand lanthanoid complexes bearing hydrazones (or 

the deprotonated hydrazonates) and β-diketonates (or other oxygen-donor ligands) have been 

reported; however, those of the analogous mixed-ligand complexes with dithiocarbamates have 

not yet been investigated. Lanthanoid dithiocarbamato compounds have important practical 

applications in catalysis, nanotechnology and microelectronics, and, therefore, their structural, 

thermodynamical and spectroscopic properties have been studied in detail [11, 12]. So far, most 

of the mixed-ligand dithiocarbamato lanthanoid complexes studied involve 1,10-

phenanthroline or 2,2'-bipyridine as an ancillary ligand.   
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In this study, a hydrazone derived from picolinohydrazide and benzaldehyde, (E)-N-

benzylidenepicolinohydrazide (Hbphz) was synthesized and used to prepare a series of 

lanthanoid dithiocarbamato complexes (Scheme 1). The structural features and spectroscopic 

properties of these hydrazonato-bridged homodinuclear lanthanoid dithiocarbamato complexes 

were investigated.  

2. Experimental section 

2.1 Synthesis of (E)-N-benzylidenepicolinohydrazide (Hbphz) 

2-Pyridinecarboxylic acid hydrazide (= picolinohydrazide) (343 mg, 2.5 mmol) was 

dissolved in ethanol (20 mL) and benzaldehyde (265 mg, 2.5 mmol) was added. The mixture 

was stirred for 3 h at room temperature and, then, allowed to stand overnight. A slight shaking 

of the mixture triggered precipitation of the product. Analytically pure white fluffy product was 

isolated in 73% yield. Slow evaporation of a methanolic solution of the product yielded 

colorless needle-shaped crystals suitable for X-ray diffraction analysis.  Anal. Found: C, 69.23; 

H, 4.67; N, 18.55%. Calcd. for C13H11N3O: C, 69.32; H, 4.92; N, 18.66%. IR (KBr disc)/cm–1: 

ν(N–H), 3212; ν(C=O), 1664; ν(C=N), 1522; ν(N–N), 1141.  1H NMR (300 MHz, Chloroform-

d, 22 °C): δ 10.99 (s, 1H), 8.58 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.42–8.16 (m, 2H), 8.02–7.64 

(m, 3H), 7.60–7.31 (m, 4H). 

2.2 Synthesis of complexes 

All complexes reported in this article were similarly prepared by a method described 

below. To a mixture of Hbphz (1.00 mmol) and Et3N (1.00 mmol) in MeOH (10 mL) was added 

a methanolic solution (10 mL) of LnX3•6H2O (Ln = La, Pr, Nd, Sm or Eu; X– = Cl– or NO3
–) 

(1.00 mmol) with stirring. Na(Me2dtc) or NH4(pyrdtc) (2.00 mmol) in MeOH (10 mL) was 

added. The mixture was stirred for 5 h at room temperature and the resulting precipitate was 

 

Scheme 1  (E)-N-benzylidenepicolinohydrazide (Hbphz) 
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collected by filtration, washed with MeOH and dried in air. The crude product was purified by 

recrystallization from a dichloromethane or chloroform solution by layering of ethanol, 

methanol or diethyl ether. The analytical and FT-IR spectral data are given below. 

2.2.1 [{La(Me2dtc)2}2(μ-bphz)2] (1a) 

Pale green crystals were obtained from a mixture of CH2Cl2 and EtOH in 18% yield. Anal. 

Found: C, 36.29; H, 3.77; N, 11.21; S, 19.30%. Calcd. for C38H44N10O2La2S8•2CH3OH•2H2O: 

C, 36.75; H, 4.32; N, 10.71; S, 19.62%. IR (KBr disc)/cm–1: ν(C=N),1540; ν(N–N), 1161; ν(C–

N), 1349; ν(C–S) 982.   

2.2.2 [{La(pyrdtc)2}2(μ-bphz)2] (1b) 

Pale green crystals were obtained from a mixture of CHCl3 and EtOH in 21% yield. Anal. 

Found: C, 40.55; H, 3.99; N, 10.37; S, 18.65%. Calcd for C46H52N10O2La2S8•CH3OH•2H2O: C, 

40.92; H, 4.38; N, 10.15; S, 18.60%. IR (KBr disc)/cm–1: ν(C=N), 1539; ν(N–N), 1163; ν(C–

N), 1430; ν(C–S) 1005.   

2.2.3 [{Pr(Me2dtc)2}2(μ-bphz)2] (2a) 

Green crystals were obtained from a mixture of CH2Cl2 and EtOH in 19% yield. Anal. 

Found: C, 37.23; H, 3.50; N, 11.41; S, 19.85%. Calcd. for C38H44N10O2Pr2S8•0.5CH2Cl2: C, 

36.89; H, 3.62; N, 11.17; S, 20.46%. IR (KBr disc)/cm–1: ν(C=N), 1540; ν(N–N), 1158; ν(C–

N), 1347; ν(C–S) 979.   

2.2.4 [{Pr(pyrdtc)2}2(μ-bphz)2] (2b) 

Green crystals were obtained from CH2Cl2 and EtOH in 21% yield. Anal. Found: C, 

41.49; H, 4.25; N, 9.86; S, 18.90%. Calcd. for C46H52N10O2Pr2S8•2H2O: C, 40.88; H, 4.18; N, 

10.37; S, 18.98%. IR (KBr disc)/cm–1: ν(C=N), 1540; ν(N–N), 1163; ν(C–N), 1430; ν(C–S) 

1006.   

2.2.5 [{Nd(Me2dtc)2}2(μ-bphz)2] (3a) 

Pale green crystals were obtained from CHCl3 and MeOH mixture in 42% yield. Anal. 

Found: C, 36.82; H, 3.70; N, 11.16; S, 18.87%. Calcd. for 

C38H44N10O2Nd2S8•2CH3OH•0.5CHCl3: C, 36.26; H, 3.95; N, 10.44; S, 19.12%. IR (KBr 

disc)/cm–1: ν(C=N), 1543; ν(N–N), 1159; ν(C–N), 1349; ν(C–S) 980.   
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2.2.6 [{Nd(pyrdtc)2}2(μ-bphz)2] (3b) 

Pale green crystals were obtained from CH2Cl2 and EtOH mixture in 43% yield. Anal. 

Found: C, 41.56; H, 4.56; N, 9.78; S, 17.57%. Calcd. for 

C46H52N10O2Nd2S8•2CH3CH2OH•CH2Cl2•H2O: C, 41.25; H, 4.62; N, 9.43; S, 17.27%. IR 

(KBr disc)/cm–1: ν(C=N), 1541; ν(N–N), 1163; ν(C–N), 1431; ν(C–S) 1007.  1H NMR (300 

MHz, Chloroform-d, 22°C) δ 9.56 (dd, J = 14.6, 7.2 Hz, 1H), 8.94–8.23 (m, 2H), 7.99–7.70 

(m, 1H), 7.69–7.37 (m, 1H), 7.26 (s, 1H), 4.39–3.40 (m, 8H), 1.67–1.04 (m, 8H). 

2.2.7 [{Nd(pyrdtc)2}2(μ-bphz)2] (3b')  

Pale green crystals were obtained from CH2Cl2 and Et2O. Anal. Found: C, 41.58; H, 4.00; 

N, 10.56; S, 19.20%. Calcd. for C46H52N10O2Nd2S8: C, 41.79; H, 3.96; N, 10.60; S, 19.40%. 

IR (KBr disc)/cm–1: ν(C=N), 1544; ν(N–N), 1163; ν(C–N), 1436; ν(C–S) 1004. 1H NMR (300 

MHz, Chloroform-d, 22°C) δ 9.56 (t, J = 10.2 Hz, 1H), 8.89–8.21 (m, 2H), 7.77 (t, J = 8.7 Hz, 

1H), 7.69–7.37 (m, 1H), 7.26 (s, 2H), 4.27–3.47 (m, 6H), 1.61–1.03 (m, 6H). 

2.2.8 [{Sm(Me2dtc)2}2(μ-bphz)2] (4a) 

Pale yellow crystals were obtained from CHCl3 and EtOH in 18% yield. Anal. Found: C, 

35.97; H, 3.33; N, 10.93; S, 20.37%. Calcd. for C38H44N10O2Sm2S8•0.5CHCl3: C, 35.85; H, 

3.48; N, 10.86; S 19.89%. IR (KBr disc)/cm–1: ν(C=N), 1545; ν(N–N), 1129; ν(C–N), 1351; 

ν(C–S) 982.   

2.2.9 [{Sm(pyrdtc)2}2(μ-bphz)2] (4b) 

Pale yellow crystals were obtained from CH2Cl2 and EtOH in 22% yield. Anal. Found: 

C, 40.69; H, 3.71; N, 10.36; S, 19.06%. Calcd. for C46H52N10O2Sm2S8•0.5CH2Cl2: C, 40.57; 

H, 3.88; N, 10.17; S, 18.63. IR (KBr disc)/cm–1: ν(C=N), 1545; ν(N–N), 1164; ν(C–N), 1437; 

ν(C–S) 1005.   

2.2.10 [{Eu(Me2dtc)2}2(μ-bphz)2] (5a) 

Orange crystals were obtained from CHCl3 and MeOH in 37% yield. Anal. Found: C, 

35.12; H, 3.41; N, 10.55; S, 19.20%. Calcd. for C38H44N10O2Eu2S8•CHCl3: C, 35.04; H, 3.39; 

N, 10.48; S, 19.19%. IR (KBr disc)/cm–1: ν(C=N), 1545; ν(N–N), 1131; ν(C–N), 1351; ν(C–S) 

982.   
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2.2.11 [{Eu(pyrdtc)2}2(μ-bphz)2] (5b) 

Orange crystals were obtained from CHCl3 and EtOH in 40% yield. Anal. Found: C, 

38.03; H, 3.70; N, 9.41; S, 17.23%. Calcd. for C46H52N10O2Eu2S8•CHCl3: C, 38.76; H, 3.67; 

N, 9.62; S, 17.61%. IR (KBr disc)/cm–1: ν(C=N), 1545; ν(N–N), 1165; ν(C–N), 1436; ν(C–S) 

1005.   

2.3 Physical Measurements  

C, H, N and S analysis were carried out on a Perkin Elmer Series II CHNS/O Analyzer 

2400 at Department of Instrumental Analyses, Advanced Science Research Center, Okayama 

University. The FT-IR spectra were recorded on a JASCO FT-001 FT-IR spectrophotometer by 

a KBr disc method in the 400–4000 cm−1 range. The UV-visible absorption spectra of the 

complexes in dichloromethane were obtained on a JASCO V-550 UV/VIS spectrophotometer 

at room temperature. Room temperature magnetic circular dichroism (MCD) spectra were 

measured on a JASCO J-1500 CD spectropolarimeter equipped with a home-made neodymium 

magnet apparatus (ca. 0.5 T magnetic field) [13]. 

2.4 X-ray crystallographic study 

X-ray diffraction intensity data were collected on a Rigaku R-AXIS Rapid diffractometer, 

except for those of compound 5b which were obtained on a Rigaku VariMax diffractometer 

with a Saturn-70 CCD detector, using graphite or multi-layered mirror monochromated Mo Kα 

(λ = 0.71075 Å) radiation. The diffraction data were processed using the PROCESS-AUTO or 

CrystalClear software package [14] and the numerical absorption corrections were applied [15]. 

The structures were solved by the direct method employing the SIR2008 [16] or SHELXT [17] 

software package and expanded using Fourier techniques, and refined on F2 (with all 

independent reflections) using SHELXL Version 2014/7 software package [18]. All non-

hydrogen atoms were refined anisotropically. Hydrogen atoms were introduced at the 

theoretical positions and refined using riding models. All calculations were performed using 

the CrystalStructure software package [19]. 

3. Results and discussion 
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3.1 Synthesis and characterization of (E)-N-benzylidenepicolinohydrazide (Hbphz)  
The hydrazone, Hbphz, was synthesized by a one-pot condensation reaction of equimolar 

amounts of 2-pyridinecarboxylic acid hydrazide and benzaldehyde in ethanol in 73% yield 

[20,21]. The product was characterized by elemental analysis, X-ray diffraction analysis, and 

IR and 1H NMR spectroscopy. The 1H NMR spectrum (Fig. 1a) suggested that the isolated 

hydrazone was a single product of possible E and Z isomers. The X-ray crystallographic 

analysis (Table S1) revealed the molecular structure of Hbphz as an E-isomer, which is depicted 

in Fig. 2a. The molecule has an almost planar structure; the planes of the pyridyl (N1, C1–C5) 

and phenyl (C8–C13) rings form a dihedral angle of 10.4(1)°.  The plane defined by the central 

hydrazone linkage, –C=N–N–C(=O)–, is tilted by 8.0(1) and 16.4(1)°, respectively, to the 

planes of the pyridyl and phenyl rings.  The hydrazone C6=O1 bond length, 1.226(3) Å, 

indicates a ketonic character [7], and the imine N3=C7 bond length, 1.279(3) Å, shows its 

double bond character, while the N2–N3 and N2–C6 bond lengths are 1.381(2) and 1.356(3) 

Å, respectively. Therefore, the N2 atom should have an amide-H atom. Intermolecular N–

H···O hydrogen bonds form a one-dimensional chain structure (Fig. 2b), running along the b 

 

Fig. 1  1H NMR (300 MHz, Chloroform-d) spectra of (a) Hbphz, (b) [{Nd(pyrdtc)2}2(µ-

bphz)2] and (c) [{Nd(pyrdtc)2(EtOH)}2(µ-bphz)2]. 
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axis. The UV-visible absorption spectra of Hbphz (Fig. S1) showed a characteristic intense 

band due to the π→π* transition centered at 306 nm.   

3.2 Synthesis and characterization of LnIII complexes with the hydrazonate, bphz– 

A reaction of Hbphz, LnX3•6H2O (Ln = La, Pr, Nd, Sm or Eu; X = Cl– or NO3
–), and 

sodium dimethyldithiocarbamate {Na(Me2dtc)} or ammonium pyrrolidinedithiocarbamate 

{NH4(pyrdtc)} in a 1:1:2 molar ratio in the presence of Et3N in methanol at room temperature 

gave a pale-yellow or green precipitate of the respective LnIII(bphz)(RR'dtc)2 complexes {Ln 

= La (1x), Pr (2x), Nd (3x), Sm (4x) or Eu (5x); RR' = Me2 (x = a) or pyr (x = b)} (Scheme 2). 

Recrystallization of each product from dichloromethane (or chloroform) and ethanol (or 

methanol) afforded single-crystals suitable for the X-ray diffraction study. The elemental 

analysis of these products suggested the composition of Ln(bphz)(RR'dtc)2•n(solvent). 

 

  

Fig. 2  (a) An ORTEP drawing of Hbphz (at 50% probability level), and (b) hydrogen-

bonding interaction in the crystal of Hbphz. 
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Figure S2 showed the FT-IR spectra of Hbphz and its complexes 3b and 5b as 

representative examples; other pyrdtc complexes of 1b, 2b and 4b gave a similar spectral 

pattern. Also, the Me2dtc complexes 1a–5a showed similar IR spectra to one another. The ν(N–

H) and ν(C=O) stretching bands appeared at 3212 cm–1 and 1664 cm–1, respectively, in the 

spectrum of free Hbphz were disappeared in the spectra of the complexes, which indicated that 

the ligand has an anionic (i.e. bphz−) and enolate character [22]. The ν(C=N)imine and ν(N–N) 

bands observed at 1522 and 1141 cm–1, respectively, in the free Hbphz were shifted to higher 

wavenumber regions on complexation, suggesting the coordination of the imine-N donor to a 

LnIII ion [1]. The ν(C–S) and ν(C–N) bands associated with the pyrdtc– ligand in the complexes 

appeared at 1007 and 1430 cm−1 in 3b and 1005 and 1436 cm−1 in 5b, respectively.  

3.3 Crystal structure of the complexes 

Further characterization of the bphz complexes, 1a–5b, were performed by the single-

crystal X-ray analysis.  The crystallographic data are summarized in Table S1 in the Supporting 

Information. The selected structural parameters are listed in Table 1.  

The EuIII–pyrdtc complex, 5b, was crystallized in a monoclinic space group Cc (with Z 

= 4), and the asymmetric unit contains two EuIII ions, each of which attaches two bidentate 

S,S’-donating pyrdtc– ligands, two bridging bphz– (deprotonated hydrazonate) anions and three 

chloroform molecules of crystallization: [{Eu(pyrdtc)2}2(-bphz)2]•3CHCl3 (Fig. 3). The 

bphz– anions are bridged two EuIII ions in a -12N(py),O:22O,N(imine) mode and form a 

 

Scheme 2  Synthetic route of the bphz-bridged complexes 
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head-to-tail type Eu2(-bphz)2 core. Each EuIII center accomplishes a distorted dodecahedral 

8-coordination geometry with N2O2S4 donor atoms, and two pyrdtc ligands in the mutually 

pseudo-trans positions are almost co-planar and perpendicular to the Eu2(bphz)2 plane (Fig. 

3b). Analogous EuIII–Me2dtc complex, 5a, was crystallized in a triclinic space group P
–
1 with 

Z = 1 (based on the dinuclear unit). The asymmetric unit consists of an EuIII ion, two bidentate 

S,S’-donating Me2dtc– anions, and a bidentate N(py),O-bonding bphz– anion, but the symmetry 

expansion by the crystallographic inversion center forms further coordination of the 

neighboring bphz– anion via a bidentate O,N(imine) mode. Thus, the molecule has a Ci 

symmetric (head-to-tail type) bphz-bridged dinuclear structure, as similar to the above pyrdtc 

complex: [{Eu(Me2dtc)2}(-bphz)2] (Fig. S3).   

The SmIII–Me2dtc complex, 4a, is isomorphorous to that of 5a, and a similar molecular 

structure is resulted: [{Sm(Me2dtc)2}(-bphz)2] (Fig. S4).  In the case of SmIII–pyrdtc complex 

of 4b, a similar dinuclear molecular structure with two solvent CH2Cl2 molecules of 

crystallization, [{Sm(pyrdtc)2}2(-bphz)2]•2CH2Cl2 (Fig. S5) was obtained in a triclinic space 

group P
–
1 with Z = 1 (based on the dinuclear unit). 

 

Fig. 3  (a) A perspective view of dinuclear complex of [{Eu(pyrdtc)2}2(µ-bphz)2] in 

5b•3CHCl3 and (b) its side view from the Eu2(bphz)2 plane. Hydrogen atoms and lattice 

solvent molecules are omitted for clarity. 
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All four complexes of EuIII and SmIII, 4a, 4b, 5a and 5b, have similar structural features 

with two LnIII ions having a N2O2S4 dodecahedral 8-coordination and two bridging 

monodeprotonated hydrazonate anions (bphz–). Compared to the metric parameters of the 

complexes with those of free Hbphz, the C=O and C–N bonds become longer (by ca. 0.07 Å) 

and shorter (by ca. 0.05 Å), respectively, while the N–N and N=C(imine) bond lengths are not 

different so much. This fact indicates that delocalization of the anionic character of the 

hydrazonate is limited in the [O=C–N] moiety, although the whole hydrazonato moiety [–

C(=O)–N–N=C–] has a planar structure. Two LnIII ions are placed on the hydrazonato planes, 

and the pyridine ring is also coplanar, while the phenyl ring of bphz– is slightly tilted from the 

planes (Table S2). Two RR'dtc ligands at each LnIII ion are located above and below the Ln2(-

bphz)2 plane, i.e., at mutually pseudo trans-positions, and their coordination planes are almost 

parallel to each other but perpendicular to the Ln2(-bphz)2 plane. The coordination bond 

lengths around EuIII or SmIII centers are: Ln–S, 2.85–2.93 Å; Ln–N, 2.50–2.62 Å; Ln–O, 2.75–

2.41 Å, the bite angles of RR'dtc are 61.8–62.5°, and the bridging angles of Ln–O–Ln are 

112.2–113.6°.  

In contrast to the above complexes, the LaIII complexes of 1a and 1b were found to have 

a different molecular structure (Fig. 4 and Fig. S6, respectively) in the crystals. The Me2dtc 

complex of 1a was crystallized in a monoclinic space group P21/n with Z = 2 (based on the 

dinuclear unit), and the pyrdtc complex of 1b was crystallized in a triclinic space group P
–
1 

with Z = 1 (based on the dinuclear unit). Both complexes showed a dinuclear bphz-bridged 

LaIII
2(-bphz)2 structure having a crystallographic inversion center in the molecule. The 

bridging mode of the hydrazonato is the same as those in the EuIII and SmIII complexes, but the 

coordination bond lengths around the LaIII are longer by 0.15–0.20 Å, which is consistent with 

the longer ionic radius of LaIII than EuIII and SmIII. Because of the larger ionic size, the LaIII 

center is deviated from the plane defined by two bridging ligands (Fig. 4b). In addition, the 

LaIII center is coordinated by an ethanol molecule as well as two dithiocarbamato (RR'dtc–) 

ligands. The coordinated ethanol molecule is hydrogen-bonded to one of the S atoms of RR'dtc– 

ligand coordinated to the other LaIII center (O2–H···S4: Fig. 4a). Two dithiocarbamato ligand 
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planes are almost perpendicular to each other and to the bridging bphz ligand plane, and, 

therefore, the coordination geometry around each LaIII center is characterized as a 9-coordinate 

tricapped trigonal prism.  

Since the LaIII(RR'dtc)2 fragments form a 9-coordinate dinuclear bphz-bridged complex 

with a coordinated EtOH ligand, while the corresponding SmIII and EuIII ones gave an 8-

coordinate dinuclear complexes where two dithiocarbamato ligand planes at each LnIII center 

are co-planar, it is interesting to investigate the molecular structures of the PrIII and NdIII 

analogues. The PrIII–pyrdtc complex of 2b and the NdIII–pyrdtc complex of 3b were found to 

be isomorphous to the LaIII–pyrdtc complex of 1b, and a similar molecular structure with 9-

coordinate PrIII ions (Fig. S7) or NdIII ions (Fig. S8) resulted in. The structural characteristics 

of 2b and 3b are also the same as those of 1b. The coordination bond lengths around PrIII center 

in 2b are slightly shorter than the corresponding ones around LaIII in 1b by 0.02–0.06 Å and 

those around NdIII in 3b are further shorter by ca. 0.01 Å, although the PrIII and NdIII centers in 

2b and 3b are still not on the plane of the bridging bphz ligands (Figs. S7b and S8b).  

The crystal structure of PrIII–Me2dtc complex, 2a, was found to be rather different from 

the above examples. It was crystallized in a triclinic space group P
–
1 with Z = 4 (based on the 

dinuclear unit), and its asymmetric unit contains a whole molecule of bphz-bridged dinuclear 

 

Fig. 4  (a) A perspective view of dinuclear complex of [{La(Me2dtc)2(EtOH)}2(µ-bphz)2] in 

1a and (b) its side view from the (-bphz)2 plane. Hydrogen atoms and lattice solvent 

molecules are omitted for clarity. 
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PrIII complex, two fragments of ‘PrIII(Me2dtc)2(bphz)’ which gives a dinuclear bphz-bridged 

complex by symmetry operation, and four molecules of solvent CH2Cl2 molecules; thus, the 

crystals of 2a can be assigned as [{Pr(Me2dtc)2}2(-bphz)2]•2CH2Cl2. There are three kinds of 

crystallographically different dinuclear complexes, but all of them are found to be 8-coordinate 

around the PrIII centers (Fig. S9). The characteristics of the molecular structures are also similar 

to those of the SmIII
2 and EuIII

2 complexes of 4a and 5a.  

The NdIII–Me2dtc complex, 3a, showed a further characteristic crystal structure (Fig. 5). It 

was crystalized in a triclinic space group P
–
1 with Z = 2 (based on the dinuclear unit), and the 

 

 

Fig. 5  Perspective views of (a and b) a 8:8-coordinate dinuclear complex of 

[{Nd(Me2dtc)2}2(µ-bphz)2] and (c and d) a 9:9-coordinate dinuclear complex of 

[{Nd(Me2dtc)2(MeOH)}2(µ-bphz)2] in 3a (b and d are their side views from the (-bphz)2 

plane. Hydrogen atoms and lattice solvent molecules are omitted for clarity. 
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asymmetric unit contains two halves of the dinuclear bphz-bridged NdIII molecules and two 

solvent CHCl3 molecules. Interestingly, these two fragments have different molecular 

structures; one of the molecules (with Nd1) has a similar 8-coordinate structure (Fig. 5a and b) 

to those of the SmIII (4a) and EuIII (5a) analogues (where two mutually trans-positioned Me2dtc 

ligand planes are co-planar to each other), while the other molecule (with Nd2) is coordinated 

by an additional MeOH molecule to complete a 9-coordinate coordination geometry (Fig. 5c 

and d). Therefore, the crystals is assigned as [{Nd(Me2dtc)2}2(-

bphz)2]•[{Nd(Me2dtc)2(MeOH)}2(-bphz)2]•4CHCl3.  

The above-mentioned crystallographic analyses suggested that the bphz-bridged 

dinuclear lanthanoid dithiocarbamato complexes tend to form a 9-coordinate complex by a 

coordination of solvent EtOH (or MeOH) molecule used for recrystallization, when a larger 

LnIII ion (e.g., LaIII, PrIII or NdIII) was applied. Then, an interesting question arose; would an 

8:8- or 9:9-coordinate molecule be obtained by recrystallizing these complexes from non-

coordinating solvents? We have attempted several crystallization and finally isolated pale green 

and block single-crystals of the NdIII–pyrdtc complex, 3b', from a mixture of dichloromethane 

and diethyl ether. Although the crystallinity was not good enough to obtain a satisfactory R 

value, we have confirmed the successful crystallization of the 8:8-coordinate 

[{Nd(pyrdtc)2}2(-bphz)2] (3b') complex (Table S1 and Fig. S10).  

3.4 Spectroscopic Properties 

3.4.1 1H NMR study 

The 1H NMR spectra of Hbphz and some LnIII complexes in chloroform-d were measured.  

As representative examples, the spectra of free Hbphz and the NdIII–pyrdtc complexes with 

9:9- and 8:8-coordinate structures, [{Nd(pyrdtc)2(EtOH)}2(µ-bphz)2] (3b) and 

[{Nd(pyrdtc)2}2(µ-bphz)2] (3b'), which were obtained by recrystallization from 

dichloromethane/ethanol and dichloromethane/diethyl ether, respectively, are shown in Fig. 1. 

In the spectrum of free Hbphz (bottom), the amide (NH) and imine (N=CH) proton resonances 

are observed at  10.99 and 8.58, respectively. In addition, multiplet resonances due to the 

aromatic (CH) protons are observed in the range of  7.31–8.42. The NdIII
2 complexes gave 
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relatively sharp resonances in the typical range ( 10–0) for diamagnetic compounds (middle 

and top), although they contain NdIII ions. In these spectra, the disappearance of the amide NH 

resonance indicates the deprotonation from the hydrazone. The resonance for the imine 

(N=CH) proton is observed at  9.56, while those for the aromatic (CH) protons occurred in 

the range of  7.26–8.94. The methylene (CH2) protons of pyrdtc– ligands gave two pseudo 

triplets around  3.8 and 1.3. In addition, in the spectrum of 3b three sharp resonances due to 

free ethanol are observed [23]. These spectral features of 3b and 3b' suggest that the EtOH (or 

MeOH) molecule in the 9:9-coordinate complex dissociates in a chloroform solution to exist 

as an 8:8-coordinate dinuclear bphz-bridged complex.  

3.4.2 UV-visible absorption and MCD spectra 

UV-visible absorption and MCD spectra of the pyrdtc– complexes, 1b–5b, were 

measured in CH2Cl2 solutions. The complexes exhibited similar absorption spectral pattern in 

the UV region as shown in Fig. S11. The band at 340 nm was assigned to the intra-ligand charge 

transfer transition [24,25]. In the visible region, sharp but weak absorption bands and MCD 

signals characteristic of f–f transitions were observed in the complexes. The spectra are 

presented in Figs. 6–9 and discussed below. 

 

Fig. 6. Absorption (top) and MCD (bottom) spectra of [{Pr(pyrdtc)2(EtOH)}2(µ-bphz)2] 

2b. 
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The absorption spectrum of 2b (Fig. 6, top) shows four sharp but weak bands at 16580, 

20200, 20830 and 22050 cm–1. These bands are due to the f–f transition from the ground state 

3H4 to the 1D2, 
3P0, (

3P1,
1I6) and 3P2 excited states, respectively, which are based on the reported 

signal assignments for an aqueous Pr(NO3)3 and Pr(ClO4)3 solutions [26]. In the MCD 

spectrum (bottom), the f–f transition bands are observed as characteristic positive A-term MCD 

signals at 16500 and 21930 cm–1, while negative A- and C-term MCD signals at 20240 and 

20830 cm–1, respectively.  

The absorption spectrum (top) of complex 3b (Fig. 7) shows four sharp but weak f–f 

bands with maximum peaks at 12420, 13320, 17040 and 18800 cm–1, which are assigned to 

the 4I9/2 → (4F5/2, 
4H9/2), (

4S3/2, 
4F7/2), (

2G7/2, 
4G5/2) and 4G7/2 transitions, respectively. The 4I9/2 

→ (4F5/2, 
4H9/2), (

4S3/2, 
4F7/2) and (2G7/2, 

4G5/2) transitions occurred at slightly lower in energies 

than those of a similar hydrazone-based NdIII complex reported by Singh et al [27]. Compared 

to the related NdIII complex with N-(furfuralidene)-N-isonicotinoylhydrazine [28], only the 4I9/2 

→ (4F5/2, 
4H9/2) band was consistent, and the other transitions occurred at lower energies. In the 

MCD spectrum (bottom), the MCD signals were observed at 12380, 13290, 13500, 16910 and 

 

Fig. 7. Absorption (top) and MCD (bottom) spectra of [{Nd(pyrdtc)2(EtOH)}2(µ-bphz)2] 

3b. 
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17040 cm–1. These signals are dominated by room temperature C-terms, except for the signal 

at 12380 cm−1 which appeared as a positive pseudo A-term [29].  

The characteristic 4I9/2 → (4G5/2,
2G7/2) hypersensitive transition exhibits splitting at 

16910 and 17040 cm–1. These crystal-field splitting was also observed in the second derivative 

absorption spectra of Nd(C2H3O2)3H2O [30] and neodymium complex with fleroxacin [31] at 

higher energies. The 4I9/2 → (4G5/2, 
2G7/2) hypersensitive transition C-term MCD signals are 

more clearly resolved in 3b than those in previously reported mononuclear NdIII analogues [29].  

In Fig. 8 (top), no f–f bands were detected in the absorption spectrum for complex 4b 

probably because they were overlapped or buried underneath the strong metal-ligand charge–

transfer band around 24000 cm-1 [28, 32]. In the MCD spectrum (bottom), the structure of the 

MCD bands is very complicated due to the Zeeman splitting of the ground state and all the 

excited states [33]. Two characteristic MCD signals showing a positive A-term and a negative 

C-term occurred at 23510 and 21260 cm–1, owing probably to the f–f transition from the 6H6/2 

ground state to the 6P3/2 and 4I13/2 excited states, respectively.  

In Fig. 9 (top), complex 5b exhibited two very weak bands at 21450 and 21460 cm–1 

which would be assigned to the 7F0 → 5D2 transition. The positions of these bands are in good 

 

Fig. 8. Absorption (top) and MCD (bottom) spectra of [{Sm(pyrdtc)2}2(µ-bphz)2] 4b. 
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agreement, but the shapes are different from previously reported spectra of mononuclear 

[Eu(RR'dtc)3(NN)] (RR' = dimethyl-, pyrrolidine- and S-prolinol-; NN = 1,10-phenanthroline 

or 2,2'-bipyridine) complexes [29]. In the MCD spectrum (bottom), a negative pseudo A-term 

MCD signal is observed at 21430 cm−1 and corresponds to the absorption bands. The shape of 

the negative pseudo A-term of 5b is different from that of the negative B-term observed in the 

previously reported mononuclear EuIII dithiocarbamato complexes [29]. The MCD results 

show that the coordination environment of the lanthanoid with a mixed N,O,S donor set gives 

a significant difference in the electronic structure from that of an N,S donor set. This finding 

shows that the sensitivity of the MCD technique [34] can be used as an effective tool to probe 

the electronic structure(s) and physical properties of LnIII complexes in solution.  

4. Conclusion 

A series of novel hydrazonato-bridged homodinuclear LnIII
2 dithiocarbamato complexes 

were prepared and their crystal and molecular structures and spectroscopic properties were 

investigated. The crystal structures revealed that the early LnIII ions tend to crystallize as a 9:9-

coordinate complex with the ninth position occupied by a solvent alcohol molecule, while the 

 

Fig. 9.  Absorption (top) and MCD (bottom) spectra of [{Eu(pyrdtc)2}2(µ-bphz)2] 5b. 
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middle LnIII ions deposit the crystals of only 8:8-coordinate complex. The coordination of a 

deprotonated monoanionic hydrazonato ligand was confirmed by the IR and 1H NMR 

spectroscopy. Similar spectral patterns of ligand-centered and Laporte forbidden f–f transitions 

were observed in the UV-visible spectral region. The MCD parameters exhibited by the 

complexes demonstrate their potential in magneto-optical applications. In addition, these 

hydrazonato-bridged dinuclear lanthanoid(III) complexes with some suitable modification 

would be used as an effective building block for supramolecular chemistry. In particular, the 

late (heavier) LnIII ions would be interesting in their magnetic and catalytic properties. Such an 

investigation of a series of complexes are now in progress in our laboratory.  
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Table 1.  Selected parameters of LnIII
2 complexes.a 

—————————————————————————————————————————————————————————––––––– 

parameters 1a 1b 2a 2b 3a(mol1)b 3a(mol2)b,c 3b 3b’ 4a 4b 5a 5b 

Bond Lengths (Å) 

Ln1─S1 3.002(3) 3.015(3) 2.906(4) 2.968(2) 2.920(3) 2.973(2) 2.990(2) 2.899(2) 2.856(5) 2.876(1) 2.853(3) 2.867(3) 

Ln1─S2 3.031(3)  3.000(3) 2.921(3) 2.982(2) 2.895(3) 2.941(3) 2.992(2) 2.940(1) 2.863(6) 2.884(1) 2.844(3) 2.877(5) 

Ln1─S3 3.032(3) 3.029(3) 2.919(3) 3.006(2) 2.898(3) 2.970(2) 2.963(2) 2.903(2) 2.893(6) 2.932(1) 2.857(3) 2.921(5) 

Ln1─S4 3.052(3) 3.032(3) 2.889(4)  2.999(3) 2.889(2) 2.986(3) 2.952(2) 2.890(2) 2.870(5) 2.865(1) 2.870(3) 2.854(4) 

Ln1─N1 2.695(8) 2.688(10) 2.658(9) 2.627(8)  2.629(7) 2.637(7) 2.620(7) 2.627(5) 2.620(13) 2.586(4) 2.589(7) 2.577(11) 

Ln1─N3* 2.692(7) 2.702(10) 2.585(9)  2.639(7) 2.573(6)  2.624(7) 2.632(6) 2.589(6) 2.530(12) 2.560(4) 2.510(7) 2.498(10) 

Ln1─O1 2.506(5) 2.520(6) 2.451(8) 2.480(4) 2.430(5)  2.456(5) 2.464(4) 2.409(5) 2.405(10) 2.375(3) 2.380(5) 2.390(7) 

Ln1─O1* 2.518(6) 2.543(8) 2.488(10) 2.499(6) 2.432(5) 2.484(5) 2.483(5) 2.444(4) 2.410(8) 2.412(3) 2.398(6) 2.392(9) 

Ln1─O2EtOH 2.583(7) 2.586(7) –  2.549(6) – 2.525(9)d  2.533(5) – – – – – 

C6─O1 1.297(9) 1.310(14) 1.294(13) 1.311(10) 1.312(9)  1.307(9) 1.286(9) 1.309(7) 1.301(17) 1.303(5) 1.297(10) 1.332(15) 

C6─N2 1.332(10) 1.355(13) 1.329(17) 1.332(9) 1.329(10) 1.281(10) 1.329(8) 1.295(9) 1.327(16) 1.298(6) 1.302(9) 1.300(14) 

Bond angles (°) 

S1─Ln1─S2 58.43(9) 58.57(8) 61.32(12) 59.30(6) 61.30(7) 59.44(9) 59.27(7) 61.58(5) 62.04(15) 62.12(3) 62.48(9) 62.35(11) 

S3─Ln1─S4 57.63(8) 58.30(9) 61.38(11) 58.94(7) 61.56(8) 59.69(6) 59.74(6) 62.11(5) 61.79(14) 61.90(4) 62.15(8) 62.02(10) 

Ln1─O1─Ln1* 115.48(19) 114.7(3) 111.9(3) 115.7(2) 113.3(2) 116.11(19) 115.5(2) 113.1(2) 112.2(4) 113.6(1) 112.9(2) 113.5(3) 

Average  

Bond length (Å) 

Ln─S 3.029(4) 3.019(4) 2.909(7) 2.989(5) 2.900(4) 2.967(4) 2.974(4) 2.908(3) 2.871(1) 2.889(3) 2.856(6) 2.8798(9) 

Ln─N 2.694(11)  2.695(14) 2.622(13) 2.633(11) 2.601(10) 2.631(11) 2.626(9) 2.608(8) 2.575(18) 2.573(6) 2.510(10) 2.538(15) 

Ln─O 2.512(8) 2.532(10) 2.470(13) 2.490(7) 2.431(7) 2.470(7) 2.474(6) 2.427(6) 2.408(13) 2.394(4) 2.389(8)  2.391(21) 

Bond angles (°) 

S─Ln1─S 58.03(12) 58.44(12) 61.35(16) 59.12(9) 61.43(10) 59.57(11) 59.51(9) 61.85(7) 61.9(2) 62.01(5) 62.3(12)  62.17(15) 
aThe asterisk (*) indicates the symmetry-related atom. bMol1 and mol2 have 8:8- and 9:9-coordinate structures, respectively. cAtom-numberings of mol2 

should be modified appropriately: see Supplementary Information for details.  dLn2–O3MeOH. 


