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An approximation of the intrinsic free-energy functional for ideal polyatomic molecular gas 

The site-density distribution functions for ideal polyatomic molecular gas under arbitrary external 

fields  are given by1,2 

,  (A1) 

where  is the number of sites,  is the number density of the ideal polyatomic molecular gas, 

and  is the intramolecular bonding function between sites a and b. As 

pointed out by Chandler et al.3, the external fields  are not obtained as a simple functional 

of the site-density distributions because of the nonlinear inverse problem of  in Eq. (A1). 

As a result, we cannot obtain the exact intrinsic free-energy functional for ideal polyatomic 

molecular gas , since we cannot perform the functional integral of the Euler-Lagrange 

equation defined by 
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,      (A2) 

where  is the chemical potential for site  of ideal polyatomic molecular gas. In order to 

avoid the functional integral of Eq. (A2) with respect to the density functional of , we can 

alternatively apply the reference-modified density-functional theory (RMDFT) to the derivation of 

an approximate functional for , where ideal multicomponent gas is employed as the 

reference system of RMDFT. The Euler-Lagrange equation for the ideal multicomponent gas is give 

by 

,      (A3) 

where  is the intrinsic free energy functional of the ideal multicomponent gas, and 

 and  are the external field and chemical potential for component  of the ideal 

multicomponent gas. The external fields for the ideal multicomponent gas  are defined so 

that 
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Here, we introduce the excess intrinsic free-energy functional for  and the excess 

chemical potential for  that are defined as the differences from reference ideal multicomponent 

gas as follows: 
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From Eqs. (A2)-(A6), we obtain 

.     (A7) 

 is approximately obtained by using the second-order density-functional Taylor 

expansion as follows: 

.(A8) 

In this equation, we use 

,       (A9) 

that is given by Eq. (A7) and the definition of the intramolecular direct correlation function,4 

.    (A10) 

Equation (A10) is equal to Eq. (31) in the text. Equation (A7) is approximately expressed by using 

Eq. (A8) as follows: 

.   (A11) 

Using Eqs. (A8), (A11) and  that is provided by Eq. (19) in the text,  in 

Eq. (A5) is finally obtained as follows: 
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where 

.      (A13) 

This equation is regarded as the hypernetted-chain-type approximation for the intrinsic free-energy 

functional of ideal polyatomic molecular gas.   

3D-RISM calculation 

We need the site-density distribution functions  to calculate SFE using Eq. (40). In the 

study presented here, we employed three-dimensional reference-interaction-site-model (3D-RISM) 

theory5,6 to calculate . 

The 3D-RISM theory is an integral equation theory that is used to obtain the solvent 

distribution functions from intermolecular potential functions and the thermodynamic conditions 

(i.e., temperature and density). It produces the distribution functions of solvent molecule around 

solute molecule. The theoretical procedure of the methods has two steps. The first step is to calculate 

the pair correlation functions in the aqueous solution based on the solvent-solvent 1D-RISM theory,7,8 

which represents the microscopic structure of the distribution of water molecules. In the second step, 

we immerse a solute molecule into the solvent and calculate the 3D distribution functions of solvent 
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molecule using the 3D-RISM integral equations. 

At infinite dilution in the solvent mixture, the solute-solvent 3D-RISM integral equations 

can be written as 

.      (A14) 

Here,  and  are the Fourier transforms of  and , which are the 

solute-solvent total and direct correlation functions between solute molecule and solvent site . We 

mention that Eq. (A14) contains solvent-solvent total correlation function  defined by Eq. 

(34) in the text. Thus we need to solve Eq. (34) before solving Eq. (A14). We can calculate 

 form  using the Percus’ relation .1,2 

 Equations (34) and (A14) have an unknown function of two each, the total and direct 

correlation functions, then one more equations are required to solve. We employed partially 

linearized HNC (PLHNC) equations,5 which are called Kovalenko-Hirata (KH), 6 as the closure 

equations, 
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where  is the intermolecular interaction potential between sites  and  on solvent 
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molecule, and  is given by Eq. (35) in the text. We used Eqs. (34) and (A15) for the 

first step, and Eqs. (A14) and (A16) for the second step. To solve the 1D-RISM and 3D-RISM 

integral equations, we respectively introduce the difference functions, 
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and 

.      (A18) 

The numerical procedure for the first/second step is briefly summarized as follows. 

1. Calculate /  at each 1D/3D grid point. 

2. Initialize /  to zero. 

3. Calculate /  using Eq. A14/A15. 

4. Calculate /  from / . 

5. Transform /  to /  using the 1D/3D fast Fourier transform 

(1D-FFT/3D-FFT). 

6. Calculate /  using Eq. 34/A14. 

7. Invert /  to /  using the 1D-FFT/3D-FFT. 

8. Calculate /  using Eq. A17/A18. 

9. Calculate new /  from /  and its history with an acceleration method. 

10. Repeat steps 3-9 until the input and output functions become identical within convergence 

tolerance.  
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Here some acceleration methods for integral equation theories have been proposed for quick 

convergence of the iteration process. We employed the modified Anderson method in this study.9 
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