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ABSTRACT: Diamond has two crystallographically inequivalent sites in the unit cell. In doped 

diamond, dopant occupation in the two sites is expected to be equal. Nevertheless, preferential 
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dopant occupation during growth under non-equilibrium conditions is of fundamental importance, 

for example, to enhance the properties of nitrogen-vacancy (N-V) centres; therefore, this is a 

promising candidate for a qubit. However, the lack of suitable experimental techniques has made 

it difficult to study the crystal- and chemical-site-resolved local structures of dopants. Here, we 

confirm the identity of two chemical sites with asymmetric dopant incorporation in the diamond 

structure, via the photoelectron holography (PEH) of heavily phosphorus (P)-doped diamond 

prepared by chemical vapor deposition. One is substitutionally incorporated P with preferential 

site occupations and the other can be attributed to a PV split vacancy complex with preferential 

orientation. The present study shows that PEH is a valuable technique to study the local 

structures around dopants, with a resolution of crystallographically inequivalent but energetically 

equivalent sites/orientations. Such information provides strategies to improve the properties of 

dopant related-complexes in which alignment is crucial for sensing of magnetic field or quantum 

spin register using N-V centres in diamond. 
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  The incorporation of dopant atoms, vacancies, and dopant-related complexes (known as point 

defects) into semiconductors is a method to not only control conducting properties but also 

induce new functionalities, like optical properties, derived from dopant-vacancy complexes1. 

Diamond, due to its extraordinary properties that can be used for several applications, synthesis 

of high-quality single crystal diamond, by controlling the crystal orientation, synthesis process, 

and doping, has been a popular and important research subject in the field of the materials 
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science2-9. Recently, the demand for understanding point defects, especially in diamond, is 

increasing, as nitrogen-vacancy (N-V) centres can be used for quantum technology, including 

quantum metrology and information processing and communications10-12. Interestingly, control of 

the alignment of N-V centres for enhancing the properties has been reported in doped diamond 

synthesized by chemical vapour deposition (CVD)13-15. In previous studies16, the mechanism of 

the alignment has been explained theoretically based on the preferential incorporation of a 

nitrogen atom at one of the two crystallographically inequivalent sites17 in diamond during CVD. 

However, experimental confirmation of the crystal site occupation of substitutionally 

incorporated dopants in the diamond structure is difficult because the two crystal sites are 

energetically equivalent. Optical spectroscopy and electron paramagnetic resonance 

spectroscopy are conventional techniques to study the characteristics of point defects in 

diamond18, but are applicable for deducing local structures. Rutherford backscattering 

spectrometry using channelling techniques19 can provide the location of interstitial dopants, but 

not that of substitutional dopants. Extended X-ray absorption fine structure (EXAFS) analysis 

provides the bond length to and coordination number of neighbouring atoms around selected 

elements, but without information on the direction of neighbouring atoms20. Scanning 

transmission electron microscopy can be used to detect the site in principle21, because it can 

provide the three-dimensional (3D) local structure. However, it cannot be used for determining 

light elements or vacancies.  

 Photoelectron holography (PEH) is promising for determining the 3D local structure around a 

dopant atom22, with chemical-site and crystal-site selectivity. In the core-level photoelectron 

angular distribution, i.e. the photoelectron hologram, an interference pattern between two types 

of photoelectron waves is involved, one of which comes directly from the atom (emitter) and the 
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other is scattered by neighbouring atoms (scatterer) (Fig. 1). Since the photoelectron hologram 

reflects the local crystal structure around the atom where photo-excitation takes place, a 3D 

atomic image can be directly reconstructed from the photoelectron hologram using a developed 

reconstruction algorithm23. Recently, PEH using third-generation synchrotron light has facilitated 

the observation of the local structure of dopant atoms in impurity-doped semiconductors24,25. For 

the preferential incorporation of dopant atoms, there is a pioneering study on the local structure 

of boron-doped sites in heavily B-doped diamond26; however, it was a chemical-site-integrated 

study and the reconstruction of atomic images was not performed. 

In this study, we performed the PEH of heavily phosphorous-doped diamond synthesized via 

microwave plasma-assisted chemical vapor deposition (MPCVD) to experimentally determine 

the local structure of two chemical sites.  

The image on the left-hand side in Fig. 2(a) shows the measured C 1s photoelectron hologram 

of heavily P-doped homoepitaxial (111) diamond. There are intense regions around particular 

parts that correspond to the [111] and [110] directions, and also several dark and bright lines. 

The higher-intensity spots are forward focusing peaks (FFP), which indicate the directions of the 

scatterer with respect to the emitter, because the scatterer atoms play the role of a convex lens. 

The dark lines are Kikuchi lines that reflect long-range structural coherence. In the diamond 

structure (Fig. 2(f) (left)), there are two crystallographically inequivalent sites at (0,0,0) and 

(1/4,1/4,1/4), termed A and B sites, respectively. While a carbon atom in the B site has three 

bonds directed diagonally upward, a carbon atom in the A site has three bonds directed 

diagonally downward. The photoelectron hologram is the sum of the two holograms viewed from 

the A and B sites. The cross sections of the reconstructed atomic images cut by planes 

perpendicular to [001] at z = 0, 0.89, 1.78, and 2.67 Å for the A site, which also correspond to the 
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planes for the B site (Fig. 2(f) (right)), are shown as [P1], [P2], [P3], and [P4], respectively, in 

Fig 2(b). The reconstructed images are located at the expected positions of carbon atoms (larger 

(smaller) circles viewed from A (B) site) in the diamond lattice. The calculated photoelectron 

hologram (right side of Fig. 2(a)) also reproduces the experiment reasonably well. 

The measured P 2p core-level spectra are shown in Fig. 2(g). The spectra are reproduced with 

two components having a spin orbit partner (value of splitting is 0.84 eV). Here, higher and 

lower binding-energy components are labelled as a and b, respectively. We found that the two 

components exhibit similar angular dependence with a small variation, indicating that the two 

components may have a common depth profile. We also found good correspondence of the 

binding energies with those of two bulk components in a previous work27. The spectral ratio a to 

b is 30:70, which is different from that obtained in a previous study27. Since we found that the 

ratio depends on surface treatments before photoemission measurements (surface treated with 

hydrogen plasma (present study) or as-deposited surface (previous study)), we attribute the 

different ratio to the difference in surface condition. Subsequently, all the angular-dependent P 

2p spectra were fitted by the two components to obtain the holograms. The images on the left-

hand side in Figs. 2 (c) and (d) show the photoelectron holograms of the a and b components, 

respectively. The patterns are distinct, indicating that the local crystal structures around the P 

atoms of the two chemical sites are different.  

The hologram pattern of component a rather resembles that of C 1s (Fig. 2(a)), suggesting that 

the P atoms of the chemical site are substitutionally incorporated into the diamond lattice. Indeed, 

in Fig. 2(e), the reconstructed 3D atomic images are observed at the locations expected for the 

carbon atoms in the diamond crystal. The substitutional incorporation of P atoms for P-doped 

diamond (nP ~ 4×1019 cm3) was previously reported using Rutherford backscattering28. 
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Interestingly, we found that the reconstructed atomic images are observed only at expected 

atomic positions viewed from the A site (larger circles of [P2] and [P4] of Fig. 2(e)). This 

indicates that the P atoms are preferentially incorporated into the A site of the diamond lattice, 

i.e., asymmetric dopant incorporation has occurred. We fitted the experimental hologram using 

two simulated holograms of the A and B sites, and found the occupancy to be 82% of the A site 

and 18% of the B site (Supporting Information). The simulated hologram obtained using the 

occupation ratio is shown in the right-hand-side image in Fig. 2(c); it reproduces the 

experimental hologram well. We will discuss the preferential incorporation later. 

Regarding component b, we found that a simulated hologram considering contributions of PVV 

oriented to [111] and PVH oriented to other directions with occupancies of 69% and 31%, 

respectively, reproduces the experimental hologram (right side of Fig. 2(d)). This suggests that 

the PV split vacancy complex (PVSVC), where a P atom occupies the centre of two vacancies 

(Fig. 3), is the most probable candidate. Notably, the occupancy deviates from the geometrically 

expected value (PVV:PVH=50:50), providing evidence for the preferential orientation of the P-V 

complex. Although a recent EXAFS study reported the interstitial site occupation of P atoms29, 

the simulated hologram therein did not explain the main features of the experimental hologram 

(Supporting Information). 

  The possibility of the PVSVC in P-doped diamond has been discussed theoretically30. Since 

the PVSVC forms empty in-gap states, the valence state should be [PV]-1 with spin S = 0, and no 

internal optical transitions are expected. This has made it difficult to reveal the identity from 

spectroscopic studies. The present PEH observed the ‘hidden’ P-complex in P-doped diamond by 

utilizing the characteristic ability of the method. Since the PVSVC compensates the electron 
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carrier induced by substitutional P and thus reduces the doping efficiency, reducing the PVSVC 

is an appropriate strategy for improving the doping efficiency. 

The present PEH study reveals asymmetric P dopant incorporation, i.e. the preferential 

incorporation of P atoms into the substitutional A site and the preferential orientation (PVV) of 

the PV2 complex. Since the two crystallographically inequivalent sites are energetically 

equivalent in the crystal, the asymmetry may stem from the CVD growth of (111) diamond. 

However, dopant incorporation in the step-flow mode of film growth31 is a complicated process, 

and theoretical studies on P doped diamond are limited. Here, we discuss the information that 

can be obtained from the present result, as well as a possible scenario for the preferential 

orientation of the PVSVC. For component a, the difference in occupancy implies that the 

incorporation of P atoms at the A and B sites encounters different energy barriers during crystal 

growth. For component b, the preferential orientation may be related to the preferential 

incorporation of a substitutional P atom in the A site. In N-doped CVD (111) diamond, 

theoretical studies16 on N-V centres suggested preferential occupation of the A site during the 

step-flow mode of film growth, followed by the formation of vacancies leading to the [111]-

oriented N-V centre. Herein we explained that the oriented N-V centre is formed because a lone 

pair of the N atom in the A site at the surface pointing to the vacuum increases the formation 

energy for another C atom located on top of the N atom. A similar mechanism can be considered 

for the formation of a PVSVC. However, the local structure of the PVSVC is different from that 

of the N-V centre, comprising a substitutional N atom and a vacancy on an adjacent lattice 

site12,14,15. This suggests that the PV complex should transforms to the PVSVC via structural 

relaxation, indicating that the mechanism of formation of PVSVC is more complicated. We hope 
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that this study motivates further theoretical studies to elucidate the atomistic mechanism of 

preferential orientation of the PVSVC. 

     In conclusion, we confirmed asymmetric P dopant incorporation, i.e. the preferential 

incorporation of P atoms into one of the two substitutional sites and the preferential orientation 

of the PVSVC. The chemical- and crystal-site sensitive local structures of dopants can shed light 

on the mechanism of doping and provide strategies to control the orientation of dopant-related 

complexes. In the current situation of PEH, public-use experimental stations that are equipped 

with computer controlled sample manipulators and wide-acceptance angle electron analysers 

have been developed in SPring-8, and a data analysis tool with many functions has also been 

developed, so that measurements become easier. These progresses have enabled PEH study on 

diluted samples, like present study, too. Such efforts are in progress, and will make PEH a more 

popular and powerful technique in materials science in near future. 

     Methods: A homoepitaxial heavily P-doped (111) diamond film was prepared by MPCVD32. 

nP is 1×1020 cm-3 (0.06 at.%), as determined by secondary ion mass spectroscopy. The thickness 

of the P-doped layer is estimated to be ~2 µm using a relation between growth rate and growth 

time33. Resistivity measurements showed a semiconducting temperature dependence and a value 

of ~200 Ωcm (5 × 10-3 Scm-1) at ~27 °C. The film surface used for the PEH measurements was 

cleaned using H2 plasma, and was therefore a H-terminated film. To reduce adsorbed molecules 

on the surface, the sample was annealed in situ at ~500 °C for 10 min under ultrahigh vacuum 

before the measurements.  

PEH measurements for C 1s and P 2p were performed at BL25SU, SPring-8, using a Scienta 

Omicron DA30 electron analyser with a photon energy of 700 eV (1.8 nm). The energy 

resolution was set to ~170 meV (4.3 × 10-4 nm). The proving depth of the present PEH is of the 
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order of 1 nm, as estimated from the inelastic mean free path of the photoelectron having kinetic 

energy ~500 eV.  The base pressure of the measurement chamber was better than 5 × 10-8 Pa. 

The chemical potential of the sample was determined from the Fermi edge of a molybdenum 

substrate electrically contacted with the sample. All the measurements were performed at room 

temperature to prevent charging. A map of the photoelectron angular distribution, which is the 

photoelectron hologram, was acquired from a series of measured data (angular regions of ± 6° 

and ±10°) using the three-fold symmetry operation and mirror symmetry operation according to 

the symmetry of the (111) surface. 3D atomic images were reconstructed with the scattering 

pattern extraction algorithm using L1-linear regression (SPEA-L1)23. Simulated photoelectron 

holograms were obtained using the TMSP code23, with an atomic cluster of radius 3 nm and 

mean free path 1 nm, based on the calculated positions of P and C atoms. The site symmetry of 

the substitutionally incorporated P atoms used was Td. Although this is different from the 

previously reported D2d symmetry35, the difference of local structure around a P atom between Td 

and D2d is small; hence, the simulated photoelectron hologram patterns may be identical (for 

detailed information on the PEH technique, see Supporting Information). 
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Figure 1. Illustration of photoelectron holography system. 
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Figure 2. (a) Experimental (left) and simulated (right) images of C1s photoelectron hologram of 

P-doped diamond (111). The centre of the hologram corresponds to the [111] direction and the 

angle with respect to the centre represents the polar angle. (b) Slices of the reconstructed 3D 

atomic image from the observed hologram. Planes [P1-P4] in (b) correspond to the planes 

perpendicular to [001] at z = 0, 0.89, 1.78, and 2.67 Å, respectively. Mark E indicates the 

photoelectron emitter. Large and small circles indicate the expected positions of carbon atoms as 

viewed from the A and B sites, respectively. (c) and (d) are the same as (a), but show P 2p 

holograms for components α and β, respectively. (e) is the same as (b), but for the component a 

of P 2p. (f) Diamond crystal structure (left) and a superposition of atomic structures, as viewed 

from the A and B sites as emitters (right). The observed hologram provides information from 
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both structures. (g) Angular dependence of the core-level spectra of P 2p with respect to the 

surface normal. The two components α and β are labelled. 

 

 

Figure 3. The structure of the PV split vacancy complex (PVSVC) in diamond. There are four 

candidate directions in diamond. Vertical PVSVC is denoted as PVV and others are PVHx (x = 1, 

2, and 3). 
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Supporting Information. I. Simulated photoelectron holograms for substitutional P, PVSVC, 

and interstitial P, and II. details of PEH technique (file type: PDF). 
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