
1 

Kenji Terada・Kentarou Matsumura・Takahisa Miyatake* 

Effects of temperature during successive generations on life-history traits in a seed 

beetle Callosobruchus chinensis (Chrysomelidae: Coleoptera) 

Graduate school of Environmental and Life Science, Okayama University 

*Corresponding author

E-mail: miyatake@okayama-u.ac.jp 

Tel: +81 86 251 8339, Fax: +81 86 251 8388 

mailto:miyatake@okayama-u.ac.jp


2 
 

ABSTRACT 

Temperature is an important environmental factor for life-history traits in poikilothermic 

animals. Many of experiments on evolution have been conducted using Drosopila species, 

and effects on life-history traits vary depending on the study. On the other hand, few 

studies have been conducted on the effects of temperature on life-history traits in the other 

insect species. In the present study, we reared adzuki bean beetles under two different 

temperatures, high and low, for two years (20 generations), and compared life-history 

traits including body size of females, fecundity, egg size, rate of egg hatching, emergence 

rate, development time, and wing length. No differences in responses were found in these 

traits between selection strains, except the rate of egg hatching. That is, the rates of egg 

hatching in high-temperature (32oC) selection strains were significantly higher than those 

in low-temperature (24oC) selection strains. We discuss the cause of change in egg 

hatchability during successive generations under different temperature treatments from 

the following viewpoints including evolutionary adaptation to high temperature and the 

experimental protocol. 
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Introduction 

Temperature is an important environmental factor for life-history traits in poikilothermic 

animals including insects (e.g., Atkinson 1994; Berger et al. 2017; Hoffmann and Parsons 

1991; Huey and Bennett 1987). Previous studies of temperature adaptation have often 

been conducted to search for geographical variations in many animal taxa (e.g., Bedford 

and Hoekstra 2015; Boyle et al. 2016; Huey et al. 1991; James and Partridge 1995; James 

et al. 1997; Parsons and Joern 2014; Roitberg et al. 2015). However, previous comparative 

studies have been influenced by many ecological factors including parasitic relations, 

competition among species, and other environmental factors including day length, 

weather, and differences in host plant (Partridge et al. 1994; Stillwell and Fox, 2005). 

 On the other hand, researches on experimental evolution have been also conducted to 

test adaptation of life-history traits due to long-term rearing under different temperatures, 

mainly using Drosophila populations (e.g., Azevedo et al. 1996; Bennett et al. 1990; 

Cavicchi et al. 1989, 1995; Huey et al. 1991; Huey and Kingsolver 1993; James and 

Partridge, 1995; Neat et al. 1995; Partridge et al. 1994, 1995; Service et al. 1985). These 

studies showed that long-term rearing under different temperatures altered many 

morphological and life-history traits, including development time (Huey et al. 1991; 

James and Partridge 1995), longevity and fecundity (Partridge et al. 1995), survival rate 

(Huey et al. 1991), wing length (Partridge et al. 1994) and egg size (Azevedo et al. 1996). 

Gilchrist et al. (1997) showed resistance to heat (38.5oC) for adults and eggs that have 

evolved to higher temperatures for more than four years by rearing at 29oC rather than 

16.5oC. 

 In seed beetles, however, few studies have been conducted on laboratory evolution, i.e., 

adaptation to different temperatures (but see, Stillwell et al. 2008). Seed beetles grow in 
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a bean during their life from larvae to pupae, and thus these stages might be less affected 

by heat compared to egg and adult stages. Therefore, this beetle may provide novel 

information concerning adaptation to a warm environment. We hypothesized that life-

history traits could respond to experimental evolution. To test this hypothesis, we reared 

adzuki bean beetles, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae), under 

different temperatures for 20 generations at 24oC and 32oC. At the 20th generation, we 

assayed the life history traits, including the body size of females, fecundity, egg size, rate 

of egg hatching, emergence rate, development time, and wing length at different 

temperatures, i.e., 25oC and 33oC. 

 

Materials and Methods 

Insects and experimental evolution 

 We used a population named isC strain of Callosobruchus chinensis, which was 

established with about two hundreds of adults collected from mung beans, Vigna 

angularis, in Ishigaki City, Ishigaki Island, belonging to Yaeyama Islands, of Japan in 

1997 (Yanagi and Miyatake 2003). The population was divided, and each maintained in 

a separate incubator (LPH-6-400-MPZ, Nippon Medical & Chemical Instruments Co. 

Ltd., Osaka, Japan) kept at 24oC (L strains) or 32oC (H strains), respectively (14L10D, 

60% humidity) for about 2 years (=19 generations) with adzuki beans (Dainagon). In each 

temperature treatment, three populations were reared as replicate lines: H1, H2, H3 (H 

strains), L1, L2 and L3 (L strains).  

Each line was maintained by 20 males and 20 females randomly selected from emerged 

adult populations with 5 adzuki beans in a petri dish (8.5 cm in diameter, 1.4 cm in height), 

and allowed to lay eggs. We controlled the number of eggs on a bean by scraping away 
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excess eggs to control rearing density of larvae in a bean, and established three eggs per 

adzuki bean if females laid more than three eggs on the next day after oviposition. This 

protocol was repeated for 19 generations during 2005 and 2006. 

 

Rearing for pre-assayed generation  

At the next generation (20th), 20 females and 20 males were chosen from the 6 lines and 

were placed in an incubator kept at 25oC for one generation to avoid potential maternal 

effects on the measured traits in the present study. The beetles from each line were kept 

with 50 adzuki beans and allowed to mate. The number of eggs per bean was limited to 

three. We controlled the number of eggs on a bean by scraping away excess eggs on the 

day after oviposition, and established three eggs per adzuki bean if a female laid more 

than three eggs. They were separated in each petri-dish described above per line placed 

with beans, and placed in an incubator kept at 25oC (14L10D, 60%RH). To gain virgin 

adults, each bean was transferred to one well of a 48-well tissue-culture plate (Falcon, 

Becton Dickinson, NJ, USA) at 10 days after oviposition until these beetles emerged from 

the beans. 

 

Assay of traits 

We checked for newly-emerged adults of each line and recorded their sex every day at 

the 21st generation. Five pairs of one male and one female were put together in a plastic 

petri dish (90 mm diameter, 15mm height) and allowed to mate for one day. On the next 

day, we removed the males, and females were allowed to lay eggs on adzuki beans. If a 

female laid more than one egg, we scraped away excess eggs and established one egg per 

bean to avoid the effects derived from any larval competition. Each bean was kept in a 
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well of a 48-well tissue-culture plate (Falcon, Becton Dickinson). 

Each culture plate with 48 beans each (more than 100 for each line) was kept in two 

incubators set at 25oC or 33oC, and the rates of egg hatching and emergence from eggs 

were observed every day. Burrowing of the larva into each bean was observed every day 

(=rate of egg hatching). In C. chinensis, the hatched larvae burrow into beans, leaving the 

empty egg behind. Thus, we can discriminate hatched eggs from non-hatched eggs by the 

change in their color (see Yanagi and Miyatake 2002). The difference in temperature 

between at successive rearing (32oC and 24oC) and at bioassay (33oC and 25oC) depends 

on account of the adjustment of the temperature controlled room. 

Emerged adults were sexed and placed in the petri-dish with 5 adults for 1 h in an 

incubator. Then males were removed and eggs on each bean were counted every day, i.e., 

the bean was replaced every day until the death of the females (life-time fecundity). We 

also recorded the development time (from eggs to adult emergence from beans using 

larvae at 22nd generation). 

 Dead adults were maintained in a deep freezer kept at -20oC. On a later date, right wings 

were removed and their length was measured as adult body size. The eggs on beans were 

measured directly with an optical micrometer on a dissecting microscope (VM-50N, 

Olympus, Tokyo, Japan). The length (L) and width (W) of around thirty randomly 

selected eggs laid by each female were measured. The size of each egg (V, in cubic 

millimeters) was calculated, assuming the egg to be an approximate semioval, by the 

formula V=(πLW2)/12 (Yanagi and Miyatake 2002). The assay of traits were conducted 

in 2007. 

 

Statistics 
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All statistical tests were conducted using JMP Ver. 12.2.0 (SAS Institute 2015). Mixed-

design ANOVAs were performed to test female body size, fecundity, and egg size as 

parental traits, and rate of egg hatching and emergence rate as offspring traits, using two 

separate selection regimes as a fixed effects factor (i.e. H / L), replicate lines (i.e. 1, 2, 

and 3) as a random effects factor. Mixed-design ANOVAs including the sex factor were 

performed to test development time and wing length. The Tukey-HSD tests were 

conducted as the post-hoc test. 

 

Results 

 

Table 1 shows the means with SE and sample size (N) of rates of egg hatching and 

emergence for two assays of each line. Table 2 shows the means with SE and sample size 

of fecundity and egg size for two assays of each line. Table 3 shows the means with SE 

and sample size of development time and wing length of both sexes for two assays of 

each line. 

 Mixed-design ANOVA showed a significant difference in rate of egg hatching, but no 

difference in emergence rate between strains (Table 4). Significant differences were found 

in both traits between assays, and in the interaction of strain and assay, suggesting 

different performance in the rate of egg hatching per strains in reared temperatures (Table 

4). The Tukey-HSD test (a post-hoc test) showed a significantly higher rate of egg 

hatching in the H strain at 33oC of compared to other treatments: the L strain at 33oC, and 

H and L strains at 25oC (Fig. 1). This means a higher rate of egg hatching in H than L 

strains at 33oC. 

No differences were found in fecundity or egg size between strains, but significant 
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differences were found for all traits between assays (Table 5). A significant interaction 

between strain and assay was found only in egg size (Table 5). 

No difference was found in development time and wing length between strains (Table 

6). A significant difference was found in development time between assays. A significant 

difference was also found between sexes and in the interaction between strain and assay 

in both strains (Table 6). 

 

Discussion 

In small-sized heterothermic animals with short-term generations, rapid evolution may 

occur to adapt to specific temperature (Huey and Stevenson 1979; Huey et al. 1991). 

Maharjan et al. (2017) found that different development times were observed in C. 

chinensis; the optimal temperature for development is around 35oC compared with 25oC 

or more than 37oC, and thus the temperatures in the present experiments would strongly 

affect life-history traits, including development time. However, the present result of 

experiments reared under different temperature regimes over 20 generations showed that 

most life-history traits did not show any responses (Table 4 and 5). Only the rate of egg 

hatching showed significant differences; lower egg hatching was observed under hot 

(33oC) than usual (25oC) temperatures in L strains (Fig. 1), suggesting adaptation for a 

higher penetration rate into a bean under high ambient temperature in H strains compared 

to L strains. However, this difference was not seen at the low temperature (24oC). Three 

independent lines showed the same results (Table 1), suggesting that this response might 

be evolutionary. In the present experiment, three replications were prepared for each line, 

and we reared all beetles at the same temperature during the parent generation to avoid a 

maternal effect. Therefore, the present results of response to different rearing 
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temperatures should depend on a genetic factor. However, we did not measure relative 

humidity in the incubators used, so the effect of humidity on egg hatchability might not 

be rejected as an explanation of the present results. Further studies are required to test it. 

Bean beetles oviposit eggs on the surface of beans, and therefore the most sensitive 

stage to ambient temperature might be the egg stage. The lack of a difference in the 

emergence rate may depend on the unique life style of bean beetles because bean beetles 

grow within a bean where the effect of the ambient environmental factors might affect 

beetles grown within a bean affect them less. This might be a reason why different results 

have been reported for the bean beetle than for Drosophila (see Azevedo et al. 1996; Huey 

et al. 1991; James and Partridge 1995; Partridge et al. 1994, 1995). For example, a shorter 

development time (Huey et al. 1991), shorter female longevity, and fewer eggs were 

observed under high than low temperatures during long-term generations in Drosophila 

species in the assay at 25oC, while the opposite trends were observed at the assay at 

16.5oC (Huey et al. 1991, Partridge et al. 1995). 

Another possibility for the lack of a difference in many life history traits in the present 

results might depend on shorter generations (even in 20 generations) because there was 

no time to show evolutionary responses.  

Recently, adaptation to hot temperatures is an important aspect in studies in relation to 

global warming (e.g., Hughes 2000; Parmesan 2006; Tseng et al. 2018). Therefore, 

studies on adaptation to high temperatures in many taxa with a unique life style must be 

important. The present result suggests that performance in the egg stage may be important 

in species grown in enclosed spaces, such as in beans, due to the stress-less condition 

within the bean. It is required to determine stress resistance in the egg stage in seed beetles. 
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 1 
 2 

 3 

Table 1 Rates of egg hatching and emergence. N means the number of eggs measured. 4 

5 

Strain Replicate Assay Rate of egg hatching (%)   Emergence rate (%) 
  line   Mean SE N   Mean SE N 
H 1 35℃ 85.88604 7.339499 29  92.80248 5.374722 29 
  25℃ 94.16715 4.136295 28  95.31593 4.970097 28 
 2 35℃ 90.63601 5.04345 29  92.59318 6.128873 29 
  25℃ 86.7566 6.86616 30  94.50434 5.844492 30 
 3 35℃ 89.17331 4.808961 30  92.63459 5.410509 30 
  25℃ 85.96601 8.321596 29  96.92931 3.084706 29 
L 1 35℃ 79.95166 8.424477 30  86.93607 7.619618 30 
  25℃ 89.50518 6.138266 30  95.40841 5.546155 30 
 2 35℃ 80.92734 8.06704 30  91.30235 8.270429 30 
  25℃ 86.76469 6.340536 30  98.78968 2.595929 30 
 3 35℃ 84.28544 9.208499 29  89.42969 7.955582 29 
    25℃ 88.34246 4.567192 30   95.89604 3.861488 30 
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Table 2 Body size of females, fecundity, and egg size. N of fecundity means the number of mother beetles, and N of egg size means the 6 
number of egg size. 7 
 8 

 9 
10 Strain Replicate Assay Fecundity   Egg size (mm3) 

  line   Mean SE N   Mean Se N 
H 1 35℃ 63.48  7.00  25  0.60  0.01  25 
  25℃ 68.48  4.21  29  0.62  0.01  29 
 2 35℃ 80.00  3.59  28  0.61  0.01  28 
  25℃ 71.00  4.35  29  0.63  0.01  29 
 3 35℃ 55.61  8.27  28  0.59  0.01  28 
  25℃ 71.08  4.41  26  0.59  0.01  26 
L 1 35℃ 61.15  6.08  27  0.59  0.01  27 
  25℃ 61.74  5.09  27  0.61  0.02  27 
 2 35℃ 48.04  9.62  25  0.55  0.02  25 
  25℃ 66.96  4.14  28  0.62  0.02  28 
 3 35℃ 59.54  9.17  28  0.57  0.02  28 
    25℃ 58.68  6.50  25   0.61  0.02  25 
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Table 3 Development time and wing length. N means the number of offspring measured for development time or wing length. 

Strain 
Replicate 

 line 
Assay 

Development time   Wing length 

Male  Female  Male  Female 

Mean SE N   Mean SE N   Mean SE N   Mean SE N 

H 1 33oC 21.43  0.84  40  22.29  0.72  34  1.71  0.03  20  1.85  0.07  20 

  25oC 30.92  0.89  37  31.93  0.90  41  1.71  0.02  20  1.86  0.04  20 

 2 33oC 22.32  0.63  38  23.55  0.70  44  1.79  0.05  20  1.94  0.04  20 

  25oC 31.62  0.92  37  32.47  0.76  30  1.74  0.04  20  1.92  0.06  20 

 3 33oC 21.19  0.69  42  22.23  0.72  39  1.75  0.03  19  1.92  0.05  20 

  25oC 31.29  0.68  45  32.62  0.72  39  1.70  0.02  20  1.87  0.03  20 

L 1 33oC 22.08  1.27  40  22.46  0.51  39  1.69  0.02  20  1.89  0.03  20 

  25oC 32.31  1.31  39  33.38  0.79  34  1.70  0.02  20  1.88  0.04  20 

 2 33oC 21.31  0.61  42  22.45  0.62  42  1.72  0.04  19  1.84  0.06  20 

  25oC 31.65  1.05  43  32.62  0.87  34  1.74  0.02  20  1.88  0.04  20 

 3 33oC 21.80  0.63  35  22.39  0.66  44  1.73  0.08  20  1.86  0.05  20 

    25oC 31.14  0.84  37   32.84  0.99  43   1.73  0.03  20   1.88  0.05  20 
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Table 4 Results of ANOVA for rate of egg hatching, emergence rate, development time, 1 
and wing length 2 

Trait Factor d.f. F P 
Rate of egg hatching Strain 1 14.76 0.019 
 Assay 1 9.616 0.002 
 Strain*Assay 1 7.97 0.005 
Emergence rate Strain 1 0.954 0.383 
 Assay 1 31.7 < 0.001 
  Strain*Assay 1 6.159 0.014 

 3 
 4 
 5 
Table 5 Results of ANOVA for body size of female, fecundity, and egg size 6 

Trait Factor df F P 
Fecundity Strain 1 5.04 0.088 
 Assay 1 18.1 < 0.001 
 Strain × Assay 1 1.26 0.262 
Egg size Strain 1 2.35 0.2 
 Assay 1 112.3 < 0.001 
  Strain × Assay 1 24.27 < 0.001 

  7 
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Table 6 Results of ANOVA for development time and wing length 8 

Trait Factor d.f. F P 
Development time Strain 1 0.412 0.556 
 Assay 1 12688 < 0.001 
 Sex 1 135.6 < 0.001 
 Strain*Assay 1 11.43 0.001 
 Strain*Sex 1 0.265 0.607 
 Assay*Sex 1 2.121 0.146 
 Strain*Assay*Sex 1 2.079 0.15 
Wing length Strain 1 1.01 0.378 
 Assay 1 0.722 0.396 
 Sex 1 843.6 < 0.001 
 Strain*Assay 1 15.03 < 0.001 
 Strain*Sex 1 0.372 0.542 
 Assay*Sex 1 0.859 0.355 
  Strain*Assay*Sex 1 0.151 0.698 

 9 
  10 
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Figure legend 11 
 12 
Fig. 1. Rates of egg hatching in Callosobruchus chinensis from H strains (whitw bar) and 13 
L strains (black bar) and L strains assayed at 25oC (left) and 33oC (right) conditions. Error 14 
bars show SE. The same letters show no significant difference in each other by a post-hoc 15 
test (Tukey-HSD test). 16 




