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Abstract

Md. Al-Amin KHANDAKER

A Study of Efficient Pairing Computation Algorithm Using KSS Curves

Pairing-based cryptography over the elliptic curves is a relatively new paradigm
in public key cryptography (PKC). It originates many novel cryptographic
protocols that were not possible without pairing. Among these protocols,
ID-Based encryption can be interesting for IoT security since it can support
a device’s ID as a public key. It can be helpful in the scenario where key-
generation is computationally expensive for small devices. On the other
hand, homomorphic encryption can realize strong security and more con-
crete privacy of patient’s information while working with encrypted medical
data stored in a cloud data-server.

In general, pairing calculation involves a particular elliptic curve named pairing-
friendly curve defined over a finite extension of prime field. By definition,
pairing is a bilinear map from rational points of two additive groups to a mul-
tiplicative group. Two mathematical tools named as Miller’s algorithm and
final exponentiation are mostly involved in pairing calculation. However,
most protocols also require two more operations in pairing groups named
as scalar multiplication and exponentiation in the multiplicative group. The
above-mentioned mathematical tools are the major bottlenecks for the effi-
ciency of pairing-based protocols.

Since its inception at the advent of this century, pairing-based cryptography
brings a remarkable amount of research. The results of this vast amount of
research brought some novel cryptographic applications which were not pos-
sible before pairing-based cryptography. However, the computation speed
of pairing was very slow to consider them as a practical option. Years of
research from the mathematicians, cryptographers and computer scientists
improve the efficiency of pairing.

The security of pairing-based cryptography does not rely on the intractabil-
ity of elliptic curve discrete logarithm problem (ECDLP) of additive elliptic
curve group only but also on the discrete logarithm problem (DLP) of the
multiplicative group. It is known that the "key" size in cryptography based
on ECDLP requires fewer bits than cryptography based on DLP. Therefore, it
is crucial to maintaining a balance in parameter sizes for both additive and
multiplicative groups in pairing-based cryptography. In CRYPTO 2016, Kim
and Barbulescu showed a more efficient version of the number field sieve
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algorithm named as Extended Tower Number Field Sieve (exTNFS) to solve
DLP. This new attack makes all previous parameter settings to update.

This thesis has presented several improvement techniques for pairing-based
cryptography over two ordinary pairing-friendly curves, i.e., Kachisa-Schaefer-
Scott (KSS) KSS-16 and KSS-18. The motivation behind to work on these
curves, particularly KSS-16 is, it has not been widely studied in the literature
compared to other pairing-friendly curves. Moreover, after the exTNFS algo-
rithm, the security level of the widely used pairing-friendly curves was in a
challenge.

We have proposed several improvements for sparse multiplication for both
curves which reduce the number of finite field operation in Miller’s algo-
rithm of Optimal-Ate pairing. Our optimization of line evaluation for Optimal-
Ate pairing in KSS-16 curve is state-of-the-art. We have also proposed the
efficient scalar multiplication by adapting GLV-based decomposition. We
have derived the fundamental relation for applying the GLV decomposition
in KSS-16 curve.

In the thesis, we have suggested that the 6-dimension GLV for KSS-18 and
4-dimension GLV for KSS-16 can achieve optimal calculation cost. We have
substantiated our proposal with detailed theoretic explanations and experi-
mental implementations. We have bundled our implementation into an in-
stallable shared software library.

There are several scopes to improve our techniques. As a future work, we can
apply our proposed techniques to other pairing-friendly curves as well. We
would like to use our improvements in some real pairing-based application
such as ID-Based encryption and group signature.

We are confident that our proposed methods can substantially improve pair-
ing calculation. Therefore, our research contributes to committing high-level
security for sophisticated pairing-based protocols for IoT and security and
privacy of medical data in the cloud by using pairing-based homomorphic
encryption.



xi

Acknowledgements

The last 3 and a half year was one of the best time of my life that I would
cherish forever. I am immensely blessed throughout this period for which I
have many people to thank. I’m grateful to many people who have directly
and indirectly helped me finish this work.

This work would not be possible without the unceasing supervision, innu-
merable counseling and unrelenting persuasion of my Ph.D. advisor Profes-
sor Yasuyuki Nogami. I am indebted to Nogami Sensei for having me in his
lab (Information Security Lab.) as a doctoral student and mentoring me on this
work. He taught me how to analyze complex problems from different per-
spectives and express the ideas from pen and papers to a fully publishable
article. I enjoyed his insightful comments on the research topics during our
discussions. Sometimes his in-depth queries bewildered me and influenced
my ideas in this thesis. He guided me in different ways to approach a prob-
lem and the need to be persistent to accomplish my goal. His presence and
off-work discussion make the lab more than a workplace.

I’m also very grateful to my doctoral course co-supervisors Professor Nobuo
Funabiki (Distributed Systems Design Lab.) and Professor Satoshi Denno (Mul-
timedia Radio Systems Lab.) for having their time to read my thesis draft. Their
insightful comments and helpful advice helped to shape the thesis into this
state. I must recall my experience of taking the “Theory of Distributed Algo-
rithm” course taught by Professor Nobuo Funabiki. His strong passion for
algorithmic problem solving during the lectures was not only inspiring but
also contagious.

I reminisce my encounters with Professor Satoshi Denno during my days at
Secure Wireless System lab. He provided me with the deep-seated idea of the
research works and Japan life. His questions and suggestions for the time of
half yearly progress meetings were very intuitive.

I am very grateful to Associate Professor Nobumoto Yamane (Information
Transmission Lab.) for providing essential comments at progress meetings.

I want to express my gratitude to Senior Assistant Professor Takuya Kusaka
(Information Security Lab.) for the in-depth discussion of scientific topics. His
strong work ethic and passion for research helped us to publish some of the
remarkable collaborative works. He was always there to help while any dif-
ficulty arose from attending a conference to publishing a paper.



xii

I express my gratitude to Senior Assistant Professor Hiroto Kagotani of (In-
formation System Design Lab.) for employing me as a research assistant for a
quarter. His comments during the progress report were enlightening.

I am also grateful to Assistant Professor Kengo Iokibe (Optical and Electromag-
netic Waves Lab.) for the collaborative work we had on side-channel analysis
of raspberry pi.

I am thankful to Professor Masaaki Shirase of Future University Hakodate
for collaborating with my research.

I would like to express my gratitude of Professor Sylvain Duquesne of Univ
Rennes, France for having me at IRMAR as a short-term researcher and al-
lowing me to present my work in front of some brightest audiences. My sin-
cere gratitude to post-doctoral fellow Dr. Loubna Ghammam at Normandie
University, France for her persistent guidance. Our collaboration with Pro-
fessor Duquesne and Dr. Loubna helps me to work on the diverse area of
mathematical aspects of cryptography.

I am also thankful to Professor Howon Kim of Pusan National University,
South Korea and his Ph.D. student Taehwan Park for great research collabo-
ration on IoT security.

My gratitude to the IoT security expert Professor Hwajeong Seo of Hansung
University, South Korea for being a co-author in my first significant confer-
ence paper.

Thanks to MEXT, Japan for the scholarship which fulfilled my dream to pur-
sue the doctoral study in Japan. I sincerely acknowledge all the funds that
afforded me to join several international conferences and conduct research
activities.

I am also grateful to all administrative officers of the Faculty of Engineering
who directly or indirectly made an impact on my doctoral course studies. My
special thanks to Ms. Yumiko Kurooka for her kind support in administrative
works.

Special thanks also to my seniors, juniors, and friends in the laboratory for
creating a great work atmosphere and their generous support. Thanks to
pairing team members of my lab who are one of the brightest minds I’ve
worked with.

I can not thank enough to my wife Shama for her sacrifices and generous
supports to my bread and butter. I would like to take the opportunity to ap-
preciate my parents Ms. Nasima Akter and Mr. Md. Ali-Azzam Khandaker
for their understanding, and encouragements.

So far so general we all are standing on the shoulders of the giants for our
works. My profound gratitude to all great cryptographers, cryptographic en-
gineers, and researchers whose works keep inspiring students like me. I’m
indebted to all my research collaborator, co-authors, and reviewers for mak-
ing my doctoral voyage engaging.



xiii

Contents

Declaration of Authorship v

Abstract ix

Acknowledgements xi

Contents xiii

List of Figures xix

List of Tables xxi

List of Notations and Symbols xxiii

Research Activities xxvii

1 Introduction 1
1.1 Cryptology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Symmetric/Private-Key Cryptography . . . . . . . . . 3
1.1.2 Public-key Cryptography . . . . . . . . . . . . . . . . . 3
1.1.3 Pairing-Based Cryptography . . . . . . . . . . . . . . . 4

1.2 Problem Outline and Motivation . . . . . . . . . . . . . . . . . 5
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Fundamental Mathematics and Notation 13
2.1 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Group, Ring, Field . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Homomorphism in Groups . . . . . . . . . . . . . . . . 17

2.2.2.1 Types of Homomorphism . . . . . . . . . . . . 17
2.2.3 Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Extension Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xiv

2.4 Frobenius Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Quadratic Residue/Quadratic Non-residue,

and Cubic Residue/Cubic Non-residue . . . . . . . . . . . . . 20
2.6 Elliptic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Additive Group over Elliptic Curve . . . . . . . . . . . 21
2.6.2 Scalar Multiplication in Elliptic Curve . . . . . . . . . . 22
2.6.3 Frobenius Map on Elliptic Curve Groups . . . . . . . . 23

2.7 Pairing over Elliptic Curve . . . . . . . . . . . . . . . . . . . . . 23
2.7.1 Definition of Pairing . . . . . . . . . . . . . . . . . . . . 23
2.7.2 Properties of Pairing . . . . . . . . . . . . . . . . . . . . 25
2.7.3 Pairing-Friendly Curves . . . . . . . . . . . . . . . . . . 25

2.7.3.1 KSS-Curve . . . . . . . . . . . . . . . . . . . . 25
2.7.4 Twisted Elliptic Curves . . . . . . . . . . . . . . . . . . 26
2.7.5 Ate Pairing . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.6 Miller’s Algorithm . . . . . . . . . . . . . . . . . . . . . 28
2.7.7 Final Exponentiation . . . . . . . . . . . . . . . . . . . . 29

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Mapping over Quartic and Sextic Twisted KSS Curves 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Background and Motivation . . . . . . . . . . . . . . . . 31
3.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Kachisa-Schaefer-Scott (KSS) Curve Family . . . . . . . 33
3.2.2 Extension Field Construction for KSS Curves . . . . . . 34

3.2.2.1 Towering of Fp18 Extension Field . . . . . . . . 34
3.2.2.2 Towering of Fp16 Extension Field . . . . . . . . 34

3.2.3 G1, G2 and G3 Groups . . . . . . . . . . . . . . . . . . . 34
3.2.4 Twist of KSS Curves . . . . . . . . . . . . . . . . . . . . 35

3.2.4.1 Sextic Twist of KSS-18 Curve . . . . . . . . . . 35
3.2.4.2 Quartic Twist of KSS-16 Curve . . . . . . . . . 35

3.3 Isomorphic Map between Q and Q′ . . . . . . . . . . . . . . . . 36
3.3.1 Sextic twisted Isomorphic Mapping between Q ∈ G2 ⊂

E(Fp18) and Q′ ∈ G′2 ⊂ E′(Fp3) . . . . . . . . . . . . . . . 36
3.3.1.1 Q to Q′ Mapping in KSS-18 . . . . . . . . . . . 37
3.3.1.2 Q′ to Q Mapping in KSS-18 . . . . . . . . . . . 38

3.3.2 Quartic Twisted Isomorphic Mapping . . . . . . . . . . 38



xv

3.4 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Improved Optimal-Ate Pairing over KSS-18 Curve 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Background and Motivation . . . . . . . . . . . . . . . . 43
4.1.2 General Notation . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 KSS Curve of Embedding Degree k = 18 . . . . . . . . . 45
4.2.2 Towering Extension Field . . . . . . . . . . . . . . . . . 45
4.2.3 Sextic Twist of KSS-18 Curve . . . . . . . . . . . . . . . 46
4.2.4 Isomorphic Mapping between E(Fp) and Ê(Fp) . . . . . 46
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1

Chapter 1

Introduction

This chapter introduces the related literature review, problem outline, moti-
vation, and goals of the undertaken research. The chapter begins with a brief
preface of cryptology and its importance in the era Internet of Things (IoT)
and Big Data.

1.1 Cryptology

Cryptography is the science of communicating with the authentic receiver
through an insecure channel in secret. Cryptanalysis is the techniques of
breaking secret communications. Cryptology is the combination of these two
domains.

The history of cryptography dates back to the time of the Greek and Roman
empire. Julius Caesar used a simple shift and substitute system. Up until the
early ’70s of the last century, cryptology was evolved mostly for military pur-
poses. The cryptography got its first democratic form in 1975 when Diffie and
Hellman invented the concept of public-key cryptography [DH76]. The idea
was first realized as practical cryptosystem by the works of Rivest, Shamir
and Adleman (RSA) in 1977 [RSA78]. At the same time in 1977, National Bu-
reau of Standards published a cryptosystem intended for the governmental
agencies and banks named Data Encryption Standard (DES). From then, a
new era of cryptography known as Modern cryptography was initiated. The
well-organized procedures called protocols is the basis of Modern cryptogra-
phy. One of the most elegant features of modern crypto-protocols is that their
inner algorithms are not secret yet withstand cryptanalysis from experts/at-
tackers. More importantly, these protocols are easy to use for people with no
understanding of the underlying principles. For example, paying by credit
cards or withdrawing money using debit cards with a personal identification
number (PIN) is doable without concerning what is going on under the hood.

The little basic functionality of modern cryptosystem is to enable a sender
(Alice 1) to convert a message (plaintext) into a cipher (ciphertext) before
sending to a legitimate receiver (Bob) over the public communication media.

1Alice and Bob are fictional characters first used by Rivest, Shamir and Adleman in
[RSA78] as placeholder name in cryptology.
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The receiver can convert the cipher back into the original message using se-
cret information named as a key. An adversary (Eve) eavesdrops in the mid-
dle of the conversation to retrieve information from the cipher. The cipher is
safe from to the adversary until the key is not compromised.

The security of modern cryptosystems depends not on the secrecy of the
encryption algorithms but the difficulty of one-way problems. Such prob-
lems are easy to calculate in one direction but practically impossible to cal-
culate in reverse direction in a reasonable amount of time using reasonable
resources. For example, let us consider a ciphertext C and a plaintext P and
a 128-bit key K. The encryption scheme E takes input P and K and out-
put C = E(P,K). To obtain the key K from the (P,C) pair, we need to try
2128 = 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456 ≈ 3.4 × 1038

(39 decimal digits) combination of 128-bit keys. The most potent supercom-
puter to this date can compute 122.3 PETA (1015) floating-point operations
per second (PFLOPS). Let us consider an optimistic assumption that 1000
(FLOPS) is required to check one key combination. Under this assumption,
the supercomputer can compute 122.3. × 1015/1000 = 122.3 × 1012 key com-
binations per second. Then it will take about 3.4 × 1038/((122.3 × 1012)(365 ×
24 × 60 × 60)) ≈ 8.8 × 1016 earth years. According to the standard model of
physical cosmology [Ade+16] the age of our universe is 13.89 or 13.8 billion
years. It means finding a key using brute force search will require 6.3 million
years more than the age of the universe. We can imagine how big the number
2128 is from this comparison.

Cryptography became more important as individuals and business increas-
ingly depend on the Internet as a channel for communication. Therefore, the
following four properties are the basis of a cryptosystem.

• Data confidentiality: This property ensures that confidential informa-
tion such as bank transactions or medical data and so on are secret from
unauthorized entities.

• Data integrity: When data is stored, this property ensures that it not
only kept secret (Data confidentiality) but also not rigged. Confiden-
tiality and integrity are enforced by encryption.

• Authentication: In connection-oriented communication, authentication
proves both parties identity before communication begins. The digital
signature is used for this purpose to sign a message electronically. It
shields the legitimate party against masquerader from impersonating
as a trusted party. This property gives the receiver a confidence to be-
lieve that the actual signee indeed sends the message over the insecure
channel.

• Non-repudiation: Non-repudiation (with proof of origin and with proof
of receipt) ensures that the sender and receiver can not deny having
taken part in communication. Non-repudiation is essential for many
cases especially e-commerce while communicating over the Internet.

The modern crypto-protocols fall into the following two major categories.
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1.1.1 Symmetric/Private-Key Cryptography

Private-Key Cryptography, also known as Symmetric Cryptography is the
technique where both the sender and the receiver use the same key or easily
derivable from one another to encrypt and decrypt a message. This type of
cryptography has an ancient history.

Modern cryptosystems offer efficient symmetric cryptography algorithms,
e.g Advanced Encryption Standard (AES) [DR02]. Such cryptography has
two main obstacles i.e. Key management and key establishment. Since the
keys are same, they need to keep private (Key management) in both ends and
should be shared securely beforehand (Key establishment) without physically
meeting.

The Public-key Cryptography offers the solution for Key establishment apply-
ing Diffie-Hellman key exchange. This work primarily focuses on a specific
type of Public-key Cryptography. The subsequent chapters will describe in
details.

1.1.2 Public-key Cryptography

The inception of public-key cryptography solved the problem of key dis-
tribution of Symmetric-key cryptography. It is also known as Asymmetric
Cryptography. The basic idea of public-key cryptography is to use two dif-
ferent keys for each communicating party. One key is public-key which can
be used by anyone to encrypt the message. The receiver needs the correlated
private key to decrypt the message. From a given public key and ciphertext
it is asymptotically difficult to obtain the private key.

As aforementioned, In 1976, Whitfield Diffie and Martin Hellman published
their monumental work as a key exchange protocol [DH76]. Figure 1.1 shows
a simple overview of the Diffie-Hellman Key Exchange (DHKE). The prob-
lems of key distribution and storage associated with symmetric cryptogra-
phy were the motivation behind the concept of Asymmetric Cryptography,
also referred to as Public- Key Cryptography.

In brief, the protocol has two public parameters, the prime number p and
a generator д known to all the parties involved in the communication. The
main idea of this protocol is based on the difficulty in solving the one-way
function, i.e., discrete logarithm. Let’s say, it is easy to calculate Alice public
key kA using Alice private key kAd as kA = д

kAd (mod p). However, it will be
difficult to obtain kAd from kA,д and p. In other words, it is easy to calculate
the public key from the private key, but the reverse process is practically
impossible. Using this key-exchange, we establish a shared secret which we
can use for further encrypted communication.

Rivest, Shamir, and Adleman (RSA) realized this protocol in 1977 and pub-
lished their magnum opus which is widely known as RSA cryptosystem
[RSA78]. The security of the RSA depends on the difficulty of factorization of
a larger integer into its two prime factors and the trapdoor permutation for
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FIGURE 1.1: Exchanging shared secret key using DH-key ex-
change.

encryption. Let us denote two large primes p and q (in practice about 1000-
bit). It is easy to calculate their product to get n = pq. The reverse process
that is for a given integer n it will be arduous to retain p and q. Using the
state-of-the-art integer factoring algorithm general number field sieve (GNFS),
it will take approximately 290 basic operation to factor a 2048-bit integer. Af-
ter more than 40 years of the RSA breakthrough, it is still standing as an
epitome of public key cryptography. Besides encryption, RSA also enables
digital signature where the sender uses his private key to sign a message, and
the receiver verifies the signature by the sender’s public key. Verification of
a digitally signed message gives the receiver the confidence that a senders
private key is tied to his public key. It is done to prevent forgery and holds
Non-repudiation property.

In the mid 80’s the independent work of Miller [Mil86] and Koblitz [Kob87]
began the journey of elliptic curve cryptosystems (ECC). The security of el-
liptic curve cryptography protocols depends on the difficulty in solving the
elliptic curve discrete logarithm problem. The mathematical details of this
problem appear in Chapter 2. ECC provides a shorter key length for the
same level of security than RSA which makes ECC popular among the re-
searchers. Compared to RSA, ECC has other advantages. While RSA pro-
vides encryption and digital signature; ECC has a family of algorithms for
encryption, signature, key agreement and some advanced high-level crypto-
graphic protocols such as ID-based encryption [BLS01], where user’s unique
ID, e.g., email address, can be used as a public key. The high-level crypto-
graphic functionalities are provided by pairing over elliptic curves [EM17]
which brings a new paradigm in cryptography called pairing-based cryptog-
raphy.

1.1.3 Pairing-Based Cryptography

Since the inception by Sakai et al. [Sak00], the pairing-based cryptography
has gained much attention to cryptographic researchers as well as to mathe-
maticians. It gives flexibility to protocol researcher to innovate applications



1.2. Problem Outline and Motivation 5

FIGURE 1.2: Challenges in pairing computation.

with provable security and at the same time to mathematicians and cryptog-
raphy engineers to find efficient algorithms to make pairing implementation
more efficient and practical.

Definition and Notation

Generally, a pairing is a bilinear map e typically defined as G1 ×G2 → G3,
where G1 and G2 are additive cyclic sub-groups of order r on a certain elliptic
curve E over a finite extension field Fpk and G3 is a multiplicative cyclic group
of order r in F∗pk .

Let E(Fp) be the set of rational points over the prime field Fp which forms
an additive Abelian group together with the point at infinity O. The total
number of rational points is denoted as #E(Fp). Here, the order r is a large
prime number such that r |#E(Fp) and gcd(r ,p) = 1. The embedding degree k
is the smallest positive integer such that r |(pk − 1).

1.2 Problem Outline and Motivation

This section outlines the overall motivation behind the undertaken works. In
this course, some mathematical notations will appear without detailed defi-
nitions. The subsequent chapters will define them with further elaboration.

Pairing computation is mathematically exhaustive. Several factors challenge
efficient pairing operation. Figure 1.2 shows some of the challenges. Most of
the problems are interconnected and challenge efficient pairing operation.

Properties

Two fundamental properties of pairing are

• bilinearity is such that ∀Pi ∈ G1 and ∀Qi ∈ G2, where i = 1, 2, then
e(Q1 +Q2, P1) = e(Q1, P1).e(Q2, P1) and e(Q1, P1 + P2) = e(Q1, P1).e(Q1, P2),

• and e is non-degenerate means ∀P ∈ G1 there is a Q ∈ G2 such that
e(Q , P) , 1 and ∀Q ∈ G2 there is a P ∈ G1 such that e(P ,Q) , 1.
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FIGURE 1.3: Bilinearity of pairing.

Such properties allow researchers to come up with various cryptographic ap-
plications including ID-based encryption [BF01], group signature authenti-
cation [BBS04], and functional encryption [OT10], homomorphic encryption
[OU98; NS98; OT08]. However, pairing groups G1 G2 and G3 needs to be cal-
culated over the extension field( extension field is introduced in Chapter 2).
Therefore, it is essential to construction efficient extension field for pairing.

Security and Parameter of Pairing

The security of pairing-based cryptosystems depends on

• the difficulty of solving elliptic curve discrete logarithm problem (ECDLP)
in the groups of order r over Fpk ,

• the infeasibility of solving the discrete logarithm problem (DLP) in the
multiplicative group G3 ∈ F∗pk ,

• and the difficulty of pairing inversion.

Therefore, maintaining the same security in the pairing groups is another
important challenge.

To maintain the same security level in both groups, the size of the order r
and extension field pk is chosen accordingly. For a security level λ, G1 should
have order of size log2 r ≥ 2λ due to Pollard’s rho algorithm [Pol78]. In the
case of parameterized curves, to balance the security and efficiency of pairing
implementation, a ratio index denoted as ρ = log2 p/log2 r is often used. It’s
value ranges 1 ≤ ρ ≤ 2, yet ρ = 1 is sought after for efficiency purpose. In
practice, elliptic curves with small embedding degrees k and highest twist
degree d are desired. For the case of a KSS-16 elliptic curve, ρ is equal to
≈ 1.25.
In general, to obtain 128-bit AES level security, it is expected that the order r
of G1 should be equal to 2λ (256-bit prime). Then the field size of G1 should
be at least ρ ∗ 256 = 320-bit and the lower limit of extension field size of G3
should be about ρ ∗ k ∗ 256 = 5120-bit. Since, d = 4 is the maximum twist
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FIGURE 1.4: Pairing friendly curves.

degree for KSS-16, hence the field size of G2 ⊂ E′(Fpk/d ) after twist is equal to
5120/d = 1280-bit, where, E′ is the twist curve of E.

Types of Pairing

Galbraith et al. [GPS08] have classified pairings as three major categories
based on the underlying group’s structure as

• Type 1, where G1 = G2, also known as symmetric pairing.

• Type 2, where G1 , G2, known as asymmetric pairing. There exists an
efficiently computable isomorphism ψ : G2 → G1 but none in reverse
direction.

• Type 3, which is also asymmetric pairing, i.e., G1 , G2. But no effi-
ciently computable isomorphism is known in either direction between
G1 and G2.

This thesis focuses on one of the Type 3 variants of pairing named as Optimal-
Ate [Ver10].

Pairing-Friendly Curves

Pairing cannot be computed over random curves since random curves em-
bedding degree k ≈ p. To compute pairing, we need elliptic curves that sup-
port small embedding degree and large twist degree. Such curves are known
as pairing-friendly curves. In this thesis, we focus on the Type 3 pairing. The
Type 3 pairing needs curves with embedding degree k ≤ 50.

Figure 1.4 shows a tree of pairing-friendly curves.

Selection of the curve depends on the balanced parameter and security. Su-
persingular curves have small embedding degree k ≤ 6. However, their se-
curity is broken over small characteristics field. Families of ordinary pairing-
friendly curves are suitable for Type 3 pairing since their embedding degree
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is k ≤ 50. Some ordinary pairing-friendly curves such as Barreto-Naehrig
(BN) [BN06] , Barreto-Lynn-Scott (BLS-12) [BLS03] are well studied in litera-
ture [Nog+09] [Sak+08]. Comparatively Kachisa-Schaefer-Scott (KSS) [KSS07]
family is a relatively new type of curves and less studied in the literature.

Moreover, the recent development of NFS by Kim and Barbulescu [KB16] re-
quires updating the parameter selection for all the existing pairings over the
well known pairing-friendly curve families such as BN [BN06], BLS [FST06]
and KSS [KSS07]. The most recent study by Barbulescu et al. [BD17] have
shown the security estimation of the current parameter settings used in well-
studied curves and proposed new parameters, resistant to small subgroup
attack.

Barbulescu and Duquesne’s study finds that the current parameter settings
for 128-bit security level on BN-curve studied in literature can withstand for
100-bit security. Moreover, they proposed that BLS-12 and surprisingly KSS-
16 are the most efficient choice for Optimal-Ate pairing at the 128-bit security
level. Therefore, this thesis focuses on the efficient implementation of the less
studied KSS curves of embedding degree k = 16, 18 for Optimal-Ate pairing
by applying the most recent parameters.

Besides pairing, protocol researchers try to bypass the pairing operation with
other operation such as scalar multiplication in G1 or G2 and exponentiation
in G3. Among them, scalar multiplication is used in most protocols. There-
fore, this thesis also tries to improve the scalar multiplication in G2 for KSS
curves.

1.3 Contribution

As discusses above, pairing is a bilinear map from two groups G1 and G2 to
a group G3, where they have respectively same prime order r . In detail, G1
and G2 respectively becomes a subgroup in an elliptic curve group E(Fq ) and
E(Fqk ), and G3 becomes a subgroup in Fqk , where q is a power of p and an
extension degree k is especially called the embedding degree.

In pairing-based cryptography, there exist several effective operations which
are the bottleneck for any pairing-based protocols. These operations are
Miller’s algorithm, final exponentiation in G3, scalar multiplications in G1
and G2, and exponentiation in G3. The calculation costs of pairing and scalar
multiplication in G2 are the significant costs among the operations required
for pairing-based cryptographies. Therefore, efficient Miller’s algorithm and
scalar multiplications in G2 can reduce the total cost of pairing-based cryp-
tography. In this work, we focus on these operations especially Miller’s al-
gorithm and scalar multiplications in G2.

In this thesis, we focus on Type 3 pairing that is asymmetric pairing such
as Ate [Mat+07] and Optimal-Ate [Ver10] pairing. Therefore, we have not
efficient homomorphic map from G1 to G2. Generally, in asymmetric pairing
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the scalar multiplication is carried out over efficiently calculable group G1
and then the result is mapped to G2.

The embedding degree is an important parameter that determines the security
level of pairing-based cryptographies. Therefore, to achieve efficient pair-
ing on ordinary curves whose embedding degree are flexibly selectable are re-
quired. This thesis targets Ate and twisted Ate pairings because they are ef-
ficiently calculated on normal pairing-friendly curve Kachisa-Schaefer-Scott
(KSS) [KSS07]. Ate and Optimal-Ate are use calculated over certain elliptic
curve groups G1 and G2. In this thesis, we accelerate scalar multiplications
in G2 group which can be extended in G1

In the case of scalar multiplication, we reduce the number of elliptic curve
doubling by decomposing a scalar with an essential relation for KSS curves.
Besides, we proposed state-of-the-art Miller’s algorithm calculation at the
128-bit security level.

Our proposed methods can substantially improve pairing calculation. There-
fore, our research contributes to committing high-level security for sophisti-
cated protocols, e.g., ID-based or Homomorphic encryption.

Use Case of Our Contribution

Let us consider the following two cases.

Case 1: IoT Security

Human civilization is moving to a direction where data generated from the
devices used in our daily life will define how smart our society will be. In
technical jargon, we define that IoT (Internet of Things) era controlled by
Data Science. Some data can be mundane with no purpose, and some data
can be extraordinarily important. Let us imagine a case where the adversary
takes controls heartbeat monitor sensor of our smartwatch or control sensors
of a self-driving car. The outcome of the damage is unimaginable. There is no
alternative to protect this data from unwanted access. The challenge is that
most of the IoT devices are equipped with small sensors. Such devices are
computationally resource constrained. In some devices, it is somewhat im-
practical to generate key pairs for widely practiced security protocols. There
are several innovative solutions such as Identity-based encryption that can
use the device’s unique ID as a key. The applications mentioned above stand
on a compelling branch of cryptography named pairing-based cryptography
over elliptic curve.

Case 2: Security of Medical Data in Cloud

Modern medical diagnosis depends on medical examination that produces
a vast amount of data ranges from patients personal information to diag-
nosis reports and images. Most of the data are stored in large cloud-based
databases. For the privacy of the patient, they should be encrypted before
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stored. By analyzing such medical data, it is possible to predict the proba-
bility of a patient’s vulnerability to a particular disease. However, it is not
always the doctor who examined the patient can do that. Sometimes third-
party researchers are interested in such data-set. However, the identity of
the patient should not be obtained by any third-party using that data. One
solution for this case is any third party can search for data and perform the
mathematical operation in the encrypted database without decrypting the
data. This scenario can be realized by using homomorphic encryption which
is also powered by pairing-based cryptography.

However, pairing-based cryptography is a complex mathematical process.
To practically apply it, we need to carry out its fundamental algorithms more
efficiently. In this thesis, our objective is to improve and find out more effi-
cient algorithms that can realize high-level of security protocols.

1.4 Thesis Outline

This thesis is organized as follows:

In Chapter 2, we briefly discuss the mathematical concepts that are related
to understanding the concepts of this thesis. We also define the pairing in
general. Besides, a target class of pairing-friendly elliptic curves is shown.

In Chapter 3, we derived twist property for target elliptic curves for the192-
bit security level and compared their performances concerning scalar multi-
plication. This thesis shows that sextic twist over KSS-18 curve has an ad-
vantage over quartic twist in KSS-16 curve.

Chapter 4 proposes an efficient Optimal-Ate pairing for KSS-18 curve. We
improved Miller’s algorithm of Optimal-Ate pairing by proposing pseudo 12-
sparse multiplication multiplication. To evaluate our theoretic proposal, we
also include some experimental results with recommended parameter set-
tings.

Chapter 5 proposes a technique that will accelerate scalar multiplications in
G2 over KSS-18 curve. It is crucial to derive efficiently computable endo-
morphisms for accelerating scalar multiplication. The target G2 group has
a property that specific scalar multiplication can utilize Frobenius endomor-
phism that is efficiently computable. Focusing on this property, we derive
an essential relation available for scalar multiplication in G2 from the struc-
tural features of the target elliptic curve. Then, using the relation, efficient
scalar multiplication is proposed together with multi-scalar multiplication.
Besides, from the experimental results, we show that the proposed scalar
multiplication is about 60 times faster than the conventional method.

Chapter 6, shows the state-of-the-art improvement of Optimal-Ate pairing
over KSS-16 curve at the 128-bit security level. We adopted the most re-
cent parameter and theoretically derived most efficient pairing calculation.
Besides, we also showed experimental implementation and compared our
result with other pairing-friendly curves.
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In Chapter 7, we opt to further accelerate the work of chapter 6 by improv-
ing the finite field arithmetic using cyclic vector multiplication algorithm.
We showed comparative results between chapter 6’s proposal and this. We
also showed memory optimization currently exists the final exponentiation
algorithm.

Chapter 8 shows the G2 scalar multiplication by applying different dimen-
sion of GLV decomposition. We showed theoretical and experimental result
and explained that 4-dimension is optimal for efficient scalar multiplication
in G2 in KSS-16 curve.

Finally, Chapter 9 concludes this thesis with an outline of the future works.
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Chapter 2

Fundamental Mathematics and
Notation

It is necessary to recall some fundamental mathematical concept to under-
stand the subsequent chapters and introduce the notations used in the the-
sis. This chapter introduces the essential mathematical backgrounds that are
directly relevant to the contents of this thesis to help readers a clear under-
standing of the subsequent chapters. The theoretical discussion will often
appear with minimal definition and citation of the details works since de-
tails discussion is beyond the scope of this thesis. We refer to [LN96; MP13;
Sma15; EM17; Bla14] for more details of the topics. As an additional purpose,
this chapter specifies most of the notations that will appear in the upcoming
chapters.

Cryptography deals with numbers mostly integers. It is essential to have a
good understanding of the underlying mathematical concepts to understand
modern cryptography. The following concepts are the basis for the discus-
sion of the subsequent chapters.

2.1 Modular Arithmetic

Modular arithmetic is the fundamental tool for modern cryptography espe-
cially public key cryptosystems.

Definition 1 (Modular Arithmetic) Let p be a positive integer named as the mod-
ulus and a and b are two arbitrary integers. If p divides b − a then we can write

a ≡ b (mod p)

and express as a and b are congruent modulo p.

Example 2.1 Let, p = 7, a = 19 and b = 5 then 19 ≡ 5 (mod 7).

Example 2.2 Let, p = 7, a = −17 and b = 11. Then −17 (mod 7) = 4 and
11 (mod 7) = 4. We can write

−17 ≡ 11 (mod 7)
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and usually express −17 and 11 are congruent modulo 7.

2.2 Group, Ring, Field

2.2.1 Group

The concept of group is very fundamental to understanding cryptography. It
is an algebraic system defined as follows.

Definition 2 (Group) A group is a non-empty set G with a binary operation ◦
on its elements denoted as 〈G, ◦〉, sometimes denoted by G only, which satisfies the
following axioms.

Closure The group is closed under the operation ◦, i.e. ∀a ∈ G, and
∀b ∈ G the result of (a ◦b) = c ∈ G. 1

Identity element There exist an identity element e also know as
neutral element or unit element in G such that ∀a ∈ G, a ◦ e =
e ◦ a = a.

Inverse element For ∀a ∈ G, there exists an element b ∈ G such that
a ◦b = e = b ◦ a, where b is called inverse element of a.

Associativity Elements in group G should follow associativity. i.e.
(a ◦b) ◦ c = a ◦ (b ◦ c) for all a,b, c ∈ G.

Definition 3 (Commutative Group)

A group G will be commutative if a ◦b = b ◦ a for all a,b ∈ G.

A commutative group is also called abelian group.

Example 2.3 The set of integers Z forms a group under the group operation of
addition + denoted as (Z,+). 0 is the identity element of the group.

Example 2.4 The set of positive integers N under addition does not form a group
since elements have not inverse.

Definition 4 (Order of a Group) The order of a group G often denoted as #G is
the number of elements in the group G.

Remark 1 Groups order can be finite and infinite. In example 2.3, (Z,+) has infi-
nite order.

Definition 5 (Order of group element) For an element a ∈ G, the smallest posi-
tive integerm such that am = e is called the order of a, where e is the identity element
in G.

Example 2.5 Finite group: As shown in example 2.4, the set N under addition
does not form a group since it does not satisfy the group axioms. Let us consider a

1∀ symbol bears is usual notation "for all"
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set Nn under the operation mod n such that

Nn = {0, 1, 2, 3, · · · ,n − 1}

where n ∈ N. It means Nn is the set of remainders under “mod n”. Recall the
modular arithmetic that

a +b ≡ c mod n a,b ∈ Nn,

means c is associated to a remainder on division by n when a +b = c <Nn. It makes
c belongs to Nn making (Nn,+) forming a group. In also includes element 0 which
acts as an identity element.

Definition 6 (Group generator) For a given group G if there is an element д ∈ G

such that for any a ∈ G there exist an unique integer i with a = дi then д will be
called a generator of G

Definition 7 (Cyclic Group) A group G will be cyclic if there exist at least one
generator д ∈ G. Cyclic group usually expressed as G = 〈д〉

Remark 2 The number of generator in a group G of order n is defined by Euler’s
totient function ϕ(n)2. If n is a prime p then the group G will be called prime order
group and it will have ϕ(p) = p − 1 generators.

In this case, we use the notation 〈G, ◦〉; there exists some ambiguity which
operation we consider. Therefore, the following two types of group nations
are prevalent in literature.

Definition 8 (Additive group) A cyclic group is called additive if we tend to write
its group operation in the same way we do additions, that is

f = д + x

can also appear as [x]д meaning applying x − 1 times addition operator + on д. It is
also common to write as x · д. For example, 1 is one of generators in group (Z5,+)
under addition modular 5, then 1 · 4 can be written as

4 = 1 + 1 + 1 + 1.

Definition 9 (Multiplicative group) A cyclic group is called multiplicative if we
tend to write its group operation in the same way we do multiplication, that is

f = д · x or f = дx

Remark 3 In both notation the x is an integer called the discrete logarithm of h to
the base д.

2When n is a positive integer, Euler’s totient function ϕ(n) = number of positive integers
less than or equal to n that are co-prime to n
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Remark 4 Unless otherwise stated, through out this thesis we will use the xд nota-
tion for ordinary addition e.g. a + a = 2a and a + a + a = 3a and for multiplicative
notation, these will denoted by a2, a3.

From the definition cyclic group, it can be see visualized that any elements in
cyclic a group are generated with iterative operations of generator д. Figure
2.1 shows this schematically.

FIGURE 2.1: Cyclic group.

A a well known practice of presenting a finite group’s operation is Cayley table
as shown in example 2.6. Cayley table shows all possible group operation
that can be performed in a finite group.

Example 2.6 The Cayley table for the group Z4 is:

⊕4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

In the above example of group (Z4,+), there are ϕ(4) = 2 generators, 3 and 1.

Definition 10 (Subgroup) Let H be a non-empty subset fo group G, H will be
called subgroup of G if H itself follows group axioms and H has the same identity
element of group G.

Theorem 1 (Lagrange’s Theorem:) Let G be a finite abelian group and H is a
subgroup of G. The order of G, #G is divisible by the order of subgroup H, #H i.e.
#H|#G.
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2.2.2 Homomorphism in Groups

Morphisms in groups have often used the research of cryptography and in-
separable to for pairing-based cryptography research.

Definition 11 (Homomorphism) Let (G, ◦) and (G
′

,?) be two groups with iden-
tity elements e and e′ respectively. A homomorphism is a map f which preserves the
group structure while the elements are mapped from (G, ◦) to (G

′

,?).

A homomorphic map obeys the following conditions:

• ∀a,b ∈ G, f (a ◦b) = f (a)? f (b).

• For every a ∈ G, the inverse map is f (a−1) = f (a)−1.

• Identity element mapping also preserves the structure i.e. f (e) = e′.

2.2.2.1 Types of Homomorphism

Isomorphism If an element from G and G
′

have bijective relation
then G and G

′

are isomorphic to each other.

Endomorphism If elements from the group (G, ◦) are mapped
to itself, then it is called endomorphism. A frequently used
endomorphism in cryptographic algorithms is Frobenius en-
domorphism.

Authomorphism If an element of a group has both endomor-
phism and isomorphism then it is called automorphism.

Definition 12 (Kernel) Let (G, ◦) and (G
′

,?) be two groups with identity ele-
ments e and e′ respectively and f is homomorphism from (G, ◦) to (G

′

,?). The
kernel of f is denoted as Ker{ f }, defined by

Ker(f ) = {a ∈ G : f (a) = e′}

.

2.2.3 Ring

The concept of Ring will not come as frequently as group and field in the
subsequent chapters. However, it is relevant to define the ring to understand
the related concept.

Definition 13 (Ring ) A ring R is an algebraic structure with two operations, i.e.
addition + and multiplication · usually denote as R,+, ·.

• R is abelian group under addition operation.

• Under multiplication, R is closed and associative with identity element is 1.

• Multiplication is distributive over addition: ∀a,b, c ∈ R : a · (b + c) = a · b +
a · c.
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If multiplication operation is commutative, R forms a commutative ring.

Definition 14 (Multiplicative Inverse Modulo n ) Let Zn be a set under mod-
ulo n and a ∈ Zn. The multiplicative inverse modulo n of a can be written as follows:

a · x ≡ 1 mod n.

The value x is the multiplicative inverse modulo n of a, often written as a−1.

Such value of x only exists if gcd(x ,n) = 1. If n = p is a prime, then every non-
zero element in the set Zp will have a multiplicative inverse. Such (Zp ,+, ·)
will be a ring and having the above property it will form a field.

2.2.4 Field

Definition 15 (Field) A field (F,+, ·) is a set that obeys two binary operations de-
noted by + and ·, such that:

• F is a commutative group concerning + having identity element 0.

• Let F ∗is a subset of F having only not-zero element of F i.e. F∗ = F \{0}.
Then F ∗will be called a commutative group respect to multiplication· where
every element should have multiplicative inverse in F ∗.

• For all a,b, c ∈ F the distributive law will be followed, e.g. a · (b + c) =
a · b + a · c and (b + c) · a = b · a + c · a.

Definition 16 (Subfield ) Let F1 is a subset of field F. F1 will be called a subfield
if F1 itself obeys the laws of field with respect to the field operation inherited from F.

Remark 5 In Definition 16, F is called an extension field of F1. If F1 , F, then
F1 is a proper subfield of F.

Definition 17 (Order of Finite Field ) The order is the number of elements in F.
If the order of F is finite, F is called finite field.

Definition 18 (Characteristic of Finite Field ) Let F be a field and smallest pos-
itive number n such that n · a = 0 for every a ∈ F. Such n is called characteristic. If
there is no such n in F then F has characteristics 0.

Most of the works presented in this dissertation deal with finite fields only.
A common property of finite fields often used in cryptographic is following:

Theorem 2 For every finite field F, the multiplicative group (F ∗, ·) is cyclic.

Definition 19 (Prime Field ) Let p be a prime. The ring of integers modulo p is
a finite field of characteristics p having field order p denoted as Fp is called a prime
field.

Remark 6 A prime field contains no proper subfield.

Theorem 3 Every finite field has a prime field as a subfield.
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Theorem 4 (Fermat’s Little Theorem:) Let p is a prime and a ∈ Z, then

ap = a (mod p)

Fermat’s little theorem is a special case of Lagrange’s theorem.

In this work we classified finite fields into two types, i.e. prime field Fp and
its extension field. Section 2.3 explains more of extension field. The prime
field Fp has the order and characteristic as p. Using the modular arithmetic
in the same way as Definition 2.3, we can define fundamental operations of
prime field Fp = {0, 1, 2 · · · ,p − 1}. The Cayley table will de

Example 2.7 The Cayley table for the two operations + and · for elements in F5 are
as follows:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

As described above, we can define arithmetic operations in Fp by modular
operations (mod p) for integers. However, it does not work in an extension
field Fpm . In the next section, arithmetic operations in extension field Fpm is
described in detail.

2.3 Extension Field

A subset F0 of a field F that is itself a field under the operations of F will
be called a subfield of F . In this case, F is called an extension field of F0 . An
extension field of a prime field Fp can be represented asm-dimensional vector
space that has m elements in Fp . Let the vector space be the m-th extension
field; it is denoted by Fpm . The order of extension fields Fpm is given as pm. In
what follows, let q be the power of p, the extension field of a prime field Fp is
denoted by Fq .

There are several methods to represent an element in extension fields, such
as polynomial basis and normal basis. In this thesis, we mostly used poly-
nomial basis. Let ω be a root of m-th irreducible polynomial over Fq , we
consider the followingm elements.

ω, ωq, ωq2
, · · · , ωqm−1

All elements in this set are conjugate to each other. When the set of the conju-
gates become linearly independent, this is called normal basis. Using normal
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basis, an element α ∈ Fq is expressed as a polynomial by

α = a1ω + a2ω
q + a3ω

q2
+ · · · + amω

qm−1
, (2.1)

where a1, a2, a3, · · · , am ∈ Fq .

Arithmetic operations in Fqm are carried out with ordinary addition and mul-
tiplication for polynomial and modular reduction by an irreducible polyno-
mial.

2.4 Frobenius Map

For any element α ∈ Fqm , let us consider the following map πq : α → αq.

πq(α) =
(
a1ω + a2ω

q + a3ω
q2
+ · · · + amω

qm−1
)q

= a1ω
q + a2ω

q2
+ a3ω

q3
+ · · · + amω

qm

= amω + a1ω
q + a2ω

q2
+ · · · + am−1ω

qm−1
(2.2)

Note that the order of F∗qm is given by qm − 1, that is, ωqm = ω is satisfied.
Furthermore, aq is equal to a for each coefficients a.

Therefore, the map πq(α) is efficiently calculated by cyclic shift operations
among its basis coefficients, which is free from arithmetic operations. From
the computational efficiency, the map πq is specially called the Frobenius
map.

In ElGamal Encryption, many exponentiations are executed in encryption
and decryption processes. When the exponent is equal to p, its calculation
cost can be reduced by using the Frobenius map. Therefore, the Frobenius
map is widely used in the cryptographic application.

2.5 Quadratic Residue/Quadratic Non-residue,
and Cubic Residue/Cubic Non-residue

For any non-zero elementd ∈ Fq , d is called a Quadratic Residue (QR) when x
such that x2 = d exists in Fq . On the other hand, when such a x does not exist
in Fq , d is called a Quadratic Non-Residue (QNR). We can identify whether
or not d is a QR by the following test.

d (q−1)/2 =

{
1 : QR
−1 : QNR (2.3)

All elements in finite fields Fq of odd characteristics become QR in extension
fields Fq2j . On the other hand, quadratic non-residues also become QNR in
Fqi , where i is not divisible by 2.
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2.6 Elliptic Curve

In this section, we review elliptic curves and pairings.

2.6.1 Additive Group over Elliptic Curve

In general, let p > 3, an elliptic curve E/Fp over a finite field Fp is defined as

E/Fp : y2 = x3 + ax +b, 42a3 + 27b2 , 0, a,b ∈ Fp . (2.4)

The field that x and y belong to is called the definition field. The solutions
(x ,y) of Eq.(2.4) is called rational points. E(Fq ) that is the set of rational points
on the curve, including the point at infinity O, forms an additive abelian
group. The point at infinity works as an unity element in E(Fq ). When the
definition field is Fqm , we denote the additive group by E(Fqm ).

For rational points P1(x1,y1), P2(x2,y2) ∈ E(Fq ), the elliptic curve addition
P3(x3,y3) = P1 + P2 is defined as follows.

λ =


y2 −y1

x2 − x1
P1 , P2, x1 , x2

3x2
1 + a

2y1
P1 = P2

x3 = λ3 − x1 − x2

y3 = (x1 − x3)λ −y1

λ is the tangent at the point on the curve and O is the additive unity in E(Fp).
In what follows, If P1 , P2 then P1 + P2 is called elliptic curve addition (ECA).
If P1 = P2 then P1 +P2 = 2P1, which is known as elliptic curve doubling (ECD).

Let a rational point P(x ,y), an inverse point −P is given by −P(x ,−y). Elliptic
curve cryptographies is constructed on elliptic curve groups E(Fq ).

Let #E(Fp ) be the order of E(Fp ), it is given as

#E(Fp ) = p + 1 − t , (2.5)

where t is the Frobenius trace of E(Fp ).

From Hasse’s theorem, t satisfies

|t | ≤ 2
√
p. (2.6)
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2.6.2 Scalar Multiplication in Elliptic Curve

Let [s]P denote the (s − 1)-times addition of a rational point P as,

[s]P =
s−1∑
i=0

P . (2.7)

This operation is called a scalar multiplication. As a general approach for
accelerating a scalar multiplication, the binary method is the most widely
used.

Binary method The binary method is an extensively applied method for
calculating the elliptic curve scalar multiplication. The pseudo code of left-
to-right binary scalar multiplication algorithm is shown in Algorithm 1. This
algorithm scans the bits of scalar s from the most significant bit to the least
significant bit. When s[i] = 1, it performs ECA and ECD otherwise only
ECD is calculated. The binary method iterates elliptic curve doublings and
elliptic curve additions using a binary representation of scalar. A scalar mul-
tiplication needs blog2 sc elliptic curve doublings and blog2 sc/2 elliptic curve
additions on average. This method is easy to implement, but the significant
drawback of this method is not resistant to side channel attack [Koc96].

Algorithm 1: Left-to-right binary algorithm for elliptic curve scalar mul-
tiplication.
Input: P , s
Output: [s]P

1 T ← 0
2 for i = blog2 sc to 0 do
3 T ← T +T
4 if s[i] = 1 then
5 T ← T + P

6 return T

Montgomery ladder method Montgomery ladder algorithm is said to be
resistant to side channel attack. Such resistance comes by paying tolls as cal-
culation overhead which slows down this method than the binary method.
Algorithm 2 shows the Montgomery ladder algorithm for scalar multiplica-
tion. Montgomery ladder has some similarity with the binary method except
in each iteration it performs ECA and ECD.

Sliding-window Method Sliding-window [Coh+05] algorithm is also re-
sistant to side channel attack and at the same time it is faster than Montgomery
ladder. In this method the scalar s is processed in blocks of length w , known
as window size. Algorithm 3 shows the sliding-window algorithm for scalar
multiplication.
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Algorithm 2: Montgomery ladder algorithm for elliptic curve scalar mul-
tiplication.
Input: A point P , an integer s
Output: [s]P

1 T0← 0, T1← P
2 for i = blog2 sc to 0 do
3

4 if s[i] = 1 then
5 T0 ← T0 +T1
6 T1 ← T1 +T1

7 else if s[i] = 0 then
8 T1 ← T0 +T1
9 T0 ← T0 +T0

10 return T0

2.6.3 Frobenius Map on Elliptic Curve Groups

In this section, we introduce the Frobenius map for a rational point in E(Fq ).
For any rational point P = (x ,y), Frobenius map ϕ is given by ϕ : P(x ,y) →
(xq,yq). Then, the following relation holds for any rational points in E(Fq )

with regard to Frobenius map.(
ϕ2 − [t]ϕ + [q]

)
P = O.

Thus, we have
[q]P =

(
[t]ϕ −ϕ2

)
P . (2.8)

From Hasse’s theorem, note the bit-size of Frobenius trace t is about a half of
the characteristic p. Using Eq.(2.8), we can efficiently calculate scalar multi-
plication [Kob92].

2.7 Pairing over Elliptic Curve

This section briefly reviews the bilinear pairing defined over elliptic curves.
For more details fundamentals of pairing, we refer to [EM17].

2.7.1 Definition of Pairing

Pairing is defined as a bilinear map from two additive groups G1 and G2 to
a multiplicative group G3 as follows.

G1 ×G2 → G3

Let E[r ] be a rational point group of the prime order r , and k be a minimum
integer that satisfies r | pk − 1. The integer k is known as the embedding
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Algorithm 3: Sliding window algorithm for elliptic curve scalar multipli-
cation.
Input: A point P , an integer s =

∑l−1
j=0 sj2

j , sj ∈ {0, 1}, window size w ≥ 1
Output: Q = [s]P

1 Pre-computation.
2 P1 ← P , P2 ← [2]P
3 for i = 1 to 2w−1 − 1 do
4 P2i+1 ← P2i−1 + P2

5

6 j ← l − 1, Q ← O.
7 Main loop.
8 while j ≥ 0 do
9

10 if sj = 0 then
11 Q ← [2]Q , j ← j − 1

12 else
13

14 Let t be the least ineger such that
15 j − t + 1 ≤ w and st = 1
16 hj ← (sjsj−1 · · · st )2
17 Q ← [2j−t+1]Q + Phj
18 j ← t − 1

19 return Q

degree. In pairing we expect k < 50. However, in random curves k ≈ p and in
supersingular curves k < 6. Pairing map e is defined as follows [Hes08].

e : E[r ] ∩ E(Fq) × E[r ] ∩ E(Fqk ) → F∗
qk
/(F∗

qk
)r . (2.9)

Here, G1 and G2 is a subgroup of order r the elliptic curve groups E(Fq ) and
E(Fqk ), respectively. G3 becomes is a subgroup of the same order r of F∗

qk
.

Pairing consists of two calculation parts, Miller’s algorithm, and Final expo-
nentiation. The calculation costs of pairing depend on several factors.

• Type of elliptic curves

• G1 and G2 sizes.

• Balanced parameter for security and efficiency.

Based on these challenges, researchers tried to develop several types of pair-
ing such as η, Ate, twisted-Ate, R-Ate, Optimal-Ate. All the researchers aimed
for reducing the calculation costs by optimizing the pairing. This thesis fo-
cuses on Ate-based pairing especially Optimal-Ate pairings that can be effi-
ciently calculated over an ordinary elliptic curve.
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2.7.2 Properties of Pairing

Let P and R ∈ G1, and Q ∈ G2, pairings have following properties.

• Non-degeneracy
If e(P ,Q) = 1, then P = O or Q = O.

• Bilinearity
e(P + R,Q) = e(P ,Q) · e(R,Q)
e(P ,Q + S) = e(P ,Q) · e(P , S)

From this property, we obtain more general relation as

e ([a]P , [b]Q) = e ([b]P , [a]Q) = e ([ab]P ,Q) = e (P , [ab]Q) = e(P ,Q)ab , (2.10)

where a and b are integers. The bilinearity of pairing is a crucial property for
designing many crypto-protocols.

2.7.3 Pairing-Friendly Curves

Let r be the largest prime that divides #E(Fq ). When an embedding degree k
for a rational point group of order r is given by an integer smaller than about
50, the elliptic curve is said pairing-friendly.

Supersingular curves are well-known as a representative pairing-friendly
curve. On the other hand, in the case of ordinary curves, it is generally diffi-
cult to generate pairing-friendly curves because embedding degree is almost
same as the order r when we randomly choose the pairing-friendly curve
from ordinary curves. Therefore, we cannot easily prepare a pairing-friendly
curve whose order r is large. To solve this problem, several methods to easily
generate pairing-friendly curves are proposed [FST10].

Pairing-friendly curves are classified into two types, one is families of pairing-
friendly curves, and the other is not families of pairing-friendly curves. Pairing-
friendly curves are called families of pairing-friendly curves when their pa-
rameters such as characteristic p, order r , and trace t are given by polynomi-
als in terms of integer u. Supersingular curves are not in families of pairing-
friendly curves. This thesis targets one particular type of families of pairing-
friendly curves named as KSS curve.

2.7.3.1 KSS-Curve

In [KSS07], Kachisa, Schaefer, and Scott proposed a family of non super-
singular Brezing-Weng pairing-friendly elliptic curves of embedding degree
k = {16, 18, 32, 36, 40}, using elements in the cyclotomic field. Similar to other
pairing-friendly curves, characteristic p, Frobenius trace t and order r of these
curves are given systematically by using an integer variable. This thesis fo-
cuses on the KSS curve of embedding degree 16 and 18. In what follow we
call them KSS-16 and KSS-18 respectively.
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KSS-18 Curve

KSS-18 curve, defined over Fp18 extension, is given by the following equation

E/Fp18 : Y 2 = X 3 +b, b ∈ Fp and b , 0 , (2.11)

where X ,Y ∈ Fp18 . KSS-18 curve is parameterized by an integer variable u as
follows:

p(u) = (u8 + 5u7 + 7u6 + 37u5 + 188u4 + 259u3 + 343u2 + 1763u
+2401)/21, (2.12a)

r (u) = (u6 + 37u3 + 343)/343, (2.12b)
t(u) = (u4 + 16u + 7)/7. (2.12c)

The necessary condition for u is u ≡ 14 (mod 42) and the ρ value is ρ =
(log2 p/log2 r ) ≈ 1.33.

KSS-16 Curve

On the other hand, KSS-16 curve is defined over Fp16 , represented by the
following equation

E/Fp16 : Y 2 = X 3 + aX , (a ∈ Fp) and a , 0, (2.13)

where X ,Y ∈ Fp16 . Its characteristic p, Frobenius trace t and order r are given
the integer variable u as follows:

p(u) = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u
+3125)/980, (2.14a)

r (u) = u8 + 48u4 + 625, (2.14b)
t(u) = (2u5 + 41u + 35)/35, (2.14c)

where u is such that u ≡ 25 or 45 (mod 70) and the ratio ρ value is ρ =
(log2 p/log2 r ) ≈ 1.25.

2.7.4 Twisted Elliptic Curves

The twist is an elegant feature of the curves where rational points are com-
pressed by changing the definition field. When the embedding degree k is
equal to 2e, where e is a positive integer, to E/Fq of Eq.(2.4), consider the
following elliptic curve E′.

E′ : y2 = x3 + av−2x +bv−3, a,b ∈ Fp , (2.15)
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where v is a QNR in Fpe . Then, between E′(Fpe ) and E(Fp2e ), the following
isomorphism is given.

ψ2 :

{
E′(Fpe ) → E(Fp2e ),
(x ,y) 7→ (xv,yv3/2).

(2.16)

In this case, E′ is called quadratic–twisted curve.

In the same, when embedding degree k satisfies the following conditions, the
twisted curves can be respectively considered.

• k = 3e (cubic twist)

E : y2 = x3 +b, b ∈ Fp ,

E′ : y2 = x3 +bv−2,

where v is a CNR in Fpe and 3 | (p − 1).

ψ3 :

{
E′(Fpe ) → E(Fp3e ),
(x ,y) 7→ (xv2/3,yv).

(2.17)

• k = 4e (quartic twist)

E : y2 = x3 + ax , b ∈ Fp ,

E′ : y2 = x3 + av−1x ,

where v is a QNR in Fpe and 4 | (p − 1).

ψ4 :

{
E′(Fpe ) → E(Fp4e ),
(x ,y) 7→ (xv1/2,yv3/4).

(2.18)

• k = 6e (sextic twist), Barreto–Naehrig (BN) curve [BN06] has this form.

E : y2 = x3 +b, b ∈ Fp ,

E′ : y2 = x3 +bv−1,

where v is a QNR and CNR in Fpe and 3 | (p − 1).

ψ6 :

{
E′(Fpe ) → E(Fp6e ),
(x ,y) 7→ (xv1/3,yv1/2).

(2.19)
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Eqs. (2.16), (2.17), (2.18), and (2.19) are summarized as

ψd :

{
E′(Fpe ) → E(Fpde ),
(x ,y) 7→ (xv2/d ,yv3/d).

(2.20)

Thus, when the twist degree d is even, x–coordinate xv2/d belongs to the sub-
field Fpk/2 because v2/d ∈ Fpk/2 . In addition, when d = 2 or 4, the coefficient of
x of the twisted curve E′ is written as av−4/d .

In pairing-based cryptographic applications, a rational point in E(Fqk ) can
be compressed to a rational point in E′(Fqe ) using ψd . In detail, the size of a
rational point in E(Fqk ) is reduced by 1/d.

In what follows, adding the dash “ ′ ” to a rational point, for example, P ′

denotes a rational point corresponding to P ∈ E(Fqk ) over twisted elliptic
curve E′.

2.7.5 Ate Pairing

Ate pairing α [Hes08] is defined by

G1 = E[r ] ∩Ker(ϕ − [1]),
G2 = E[r ] ∩Ker(ϕ − [q]),

α : G2 × G1 → F∗
qk
/(F∗

qk
)r , (2.21)

where ϕ denotes the Frobenius map over Fq and Ker(·) is a set whose el-
ements are mapped to zero element by ·. In other words, rational points
P ∈ G1 and Q ∈ G2 satisfy

ϕ(P) = P , (2.22)
ϕ(Q) = [q]Q , (2.23)

respectively.

Let P ∈ G1, and Q ∈ G2, Ate pairing α(Q , P) is calculated by

α(Q , P) = ft−1,Q (P)
(qk−1)/r , (2.24)

where t is the Frobenius trace of E(Fq ). The Optimal-Ate variant reduces
loop length by the length of the integer variable u. This thesis focused on
Optimal-Ate pairing.

2.7.6 Miller’s Algorithm

Over the years several improvements for Miller’s algorithm have been pro-
posed in the literature. Here we will introduce the reduced Miller’s algorithm.
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Let pairing e be defined as e : GA ×GB → G3, PA ∈ GA, and PB ∈ GB, Algo-
rithm 4 shows the reduced Miller’s algorithm for fs,PA(PB). It consists of func-
tions LDBL and LADD shown in Algorithm 5 and Algorithm 6, see Table
2.1.

As shown in the algorithm, the structure of Miller’s algorithm is similar to
the binary method for scalar multiplication. In this case, Miller’s algorithm
constantly iterates LDBL blog2 sc times, and execute LADD when si is equal
to 1. That is if we can reduce the number of iterations, Miller’s algorithm can
be efficiently carried out.

In general, step 3. in LDBL and LADD is respectively calculated as

f ← f 2 · lT ,T (Q)/vT+T (PB),
f ← f · lT ,PA(PB)/vT+PA(PB).

However, vT+T (PB) and vT+P (PB) becomes 1 during Final exponentiation since
they are the elements in subfield of Fpk when the embedding degree is an even
number. As we will be working on even embedding degrees therefore, in the
rest of the thesis vT+T (PB) or vT+P (PB) is not used.

As shown in Algorithm 4, a rational point PA is mainly used for calculat-
ing fs,PA(PB). In detail, LDBL and LADD respectively calculate elliptic curve
doublings and elliptic curve additions using PA. On the other hand, PB is
only used for substituting to the function l . Therefore, the calculation cost of
LDBL and LADD changes by inputs of Miller’s algorithm.

Algorithm 4: Miller’s Algorithm.
Input: s, PA ∈ GA, PB ∈ GB

Output: fs,PA(PB)
1 f ← 1
2 T ← PA
3 for i = blog2(s)c to 1: do
4 LDBL(f ,T , PB).
5 if s[i] = 1 then
6 LADD(f , PA,T , PB).

7 return f

2.7.7 Final Exponentiation

In Ate pairing, we first calculate F = ft−1,Q (P) by Miller’s algorithm, then
calculation of Final exponentiation F (p

k−1)/r is carried out. Here, an efficient
algorithm of final exponentiation is shown. Many research has been carried
out over the years for efficient final exponentiation. Scott et al. [Sco+09] show
the process of efficient final exponentiation (FE) Fp

k−1/r by decomposing the
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Algorithm 5: LDBL in Miller’s Algorithm
Input: f , T ∈ GA, PB ∈ GB

Output: f ,T
1 λT ,T ← (3x2

T )/(2yT )
2 lT ,T (PB) ← (xPB − xT )λT ,T − (yPB −yT )

3 f ← f 2 · lT ,T (PB)

4 xT ← λ2
T ,T − 2xT

5 yT ← (xT − x2T )λT ,T −yT
6 return f , T

Algorithm 6: LADD in Miller’s Algorithm
Input: f , PA,T ∈ GA, PB ∈ GB

Output: f ,T
1 λT ,PA ← (yPA −yT )/(xPA − xT )
2 lT ,PA(PB) ← (xPB − xPA)λT ,PA − (yPB −yPA)
3 f ← f · lT ,PA(PB)

4 xT ← λ2
T ,PA
− xT − xPA

5 yT ← (xPA − xT+PA)λT ,PA −yPA
6 return f , T

TABLE 2.1: Notations used in Algorithm 4, Algorithm 5 and Algorithm 6

si : i–th bit of the binary representation of s
from the lower.

lT ,T : the tangent line at T .
lT ,PA : the line passing through T and PA.
vT+T : the vertical line passing through 2T .
vT+PA : the vertical line passing through T + PA.
λT ,T : the slope of the tangent line lT ,T .
λT ,PA : the slope of the line lT ,PA .

exponent using cyclotomic polynomial Φk as

(pk − 1)/r = (pk/2 − 1) · (pk/2 + 1)/Φk(p) · Φk(p)/r . (2.25)

The 1st two terms of the right part are denoted as easy part since it can be
easily calculated by Frobenius mapping and one inversion in affine coordi-
nates. The last term is called the hard part which mostly affects computation
performance.

2.8 Summary

This chapter defined the related mathematical fundamentals and introduced
the notations for the subsequent chapters.
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Chapter 3

Mapping over Quartic and Sextic
Twisted KSS Curves

3.1 Introduction

3.1.1 Background and Motivation

In Ate-based pairing with KSS curve, pairing computations are done in higher
degree extension field Fpk . However, KSS curves defined over Fp18 have the
sextic twisted isomorphic rational point group defined over Fp3 and KSS
curves defined over Fp16 have the quartic twisted isomorphism over Fp4 .
Therefore we can execute computations in the subfield Fpk/d where d is the
twist degree. Exploiting such a property, different arithmetic operations of
Ate-based pairing can be efficiently performed in G2. However, performing
elliptic curve operations in small extension field brings security issue since
they are vulnerable to small subgroup attack [LL97]. Recently Barreto et al.
[Bar+15] have studied the resistance of KSS-18 curves to small subgroup at-
tacks. Such a resistible KSS-16 curve is also studied by Loubna et al. [GF16a]
at the 192-bit security level. Therefore isomorphic mapping of KSS-18 and
KSS-16 curves and implementing arithmetic operation can be done securely
in twisted subfield curves for 192-bit security level. This chapter has mainly
focused on isomorphic mapping of G2 rational points from extension field
Fpk to its twisted (sextic and quartic) subfield Fpk/d and its reverse procedure
for both KSS-18 and KSS-16 curves.

The advantage of such isomorphic mapping is examined by performing scalar
multiplication on G2 ⊂ E(Fpk ) rational point since scalar multiplication is re-
quired repeatedly in the cryptographic calculation. Three well-known scalar
multiplication algorithms are considered for the comprehensive experimen-
tal implementation named as the binary method, Montgomery ladder, and
sliding-window method. This chapter has considered subfield twisted curve
of both KSS-16 and KSS-18 curve, denoted as E′. KSS-18 curve E′ includes sex-
tic twisted isomorphic rational point group denoted as G′2 ⊂ E′(Fp3), whereas
for KSS-16 curve E′ contains the quartic twisted isomorphic rational point
group denoted as G′2 ⊂ E′(Fp4). Then the proposed mapping technique is ap-
plied to map rational points of G2 to its isomorphic G′2. After that, the scalar
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multiplication is performed in G′2 and then resulted points are re-mapped to
G2.

The experiment result shows that efficiency of scalar multiplication is in-
creased by more than 20 to 10 times in subfield twisted curve E′ than scalar
multiplication in E(Fp18) and E(Fp16) respectively without applying the pro-
posed mapping. The mapping and remapping for sextic twisted curves re-
quire one bitwise shifting in Fp , one Fp3 inversion which can be pre-computed
and one Fp multiplication; hence the sextic twisted mapping procedure has
no expensive arithmetic operation. On the other hand, quartic twisted map-
ping requires no arithmetic operation; instead, it needs some attention since
the elliptic curve doubling in the twisted curve has a tricky part. The exper-
iment also reveals that sextic twist is preferable since it gives better perfor-
mance than quartic twist. Performance of such isomorphic mapping can be
fully realized when it is applied in some pairing-based protocols. It is evi-
dent that the efficiency of Ate-based pairing protocols depends not only on
improved scalar multiplication but also on efficient Miller’s algorithm and
final exponentiation implementation.

3.1.2 Related Works

Pairings are often found in certain extension field Fpk , where p is the prime
number, also known as characteristics of the field and the minimum exten-
sion degree k is called embedding degree. The rational points E(Fpk ) are de-
fined over a specific pairing-friendly curve E of an embedded extension field
of degree k . In [Ara+13], Aranha, et al. have presented pairing calculation for
192-bit security level where KSS curve of embedding degree 18 is regarded
as one of the suitable candidates for 192-bit security level. Recently Zhang et
al. [ZL12] have shown that the KSS curve of embedding degree 16 is more
suitable for 192-bit security level. Therefore this chapter has considered KSS
pairing-friendly curves of embedding degree k = 16 and 18.

3.1.3 Contribution

Implementing asynchronous pairing operation on a certain pairing-friendly
non-supersingular curve requires two rational points typically denoted as P
andQ . Generally, P is spotted on the curve E(Fp), defined over the prime field
Fp and Q is placed in a group of rational points on the curve E(Fpk ), defined
over Fpk , where k is the embedding degree of the pairing-friendly curve. In the
case of Kachisa-Schaefer-Scott (KSS) pairing-friendly curve family, k ≥ 16.
Therefore performing pairing calculation on such curves requires calculat-
ing elliptic curve operations in the higher degree extension field, which is
regarded as one of the major bottlenecks to the efficient pairing operation.
However, there exists a twisted curve of E(Fpk ), denoted as E′(Fpk/d ), whered is
the twist degree, on which calculation is faster than the k-th degree extension
field. Rational points group defined over such a twisted curve has an isomor-
phic group in E(Fpk ). This chapter explicitly shows the mapping procedure
between the isomorphic groups in the context of Ate-based pairing over KSS
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family of pairing-friendly curves. This chapter considers quartic twist and sex-
tic twist for KSS curve of embedding degree k = 16 and k = 18 receptively. To
evaluate the performance enhancement of isomorphic mapping, this chapter
shows the experimental result by comparing the scalar multiplication. The
result shows that scalar multiplication in E(Fpk/d ) is 10 to 20 times faster than
scalar multiplication in E(Fpk ). It also shows that sextic twist is faster than
the quartic twist for KSS curve when parameter settings for 192-bit security
level are considered.

3.2 Fundamentals

Most of the fundamentals related to this chapter are already discussed in the
previous chapters. In this section, we briefly recall the KSS family of pairing-
friendly curves and twisted property of KSS curve.

3.2.1 Kachisa-Schaefer-Scott (KSS) Curve Family

In what follows, this chapter considers two curves of KSS family named as
KSS-16 of embedding degree k = 16 and KSS-18 of k = 18.

KSS-18 curve, defined over Fp18 , is given by the following equation

E/Fp18 : Y 2 = X 3 +b, b ∈ Fp and b , 0 , (3.1)

where X ,Y ∈ Fp18 . KSS-18 curve is parameterized by an integer variable u as
follows:

p(u) = (u8 + 5u7 + 7u6 + 37u5 + 188u4 + 259u3 + 343u2 + 1763u
+2401)/21, (3.2a)

r (u) = (u6 + 37u3 + 343)/343, (3.2b)
t(u) = (u4 + 16u + 7)/7. (3.2c)

The necessary condition for u is u ≡ 14 (mod 42) and the ρ value is ρ =
(log2 p/log2 r ) ≈ 1.33.

On the other hand, KSS-16 curve is defined over Fp16 , represented by the
following equation

E/Fp16 : Y 2 = X 3 + aX , (a ∈ Fp) and a , 0, (3.3)

where X ,Y ∈ Fp16 . Its characteristic p, Frobenius trace t and order r are given
the integer variable u as follows:

p(u) = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2 + 2398u
+3125)/980, (3.4a)

r (u) = u8 + 48u4 + 625, (3.4b)
t(u) = (2u5 + 41u + 35)/35, (3.4c)
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whereu is such thatu ≡ 25 or 45 (mod 70) and the ρ value is ρ = (log2 p/log2 r ) ≈
1.25.

3.2.2 Extension Field Construction for KSS Curves

Pairing-based cryptography requires performing the arithmetic operation in
extension fields of degree k ≥ 6 [SCA86]. We recall Section 4.2.1 for the
extension field construction of KSS-18 curve. Since this chapter uses two
curves of different extension degree, therefore, the construction process of
Fp18 and Fp16 are represented in the following as a tower of subfields.

3.2.2.1 Towering of Fp18 Extension Field

Let 3|(p − 1), where p is the characteristics of KSS-18 and c is a quadratic and
cubic non residue in Fp . In the context of KSS-18, where k = 18, Fp18 is con-
structed as tower field with irreducible binomial as follows:

Fp3 = Fp [i]/(i
3 − c),

Fp6 = Fp3[v]/(v2 − i),
Fp18 = Fp6[θ ]/(θ3 −v).

(3.5)

Here c = 2 is considered to be the best choice for efficient extension field
arithmetic. From the above towering construction, we can find that i = v2 =

θ6, where i is the basis element of the base extension field Fp3 .

3.2.2.2 Towering of Fp16 Extension Field

Let the characteristics p of KSS-16 is such that 4|(p −1) and z is a quadratic non
residue in Fp . By using irreducible binomials, Fp16 is constructed for KSS-16
curve as follows: 

Fp2 = Fp [α]/(α
2 − z),

Fp4 = Fp2[β]/(β2 − α),
Fp8 = Fp4[γ ]/(γ 2 − β),
Fp16 = Fp8[ω]/(ω2 −γ ),

(3.6)

Here z = 11 is chosen along with the value of mother parameter u as given in
Table 3.3.

3.2.3 G1, G2 and G3 Groups

In the context of pairing-based cryptography, especially on KSS curve, two
addititive rational point groups G1, G2 and a multiplicative group G3 of order
r are considered. From [Mor+14], G1, G2 and G3 are defined as follows:

G1 = E(Fpk )[r ] ∩Ker(πp − [1]),
G2 = E(Fpk )[r ] ∩Ker(πp − [p]),
G3 = F∗pk /(F

∗
pk )

r ,
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ξ : G1 ×G2 → G3, (3.7)

where ξ denotes Ate pairing. In the case of KSS curves, the above G1 is just
E(Fp). In what follows, rest of this chapter considers P ∈ G1 ⊂ E(Fp) and
Q ∈ G2 where G2 is a subset of E(Fp16) and E(Fp18) for KSS-16 and KSS-18
curves respectively.

3.2.4 Twist of KSS Curves

Let us consider performing the asynchronous type of pairing operation on
KSS curves. Let it be the Ate pairing ξ (P ,Q), one of the asynchronous vari-
ants. P is defined over the prime field Fp , and Q is typically placed on the k-
th degree extension field Fpk on the defined KSS curve. There exists a twisted
curve with a group of rational points of order r which are isomorphic to the
group where rational point Q ∈ E(Fpk ) belongs to. This subfield isomorphic
rational point group includes a twisted isomorphic point of Q , typically de-
noted as Q′ ∈ E′(Fpk/d ), where k is the embedding degree, and d is the twist
degree.

Since points on the twisted curve are defined over a smaller field than Fpk ,
therefore ECA and ECD become faster. However, when required in the pair-
ing calculation such as for line evaluation they can be quickly mapped to a
point on E(Fpk ). Defining such mapping and re-mapping techniques is the
main focus of this chapter. Since the pairing-friendly KSS-16 [KSS07] curve
has CM discriminant of D = 1 and 4|k ; therefore quartic twist is available. For
the sextic twist, the curve should have D = 3 and 6|k , which exists in KSS-18.

3.2.4.1 Sextic Twist of KSS-18 Curve

When the embedding degree k = 6e, where e is positive integer, sextic twist is
given as follows:

E : y2 = x3 +b, b ∈ Fp , (3.8)

E′6 : y2 = x3 +bν−1, (3.9)

where ν is a quadratic and cubic non residue in E(Fpe ) and 3|(pe − 1). For
KSS-18 curve e = 3. Isomorphism between E′6(Fpe ) and E(Fp6e ), is given as
follows:

ψ6 :

{
E′6(Fpe ) → E(Fp6e ),
(x ,y) 7→ (xν1/3,yν1/2).

(3.10)

3.2.4.2 Quartic Twist of KSS-16 Curve

The quartic twist of KSS-16 curve is given as follows:

E : y2 = x3 + ax , a ∈ Fp , (3.11)

E′4 : y2 = x3 + aσ−1x , (3.12)
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FIGURE 3.1: sextic twist in KSS-18 curve.

where σ is a quadratic non residue in E(Fp4) and 4|(p − 1). The Isomorphism
between E′4(Fp4) and E(Fp16), is given as follows:

ψ4 :

{
E′4(Fp4) → E(Fp16),
(x ,y) 7→ (xσ 1/2,yσ 3/4).

(3.13)

3.3 Isomorphic Map between Q and Q′

This section introduces the derived mapping procedure of G2 rational point
group to its twisted (quartic and sextic) isomorphic group G′2 for Ate-based
pairing for the considered KSS curves. The idea of isomorphic mapping for
KSS-18 is already defined in Section 5.3.3 of Chapter 5. In this section, we
recall this mapping for more comprehensive reading along with the newly
introduced idea of a quartic twist.

3.3.1 Sextic twisted Isomorphic Mapping between Q ∈ G2 ⊂

E(Fp18) and Q′ ∈ G′2 ⊂ E′(Fp3)

Figure 3.1 shows an overview of sextic twisted curve E′(Fp3) of E(Fp18).

Let us consider E be the KSS-18 curve in base field Fp3 and E′ is sextic twist
of E′ given as follows:

E : y2 = x3 +b, (3.14)
E′ : y2 = x3 +bi, (3.15)

where b ∈ Fp ; x ,y, i ∈ Fp3 and basis element i is the quadratic and cubic non
residue in Fp3 .

In the context of KSS-18 curve, let us consider a rational point Q ∈ G2 ⊂

E(Fp18). Q has a special vector representation with 18 Fp elements for each
xQ and yQ coordinate. Figure 5.2 shows the structure of the coefficients of
Q ∈ Fp18 and its sextic twisted isomorphic rational point Q′ ∈ Fp3 in KSS-18
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curve. Among 18 elements, there are 3 continuous nonzero Fp elements. The
others are zero. However, the set of these nonzero elements belongs to a Fp3

field.

This chapter considers parameter given in Table 3.2 for KSS-18 curve where
mother parameter u = 65-bit and characteristics p = 511-bit. In such consid-
eration, Q is given as Q = (Avθ ,Bv), showed in Figure 5.2, where A,B ∈ Fp3

and v and θ are the basis elements of Fp6 and Fp18 respectively.

Let us consider the sextic twisted isomorphic subfield rational point of Q as
Q′ ∈ G′2 ⊂ E′(Fp3). Considering x′ and y′ as the coordinates of Q′, we can map
the rational point Q = (Avθ ,Bv) to the rational point Q′ = (x′,y′) as follows.

Multiplying both side of Eq.(3.15) with θ−6, where i = θ6 and v = θ3.

E′ :
( y
θ3

)2
=

( x
θ2

)3
+b. (3.16)

θ−2 of Eq.(3.16) can be represented as follows:

θ−2 = i−1iθ−2,
= i−1θ4, (3.17a)

and multiplying i with both sides.

θ4 = iθ−2. (3.17b)

Similarly θ−3 can be represented as follows:

θ−3 = i−1iθ−3,
= i−1θ3. (3.17c)

Multiplying i with both sides of Eq.(3.17c) we get θ3 as,

θ3 = iθ−3, (3.17d)

3.3.1.1 Q to Q′ Mapping in KSS-18

Let us represent Q = (Avθ ,Bv) as follows:

Q = (Aθ4,Bθ3), where v = θ3. (3.18)

From Eq.(3.17b) and Eq.(3.17d), we substitute θ4 = iθ−2 and θ3 = iθ−3 in
Eq.(3.18) as follows:

Q = (Aiθ−2,Biθ−3), (3.19)

where Ai = x′ and Bi = y′ are the coordinates of Q′ = (x′,y′) ∈ Fp3 . Which im-
plies that we can map Q ∈ Fp18 to Q′ ∈ Fp3 by first selecting the 3 nonzero Fp

coefficients of each coordinate of Q . Then these nonzero Fp elements form a
Fp3 element. After that multiplying the basis element i with that Fp3 element,
we get the final Q′ ∈ Fp3 . From the structure of Fp18 , given in Eq.(3.5), this
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mapping has required no expensive arithmetic operation. Multiplication by
the basis element i in Fp3 can be done by 1 bitwise left shifting since c = 2 is
considered for towering in Eq.(3.5).

3.3.1.2 Q′ to Q Mapping in KSS-18

The reverse mapping Q′ = (x′,y′) ∈ Fp3 to Q = (Avθ ,Bv) ∈ Fp18 can be ob-
tained as from Eq.(3.17a), Eq.(3.17c) and Eq.(3.16) as follows:

xi−1θ4 = Avθ ,
yi−1θ3 = Bv,

which resembles that Q = (Avθ ,Bv). Therefore it means that multiplying
i−1 with the Q′ coordinates and placing the resulted coefficients in the corre-
sponding position of the coefficients in Q , will map Q′ to Q . This mapping
costs one Fp3 inversion of i which can be pre-computed and one Fp multipli-
cation.

3.3.2 Quartic Twisted Isomorphic Mapping

For quartic twisted mapping first we need to obtain certain ration point Q ∈
G2 ⊂ E(Fp16) of subgroup order r . One necessary condition for obtaining
such Q is r2 | #E(Fp16), where #E(Fp16) is the number of rational points in
E(Fp16). But it is carefully observed that #E(Fp16) is not divisible by r2 when r
is given by Eq.(3.4b). Therefore polynomial of r , given in [KSS07] is divided
as follows:

r (u) = (u8 + 48u4 + 625)/61250, (3.21)

to make it dive #E(Fp16) completely.

Let us consider the rational point Q ∈ G2 ⊂ E(Fp16) and its quartic twisted
rational point Q′ ∈ G2 ⊂ E′(Fp4). Rational point Q has a special vector repre-
sentation given in Table 3.1.

TABLE 3.1: Vector representation of Q = (xQ ,yQ ) ∈ Fp16 .

1 α β αβ γ αγ βγ αβγ ω αω βω αβω γω αγω βγω αβγω
xQ 0 0 0 0 n4 n5 n6 n7 0 0 0 0 0 0 0 0
yQ 0 0 0 0 0 0 0 0 0 0 0 0 n12 n13 n14 n15

From Table 3.1 co-ordinates ofQ = (xQ ,yQ ) ∈ Fp18 is obtained asQ = (xQ ,yQ ) =
(γxQ ′,ωγyQ ′) where xQ ′,yQ ′ are the co-ordinates of the rational point Q′ in the
twisted curve. Now let’s find the twisted curve of Eq.(3.3) in Fp4 as follows:

(ωγyQ ′)
2 = (γxQ ′)

3 + a(γxQ ′),

γ βy2
Q ′ = γ βx3

Q ′ + aγxQ ′,

y2
Q ′ = x3

Q ′ + aβ
−1xQ ′, multiplying (γ β)−1 both sides. (3.22)
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The twisted curve of E′ is obtained as y2 = x3 + aβ−1x where β is the basis
element in Fp4 . There is a tricky part that needs attention when calculating
the ECD in E′(Fp4) presented in the following equation.

λ = (3x2
Q ′ + a)(2yQ ′)−1, (3.23)

where a ∈ Fp4 , since a = aβ−1 and β ∈ Fp4 . The calculation of a = aβ−1 is given
as follows:

aβ−1 = (a + 0α + 0β + 0αβ)β−1,
= z−1aαβ where α2 = z (3.24)

Now let us denote the quartic mapping as follows:

Q = (xQ ,yQ ) = (γxQ ′,ωγyQ ′) ∈ G2 ⊂ E(Fp16) 7−→ Q′ = (xQ ′,yQ ′) ∈ G′2 ⊂ E′(Fp4).

For mapping from Q to Q′ no extra calculation is required. By picking the
non-zero coefficients of Q and placing it to the corresponding basis, the posi-
tion is enough to get Q′. Similarly, re-mapping from Q′ to Q can also be done
without any calculation instead multiplying with basis elements.

3.4 Result Analysis

The main focus of this proposed mapping is to find out the isomorphic map-
ping of two well-known pairing-friendly curves, KSS-16 and KSS-18. To
determine the advantage of the proposal, this chapter has implemented 3
well-known elliptic curve scalar multiplication method named as the binary
method, Montgomery ladder method, and sliding-window method.

For the experiment first we have applied the proposed mapping technique to
map rational pointQ ∈ G2 ⊂ E(Fpk ) to its isomorphic pointQ′ ∈ G′2 ⊂ E′(Fpk/d )

in both KSS curves. After that, we performed the scalar multiplication of
Q′. Then the resulted points are re-mapped to G2 in Fpk . Lets define this
strategy as with mapping. On the other hand, we have performed scalar
multiplication of Q without mapping which is denoted as w/o mapping.

In the experiment, after many careful searches, the mother parameter u is se-
lected to find out G2 rational point Q for KSS-18 curve. On the other hand,
for KSS-16 curve, parameters are given by Loubna et al. [GF16a]. In pairing-
based cryptosystems, both KSS-16 and KSS-18 are regarded as good candi-
dates for implementing 192-bit security. Therefore, while choosing parame-
ters for the experiment, this chapter has adopted the 192-bit security level.
But the main focus of this chapter is not to find out efficient parameters for
certain security levels. The primary purpose of the selected parameters is to
compare the twisted isomorphic mappings on the nominated curves at stan-
dard security levels.
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Table 3.2 and Table 3.3 show the parameters used in the experiment. Table
3.4 shows the experiment environment, used to evaluate the usefulness of the
proposed mapping. In the experiment, 100 scalar numbers of size less than
order r is generated randomly, and then scalar multiplication is calculated
for both cases. Average value of execution time in [ms] is considered for
comparison. Table 3.5 shows the settings considered during the experiment.
The comparative result is shown in Table 3.6.

The parameter of KSS curves are given in decimal value used for evaluating
the mapping efficiency in the experiment.

TABLE 3.2: KSS-18 parameters.

y2 = x3 + 11 bit size
u = 23058430092138432950 65

p =

380556013753003852484338059727997572538865139076812
970560732143111526346817611942575176069026109216559
8021019048849831001675531254097766654664544068613131

511

r =

4382120271066581232104344084955320374849908135951851
5268755202336574860904936668100704293777799119708528
7495125001

378

t =
4038507576637353290391809403638366577735736214369368
5385569578231170388739601

255

TABLE 3.3: KSS-16 parameters.

y2 = x3 + 17x bit size
u = 1266366845779935 51

p =

108235379323342249430403752839634417782861787922010
5831937449880701267192580688017668298801139820714475
1031509661694254867934067997516170939905853281

492

r =

10798667332013548302444682759479306650777434983428752
081956116352950853566245965258810783523700606376869560
4209229873

386

t =
186105672625714085505985902011330755941369113096635058
9745550013872708970

247

Analyzing Table 3.6, we can find that scalar multiplication on the sextic
twisted KSS-18 curve using the proposed mapping technique is more than
20 times faster than scalar multiplication without the proposed mapping. On
the other hand, in the quartic twisted KSS-16 curve, scalar multiplication be-
comes at most 10 times faster after applying proposed mapping techniques
than no mapping. Another critical difference is sextic twisted mapped points
take less time for scalar multiplication in both experiment environments.
Therefore we can undoubtedly say sextic twist over KSS-18 is more efficient
than the quartic twisted KSS-16 curve for implementing pairing operations.
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TABLE 3.4: Computational environment.

PC iPhone6s

CPU * 2.7 GHz Intel Core i5 Apple A9 Dual-core 1.84 GHz

Memory 16 GB 2 GB

OS Mac OS X 10.12.3 iOS 10.2.1

Compiler gcc 4.2.1 gcc 4.2.1

Programming Language C Objective-C, C

Library GNU MP 6.1.1[Gt15] GNU MP 6.1.1
*Only single core is used from two cores.

TABLE 3.5: Additional settings used in the experiment.

KSS-18 KSS-16

Number of sample s 100 100

Average bit size of s 377-bit 385-bit

Average hamming weight of s 187 193

Window size for sliding window method 4 4

No. of Pre-computed ECA in sliding window 14 14

Perceived level of security 192-bit 192-bit

In the experiment, we have used two execution environments; such as PC
and iPhone with different CPU frequencies. In both environments, only one
processor core is utilized. The ratio of CPU frequencies of iPhone and PC is
about 1.84/2.7 ≈ 0.68. The result shows that the ratio of the execution time
of the PC and iPhone without mapping for KSS-18 curve is around 0.62 to
0.66. Which is close to CPU frequency ratio. On the other hand, the ratio of
execution time with mapping of KSS-18 curve is also around 0.6. For KSS-16
curve, the ratio with no mapping case is more than 0.8, and for mapping case,
it is around 0.7 to 0.9. Since PC and iPhone have different processor architec-
tures, therefore its frequency ratio has a modest relation with the execution
time ratio. The ratio may also be affected by the other processes, running in
a specific environment during the experiment time.

The main focus of this experiment is to evaluate the acceleration ratio of
scalar multiplication by applying the proposed mapping on G2 rational point
group of the nominated KSS curves. The experiment does not focus on ef-
ficiently implementing scalar multiplication for a particular environment.
There are other pairing-friendly curves such as BLS-12, BLS-24 [FST10] where
the sextic twist is available. As our future work, we will try to apply the pro-
posed mapping on those curves.



42 Chapter 3. Mapping over Quartic and Sextic Twisted KSS Curves

TABLE 3.6: Comparative result of average execution time in
[ms] for scalar multiplication.

Average execution time [ms] comparison

KSS-18 KSS-16

PC iPhone 6s PC iPhone 6s

Binary with mapping 5.7 × 101 8.2 × 101 1.3 × 102 1.4 × 102

Binary w/o mapping 1.2 × 103 1.8 × 103 1.2 × 103 1.3 × 103

Montgomery ladder with mapping 7.1 × 101 1.1 × 102 1.7 × 102 1.8 × 102

Montgomery ladder w/o mapping 1.5 × 103 2.4 × 103 1.6 × 103 1.8 × 103

Sliding-window with mapping 4.9 × 101 7.5 × 101 1.0 × 102 1.3 × 102

Sliding-window w/o mapping 1.0 × 103 1.6 × 103 1.0 × 103 1.2 × 103

3.5 Summary

In this chapter, we have demonstrated isomorphic mapping procedure of G2
rational point group to its sextic and quartic twisted subfield isomorphic ra-
tional point group G′2 and its reverse mapping for KSS-18 and KSS-16 curves
in the context of Ate-based pairing.

We have also evaluated the advantage of such mapping by applying binary
scalar multiplication, Montgomery ladder, and sliding- window method on
twisted isomorphic rational points in G′2. Then result of scalar multiplication
in G′2 can accelerate the scalar multiplication in G2 ⊂ E(Fp18) by 20 to 10 times
than scalar multiplication of G2 rational point directly in Fp18 and Fp16 .
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Chapter 4

Improved Optimal-Ate Pairing
over KSS-18 Curve

4.1 Introduction

4.1.1 Background and Motivation

From the very beginning of the cryptosystems that utilizes elliptic curve pair-
ing; proposed independently by Sakai et al. [SK03] and Joux [Jou04], has
unlocked numerous novel ideas to researchers. Many researchers tried to
find out security protocol that exploits pairings to remove the need for certi-
fication by a trusted authority. In this consequence, several original pairing-
based encryption schemes such as ID-based encryption scheme by Boneh
and Franklin [BF01] and group signature authentication by Nakanishi et al.
[NF05] have come into the focus. In such outcome, Ate-based pairings such
as Ate [Coh+05], Optimal-Ate [Ver10], twisted Ate [Mat+07], R-ate [LLP09],
and u-Ate [Nog+08] pairings and their applications in cryptosystems have
caught much attention since they have achieved quite efficient pairing cal-
culation. However, it has always been a challenge for researchers to make
pairing calculation more efficient for being used practically as pairing calcu-
lation is regarded as a quite time-consuming operation.

4.1.2 General Notation

As aforementioned, pairing is a bilinear map from two rational point groups
G1 and G2 to a multiplicative group G3 [SCA86]. Bilinear pairing operation
consists of two predominant parts, named as Miller’s algorithm and final ex-
ponentiation. In the case of Ate-based pairing using KSS-18 pairing-friendly
elliptic curve of embedding degree k = 18, the bilinear map is denoted by
G1 × G2 → G3, The groups G1 ⊂ E(Fp), G2 ⊂ E(Fp18) and G3 ⊂ F∗

p18 and
p denotes the characteristic of Fp . The elliptic curve E is defined over the
extension field Fp18 . The rational point in G2 ⊂ E(Fp18) has a unique vec-
tor representation where out of 18 Fp coefficients, continuously 3 of them are
non-zero, and the others are zero. By utilizing such representation along with
the sextic twist and isomorphic mapping in the subfield of Fp18 , this chapter
has computed the elliptic curve doubling and elliptic curve addition in the
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Miller’s algorithm as Fp3 arithmetic without any explicit mapping from Fp18

to Fp3 .

4.1.3 Contribution

This chapter proposes pseudo 12-sparse multiplication in affine coordinates for
line evaluation in the Miller’s algorithm by because multiplying or dividing
the result of Miller’s loop calculation by an arbitrary non-zero Fp element
does not change the result as the following final exponentiation cancels the
effect of multiplication or division. Following the division by a non-zero
Fp element, one of the 7 non-zero Fp coefficients (which is a combination
of 1 Fp and 2 Fp3 coefficients) becomes 1 that yields calculation efficiency.
The calculation overhead caused by the division is canceled by isomorphic
mapping with a quadratic and cubic residue in Fp . This chapter does not
end by giving only the theoretic proposal of improvement of Optimal-Ate
pairing by pseudo 12-sparse multiplication. In order to evaluate the theoretic
proposal, this chapter shows some experimental results with recommended
parameter settings.

4.1.4 Related Works

Finding pairing friendly curves [FST06] and construction of efficient exten-
sion field arithmetic are the ground work for any pairing operation. Many re-
search has been conducted for finding pairing-friendly curves [BLS03; DEM05]
and efficient extension field arithmetic [BP01]. Some previous work on op-
timizing the pairing algorithm on pairing-friendly curve such Optimal-Ate
pairing by Matsuda et al. [Mat+07] on Barreto-Naehrig (BN) curve [BN06] is
already carried out. The previous work of Mori et al. [Mor+14] has shown
the pseudo 8-sparse multiplication to calculate Miller’s algorithm defined over
BN curve efficiently. Apart from it, Aranha et al. [Ara+13] has improved
Optimal-Ate pairing over KSS-18 curve for 192 bit security level by utiliz-
ing the relation t(u) − 1 ≡ u + 3p(u) mod r (u) where t(u) is the Frobenius trace
of KSS-18 curve, u is an integer also known as mother parameter, p(u) is the
prime number and r (u) is the order of the curve. This chapter has exclusively
focused on efficiently calculating the Miller’s loop of Optimal-Ate pairing
defined over KSS-18 curve [KSS07] for 192-bit security level by applying
pseudo 12-sparse multiplication technique along with other optimization ap-
proaches. The parameter settings recommended in [Ara+13] for 192-bit se-
curity on KSS-18 curve is used in the simulation implementation. However,
in recent work, Kim et al. [KB16] has suggested updating the key sizes asso-
ciated with pairing-based cryptography due to the development new algo-
rithm to solve discrete logarithm problem over the finite field. The parameter
settings of [Ara+13] does not end up at the 192-bit security level according
to [KB16]. However the parameter settings of [Ara+13] is primarily adapted
in this chapter in order to show the resemblance of the proposal with the
experimental result.
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4.2 Preliminaries

This section briefly reviews the fundamentals of towering extension field
with irreducible binomials [BP01], sextic twist, pairings and sparse multi-
plication [Mor+14] with respect to KSS-18 curve [KSS07].

4.2.1 KSS Curve of Embedding Degree k = 18

Kachisa-Schaefer-Scott (KSS) curve [KSS07] is a non supersingular pairing
friendly elliptic curve of embedding degrees k = {16, 18, 32, 36, 40}. This
chapter considers the KSS curve of embedding degree k = 18, in short, KSS-
18 curve. The equation of KSS-18 curve defined over Fp18 is given as follows:

E : y2 = x3 +b, b ∈ Fp (4.1)

together with the following parameter settings,

p(u) = (u8+5u7+7u6+37u5+188u4+259u3+343u2+1763u+2401)/21, (4.2-a)
r (u) = (u6+37u3+343)/343, (4.2-b)
t(u) = (u4+16u+7)/7, (4.2-c)

where b , 0, x ,y ∈ Fp18 and characteristic p (prime number), Frobenius trace t
and order r are obtained systematically by using the integer variable u, such
that u ≡ 14 (mod 42).

4.2.2 Towering Extension Field

In extension field arithmetic, higher level computations can be improved by
towering. In towering, higher degree extension field is constructed as a poly-
nomial of lower degree extension fields. Since KSS-18 curve is defined over
Fp18 , this chapter has represented extension field Fp18 as a tower of sub-fields
to improve arithmetic operations. In some previous works, such as Bailey et
al. [BP01] explained tower of extension by using irreducible binomials. In
what follows, let (p − 1) be divisible by 3, and c is a certain quadratic and
cubic non-residue in Fp . Then for KSS-18-curve [KSS07], where k = 18, Fp18

is constructed as tower field with irreducible binomial as follows:
Fp3 = Fp[i]/(i

3 − c),

Fp6 = Fp3[v]/(v2 − i),

Fp18 = Fp6[θ ]/(θ3 −v).

(4.3)

Here isomorphic sextic twist of KSS-18 curve is available in the base exten-
sion field Fp3 where the original curve is defined over Fp18
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4.2.3 Sextic Twist of KSS-18 Curve

Let z be a certain quadratic and cubic non residue in Fp3 . The sextic twisted
curve E′ of KSS-18 curve E (Eq.(4.1)) and their isomorphic mapping ψ6 are
given as follows:

E′ : y2 = x3 +bz, b ∈ Fp

ψ6 : E′(Fp3)[r ] 7−→ E(Fp18)[r ] ∩Ker(πp − [p]),

(x ,y) 7−→ (z−1/3x , z−1/2y) (4.4)

where Ker(·) denotes the kernel of the mapping. Frobenius mapping πp for
rational point is given as

πp : (x ,y) 7−→ (xp ,yp). (4.5)

The order of the sextic twisted isomorphic curve #E′(Fp3) is also divisible by
the order of KSS-18 curve E defined over Fp denoted as r . Extension field
arithmetic by utilizing the sextic twisted subfield curve E′(Fp3) based on the
isomorphic twist can improve pairing calculation. In this chapter, E′(Fp3)[r ]
shown in Eq.(4.4) is denoted as G′2.

4.2.4 Isomorphic Mapping between E(Fp) and Ê(Fp)

Let us consider Ê(Fp) is isomorphic to E(Fp) and ẑ as a quadratic and cubic
residue in Fp . Mapping between E(Fp) and Ê(Fp) is given as follows:

Ê : y2 = x3 +bẑ,
Ê(Fp)[r ] 7−→ E(Fp)[r ],

(x ,y) 7−→ (ẑ−1/3x , ẑ−1/2y),

where
ẑ, ẑ−1/2, ẑ−1/3 ∈ Fp

.

4.2.5 Pairing over KSS-18 Curve

As described earlier bilinear pairing requires two rational point groups to
be mapped to a multiplicative group. In what follows, Optimal-Ate pairing
over KSS-18 curve of embedding degree k = 18 is described as follows.

4.2.5.1 Ate Pairing

Let us consider the following two additive groups as G1 and G2 and multi-
plicative group as G3. The Ate pairing α is defined as follows:

G1 = E(Fpk )[r ] ∩Ker(πp − [1]),
G2 = E(Fpk )[r ] ∩Ker(πp − [p]).
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α : G2 ×G1 −→ F′
pk
/(F∗

pk
)r . (4.6)

where G1 ⊂ E(Fp) and G2 ⊂ E(Fp18) in the case of KSS-18 curve.

Let P ∈ G1 and Q ∈ G2, Ate pairing α(Q , P) is given as follows:

α(Q , P) = ft−1,Q (P)
pk−1
r , (4.7)

where ft−1,Q (P) symbolize the output of Miller’s algorithm. The bilinearity of
Ate pairing is satisfied after calculating the final exponentiation. It is noted
that the improvement of final exponentiation is not the focus of this chap-
ter. Several works [STO06; Sco+09] have been already done for efficient final
exponentiation.

4.2.5.2 Optimal-Ate Pairing

The previous work of Aranha et al. [Ara+13] has mentioned about the re-
lation t(u) − 1 ≡ u + 3p(u) mod r (u) for Optimal-Ate pairing. Exploiting the
relation, Optimal-Ate pairing on the KSS-18 curve is defined by the follow-
ing representation.

(Q , P) = (fu,Q · f
p
3,Q · l[u]Q ,[3p]Q )

p18−1
r , (4.8)

where u is the mother parameter. The calculation procedure of Optimal-Ate
pairing is shown in Algorithm 7. In what follows, the calculation steps from
1 to 5 shown in Algorithm 7 is identified as Miller’s loop. Step 3 and 5 are line
evaluation along with elliptic curve doubling and addition. These two steps
are key steps to accelerate the loop calculation. As an acceleration technique
pseudo 12-sparse multiplication is proposed in this chapter.

4.2.6 Sparse multiplication

In the previous work, Mori et al. [Mor+14] have substantiated the pseudo
8-sparse multiplication for BN curve. Adapting affine coordinates for rep-
resenting rational points, we can apply Mori’s work in the case of KSS-18
curve. The doubling phase and addition phase in Miller’s loop can be car-
ried out efficiently by the following calculations. Let P = (xP ,yP ), T = (x ,y)
andQ = (x2,y2) ∈ E

′(Fp3) be given in affine coordinates, and letT +Q = (x3,y3)

be the sum of T and Q .

4.2.6.1 Step 3: Elliptic curve doubling phase (T = Q)

A = 1
2y ,B = 3x2,C = AB,D = 2x ,x3 = C

2 −D,

E = Cx −y,y3 = E −Cx3, F = CxP ,
lT ,T (P) = yP + Ev + Fθ = yP + Ev −CxPθ , (4.9)
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where xP = −xP will be pre-computed. Here lT ,T (P) denotes the tangent line
at the point T .

4.2.6.2 Step 5: Elliptic curve addition phase (T , Q)

A = 1
x2−x

,B = y2 −y,C = AB,D = x + x2,x3 = C
2 −D,

E = Cx −y,y3 = E −Cx3, F = CxP ,
lT ,Q (P) = yP + Ev + Fθ = yP + Ev −CxPθ , (4.10)

where xP = −xP will be pre-computed. Here lT ,Q (P) denotes the tangent line
between the point T and Q .

Analyzing Eq.(4.9) and Eq.(4.10), we get that E and CxP are calculated in
Fp3 . After that, the basis element 1, v and θ identifies the position of yP ,
E and CxP in Fp18 vector representation. Therefore vector representation of
lψ6(T ),ψ6(T )(P) ∈ Fp18 consists of 18 coefficients. Among them at least 11 coef-
ficients are equal to zero. In the other words, only 7 coefficients yP ∈ Fp ,
CxP ∈ Fp3 and E ∈ Fp3 are perhaps to be non-zero. lψ6(T ),ψ6(Q)(P) ∈ Fp18 also has
the same vector structure. Thus, the calculation of multiplying lψ6(T ),ψ6(T )(P) ∈
Fp18 or lψ6(T ),ψ6(Q)(P) ∈ Fp18 is called sparse multiplication. In the above men-
tioned instance especially called 11-sparse multiplication. This sparse multi-
plication accelerates Miller’s loop calculation as shown in Algorithm 7. This
chapter comes up with pseudo 12-sparse multiplication.

Algorithm 7: Optimal-Ate pairing on KSS-18 curve.
Input: u, P ∈ G1,Q ∈ G′2
Output: (Q , P)

1 f ← 1,T ← Q
2 for i = blog2(u)c downto 1 do
3 f ← f 2 · lT ,T (P), T ← [2]T
4 if u[i] = 1 then
5 f ← f · lT ,Q (P), T ← T +Q

6 f1 ← f
p
3,Q , f ← f · f1

7 Q1 ← [u]Q , Q2 ← [3p]Q
8 f ← f · lQ1,Q2(P)

9 f ← f
p18−1

r

10 return f

4.3 Improved Optimal-Ate Pairing for KSS-18 Curve

In this section, we describe the main proposal. Before going to the details,
at first, we give an overview of the improvement procedure of Optimal-Ate
pairing in KSS-18 curve. The following two ideas are proposed in order to
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apply 12-sparse multiplication on Optimal-Ate pairing on KSS-18 curve effi-
ciently.

1. In Eq.(4.9) and Eq.(4.10) among the 7 non-zero coefficients, one of the
non-zero coefficients is yP ∈ Fp . And yP remains uniform through
Miller’s loop calculation. Thereby dividing both sides of those Eq.(4.9)
and Eq.(4.10) byyP , the coefficient becomes 1 which results in a more ef-
ficient sparse multiplication by lψ6(T ),ψ6(T )(P) or lψ6(T ),ψ6(Q)(P). This chapter
calls it pseudo 12-sparse multiplication.

2. Division by yP in Eq.(4.9) and Eq.(4.10) causes a calculation overhead
for the other non-zero coefficients in the Miller’s loop. To cancel this
additional cost in Miller’s loop, the map introduced in Eq.(4.2.4) is ap-
plied.

It is to be noted that this chapter doesn’t focus on making final exponentia-
tion efficient in Miller’s algorithm since many efficient algorithms are avail-
able. From Eq.(4.9) and Eq.(4.10) the above mentioned ideas are introduced
in details.

4.3.1 Pseudo 12-sparse Multiplication

As said before yP shown in Eq.(4.9) is a non-zero elements in Fp . Thereby,
dividing both sides of Eq.(4.9) by yP we obtain as follows:

y−1
P lT ,T (P) = 1 + Ey−1

P v −C(xPy
−1
P )θ . (4.11)

Replacing lT ,T (P) by the above y−1
P lT ,T (P), the calculation result of the pair-

ing does not change, since f inal exponentiation cancels y−1
P ∈ Fp . One of

the non-zero coefficients becomes 1 after the division by yP , which results
in more efficient vector multiplications in Miller’s loop. This chapter calls it
pseudo 12 − sparse multiplication. Algorithm 8 introduces the detailed calcu-
lation procedure of pseudo 12-sparse multiplication.

4.3.2 Line Calculation in Miller’s Loop

The comparison of Eq.(4.9) and Eq.(4.11) shows that the calculation cost of
Eq.(4.11) is little bit higher than Eq.(4.9) for Ey−1

P . The cancellation process of
xPy
−1
P terms by utilizing isomorphic mapping is introduced next. The xPy

−1
P

and y−1
P terms are pre-computed to reduce execution time complexity. The

map introduced in Eq.(4.2.4) can find a certain isomorphic rational point
P̂(xP̂ ,yP̂ ) ∈ Ê(Fp) such that

xP̂y
−1
P̂
= 1. (4.12)

Here the twist parameter z of Eq.(4.4) is considered to be ẑ = (xPy
−1
P )

6 of
Eq.(4.2.4), where ẑ is a quadratic and cubic residue in Fp and Ê denotes the
KSS-18 curve defined by Eq.(4.2.4). From the isomorphic mapping Eq.(4.4),
such z is obtained by solving the following equation considering the input
P(xP ,yP ).

z1/3xP = z1/2yP , (4.13)
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Algorithm 8: Pseudo 12-sparse multiplication.
Input: a,b ∈ Fp18

a = (a0 + a1θ + a2θ
2) + (a3 + a4θ + a5θ

2)v, b = 1 +b1θ +b3v
where ai ,bj , ci ∈ Fp3(i = 0, · · ·, 5, j = 1, 3)
Output: c = ab = (c0 + c1θ + c2θ

2) + (c3 + c4θ + c5θ
2)v ∈ Fp18

1 c1 ← a0 ×b1, c5 ← a2 ×b3, t0 ← a0 + a2, S0 ← b1 +b3
2 c3 ← t0 × S0 − (c1 + c5)

3 c2 ← a1 ×b1, c6 ← a3 ×b3, t0 ← a1 + a3
4 c4 ← t0 × S0 − (c2 + c6)

5 c5 ← c5 + a4 ×b1, c6 ← c6 + a5 ×b1
6 c7 ← a4 ×b3, c8 ← a5 ×b3
7 c0 ← c6 × i
8 c1 ← c1 + c7 × i
9 c2 ← c2 + c8 × i

10 c ← c + a

11 return c = (c0 + c1θ + c2θ
2) + (c3 + c4θ + c5θ

2)v

Afterwards the P̂(xP̂ ,yP̂ ) ∈ Ê(Fp) is given as

P̂(xP̂ ,yP̂ ) = (x
3
Py
−2
P ,x3

Py
−2
P ). (4.14)

As the x and y coordinates of P̂ are the same, xP̂y
−1
P̂
= 1. Therefore, corre-

sponding to the map introduced in Eq.(4.2.4), first mapping not only P to P̂
shown above but also Q to Q̂ shown below.

Q̂(xQ̂ ,yQ̂ ) = (x
2
Py
−2
P xQ ,x3

Py
−3
P yQ ). (4.15)

When we define a new variable L = (x−3
P y2

P ) = y−1
P̂

, the line evaluations,
Eq.(4.9) and Eq.(4.10) become the following calculations. In what follows,
let P̂ = (xP̂ ,yP̂ ) ∈ E(Fp), T = (x ,y) and Q = (x2,y2) ∈ E′(Fp3) be given in affine
coordinates and let T +Q = (x3,y3) be the sum of T and Q .

4.3.2.1 Step 3: Doubling Phase (T = Q)

A = 1
2y ,B = 3x2,C = AB,D = 2x ,x3 = C

2 −D,
E = Cx −y,y3 = E −Cx3,

l̂T ,T (P) = y
−1
P lT ,T (P) = 1 + ELv −Cθ , (4.16)

where L = y−1
P̂

will be pre-computed.
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4.3.2.2 Step 5: Addition Phase (T , Q)

A = 1
x2−x

,B = y2 −y,C = AB,D = x + x2,x3 = C
2 −D,

E = Cx −y,y3 = E −Cx3,
l̂T ,Q (P) = y

−1
P lT ,Q (P) = 1 + ELv −Cθ , (4.17)

where L = y−1
P̂

will be pre-computed.

As we compare the above equation with to Eq.(4.9) and Eq.(4.10), the third
term of the right-hand side becomes simple since xP̂y

−1
P̂
= 1.

In the above procedure, calculating P̂ , Q̂ and L by utilizing x−1
P and y−1

P will
create some computational overhead. Despite that, the calculation becomes
efficient as it is performed in the isomorphic group together with pseudo 12-
sparse multiplication in the Miller’s loop. Experimental results in the next
section present improvement of Miller’s loop calculation.

4.4 Cost Evaluation and Experimental Result

This section shows some experimental results with evaluating the calcula-
tion costs in order to the signify efficiency of the proposal. It is to be noted
here that in the following discussions “Previous method” means Optimal-
Ate pairing with no use the sparse multiplication, “11-sparse multiplica-
tion” means Optimal-Ate pairing with 11-sparse multiplication and “Pro-
posed method” means Optimal-Ate pairing with Pseudo 12-sparse multipli-
cation.

4.4.1 Parameter Settings and Computational Environment

In the experimental simulation, this chapter has considered the 192-bit se-
curity level for KSS-18 curve. Table 4.1 shows the parameters settings sug-
gested in [Ara+13] for 192 bit security over KSS-18 curve. However, this
parameter settings does not necessarily comply with the recent suggestion of
key size by Kim et al. [KB16] for 192-bit security level. The sole purpose to
use this parameter settings in this chapter is to compare the literature with
the experimental result.

TABLE 4.1: Parameters for Optimal-Ate pairing over KSS-18
curve.

Security level u p(u) [bit] c Eq.(4.3) b Eq.(4.1)

192-bit −264 − 251 + 246 + 212 508 2 2
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To evaluate the operational cost and to compare the execution time of the
proposal based on the recommended parameter settings, the following com-
putational environment is considered.Table 4.2 shows the computational en-
vironment.

TABLE 4.2: Computing environment of Optimal-Ate pairing
over KSS-18 curve.

CPU Core i5 6600

Memory 8.00GB

OS Ubuntu 16.04 LTS

Library GMP 6.1.0 [Gt15]

Compiler gcc 5.4.0

Programming language C

4.4.2 Cost Evaluation

Let us consider m, s,a and i to denote the times of multiplication, squaring,
addition and inversion ∈ Fp . Similarly, m̃, s̃, ã and ĩ denote the number of
multiplication, squaring, addition and inversion ∈ Fp3 and m̂, ŝ, â and î to
denote the count of multiplication, squaring, addition and inversion ∈ Fp18

respectively. Table 4.3 and Table 4.4 show the calculation costs with respect
to operation count.

TABLE 4.3: Operation count of line evaluation.

E(Fp18) Operations Previous method 11-sparse multiplication Proposed method

Precomputation - ã 6m̃ + 2ĩ

Doubling + lT ,T (P) 9â + 6m̂ + 1î 7ã + 6m̃ + 1ĩ 7ã + 6m̃ + 1ĩ

Addition + lT ,Q (P) 8â + 5m̂ + 1î 6ã + 5m̃ + 1ĩ 6ã + 5m̃ + 1ĩ

TABLE 4.4: Operation count of multiplication.

Fp18 Operations Previous method 11-sparse multiplication Proposed method

Vector Multiplication 30ã + 18m̃ + 8a 1â + 11ã + 10m̃ + 3a + 18m 1â + 11ã + 10m̃ + 3a

By analyzing the Table 4.4 we can find that 11-sparse multiplication requires
18 more multiplication in Fp than pseudo 12-sparse multiplication.

4.4.3 Experimental Result

Table 4.5 shows the calculation times of Optimal-Ate pairing respectively.
In this execution time count, the time required for the final exponentiation
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is excluded. The results (time count) are the averages of 10000 iterations
on PC respectively. According to the experimental results, pseudo 12-sparse
contributes to a few percent accelerations of 11-sparse.

TABLE 4.5: Calculation time of Optimal-Ate pairing at the 192-
bit security level.

Operation Previous method 11-sparse multiplication Proposed method

Doubling+ lT ,T (P) [µs] 681 44 44

Addition+ lT ,Q (P) [µs] 669 39 37

Multiplication [µs] 119 74 65

Miller’s Algorithm [ms] 524 142 140

4.5 Summary

This chapter has proposed pseudo 12-sparse multiplication for accelerating
Optimal-Ate pairing on KSS-18 curve. According to the calculation costs and
experimental results are shown in this chapter, the proposed method can cal-
culate Optimal-Ate pairing more efficiently.

Acceleration of a pairing calculation of an Ate-based pairing such as Optimal-
Ate pairing depends not only on the optimization of Miller algorithm’s loop
parameter but also on efficient elliptic curve arithmetic operation and effi-
cient final exponentiation. This chapter has proposed a pseudo 12-sparse mul-
tiplication to accelerate Miller’s loop calculation in KSS-18 curve by utiliz-
ing the property of rational point groups. Besides, this chapter has shown
an enhancement of the elliptic curve addition and doubling calculation in
Miller’s algorithm by applying implicit mapping of its sextic twisted iso-
morphic group. Moreover, this chapter has implemented the proposal with
recommended security parameter settings for KSS-18 curve at the 192-bit se-
curity level. The simulation result shows that the proposed pseudo 12-sparse
multiplication gives more efficient Miller’s loop calculation of an Optimal-Ate
pairing operation along with recommended parameters than pairing calcu-
lation without sparse multiplication.
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Chapter 5

Improved G2 Scalar Multiplication
over KSS-18 Curve

5.1 Introduction

5.1.1 Background and Motivation

Recall that, pairing-based cryptography has attracted many researchers since
Sakai et al. [SK03] and Joux et al. [Jou04] independently proposed a cryp-
tosystem based on elliptic curve pairing. This has encouraged to invent sev-
eral innovative pairing-based cryptographic applications such as broadcast
encryption [BGW05] and group signature authentication [BBS04], that has
increased the popularity of pairing-based cryptographic research.

However, using pairing-based cryptosystems in the industrial state is still re-
stricted by its expensive operational cost concerning time and computational
resources in a practical case. In order to make it practical, several pairing
techniques such as Ate [Coh+05], Optimal-Ate [Ver10], twisted Ate [Mat+07],
χ -Ate [Nog+08] and subfield twisted Ate [DSD07] pairings have gained much
attention since they have achieved quite efficient pairing calculation in cer-
tain pairing friendly curve. Researchers continue to find an efficient way to
implement pairing to make it practical enough for industrial standardization.

In such consequences, this chapter focuses on a peripheral technique of Ate-
based pairings that is scalar multiplication defined over Kachisa-Schaefer-
Scott (KSS) curve [KSS07] of embedding degree 18. Scalar multiplication over
higher degree rational point groups is often regarded as the bottleneck for
faster pairing-based cryptography.

As aforementioned, pairing is a bilinear map of two rational point groups G1
and G2 to a multiplicative group G3 [SCA86]. The typical notation of pairing
is G1 ×G2 → G3. In Ate-based pairing, G1, G2 and G3 are defined as:

G1 = E(Fpk )[r ] ∩Ker(πp − [1]),
G2 = E(Fpk )[r ] ∩Ker(πp − [p]),
G3 = F∗pk /(F

∗
pk )

r ,

α : G1 ×G2 → G3,
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where α denotes Ate pairing. Pairings are often defined over specific exten-
sion field Fpk , where p is the prime number, also known as characteristics,
and k is the minimum extension degree for pairing also called embedding de-
gree. The set of rational points E(Fpk ) are defined over a specific pairing-
friendly curve of an embedded extension field of degree k. This chapter has
considered Kachisa-Schaefer-Scott (KSS) [KSS07] pairing friendly curves of
emebdding degree k = 18 described in [FST06].

5.1.2 Contribution

Scalar multiplication is often considered to be one of the most time-consuming
operations in the cryptographic scene. Efficient scalar multiplication is one
of the critical factors for making the pairing practical over KSS-18 curve.

This chapter focuses on efficiently performing scalar multiplication on ratio-
nal points defined over rational point group G2 by scalar s since scalar mul-
tiplication is required repeatedly in the cryptographic calculation. However,
in asymmetric pairing such as Ate-based pairing, scalar multiplication of G2
rational points is essential as no mapping function is explicitly given between
G1 to G2. By the way, as shown in the definition, G1 is a set of rational points
defined over the prime field, and there are several pieces of research [Sak+08]
for efficient scalar multiplication in G1.

The typical approach to accelerate scalar multiplication are log-step algo-
rithm such as binary and non-adjacent form (NAF) methods, but the more
efficient approach is to use Frobenius mapping in the case of G2 that is de-
fined over Fpk . Moreover when a sextic twist of the pairing-friendly curve
exists, then we apply skew Frobenius map on the isomorphic sextic-twisted
subfield rational points. Such a technique will reduce the computational cost
to a great extent.

In this chapter, we have exploited the sextic twisted property of KSS-18 curve
and utilized skew Frobenius map to reduce the computational time of scalar
multiplication on G2 rational point. Utilizing the relation z ≡ −3p + p4 mod
r ,1 derived by Aranha et al.,[Ara+13] and the properties of G2 rational point,
the scalar can be expressed as z-adic representation. Together with skew
Frobenius mapping and z-adic representation the scalar multiplication can be
further accelerated. We have utilized this relation to construct z-adic repre-
sentation of scalar s which is introduced in Section 5.3.4. Besides with Frobe-
nius mapping and z-adic representation of s, we applied the multi-scalar
multiplication technique to compute elliptic curve addition in parallel in the
proposed scalar multiplication. We have compared our proposed method
with three other well-studied methods named binary method, sliding-window
method, and non-adjacent form method. The comparison shows that our
proposed method is about 60 times faster than the plain implementations of
methods as mentioned above in execution time. The comparison also reveals

1z is the mother parameter of KSS-18 curve, and z is about six times smaller than the size
of order r .
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that the proposed method requires more than five times less elliptic curve
doubling than any of the compared methods.

5.1.3 Related Works

There are several works [Nog+09][Sak+08] on efficiently computing scalar
multiplication defined over Barreto-Naehrig[BN06] curve along with effi-
cient extension field arithmetic [BP98]. This chapter focuses on scalar multi-
plication on KSS-18 curve.

5.2 Preliminaries

In this section, we recall some already introduced preliminaries for a compre-
hensible understanding of the proposal. We will briefly review the elliptic
curve scalar multiplication. Throughout this chapter, p and k denote char-
acteristic and embedding extension degree, respectively. Fpk denotes k-the
extension field over prime field Fp and F∗pk denotes the multiplicative group
in Fpk .

5.2.1 Elliptic Curve

An elliptic curve [Was03] defined over Fp is generally represented by affine
coordinates [SCA86] as follows;

E/Fp : y2 = x3 + ax +b, (5.1)

where 4a3 + 27b2 , 0 and a,b ∈ Fp . A pair of coordinates x and y that satisfy
Eq.(5.1) are known as rational points on the curve. We refer to Section 2.6 of
Chapter 2 for the elliptic curve point operation (ECA, ECD) and the scalar
multiplication algorithms.

5.2.2 KSS Curve of Embedding Degree k = 18

We recall Section 4.2.1 from Chapter 4 for the definition of KSS-18 curve for
comprehensive understanding of the chapter. Here we change the mother
parameter notation as z. In what follows this chapter considers the KSS curve
of embedding degree k = 18 since it holds sextic twist. The equation of KSS
curve defined over Fp18 is given as follows:

E : Y 2 = X 3 +b, (b ∈ Fp), (5.2)
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where b , 0 and X ,Y ∈ Fp18 . Its characteristic p, Frobenius trace t and order r
are given systematically by using an integer variable z as follows:

p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3

+343z2 + 1763z + 2401)/21, (5.3a)
r (z) = (z6 + 37z3 + 343)/343, (5.3b)
t(z) = (z4 + 16z + 7)/7, (5.3c)

where z is such that z ≡ 14 (mod 42) and the ρ value is ρ = (log2 p/log2 r ) ≈
1.33.

In some previous work of Aranha et al. [Ara+13] and Scott et al. [Sco11]
has mentioned that the size of the characteristics p to be 508 to 511-bit with
order r of 384-bit for 192-bit security level. Therefore this chapter used pa-
rameter settings according to the suggestion of [Ara+13] for 192-bit security
on KSS-18 curve in the simulation implementation. In recent work, Kim et al.
[KB16] has suggested updating the key sizes in pairing-based cryptography
due to the development of a new discrete logarithm problem over the finite
field. The parameter settings used in this chapter does not completely end
up at the 192-bit security level according to [KB16]. However, the parameter
settings used in this chapter shows the resemblance of the proposal with the
experimental result.

5.2.3 Fp18 Extension Field Arithmetic

Pairing-based cryptography requires to perform an arithmetic operation in
extension fields of degree k ≥ 6[SCA86]. We recall Section 4.2.2 of Chapter 4
for Fp18 construction.

Let (p − 1) is divisible by 3 and c is a quadratic and cubic non residue in
Fp . In KSS curve [KSS07], where k = 18, Fp18 is constructed with irreducible
binomials by the following towering scheme.

Fp3 = Fp [i]/(i
3 − c), where c = 2 is the best choice,

Fp6 = Fp3[v]/(v2 − i),
Fp18 = Fp6[θ ]/(θ3 −v).

where the base extension field is Fp3 for the sextic twist of KSS-18 curve.

5.2.4 Frobenius Mapping of Rational Points in E(Fp18)

Let (x ,y) be certain rational point in E(Fp18). Frobenius map πp : (x ,y) 7→
(xp ,yp) is the p-th power of the rational point defined over Fp18 . Sakemi et al.
[Sak+08] showed an efficient scalar multiplication by applying skew Frobe-
nius mapping in the context of Ate-based pairing in BN curve of embedding
degree k = 12. In this chapter, we have utilized the skew Frobenius mapping
technique for efficient scalar multiplication for the KSS-18 curve.
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5.2.5 Sextic Twist of KSS-18 Curve

We recall Section 4.2.3 from Chapter 4 for the definition of sextic twist of
KSS-18 curve. Let the embedding degree k = 6e, where e is positive integer,
sextic twist is given as follows:

E : y2 = x3 +b, b ∈ Fp , (5.4)

E′6 : y2 = x3 +bu−1, (5.5)

where u is a quadratic and cubic non residue in E(Fpe ) and 3|(pe − 1). Isomor-
phism between E′6(Fpe ) and E(Fp6e ), is given as follows:

ψ6 :

{
E′6(Fpe ) → E(Fp6e ),
(x ,y) 7→ (xu1/2,yu1/2).

(5.6)

In context of Ate-based pairing for KSS curve of embedding degree 18, sextic
twist is considered to be the most efficient.

5.3 Improved Scalar Multiplication for G2

This section will introduce the proposal for efficient scalar multiplication of
G2 rational points defined over KSS curve of embedding degree k = 18 in
context of Ate-based pairing. An overview the proposed method is given
next before diving into the detailed procedure.

5.3.1 Overview of the Proposal

Figure 5.1 shows an overview of overall process of proposed scalar multipli-
cation. Rational point groups G1, G2 and multiplicative group G3 groups will

FIGURE 5.1: Overview of the proposed scalar multiplication for
KSS-18 curve.

be defined at the beginning. Then a rational point Q ∈ G2 ⊂ E(Fp18) will be
calculated. Q has a special vector representation with 18 Fp elements for each
coordinates. A random scalar s will be considered for scalar multiplication
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of [s]Q which is denoted as input in Figure 5.1. After that we will consider
an isomorphic map of rational point Q ∈ G2 ⊂ E(Fp18) to its sextic twisted
rational point Q′ ∈ G′2 ⊂ E′(Fp3). At the same time, we will obtain the z-adic
representation of the scalar s. Next, some rational points defined over E′(Fp3)

will be pre-computed by applying the skew Frobenius mapping. After that,
a multi-scalar multiplication technique will be applied to calculate the scalar
multiplication in parallel. The result of this scalar multiplication will be de-
fined over Fp3 . Finally, the result of the multi-scalar multiplication will be
re-mapped to a rational point in E(Fp18) to get the final result.

5.3.2 G1, G2 and G3 Groups

In the context of pairing-based cryptography, especially on KSS-18 curve,
three groups G1, G2, and G3 are considered. From [Mor+14], we define G1,
G2 and G3 as follows:

G1 = E(Fp18)[r ] ∩Ker(πp − [1]),
G2 = E(Fp18)[r ] ∩Ker(πp − [p]),
G3 = F∗p18/(F∗p18)

r ,

α : G1 ×G2 → G3, (5.7)

where α denotes Ate pairing. In the case of KSS-18 curve, G1, G2 are rational
point groups and G3 is the multiplicative group in Fp18 . They have the same
order r .

In context of KSS-18 curve, let us consider a rational point Q ∈ G2 ⊂ E(Fp18)

where Q satisfies the following relations,[
p + 1 − t

]
Q = O,[

t − 1
]
Q =

[
p
]
Q . (5.8)

[πp −p]Q = O,
πp(Q) = [p]Q . (5.9)

where [t − 1]Q = πp(Q), by substituting [p]Q in Eq.(5.8).

5.3.3 Isomorphic Mapping between Q and Q′

Let us consider E is the KSS-18 curve in base field Fp3 and E′ is sextic twist of
E given as follows:

E : y2 = x3 +b, (5.10)
E′ : y2 = x3 +bi, (5.11)

where b ∈ Fp ; x ,y, i ∈ Fp3 and basis element i is the quadratic and cubic non
residue in Fp3 .
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Rational point Q ∈ G2 ⊂ E(Fp18) has a special vector representation with 18
Fp elements for each xQ and yQ coordinates. Figure 5.2 shows the structure
of the coefficients of Q ∈ Fp18 and its sextic twisted isomorphic rational point
Q′ ∈ Fp3 in KSS-18 curve. Among 18 elements, there are 3 continuous nonzero

FIGURE 5.2: Q ∈ Fp18 and its sextic twisted isomorphic rational
point Q ′ ∈ Fp3 structure in KSS-18 curve.

Fp elements which belongs to a Fp3 element. The other coefficients are zero.
In this chapter, considering parameter settings given in Table 5.2 of section
4; Q is given as Q = (Avθ ,Bv), showed in Figure 5.2, where A,B ∈ Fp3 and v
and θ are the basis elements of Fp6 and Fp18 respectively.

Let us consider the sextic twisted isomorphic subfield rational point of Q as
Q′ ∈ G′2 ⊂ E′(Fp3) and x′ and y′ as the coordinates of Q′.

5.3.3.1 Mapping Q = (Avθ ,Bv) to the Rational Point Q′ = (x′,y′)

Let’s multiply θ−6 with both side of Eq.(5.11), where i = θ6 and v = θ3.

E′ :
( y
θ3

)2
=

( x
θ2

)3
+b. (5.12)

Now θ−2 and θ−3 of Eq.(5.12) can be represented as follows:

θ−2 = i−1θ4, (5.13a)
θ−3 = i−1θ3. (5.13b)



62 Chapter 5. Improved G2 Scalar Multiplication over KSS-18 Curve

Let us represent Q = (Avθ ,Bv) as follows:

Q = (Aθ4,Bθ3), where v = θ3. (5.14)

From Eq.(5.13a) and Eq.(5.13b) θ4 = iθ−2 and θ3 = iθ−3 is substituted in
Eq.(5.14) as follows:

Q = (Aiθ−2,Biθ−3), (5.15)

where Ai = x′ and Bi = y′ are the coordinates of Q′ = (x′,y′) ∈ Fp3 . From the
structure of Fp18 , given in Eq.(5.2.3), this mapping has required no expensive
arithmetic operation. Multiplication by the basis element i in Fp3 can be done
by 1 bit wise left shifting since c = 2 is considered for towering in Eq.(5.2.3).

5.3.4 z-adic Representation of Scalar s

In context of KSS-18 curve, properties of Q will be obtained to define the
Eq.(5.9) relation. Next, a random scalar s will be considered for scalar mul-
tiplication of [s]Q . Then (t − 1)-adic representation of s will be considered as
Figure 5.3. Here s will be divided into two smaller coefficients SH , SL where SL
denotes lower bits of s, will be nearly equal to the size of (t − 1). On the other
hand the higher order bits SH will be the half of the size of (t − 1). Next, z-adic
representation of SH and SL will be considered. Figure 5.4, shows the z-adic
representation from where we find that scalar s is divided into 6 coefficients
of z, where the size of z is about 1/4 of that of (t − 1) according to Eq.(5.3c).

Figure 5.3 shows (t − 1)-adic representation of scalar s.

FIGURE 5.3: (t − 1) -adic representation of scalar s.

Figure 5.4 shows the z-adic representation of scalar s. In the previous work
on Optimal-Ate pairing, Aranha et al. [Ara+13] derived a relation from the
parameter setting of KSS-18 curve as follows:

z + 3p −p4 ≡ 0 mod r , (5.16)

where z is the mother parameter of KSS-18 curve which is about six times
smaller than order r .
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FIGURE 5.4: z-adic and (t − 1)-adic representation of scalar s.

Since Q is mapped to its ismorphic sextic twisted rational point Q′, therefore
we can consider scalar multiplication [s]Q′ where 0 ≤ s < r . [s]Q′ will be
calculated in Fp3 and eventually the result will be mapped to Fp18 to get the
final result. From Eq.(5.3b) we know r is the order of KSS-18 curve where
[r ]Q = O. Here, the bit size of s is nearly equal to r . In KSS-18 curve t is 4/6
times of r . Therefore, let us first consider (t − 1)-adic representation of s as
follows:

s = SH (t − 1) + SL, (5.17)

where s will be separated into two coefficients SH and SL. SL will be nearly
equal to the size of (t − 1) and SH will be about half of (t − 1). In what follows,
z-adic representation of SH and SL is given as:

SH = s5 + s4,
SL = s3z

3 + s2z
2 + s1z + s0.

Finally s can be represented as 6 coefficients as follows:

s =
3∑

i=0

siz
i + (s4 + s5z)(t − 1),

s = (s0 + s1z) + (s2 + s3z)z
2 + (s4 + s5z)(t − 1). (5.18)

5.3.5 Reducing Elliptic Curve Doubling in [s]Q′

Let us consider a scalar multiplication of Q′ ∈ G′2 in Eq.(5.18) as follows:

[s]Q′ = (s0 + s1z)Q
′ + (s2 + s3z)z

2Q′ + (s4 + s5z)(t − 1)Q′. (5.19)
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In what follows, z2Q′, (t − 1)Q′ of Eq.(5.19) is denoted as Q′1 and Q′2 respec-
tively. From Eq.(5.16) and Eq.(5.9) we can derive the Q′1 as follows:

Q′1 = z2Q′,

= (9p2 − 6p5 +p8)Q′,
= 9π ′2(Q′) − 6π ′5(Q′) + π ′8(Q′). (5.20)

where π ′(Q′) is called the skew Frobenius mapping of rational point Q′ ∈
E′(Fp3). Eq.(5.20) is simplified as follows by utilizing the properties of cyclo-
tomic polynomial.

Q′1 = 8π ′2(Q′) − 5π ′5(Q′),

= π ′2(8Q′) − π ′5(5Q′). (5.21)

And from the Eq.(5.8) and Eq.(5.9), Q′2 is derived as,

Q′2 = π
′(Q′). (5.22)

Substituting Eq.(5.21) and Eq.(5.22) in Eq.(5.19), the following relation is ob-
tained.

s[Q′] = (s0 + s1z)Q
′ + (s2 + s3z)Q

′
1 + (s4 + s5z)Q

′
2. (5.23)

Using z ≡ −3p + p4 (mod r ) from Eq.(5.16), z(Q′) can be pre-computed as
follows:

z(Q′) = π ′(−3Q′) + π ′4(Q′). (5.24)

Table 5.1 shows all the pre-computed values of rational points defined over
Fp3 for the proposed method. Pre-computed rational points are denoted in-
side angular bracket such as < Q′ +Q′2 > in this chapter.

TABLE 5.1: 13 pre-computed values of rational points.

Pre-computed rational points Skew Frobenius mapped rational points

z(Q′)

Q′1 z(Q′1)

Q′2 z(Q′2)

Q′1 +Q
′
2 z(Q′1) + z(Q

′
2)

Q′ +Q′2 z(Q′) + z(Q′2)

Q′ +Q′1 z(Q′) + z(Q′1)

Q′ +Q′1 +Q
′
2 z(Q′) + z(Q′1) + z(Q

′
2)



5.3. Improved Scalar Multiplication for G2 65

5.3.6 Skew Frobenius Map of G2 Points in KSS-18 Curve

Similar to Frobenius mapping, skew Frobenius map is the p-th power over
the sextic twisted isomorphic rational points such as Q′ = (x′,y′) as follows:

π ′ : (x′,y′) 7→ (x′p ,y′p) (5.25)

The detailed procedure to obtain the skew Frobenius map of Q′ = (x′,y′) ∈
G′2 ⊂ E′(Fp3) is given bellow:

π ′(x′) = (x′)p(i)1−p(v)p−1(θ )p−1

= (x′)p(i)1−p(θ4)p−1

= (x′)p(i−1)pi(θp−1)4

= (x′)p(i−1)pi(i
p−1

6 )4 where θ6 = i

= (x′)p(i−1)pi(i
p−1

6 −1i)4

= (x′)p(i−1)pi(i3
p−7

6
3 )4i4

= (x′)p(i−1)pi(2
p−7
18 )42i where i3 = 2

= (x′)p(i−1)pi(2
2p−14

9 +1)i

= (x′)p(i−1)pi(2
2p−5

9 )i, (5.26a)

π ′(y′) = (y′)p(i)1−p(v)p−1

= (y′)p(i−1)pi(v6p−1
6 )

= (y′)p(i−1)pi(i3
p−1

6 )

= (y′)p(i−1)pi2
p−1

6 . (5.26b)

Here (i−1)pi, (2
2p−5

9 )i and 2
p−1

6 can be pre-computed.

5.3.7 Multi-Scalar Multiplication

Applying the the multi-scalar multiplication technique in Eq.(5.23) we can
efficiently calculate the scalar multiplication in Fp3 . Figure 5.5 shows an ex-
ample of this multiplication. Suppose in an arbitrary index, from left to right,
bit pattern of s1, s3, s5 is 101 and at the same index s0, s2, s4 is 111. Therefore
we apply the pre-computed points < z(Q′) + z(Q′2) > and < Q′ +Q′1 +Q

′
2 > as

ECA in parallel. Then we perform ECD and move to the right next bit index
to repeat the process until maximum length z-adic coefficient becomes zero.

As shown in Figure 5.5, during scalar multiplication, we are considering
3 pair of coefficients of z-adic representation as shown in Eq.(5.18). If we
consider 6-coefficients for parallelization, it will require 26 × 2 pre-computed
points. The chance of appearing each pre-computed point in the calculation
will be once that causes redundancy.
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FIGURE 5.5: Multi-scalar multiplication of s with Frobenius
mapping.

5.3.7.1 Re-mapping Rational Points from E′(Fp3) to E(Fp18)

After the multi-scalar multiplication, we need to remap the result to Fp18 . For
example let us consider re-mapping ofQ′ = (x′,y′) ∈ E′(Fp3) toQ = (Avθ ,Bv) ∈
E(Fp18). From Eq.(5.13a), Eq.(5.13b) and Eq.(5.12) it can be obtained as fol-
lows:

xi−1θ4 = Avθ ,
yi−1θ3 = Bv,

which resembles that Q = (Avθ ,Bv). Therefore it means that multiplying
i−1 with the Q′ coordinates and placing the resulted coefficients in the corre-
sponding position of the coefficients in Q , will map Q′ to Q . This mapping
costs one Fp3 inversion of i which can be pre-computed and one Fp multipli-
cation.

5.4 Simulation Result

This section shows the experimental result with the calculation cost. In the
experiment, we have compared the proposed method with three well-studied
methods of scalar multiplication named binary method, sliding-window method,
and non-adjacent form (NAF) method. The mother parameter z is selected
according to the suggestion of Scott et al. [Sco11] to obtain p = 508 ≈ 511-bit
and r = 376 ≈ 384-bit to simulate in 192-bit security level. Table 5.2 shows
the parameter settings considered for the simulation.
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TABLE 5.2: Parameter settings used in the experiment.

Defined KSS-18 curve y2 = x3 + 11

Mother parameter z 65-bit

Characteristics p(z) 511-bit

Order r (z) 376-bit

Frobenius trace t(z) 255-bit

Persuadable security level 192-bit

Table 5.3 shows the environment, used to experiment and evaluate the pro-
posed method.

TABLE 5.3: Computational environment.

PC iPhone6s

CPU * 2.7 GHz Intel Core i5 Apple A9 Dual-core 1.84 GHz

Memory 16 GB 2 GB

OS Mac OS X 10.11.6 iOS 10.0

Compiler gcc 4.2.1 gcc 4.2.1

Programming Language C Objective-C, C

Library GMP 6.1.0 GMP 6.1.0
*Only single core is used from two cores.

In experiment 100 random scalar numbers of size less than order r ( 378-
bit) is generated. 13 ECA counted for pre-computed rational points is taken
into account while the average is calculated for the proposed method. A
window size of 4-bit is considered for the sliding-window method. Therefore
14 pre-computed ECA is required. Besides, the average execution time of the
proposed method and the three other methods are also compared along with
the operation count.

In what follows, “With isomorphic mapping” refers that skew Frobenius
mapping technique is applied for Binary, Sliding-window, and NAF meth-
ods. Therefore the scalar multiplication is calculated in Fp3 extension field.
Moreover, for the Proposed method, it is skew Frobenius mapping with multi-
scalar multiplication. On the other hand “Without isomorphic mapping” de-
notes that Frobenius map is not applied for any of the methods. In this case,
all the scalar multiplication is calculated in Fp18 extension field.

In Table 5.4 the operations of the Proposed method are counted in Fp3 . On the
other hand for Binary, Sliding-window and NAF method, the operations are
counted in Fp18 . The table clearly shows that in the Proposed method requires
about 6 times less ECD than any other methods. The number of ECA has also
reduced in the Proposed method by about 30% than binary method and the
almost the same number of ECA of NAF.
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TABLE 5.4: Comparison of average number of ECA and ECD
for G2 SCM in KSS-18.

Count of average number of ECA, ECD

Methods ECA ECD

Binary 186 375

Sliding-window 102 376

NAF 127 377

Proposed 123 64

TABLE 5.5: Comparison of execution time in [ms] for scalar
multiplication in KSS-18 curve.

Execution time in [ms]

With isomorphic mapping Without isomorphic mapping

Methods PC iPhone6s PC iPhone6s

Binary 5.4 × 101 8.4 × 101 1.2 × 103 1.8 × 103

Sliding-window 4.8 × 101 7.5 × 101 1.0 × 103 1.6 × 103

NAF 5.3 × 101 7.7 × 101 1.6 × 103 1.7 × 103

Proposed 1.6 × 101 2.4 × 101 - -

Multi-scalar (only) - - 3.4 × 102 5.5 × 102

Analyzing Table 5.5, we can find that when isomorphic mapping and skew
Frobenius mapping is not adapted for Binary, Sliding-window, and NAF,
then the scalar multiplication of proposed method is more than 60 times
faster than other methods. However when the isomorphic mapping is ap-
plied for the other methods, then our proposed technique is more than 3
times faster. Another essential comparison shows that when only multi-
scalar multiplication is applied, then our proposed methods is about 20 times
faster. In every scenario, our proposed method is faster than the other com-
monly used approaches.

The main focus of this experiment is to evaluate the acceleration ratio of
scalar multiplication by applying the proposed approach on G2 rational point
group of KSS curve of embedding degree 18. The experiment does not fo-
cus on efficiently implementing scalar multiplication for a particular envi-
ronment.
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5.5 Summary

In this chapter, we have proposed an efficient method to calculate elliptic
curve scalar multiplication using skew Frobenius mapping over KSS-18 curve
in the context of pairing-based cryptography. Utilizing the skew Frobenius
map along with the multi-scalar multiplication procedure, an efficient scalar
multiplication method for KSS-18 curve is proposed in the chapter. In addi-
tion to the theoretic proposal, this chapter has also presented a comparative
simulation of the proposed approach with the plain binary method, sliding
window method and non-adjacent form (NAF) for scalar multiplication. We
have also applied (t −1)-adic and z-adic representation on the scalar and have
applied multi-scalar multiplication technique to calculate scalar multiplica-
tion in parallel. We have evaluated and analyzed the improvement by im-
plementing an experiment for the large size integer in 192-bit security level.
According to the simulation result multi-scalar multiplication after applying
skew Frobenius mapping in G′2 can accelerate the scalar multiplication in
G2 ⊂ E(Fp18) by more than 60 times than scalar multiplication of G2 rational
point directly in Fp18 .
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Chapter 6

Efficient Optimal-Ate Pairing at
128-bit Security

6.1 Introduction

This chapter tries to efficiently carry out the basic operation of a specific type
of pairing calculation over KSS-16 pairing-friendly curves.

6.1.1 Notation Overview

In this section, we recall the notations for reference. Generally, a pairing
is a bilinear map e typically defined as G1 × G2 → G3, where G1 and G2
are additive cyclic sub-groups of order r on a certain elliptic curve E over a
finite extension field Fpk and G3 is a multiplicative cyclic group of order r
in F∗pk . Let E(Fp) be the set of rational points over the prime field Fp which
forms an additive Abelian group together with the point at infinity O. The
total number of rational points is denoted as #E(Fp). Here, the order r is
a large prime number such that r |#E(Fp) and gcd(r ,p) = 1. The embedding
degree k is the smallest positive integer such that r |(pk − 1). Two fundamental
properties of pairing are bilinearity and non-degeneration.

As aforementioned in Section 1.1.3 Galbraith et al. [GPS08] have classified
pairings as three major categories based on the underlying group’s structure.
This chapter chooses one of the Type 3 variants of pairing named as Optimal-
Ate [Ver10] with Kachisa-Schaefer-Scott (KSS) [KSS07] pairing-friendly curve
of embedding degree k = 16. Few previous works have been done on this
curve.

6.1.2 Related Works

Zhang et al. [ZL12] have shown the computational estimation of the Miller’s
loop and proposed efficient final exponentiation for 192-bit security level in
the context of Optimal-Ate pairing over KSS-16 curve. A few years later
Ghammam et al. [GF16a] have shown that KSS-16 is the best suited for multi-
pairing (i.e., the product and/or the quotient) when the number of pairing
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is more than two. Ghammam et al. [GF16a] also corrected the flaws of pro-
posed final exponentiation algorithm by Zhang et al. [ZL12] and proposed a
new one and showed the vulnerability of Zhang’s parameter settings against
small subgroup attack.

6.1.3 Motivation

The recent development of NFS by Kim and Barbulescu [KB16] requires up-
dating the parameter selection for all the existing pairings over the well known
pairing-friendly curve families such as BN [BN06], BLS [FST06] and KSS
[KSS07]. The most recent study by Barbulescu et al. [BD17] have shown the
security estimation of the current parameter settings used in well-studied
curves and proposed new parameters, resistant to small subgroup attack.

Barbulescu and Duquesne’s study finds that the current parameter settings
for 128-bit security level on BN-curve studied in literature can withstand for
100-bit security. Moreover, they proposed that BLS-12 and surprisingly KSS-
16 are the most efficient choice for Optimal-Ate pairing at the 128-bit security
level. Therefore, we focus on the efficient implementation of the less studied
KSS-16 curve for Optimal-Ate pairing by applying the most recent param-
eters. Mori et al. [Mor+14] and Khandaker et al. [Kha+17a] have shown a
specific type of sparse multiplication for BN and KSS-18 curve respectively
where both of the curves supports sextic twist. The authors have extended
the previous works for quartic twisted KSS-16 curve and derived pseudo-8
sparse multiplication for line evaluation step in Miller’s algorithm. As a con-
sequence, we chose to concentrate on Miller’s algorithm’s execution time and
computational complexity to verify the claim of [BD17]. The implementation
shows that Miller’s algorithm time has a tiny difference between KSS-16 and
BLS-12 curves. However, they both are more efficient and faster than BN
curve.

6.1.4 Contribution

Following the emergence of Kim and Barbulescu’s new number field sieve
(exTNFS) algorithm at CRYPTO’16 [KB16] for solving discrete logarithm prob-
lem (DLP) over the finite field; pairing-based cryptography researchers are
intrigued to find new parameters that confirm standard security levels against
exTNFS. Recently, Barbulescu and Duquesne have suggested new param-
eters [BD17] for well-studied pairing-friendly curves i.e., Barreto-Naehrig
(BN) [BN06], Barreto-Lynn-Scott (BLS-12) [BLS03] and Kachisa-Schaefer-Scott
(KSS-16) [KSS07] curves at 128-bit security level (twist and sub-group attack
secure). They have also concluded that in the context of Optimal-Ate pairing
with their suggested parameters, BLS-12 and KSS-16 curves are more efficient
choices than BN curves. Therefore, this chapter selects the atypical and less
studied pairing-friendly curve in literature, i.e., KSS-16 which offers a quartic
twist, while BN and BLS-12 curves have the sextic twist. In this chapter, we
optimize Miller’s algorithm of Optimal-Ate pairing for the KSS-16 curve by
deriving efficient sparse multiplication and implement them. Furthermore,
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this chapter concentrates on Miller’s algorithm to experimentally verify Bar-
bulescu et al.’s estimation. The result shows that Miller’s algorithm time
with the derived pseudo 8-sparse multiplication is most efficient for KSS-16
than the other two curves. Therefore, this chapter defends Barbulescu and
Duquesne’s conclusion for 128-bit security.

6.2 Fundamentals of Elliptic Curve and Pairing

6.2.1 Kachisa-Schaefer-Scott (KSS) Curve of Embedding De-
gree k = 16

In [KSS07], Kachisa, Schaefer, and Scott proposed a family of non super-
singular pairing-friendly elliptic curves of embedding degree k = {16, 18, 32, 36, 40},
using elements in the cyclotomic field. In what follows, this chapter consid-
ers the curve of embedding degree k = 16, named as KSS-16, defined over
extension field Fp16 as follows:

E/Fp16 : Y 2 = X 3 + aX , (a ∈ Fp) and a , 0, (6.1)

where X ,Y ∈ Fp16 . Similar to other pairing-friendly curves, characteristic p,
Frobenius trace t and order r of this curve are given by the following polyno-
mials of integer variable u.

p(u) = (u10 + 2u9 + 5u8 + 48u6 + 152u5 + 240u4 + 625u2

+2398u + 3125)/980, (6.2a)
r (u) = (u8 + 48u4 + 625)/61255, (6.2b)
t(u) = (2u5 + 41u + 35)/35, (6.2c)

where u is such that u ≡ 25 or 45 (mod 70) and the ratio ρ value is ρ =
(log2 p/log2 r ) ≈ 1.25. The total number of rational points #E(Fp) is given
by Hasse’s theorem as, #E(Fp) = p + 1 − t . When the definition field is the
k-th degree extension field Fpk , rational points on the curve E also form an
additive Abelian group denoted as E(Fpk ). Total number of rational points
#E(Fpk ) is given by Weil’s theorem [Wei+49] as #E(Fpk ) = pk + 1 − tk , where
tk = α

k + βk . α and β are complex conjugate numbers.

6.2.2 Extension Field Arithmetic and Towering

Let us define the extension field Fp16 as introduced in Eq.(3.6).
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6.2.2.1 Towering of Fp16 Extension Field

For KSS-16 curve, Fp16 construction process given as follows using tower of
sub-fields. 

Fp2 = Fp [α]/(α
2 − c),

Fp4 = Fp2[β]/(β2 − α),
Fp8 = Fp4[γ ]/(γ 2 − β),
Fp16 = Fp8[ω]/(ω2 −γ ),

(6.3)

where p ≡ 5 mod 8 and c is a quadratic non residue in Fp . This chapter
considers c = 2 along with the value of the parameter u as given in [BD17].

6.2.2.2 Towering of Fp12 Extension Field

Let 6|(p − 1), where p is the characteristics of BN or BLS-12 curve and −1 is a
quadratic and cubic non-residue in Fp since p ≡ 3 mod 4. In the context of
BN or BLS-12, where k = 12, Fp12 is constructed as a tower of sub-fields with
irreducible binomials as follows:

Fp2 = Fp [α]/(α
2 + 1),

Fp6 = Fp2[β]/(β3 − (α + 1)),
Fp12 = Fp6[γ ]/(γ 2 − β).

(6.4)

6.2.2.3 Extension Field Arithmetic of Fp16 and Fp12

Among the arithmetic operations multiplication, squaring and inversion are
regarded as expensive operation than addition/subtraction. The calculation
cost, based on number of prime field multiplication Mp and squaring Sp is
given in Table 6.1. The arithmetic operations in Fp are denoted as Mp for a
multiplication, Sp for a squaring, Ip for an inversion and m with suffix de-
notes multiplication with basis element. However, squaring is more opti-

TABLE 6.1: Number of arithmetic operations in Fp16 based on
Eq.(6.3).

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 3Sp + 4Ap + 1mα → 3Sp

Mp4 = 3Mp2 + 5Ap2 + 1mβ → 9Mp Sp4 = 3Sp2 + 4App
2 + 1mβ → 9Sp

Mp8 = 3Mp4 + 5Ap4 + 1mγ → 27Mp Sp8 = 3Sp4 + 4Ap4 + 1mγ → 27Sp

Mp16 = 3Mp8 + 5Ap8 + 1mω → 81Mp Sp16 = 3Mp8 + 4Ap8 + 1mω → 81Sp

mized by using Devegili et al.’s [Dev+06] complex squaring technique which
cost 2Mp + 4Ap + 2mα for one squaring operation in Fp2 . In total it costs 54Mp

for one squaring in Fp16 . Table 6.1 shows the operation estimation for Fp16 .
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Table 6.2 shows the operation estimation for Fp12 according to the towering
shown in Eq.(6.4). The algorithms for Fp2 and Fp3 multiplication and squar-
ing given in [Duq+15] have to be used in this chapter to construct the Fp12

extension field arithmetic.

TABLE 6.2: Number of arithmetic operations in Fp12 based on
Eq.(6.4).

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 2Sp + 3Ap → 2Sp

Mp6 = 6Mp2 + 15Ap2 + 2mβ → 18Mp Sp6 = 2Mp2 + 3Sp2 + 9Ap2 + 2mβ → 12Sp

Mp12 = 3Mp6 + 5Ap6 + 1mγ → 54Mp Sp12 = 2Mp6 + 5Ap6 + 2mγ → 36Sp

6.2.3 Ate and Optimal-Ate On KSS-16, BN, BLS-12 Curve

In the context of pairing on the targeted pairing-friendly curves, two additive
rational point groups G1, G2 and a multiplicative group G3 of order r are
considered. G1, G2 and G3 are defined as follows:

G1 = E(Fp)[r ] ∩Ker(πp − [1]),
G2 = E(Fpk )[r ] ∩Ker(πp − [p]),
G3 = F∗pk /(F

∗
pk )

r ,
e : G1 ×G2 → G3, (6.5)

where e denotes Ate pairing [Coh+05]. E(Fpk )[r ] denotes rational points of
order r and [n] denotes n times scalar multiplication for a rational point. πp
denotes the Frobenius endomorphism given as πp : (x ,y) 7→ (xp ,yp).

In what follows, we consider P ∈ G1 ⊂ E(Fp) and Q ∈ G2 ⊂ E(Fp16) for KSS-16
curves. Ate pairing e(Q , P) is given as follows:

e(Q , P) = ft−1,Q (P)
p16−1

r , (6.6)

where ft−1,Q (P) symbolizes the output of Miller’s algorithm and blog2(t − 1)c
is the loop length. The bilinearity of Ate pairing is satisfied after calculating
the final exponentiation (pk − 1)/r .

Vercauteren proposed a more efficient variant of Ate pairing named as Optimal-
Ate pairing [Ver10] where the Miller’s loop length reduced to blog2uc. The
previous work of Zhang et al. [ZL12] has derived the optimal Ate pairing
on the KSS-16 curve which is defined as follows with fu,Q (P) is the Miller
function evaluated on P :

eopt (Q , P) = ((fu,Q (P) · l[u]Q ,[p]Q (P))
p3
· lQ ,Q (P))

p16−1
r . (6.7)

The formulas for Optimal-Ate pairing for the target curves are given in Table
6.3.
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TABLE 6.3: Optimal-Ate pairing formulas for target curves.

Curve Miller’s Algo. Final Exp.

KSS-16 (fu,Q (P) · l[u]Q ,[p]Q (P))
p3
· lQ ,Q (P) (p16 − 1)/r

BN f6u+2,Q (P) · l[6u+2]Q ,[p]Q (P) · l[6u+2+p]Q ,[−p2]Q (P) (p
12 − 1)/r

BLS-12 fu,Q (P) (p12 − 1)/r

The simple calculation procedure of Optimal-Ate pairing is shown in Algo-
rithm 9. In what follows, the calculation steps from 1 to 11, shown in Al-
gorithm 9, is identified as Miller’s Algorithm (MA) and step 12 is the final
exponentiation (FE). Steps 2-7 are specially named as Miller’s loop. Steps 3,
5, 7 are the line evaluation together with elliptic curve doubling (ECD) and
addition (ECA) inside the Miller’s loop and steps 9, 11 are the line evaluation
outside the loop. These line evaluation steps are the key steps to accelerate
the loop calculation. The authors extended the work of [Mor+14],[Kha+17a]
for KSS-16 curve to calculate pseudo 8-sparse multiplication. The ECA and ECD
are also calculated efficiently in the twisted curve. TheQ2 ← [p]Q term of step
8 is calculated by applying one skew Frobenius map over Fp4 , and f1 ← f p

3

of step 10 is calculated by applying one Frobenius map in Fp16 . Step 12, FE is
calculated by applying Ghammam et al.’s work for KSS-16 curve [GF16a].

Algorithm 9: Optimal-Ate pairing on KSS-16 curve.
Input: u, P ∈ G1,Q ∈ G′2
Output: (Q , P)

1 f ← 1,T ← Q
2 for i = blog2(u)c downto 1 do
3 f ← f 2 · lT ,T (P), T ← [2]T
4 if u[i] = 1 then
5 f ← f · lT ,Q (P), T ← T +Q

6 if u[i] = −1 then
7 f ← f · lT ,−Q (P), T ← T −Q

8 Q1 ← [u]Q , Q2 ← [p]Q
9 f ← f · lQ1,Q2(P)

10 f1 ← f p
3
, f ← f · f1

11 f ← f · lQ ,Q (P)

12 f ← f
p16−1

r

13 return f

6.2.4 Twist of KSS-16 Curves

In the context of Type 3 pairing, there exists a twisted curve with a group
of rational points of order r , isomorphic to the group where rational point
Q ∈ E(Fpk )[r ] ∩ Ker(πp − [p]) belongs to. This subfield isomorphic rational
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point group includes a twisted isomorphic point of Q , typically denoted as
Q′ ∈ E′(Fpk/d ), where k is the embedding degree and d is the twist degree.

Since points on the twisted curve are defined over a smaller field than Fpk ,
therefore ECA and ECD become faster. However, when required in Miller’s
algorithm’s line evaluation, the points can be quickly mapped to points on
E(Fpk ). Since the pairing-friendly KSS-16 [KSS07] curve has CM discriminant
of D = 1 and 4|k ; therefore, quartic twist is available.

6.2.4.1 Quartic Twist

Let β be a certain quadratic non-residue in Fp4 . The quartic twisted curve E′

of KSS-16 curve E defined in Eq.(6.1) and their isomorphic mapping ψ4 are
given as follows:

E′ : y2 = x3 + axβ−1, a ∈ Fp ,
ψ4 : E′(Fp4)[r ] 7−→ E(Fp16)[r ] ∩Ker(πp − [p]),

(x ,y) 7−→ (β1/2x , β3/4y), (6.8)

where Ker(·) denotes the kernel of the mapping and πp denotes Frobenius
mapping for rational point.

Table 6.4 shows the vector representation of Q = (xQ ,yQ ) = (β1/2xQ ′, β3/4yQ ′) ∈
Fp16 according to the given towering in Eq.(6.3). Here, xQ ′ and yQ ′ are the
coordinates of rational point Q′ on quartic twisted curve E′.

TABLE 6.4: Vector representation ofQ = (xQ ,yQ ) ∈ G2 ⊂ E(Fp16).

1 α β αβ γ αγ βγ αβγ ω αω βω αβω γω αγω βγω αβγω

xQ 0 0 0 0 b4 b5 b6 b7 0 0 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 0 0 0 0 b12 b13 b14 b15

6.3 Proposal

6.3.1 Overview: Sparse and Pseudo-Sparse Multiplication

Aranha et al. [Ara+11, Section 4] and Costello et al. [CLN10] have well opti-
mized Miller’s algorithm in Jacobian coordinates by 6-sparse multiplication
1 for BN curve. Mori et al. [Mor+14] have shown the pseudo 8-sparse multi-
plication 2 for BN curve by adapting affine coordinates where the sextic twist
is available. It is found that pseudo 8-sparse was efficient than 7-sparse and
6-sparse in Jacobian coordinates.

16-Sparse refers to the state when in a vector (multiplier/multiplicand), among the 12
coefficients 6 of them are zero.

2Pseudo 8-sparse refers to a certain length of vector’s coefficients where instead of 8 zero
coefficients, there are seven 0’s and one 1 as coefficients.
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Let us consider T = (γxT ′,γωyT ′), Q = (γxQ ′,γωyQ ′) and P = (xP ,yP ), where
xp ,yp ∈ Fp given in affine coordinates on the curve E(Fp16) such that T ′ =
(xT ′,yT ′), Q′ = (xQ ′,yQ ′) are in the twisted curve E′ defined over Fp4 . Let the
elliptic curve doubling of T +T = R(xR,yR). The 7-sparse multiplication for
KSS-16 can be derived as follows.

lT ,T (P) = (yp −yT ′γω) − λT ,T (xP − xT ′γ ), when T = Q ,

λT ,T =
3x2

T ′γ
2+a

2yT ′γω
=

3x2
T ′γω

−1+a(γω)−1

2yT ′
=
(3x2

T ′+ac
−1αβ)ω

2yT ′
= λ′T ,Tω,

since γω−1 = ω, (γω)−1 = ωβ−1, and
aβ−1 = (a + 0α + 0β + 0αβ)β−1 = aβ−1 = ac−1αβ , where α2 = c.

Now the line evaluation and ECD are obtained as follows:

lT ,T (P) = yp − xpλ
′
T ,Tω + (xT ′λ

′
T ,T −yT ′)γω,

x2T ′ = (λ
′
T ,T )

2ω2 − 2xT ′γ = ((λ′T ,T )
2 − 2xT ′)γ

y2T ′ = (xT ′γ − x2T ′γ )λ
′
T ,Tω −yT ′γω = (xT ′λ

′
T ,T − x2T ′λ

′
T ,T −yT ′)γω.

The above calculations can be optimized as follows:

A = 1
2yT ′

,B = 3x2
T ′ + ac

−1,C = AB,D = 2xT ′,x2T ′ = C
2 −D,

E = CxT ′ −yT ′,y2T ′ = E −Cx2T ′,
lT ,T (P) = yP + Eγω −CxPω = yP + Fω + Eγω, (6.9)

where F = −CxP .

The elliptic curve addition phase (T , Q) and line evaluation of lT ,Q (P) can
also be optimized similar to the above procedure. Let the elliptic curve addi-
tion of T +Q = R(xR,yR).

lT ,Q (P) = (yp −yT ′γω) − λT ,Q (xP − xT ′γ ), T , Q ,

λT ,Q =
(yQ ′−yT ′)γω

(xQ ′−xT ′)γ
=
(yQ ′−yT ′)ω

xQ ′−xT ′
= λ′T ,Qω,

xR = (λ
′
T ,Q )

2ω2 − xT ′γ − xQ ′γ = ((λ
′
T ,Q )

2 − xT ′ − xQ ′)γ

yR = (xT ′γ − xRγ )λ
′
T ,Qω −yT ′γω = (xT ′λ

′
T ,Q − xR′λ

′
T ,Q −yT ′)γω.

Representing the above line equations using variables as following :

A = 1
xQ ′−xT ′

,B = yQ ′ −yT ′,C = AB,D = xT ′ + xQ ′,

xR′ = C
2 −D,E = CxT ′ −yT ′,yR′ = E −CxR′,

lT ,Q (P) = yP + Eγω −CxPω = yP + Fω + Eγω, (6.10)
F = −CxP ,

Here all the variables (A,B,C,D,E, F ) are calculated as Fp4 elements. The po-
sition of the yP , E and F in Fp16 vector representation is defined by the basis
element 1, γω and ω as shown in Table 6.4. Therefore, among the 16 coeffi-
cients of lT ,T (P) and lT ,Q (P) ∈ Fp16 , only 9 coefficients yP ∈ Fp , CxP ∈ Fp4 and
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E ∈ Fp4 are non-zero. The remaining 7 zero coefficients lead to an efficient
multiplication, usually called sparse multiplication. This particular instance
in KSS-16 curve is named as 7-sparse multiplication.

6.3.2 Pseudo 8-Sparse Multiplication for BN and BLS-12 Curve

Here we have followed Mori et al.’s [Mor+14] procedure to derive pseudo 8-
sparse multiplication for the parameter settings of [BD17] for BN and BLS-12
curves. For the new parameter settings, the towering is given as Eq.(6.4) for
both BN and BLS-12 curve. However, the curve form E : y2 = x3 + b, b ∈ Fp

is identical for both BN and BLS-12 curve. The sextic twist obtained for these
curves is also identical. Therefore, in what follows this chapter will denote
both of them as Eb defined over Fp12 .

6.3.2.1 Sextic twist of BN and BLS-12 curve:

Let (α + 1) be a certain quadratic and cubic non-residue in Fp2 . The sextic
twisted curve E′

b
of curve Eb and their isomorphic mapping ψ6 are given as

follows:

E′b : y2 = x3 +b(α + 1), b ∈ Fp ,
ψ6 : E′b(Fp2)[r ] 7−→ Eb(Fp12)[r ] ∩Ker(πp − [p]),

(x ,y) 7−→ ((α + 1)−1xβ2, (α + 1)−1yβγ ). (6.11)

TABLE 6.5: Vector representation ofQ = (xQ ,yQ ) ∈ G2 ⊂ E(Fp12).

1 α β αβ β2 αβ2 γ αγ βγ αβγ β2γ αβ2γ

xQ 0 0 0 0 b4 b5 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 b8 b9 0 0

The line evaluation and ECD/ECA can be obtained in affine coordinate for
the rational point P and Q′,T ′ ∈ E′

b
(Fp2) as follows:

Elliptic curve addition when T ′ , Q′ and T ′ +Q′ = R′(xR′,yR′)

A = 1
xQ ′−xT ′

,B = yQ ′ −yT ′,C = AB,D = xT ′ + xQ ′,

xR′ = C
2 −D,E = CxT ′ −yT ′,yR′ = E −CxR′,

lT ′,Q ′(P) = yP + (α + 1)−1Eβγ − (α + 1)−1CxPβ
2γ , (6.12a)

y−1
P lT ′,Q ′(P) = 1 + (α + 1)−1Ey−1

P βγ − (α + 1)−1CxPy
−1
P β2γ , (6.12b)
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Elliptic curve doubling when T ′ = Q′

A = 1
2yT ′

,B = 3x2
T ′,C = AB,D = 2xT ′,x2T ′ = C

2 −D,
E = CxT ′ −yT ′,y2T ′ = E −Cx2T ′,

lT ′,T ′(P) = yP + (α + 1)−1Eβγ − (α + 1)−1CxPβ
2γ , (6.13a)

y−1
P lT ′,T ′(P) = 1 + (α + 1)−1Ey−1

P βγ − (α + 1)−1CxPy
−1
P β2γ , (6.13b)

The line evaluations of Eq.(6.12b) and Eq.(6.13b) are identical and more sparse
than Eq.(6.12a) and Eq.(6.13a). Such sparse form comes with a cost of com-
putation overhead. But such overhead can be minimized by the following
isomorphic mapping, which also accelerates the Miller’s loop iteration.

Isomorphic mapping of P ∈ G1 7→ P̂ ∈ G′1 :

Ê : y2 = x3 +bẑ,
Ê(Fp)[r ] 7−→ E(Fp)[r ],

(x ,y) 7−→ (ẑ−1x , ẑ−3/2y), (6.14)

where ẑ ∈ Fp is a quadratic and cubic residue in Fp . Eq.(6.14) maps rational
point P to P̂(xP̂ ,yP̂ ) such that (xP̂ ,y−1

P̂
) = 1. The twist parameter ẑ is obtained

as:
ẑ = (xPy

−1
P )

6. (6.15)

From the Eq.(6.15) P̂ and Q̂′ is given as

P̂(xP̂ ,yP̂ ) = (xPz
−1,yPz−3/2) = (x3

Py
−2
P ,x3

Py
−2
P ), (6.16a)

Q̂′(xQ̂ ′,yQ̂ ′) = (x
2
Py
−2
P xQ ′,x3

Py
−3
P yQ ′). (6.16b)

Using Eq.(6.16a) and Eq.(6.16b) the line evaluation of Eq.(6.13b) becomes

y−1
P̂
lT̂ ′,T̂ ′(P̂) = 1 + (α + 1)−1Ey−1

P̂
βγ − (α + 1)−1CxP̂y

−1
P̂
β2γ ,

l̂T̂ ′,T̂ ′(P̂) = 1 + (α + 1)−1Ey−1
P̂
βγ − (α + 1)−1Cβ2γ . (6.17a)

The Eq.(6.12b) becomes similar to Eq.(6.17a). The calculation overhead can
be reduced by pre-computation of (α + 1)−1, y−1

P̂
and P̂ , Q̂′ mapping using x−1

P

and y−1
P as shown by Mori et al. [Mor+14].

Finally, pseudo 8-sparse multiplication for BN and BLS-12 is given in

6.3.3 Pseudo 8-sparse Multiplication for KSS-16 Curve

The main idea of pseudo 8-sparse multiplication is finding more sparse form of
Eq.(6.9) and Eq.(6.10), which allows to reduce the number of multiplication
of Fp16 vector during Miller’s algorithm evaluation. To obtains the same, y−1

P
is multiplied to both side of Eq.(6.9) and Eq.(6.10), since yP remains the same
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Algorithm 10: Pseudo 8-sparse multiplication for BN and BLS-12 curves.
Input: a,b ∈ Fp12

a = (a0 + a1β + a2β
2) + (a3 + a4β + a5β

2)γ , b = 1 +b4βγ +b5β
2γ

where ai ,bj , ci ∈ Fp2(i = 0, · · ·, 5, j = 4, 5)
Output: c = ab = (c0 + c1β + c2β

2) + (c3 + c4β + c5β
2)γ ∈ Fp12

1 c4 ← a0 ×b4, t1 ← a1 ×b5, t2 ← a0 + a1, S0 ← b4 +b5
2 c5 ← t2 × S0 − (c4 + t1), t2 ← a2 ×b5, t2 ← t2 × (α + 1)
3 c4 ← c4 + t2, t0 ← a2 ×b4, t0 ← t0 + t1
4 c3 ← t0 × (α + 1), t0 ← a3 ×b4, t1 ← a4 ×b5, t2 ← a3 + a4
5 t2 ← t2 × S0 − (t0 + t1)
6 c0 ← t2 × (α + 1), t2 ← a5 ×b4, t2 ← t1 + t2
7 c1 ← t2 × (α + 1), t1 ← a5 ×b5, t1 ← t1 × (α + 1)
8 c2 ← t0 + t1
9 c ← c + a

10 return c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ

through the Miller’s algorithms loop calculation.

y−1
P lT ,T (P) = 1 −CxPy−1

P ω + Ey−1
P γω, (6.18a)

y−1
P lT ,Q (P) = 1 −CxPy−1

P ω + Ey−1
P γω, (6.18b)

Although the Eq.(6.18a) and Eq.(6.18b) do not get more sparse, but 1st coef-
ficient becomes 1. Such a vector is titled as pseudo sparse form in this chapter.
This form realizes more efficient Fp16 vectors multiplication in Miller’s loop.
However, the Eq.(6.18b) creates more computation overhead than Eq.(6.10),
i.e., computing y−1

P lT ,Q (P) in the left side and xPy
−1
P , Ey−1

P on the right. The
same goes between Eq.(6.18a) and Eq.(6.9). Since the computation of Eq.(6.18a)
and Eq.(6.18b) are almost identical, therefore the rest of the chapter shows the
optimization technique for Eq.(6.18a). To overcome these overhead compu-
tations, the following techniques can be applied.

• xPy
−1
P is omitted by applying further isomorphic mapping of P ∈ G1.

• y−1
P can be pre-computed. Therefore, the overhead calculation of Ey−1

P
will cost only 2 Fp multiplication.

• y−1
P lT ,T (P) doesn’t effect the pairing calculation cost since the final expo-

nentiation cancels this multiplication by y−1
P ∈ Fp .

To overcome the CxPy
−1
P calculation cost, xPy−1

P = 1 is expected. To obtain
xPy
−1
P = 1, the following isomorphic mapping of P = (xP ,yP ) ∈ G1 is intro-

duced.
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6.3.3.1 Isomorphic map of P = (xP ,yP ) → P̄ = (xP̄ ,yP̄ ).

Although the KSS-16 curve is typically defined over Fp16 as E(Fp16), but for
efficient implementation of Optimal-Ate pairing, certain operations are car-
ried out in a quartic twisted isomorphic curve E′ defined over Fp4 as shown
in Section 6.2.4.1. For the same, let us consider Ē(Fp4) is isomorphic to E(Fp4)

and certain z ∈ Fp as a quadratic residue (QR) in Fp4 . A generalized mapping
between E(Fp4) and Ē(Fp4) can be given as follows:

Ē : y2 = x3 + az−2x ,
Ē(Fp4)[r ] 7−→ E(Fp4)[r ],

(x ,y) 7−→ (z−1x , z−3/2y),
(6.19)

where
z, z−1, z−3/2 ∈ Fp

. The mapping considers z ∈ Fp is a quadratic residue over Fp4 which can be
shown by the fact that z(p

4−1)/2 = 1 as follows:

z(p
4−1)/2 = z(p−1)(p3+p2+p+1)/2

= 1(p
3+p2+p+1)/2

= 1 QR ∈ Fp4 . (6.20)

Therefore, z is a quadratic residue over Fp4 .
Now based on P = (xP ,yP ) be the rational point on curve E, the considered
isomorphic mapping of Eq.(6.19) can find a certain isomorphic rational point
P̄ = (xP̄ ,yP̄ ) on curve Ē as follows:

y2
P = x3

P + axP ,

y2
Pz
−3 = x3

Pz
−3 + axPz

−3,

(yPz
−3/2)2 = (xPz

−1)3 + az−2xPz
−1, (6.21)

where P̄ = (xP̄ ,yP̄ ) = (xPz−1,yPz−3/2) and the general form of the curve Ē is
given as follows:

y2 = x3 + az−2x . (6.22)

To obtain the target relation xP̄y
−1
P̄
= 1 from above isomorphic map and ratio-

nal point P̄ , let us find isomorphic twist parameter z as follows:

xP̄y
−1
P̄
= 1

z−1xP (z
−3/2yP )

−1 = 1
z1/2(xP .y−1

P ) = 1

z = (x−1
P yP )

2. (6.23)
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Now using z = (x−1
P yP )

2 and Eq.(6.21), P̄ can be obtained as

P̄(xP̄ ,yP̄ ) = (xPz
−1,yPz−3/2) = (x3

Py
−2
P ,x3

Py
−2
P ), (6.24)

where the x and y coordinates of P̄ are equal. For the same isomorphic map
we can obtain Q̄ on curve Ē defined over Fp16 as follows:

Q̄(xQ̄ ,yQ̄ ) = (z
−1xQ ′γ , z−3/2yQ ′γω), (6.25)

where from Eq.(6.8), Q′(xQ ′,yQ ′) is obtained in quartic twisted curve E′.

At this point, to use Q̄ with P̄ in line evaluation we need to find another
isomorphic map that will map Q̄ 7→ Q̄′, where Q̄′ is the rational point on
curve Ē′ defined over Fp4 . Such Q̄′ and Ē′ can be obtained from Q̄ of Eq.(6.25)
and curve Ē from Eq.(6.22) as follows:

(z−3/2yQ ′γω)
2 = (z−1xQ ′γ )

3 + az−2z−1xQ ′γ ,

(z−3/2yQ ′)
2γ 2ω2 = (z−1xQ ′)

3γ 3 + az−2z−1xQ ′γ ,

(z−3/2yQ ′)
2βγ = (z−1xQ ′)

3βγ + az−2z−1xQ ′γ ,

(z−3/2yQ ′)
2 = (z−1xQ ′)

3 + az−2β−1z−1xQ ′.

From the above equations, Ē′ and Q̄′ are given as,

Ē′ : y2
Q̄ ′
= x3

Q̄ ′
+ a(z2β)−1xQ̄ ′. (6.26)

Q̄′(xQ̄ ′,yQ̄ ′) = (z
−1xQ ′, z−3/2yQ ′),

= (xQ ′x
2
Py
−2
P ,yQ ′x3

Py
−3
P ). (6.27)

Now, applying P̄ and Q̄′, the line evaluation of Eq.(6.18b) becomes as follows:

y−1
P̄
lT̄ ′,Q̄ ′(P̄) = 1 −C(xP̄y

−1
P̄
)γ + Ey−1

P̄
γω,

l̄T̄ ′,Q̄ ′(P̄) = 1 −Cγ + E(x−3
P y2

P )γω, (6.28)

where xP̄y−1
P̄
= 1 andy−1

P̄
= z3/2y−1

P = (x
−3
P y2

P ). The Eq.(6.18a) becomes the same
as Eq.(6.28). Compared to Eq.(6.18b), the Eq.(6.28) will be faster while using
in Miller’s loop in combination of the pseudo 8-sparse multiplication shown
in Algorithm 10. However, to get the above form, we need the following
pre-computations once in every Miller’s Algorithm execution.

• Computing P̄ and Q̄′,

• (x−3
P y2

P ) and

• z−2 term from curve Ē′ of Eq.(6.26).

The above terms can be computed from x−1
P andy−1

P by utilizing Montgomery
trick [Mon87], as shown in Algorithm 11. The pre-computation requires 21
multiplication, 2 squaring and 1 inversion in Fp and 2 multiplication, 3 squar-
ing in Fp4 .
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Algorithm 11: Pre-calculation and mapping P 7→ P̄ and Q′ 7→ Q̄′.
Input: P = (xP ,yP ) ∈ G1,Q′ = (xQ ′,yQ ′) ∈ G′2
Output: Q̄′, P̄ ,y−1

P , (z)−2

1 A← (xPyP )
−1

2 B ← Ax2
P

3 C ← AyP
4 D ← B2

5 xQ̄ ′ ← DxQ ′

6 yQ̄ ′ ← BDyQ ′

7 xP̄ ,yP̄ ← DxP
8 y−1

P ← C3y2
P

9 z−2 ← D2

10 return Q̄′ = (xQ̄ ′,yQ̄ ′), P̄ = (xP̄ ,yP̄ ),y−1
P , z−2

The overall mapping and the curve obtained in the twisting process is shown
in the Figure 6.1.

Finally the Algorithm 12 shows the derived pseudo 8-sparse multiplication.

Algorithm 12: Pseudo 8-sparse multiplication for KSS-16 curve.
Input: a,b ∈ Fp16

a = (a0 + a1γ ) + (a2 + a3γ )ω, b = 1 + (b2 +b3γ )ω
a = (a0 + a1ω + a2ω

2 + a3ω
3), b = 1 +b2ω +b3ω

3

Output: c = ab = (c0 + c1γ ) + (c3 + c4γ )ω ∈ Fp16

1 t0 ← a3 ×b3 × β , t1 ← a2 ×b2, t4 ← b2 +b3, c0 ← (a2 + a3) × t4 − t1 − t0
2 c1 ← t1 + t0 × β
3 t2 ← a1 ×b3, t3 ← a0 ×b2, c2 ← t3 + t2 × β
4 t4 ← (b2 +b3), c3 ← (a0 + a1) × t4 − t3 − t2
5 c ← c + a
6 return c = (c0 + c1γ ) + (c3 + c4γ )ω

6.3.4 Final Exponentiation

Scott et al. [Sco+09] show the process of efficient final exponentiation (FE)
f p

k−1/r by decomposing the exponent using cyclotomic polynomial Φk as

(pk − 1)/r = (pk/2 − 1) · (pk/2 + 1)/Φk(p) · Φk(p)/r . (6.29)

The 1st two terms of the right part are denoted as easy part since it can be eas-
ily calculated by Frobenius mapping and one inversion in affine coordinates.
The last term is called the hard part which mostly affects computation per-
formance. According to Eq.(6.29), the exponent decomposition of the target
curves is shown in Table 6.6.



6.3. Proposal 85

FIGURE 6.1: Overview of the twisting process to get pseudo
sparse form in KSS-16 curve.
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TABLE 6.6: Exponents of final exponentiation in pairing.

Curve Final exponent Easy part Hard part

KSS-16 p16−1
r p8 − 1 p8+1

r

BN, BLS-12 p12−1
r (p6 − 1)(p2 + 1) p4−p2+1

r

This chapter carefully concentrates on Miller’s algorithm for comparison and
making pairing efficient. However, to verify the correctness of the bilin-
earity property, we made a “not state-of-art" implementation of Fuentes et
al.’s work [FKR12] for BN curve case and Ghammam’s et al.’s works [GF16a;
GF16b] for KSS-16 and BLS-12 curves. For scalar multiplication by prime p,
i.e., p[Q] or [p2]Q , skew Frobenius map technique by Sakemi et al. [Sak+08]
is adapted.

6.4 Experimental Result

This section gives details of the experimental implementation. The source
code can be found in Github3. The code is not an optimal code, and the sole
purpose of it to compare the Miller’s algorithm among the curve families and
validate the estimation of [BD17]. Table 6.7 shows implementation environ-
ment. Parameters chosen from [BD17] is shown in Table 6.8. Table 6.9

TABLE 6.7: Computational environment.

CPU* Memory Compiler OS Language Library

Intel(R) Core(TM)

i5-6500 CPU @ 3.20GHz
4GB GCC 5.4.0 Ubuntu 16.04 LTS C GMP v 6.1.0 [Gt15]

*Only single core is used from two cores.

TABLE 6.8: Selected parameters for 128-bit security level
[BD17].

Curve u HW(u) blog2uc blog2 p(u)c blog2 r (u)c blog2 p
kc

KSS-16 u = 235 − 232 − 218 + 28 + 1 5 35 339 263 5424

BN u = 2114 + 2101 − 214 − 1 4 115 462 462 5535

BLS-12 u = −277 + 250 + 233 3 77 461 308 5532

shows execution time for Miller’s algorithm implementation in millisecond
for a single Optimal-Ate pairing. Results here are the average of 10 pairing
operation. From the result, we find that Miller’s algorithm took the least
time for KSS-16. Moreover, time is almost closer to BLS-12. The Miller’s al-
gorithm is about 1.7 times faster in KSS-16 than BN curve. Table 6.12 shows

3https://github.com/eNipu/pairingma128.git
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TABLE 6.9: Comparative results of Miller’s algorithm in [ms].

KSS-16 BN BLS-12

Miller’s Algorithm 4.41 7.53 4.91

that the complexity of this implementation concerning the number of Fp mul-
tiplication and squaring and the estimation of [BD17] are almost coherent for
Miller’s algorithm. Table 6.12 also show that our derived pseudo 8-sparse
multiplication for KSS-16 takes fewer Fp multiplication than Zhang et al.’s
estimation [ZL12]. The execution time of Miller’s algorithm also goes with
this estimation [BD17], that means KSS-16 and BLS-12 are more efficient than
BN curve. Table 6.10 shows the complexity of Miller’s algorithm for the tar-
get curves inFp operations count.

The operation counted in Table 6.10 are based on the counter in implemen-
tation code. For the implementation of big integer arithmetic mpz_t data type
of GMP [Gt15] library has been used. For example, multiplication between 2
mpz_t variables are counted as Fp multiplication and multiplication between
one mpz_t and one “unsigned long" integer can also be treated as Fp mul-
tiplication. Basis multiplication refers to the vector multiplication such as
(ao + a1α)α where a0,a1 ∈ Fp and α is the basis element in Fp2 .

TABLE 6.10: Complexity of this implementation in Fp for
Miller’s algorithm [single pairing operation].

Multiplication
Squaring

Addition/

Subtraction
Basis Multiplication Inversion

mpz_t * mpz_t mpz_t * ui

KSS-16 6162 144 903 23956 3174 43

BN 10725 232 157 35424 3132 125

BLS-12 6935 154 113 23062 2030 80

As said before, this work is focused on Miller’s algorithm. However, we
made a “not state-of-art" implementation of some final exponentiation algo-
rithms [GF16a; FKR12; GF16b]. Table 6.11 shows the total final exponenti-
ation time in [ms]. Here final exponentiation of KSS-16 is slower than BN
and BLS-12. We have applied square and multiply technique for exponen-
tiation by integer u in the hard part since the integer u given in the sparse
form. However, Barbulescu et al. [BD17] mentioned that availability of com-
pressed squaring [Ara+11] for KSS-16 will lead a fair comparison using final
exponentiation.

TABLE 6.11: Final exponentiation time (not state-of-art) in [ms].

KSS-16 BN BLS-12

Final exponentiation 17.32 11.65 12.03
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TABLE 6.12: Complexity comparison of Miller’s algorithm be-
tween this implementation and Barbulescu et al.’s [BD17] esti-

mation [Multiplication + Squaring in Fp ].

KSS-16 BN BLS-12

Barbulescu et al. [BD17] 7534Mp 12068Mp 7708Mp

This implementation 7209Mp 11114Mp 7202Mp

6.5 Summary

This chapter has presented two major ideas.

• Finding efficient Miller’s algorithm implementation technique for Optimal-
Ate pairing for the less studied KSS-16 curve. The author has presented
the pseudo 8-sparse multiplication technique for KSS-16. They also ex-
tended such multiplication for BN and BLS-12 according to [Mor+14]
for the new parameter.

• Verifying Barbulescu and Duquesne’s conclusion [BD17] for calculat-
ing Optimal-Ate pairing at 128-bit security level; that is, BLS-12 and
less studied KSS-16 curves are more efficient choices than well stud-
ied BN curves for new parameters. This chapter finds that Barbulescu
and Duquesne’s conclusion on BLS-12 is correct as it takes less time for
Miller’s algorithm. Applying the derived pseudo 8-sparse multiplica-
tion, Miller’s algorithm in KSS-16 is also more efficient than BN.
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Chapter 7

Optimal-Ate Pairing Using CVMA
over KSS-16 Curve

7.1 Introduction

7.1.1 Motivation

In this work, we are interested in improving the Optimal-Ate pairing for the
KSS-16 elliptic curve presented in Chapter 6. The parameterized pairing-
friendly curve gives advantage on optimization of Miller’s algorithm (MA)
and final exponentiation (FE), it also comes with a cost of security. In [Sch10],
Schirokauer mentioned that the Number Field Sieve (NFS) for solving DLP
in G3 would be easier for parameterized form prime. At CRYPTO’16, Kim
and Barbulescu proposed extended tower number field sieve (SexTNFS) al-
gorithm[KB16]. Their optimization on resolving the discrete logarithm prob-
lem in Fpk is based on the fact that the base field characteristic is presented
as a polynomial. Their results intrigued researchers to find new parameters
for pairing-friendly elliptic curves since the security level has changed. In
response, Barbulescu and Duquesne have analyzed the security of popular
pairing-friendly curve families against the NFS variants and suggested new
parameters [BD17] holding twist security and immune to sub-group attack
for standard security levels. In the context of Optimal-Ate pairing, they con-
cluded that holding existing parameters, BN curve, that is the most used in
practice, can endure at most 100-bit security against the exTNFS. Using their
recommended new parameters, they found BLS-12 and KSS-16 curves are ef-
ficient choices over BN curve. As both BLS-12 and BN curves have the same
embedding degree and both support sextic twist; therefore competitiveness
between these two can be determinable from the length of integer parameter.
However, the KSS-16 seems an atypical choice since the highest embedding
degree supported is 4 and has not studied much as BN or BLS curves.

7.1.2 Contribution

In [Kha+17b] we showed that Miller’s loop for KSS-16 with the suggested pa-
rameter proposed in [BD17] is faster than for BN and BLS-12 with their pro-
posed pseudo 8-sparse multiplication in Karatsuba based implementation
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[Kha+17b]. In this chapter, we explored to find a more efficient implemen-
tation of Optimal-Ate pairing. Therefore, we revisited the pseudo 8-sparse
multiplication with cyclic vector multiplication algorithm (CVMA) [Kat+07].
This chapter adopts two different approaches of towering to construct Fp16

extension field. In what follows let us denote them as Type-I F(((p2)2)2)2 and
Type-II F((p4)2)2 . The Type-I is also characterized as an optimal extension field
(OEF) [BP01]. Since OEF uses Karatsuba based polynomial multiplication
and irreducible binomial as the modular polynomial; multiplications are ef-
ficiently carried out in OEF. In Type-II, the base extension field Fp4 is con-
structed with the optimal normal basis for employing cyclic vector multi-
plication where the modular polynomial is a degree 5 cyclotomic polyno-
mial. We also applied Ghammam et al’s [GF16a] final exponentiation algo-
rithm with cyclotomic squaring [Kar13a] for a fair comparison. We found
that Optimal-Ate in KSS-16 curve pairing using CVMA is about 30% faster
than Karatsuba based implementation.

7.1.3 Chapter Outline

The chapter is organized into 5 sections with relevant subsections. Section
7.1 surveys the pairing in brief with detailed background works. Section
7.2 overviews the related fundamentals. In Section 7.3 we present the main
contribution. Section 7.4 and Section 7.5 gives the result evaluation and final
words respectively.
In the rest of this chapter, we use the following notations.

• Mpk is a multiplication in Fpk .

• Spk is a squaring in Fpk .

• Fpk is a Frobenius map application in Fpk .

• Ipk is an inversion in Fpk .

Without any additional explanation, lower and upper case letters show ele-
ments in prime field and extension field, respectively, and a lower case Greek
alphabet denotes a zero of a modular polynomial.
For simplicity, we use Mp , Sp , Ip ,Ap instead of M1, S1 and I1 and the m with
lower case Greek suffix denotes multiplication with basis element.

7.2 Fundamentals of Elliptic Curve and Pairing

7.2.1 Extension Field Arithmetic for Pairing

While implementing pairing, a significant speedup comes from the efficient
finite field implementation. Calculation of pairing requires executing the
arithmetic operation in the extension field of degree greater than 6 [BS09].
In what follows, the aforementioned towering procedure of Fp16 extension
field is given with the irreducible polynomials.
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7.2.1.1 Type-I Towering

Efficient extension field Fp4 with the Karatsuba-based method is constructed
by a towering technique such as F(p2)2 . For such construction, in addition
with 4|p − 1, p satisfies p ≡ 3, 5 mod 8.

Fp2 = Fp [α]/(α
2 − c0),

Fp4 = Fp2[β]/(β2 − α),
Fp8 = Fp4[γ ]/(γ 2 − β),
Fp16 = Fp8[ω]/(ω2 −γ ),

(7.1)

where c0 is a quadratic non-residue (QNR) in Fp . This chapter considers
c0 = 2 , where X 16 − 2 is irreducible in Fp16 .

7.2.1.2 Type-II Towering

An additional condition p ≡ 2, 3 mod 5 is required to construct this towering.
Fp4 = Fp [α]/(α

4 + α3 + α2 + α + 1),
Fp8 = Fp4[β]/(β2 − (α ± c1)),
Fp16 = Fp8[γ ]/(γ 2 − β).

(7.2)

Here the Φ5(x) = (x
5 − 1)/(x − 1) is irreducible over Fp4 and (α ± c1) should

be the QNR in Fp4 . In what follows, when the basis elements are implicitly
known, the vector representation A = (a0,a1,a2,a3) ∈ Fp4 refers to the same
element represented as A = a0α + a1α

2 + a2α
3 + a3α

4.

7.2.1.3 Field Arithmetic of Fp16

For any platform, multiplication, squaring and inversion are regarded as
computationally expensive than addition or subtraction. For convenient es-
timation of the total pairing cost, we count operations in Fp for extension
field arithmetic. The following table, Table 7.1 shows operation count for
Karatsuba based multiplication and squaring. The squaring is optimized

TABLE 7.1: Number of arithmetic operations in Fp16 based on
Type-I towering Eq.(7.1).

Multiplication Squaring

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 2Mp + 6Ap+→ 2Mp

Mp4 = 2Mp2 + 5Ap2 + 1mβ → 9Mp Sp4 = 2Mp2 + 5Ap2 + 2mβ → 6Mp

Mp8 = 3Mp4 + 5Ap4 + 1mγ → 27Mp Sp8 = 2Mp4 + 5Ap4 + 2mγ → 18Mp

Mp16 = 3Mp8 + 5Ap8 + 1mω → 81Mp Sp16 = 2Mp8 + 5Ap8 + 2mω → 54Mp

by using Devegili et al.’s [Dev+06] complex squaring technique which costs
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2Mp + 4Ap + 2mα for one squaring operation in Fp2 . Since, c0 = 2 in Eq.(7.1),
therefore, the multiplication by the basis element α is carried out by 1 addi-
tion in Fp .

7.2.2 Optimal-Ate Pairing on KSS-16 Curve

In the context of pairing on the KSS-16 curves, the valid bilinear map e :
G1 ×G2 → G3 takes input from two additive rational point groups G1, G2
and output an element in the multiplicative group G3 of order r . G1, G2 and
G3 are defined as follows:

G1 = E(Fp)[r ] ∩Ker(πp − [1]),
G2 = E(Fpk )[r ] ∩Ker(πp − [p]),
G3 = F∗pk /(F

∗
pk )

r ,

where E(Fpk )[r ] denotes rational points of order r and [n] is scalar multiplica-
tion for a rational point. Let πp denotes the Frobenius endomorphism given
as πp : (x ,y) 7→ (xp ,yp).

Unless otherwise stated, rest of the chapter considers P ∈ G1 ⊂ E(Fp) and
Q ∈ G2 ⊂ E(Fp16). The map e involves two major steps named Miller’s loop
followed by the final exponentiation. The Optimal-Ate pairing [Ver10] pro-
posed by Vercauteren reduces the Miller’s loop length to blog2uc =

blog2 rc

φ(k) ,
where φ is the Euler’s totient function. The choice of the parameter u is a crit-
ical factor for efficient Miller’s algorithm since the smaller hamming weight
of u adds advantage by reducing elliptic curve doubling (ECD) inside the
loop.

The Optimal-Ate pairing on KSS-16 elliptic curve is given by Zhang et al.
[ZL12] and presented by the following map.

eopt : G1 ×G2 → G3

(P ,Q) 7−→
(
(fu,Q (P)l[u]Q ,[p]Q (P))

p3
lQ ,Q (P)

) p16−1
r

The rational function fu,Q (P) is computed thanks to Miller algorithm which
is included in the first step of computing the Optimal-Ate pairing. Then, we
have the second step which is the computation of the exponent p16−1

r named
the Final Exponentiation.
The calculation of the Optimal-Ate pairing in KSS-16 elliptic curve is given
by the following Algorithm 13.

Steps between 1 to 11 are identified as Miller’s algorithm, and step 12 is the
FE. Optimization scopes of the chapter are the line evaluation of steps 3, 5,
7, 9, 11 together with ECD and ECA. These line evaluation steps are the key
steps to accelerate the Miller loop calculation.
In [Kha+17b], we showed an efficient technique for the above steps by pseudo
8-sparse multiplication in the optimal extension field. The calculations were
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Algorithm 13: The Optimal-Ate pairing algorithm for KSS-16 curve.
Input: u, P ∈ G1,Q ∈ G′2
Output: (Q , P)

1 f ← 1,T ← Q
2 for i = blog2(u)c downto 1 do
3 f ← f 2 · lT ,T (P), T ← [2]T . (see Eq.(7.12))

4 if u[i] = 1 then
5 f ← f · lT ,Q (P), T ← T +Q . (see Eq.(7.14))

6 if u[i] = −1 then
7 f ← f · lT ,−Q (P), T ← T −Q . (see Eq.(7.14))

8 Q1 ← [u]Q , Q2 ← [p]Q
9 f ← f · lQ1,Q2(P)

10 f1 ← f p
3
, f ← f · f1

11 f ← f · lQ ,Q (P)

12 f ← f
p16−1

r

13 return f

carried out in affine coordinates using Karatsuba based multiplications in
Type-I towering.
In the next sections, we will show the revision of pseudo 8-sparse multiplication
by using CVMA based multiplication. In addition authors also optimize the
step 12 calculation: the final exponentiation by cyclotomic squaring [GS10]
in Ghammam et al.’s [GF16a] final exponentiation algorithm.

7.3 Finding Efficient Line Evaluation in Type-II Tow-
ering and Sparse Multiplication

This section describes the main idea of obtaining efficient line evaluation for
the proposed towering Eq.(7.2) with a combination of pseudo 8-sparse multiplication.
In [Kha+17b], we showed the pseudo 8-sparse multiplication for towering Eq.(7.1).
In this chapter, the parameter and consequently the settings of KSS-16 curve
is different from [Kha+17b]. Most importantly the basis representation and
underlying finite field arithmetic are also changed. Therefore, in this section,
we will revisit [Kha+17b] by using CVMA. The overall process is as follows:

1. Finding efficient finite field operation in Fp4 .

• efficient inversion, multiplication, squaring and Frobenius map
using CVMA.

2. Finding the quartic twisted curve E′(Fp4) of E(Fp16) and define the iso-
morphic mapping G2 ⊂ E(Fp16) 7→ G′2 ⊂ E′(Fp4) between the rational
points.
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3. Obtaining the line equation in E(Fp16), nevertheless, the actual calcula-
tion is in Fp4 .

4. Finding the more sparse line representation by:

• using isomorphic map of G1 7→ Ḡ1
′
⊂ Ē(Fp) and G2 7→ Ḡ2.

• Finding another twisted map Ḡ2 7→ Ḡ′2.

• Rational points from the Ḡ′2 ⊂ Ē′(Fp4) and Ḡ′1 ⊂ Ē(Fp) act as the
input of the Miller’s algorithm.

5. Deriving pseudo 8-sparse multiplication using the sparse form obtained
in step 4.

6. Computing the final exponentiation by using algorithm in [GF16a] to-
gether with cyclotomic squaring [GS10].

7. Finally, we compare the proposed implementation with [Kha+17b]’s
approach.

7.3.1 Fp4 arithmetic in Type-II Towering

In [San+16] (Japanese), Sanada et al. primarily focus on the Fp4 finite field
operation. They reduced 5 and 3 prime field additions for a single Fp4 mul-
tiplication and squaring respectively than the Karatsuba method. However,
Fp4 inversion in [San+16] requires (31Mp + 66Ap + 1Ip). In contrast, we applied
Karatsuba based Fp4 inversion in [Kha+17b] which costs (14Mp + 29Ap + 1Ip).
In this chapter, we derived a better Fp4 inversion than [San+16] that reduces
the cost to (16Mp + 26Ap + 1Ip). The comparative operation count is shown in
Table 7.2.

TABLE 7.2: Number of Fp operations in the field Fp4 based on
Type-I and Type-II towering.

Fp4 operations Karatsuba method CVMA method

Multiplication 9Mp + 29Ap 9Mp + 22Ap

Squaring 6Mp + 24Ap 6Mp + 14Ap

Inversion 14Mp + 29Ap + 1Ip 16Mp + 26Ap + 1Ip

7.3.1.1 Multiplication in Fp4 using CVMA

Let’s consider A,B, two elements in Fp4 based on Eq.(7.2) as follows:

A = a0α + a1α
2 + a2α

3 + a3α
4,

B = b0α +b1α
2 +b2α

3 +b3α
4,
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where ai ,bi ∈ Fp and i = 0, 1, 2, 3.

A×B = (a2b2+ a1b3+ a3b1− a0b3− a1b2 − a2b1− a3b0)α

+(a0b0+ a2b3+ a3b2− a0b3− a1b2 − a2b1− a3b0)α
2

+(a3b3+ a0b1+ a1b0− a0b3− a1b2 − a2b1− a3b0)α
3

+(a1b1+ a0b2+ a2b0− a0b3− a1b2 − a2b1− a3b0)α
4. (7.3)

By noticing that each term of Eq.(7.3) shares the common term −a0b3 − a1b2 −

a2b1 − a3b0; we can consider this fact in the following expression U1:

U1 = (a0 − a3)(b0 −b3) + (a1 − a2)(b1 −b2). (7.4)

By using the Eq.(7.4), Eq.(7.3) can be expressed as follows:

A×B = {U1 − (a1 − a3)(b1 −b3) − a0b0}α

+{U1 − (a2 − a3)(b2 −b3) − a1b1}α
2

+{U1 − (a0 − a1)(b0 −b1) − a2b2}α
3

+{U1 − (a0 − a2)(b0 −b2) − a3b3}α
4. (7.5)

Here, the Eq.(7.4) can be optimized more and expressed as U2:

U2 = (a0 − a3)(b0 −b3) + (a1 − a2)(b1 −b2),
= (a0 + a1 − a2 − a3)(b0 +b1 −b2 −b3){(a0 − a3)(b1 −b2) + (b0 −b3)(a1 − a2)},
= (a0 + a1 − a2 − a3)(b0 +b1 −b2 −b3) + (a0 − a1)(b0 −b1) − (a0 − a2)(b0 −b2)

−(a1 − a3)(b1 −b3) + (a2 − a3)(b2 −b3).

Now let us replace U1 in Eq.(7.5) with U2 and express A × B = S1α + S2α
2 +

S3α
3 + S4α

4, where S1, S2, S3, S4 coefficients are given as follows:

S1 = U2 −T5 − a0b0, S2 = U2 −T8 − a1b1,
S3 = U2 −T7 − a2b2, S4 = U2 −T6 − a3b3,

With
U2 = (T1 +T2)(T3 +T4) −T5 −T6 +T7 +T8, T1 = a0 − a2, T2 = a1 − a3, T3 = b0 −b2,
T4 = b1 −b3, T5 = T2T4, T6 = T1T3, T7 = (a0 − a1)(b0 −b1), T8 = (a2 − a3)(b2 −b3).

The cost of each computed term is given in the following Table 7.3. In
total the multiplication in Fp4 costs 9Mp + 22Ap , which saves 5Ap compared to
Karatsuba based multiplication for elements in Fp4 .
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TABLE 7.3: The detailed cost of a multiplication in Fp4 using
CVMA technique.

Computed Terms Cost of each term

T1, T2, T3, T4 Ap

T5, T6 Mp

T7, T8 Mp + 2Ap

U2 Mp + 6Ap

S1, S2, S3, S4 Mp + 2Ap

7.3.1.2 Squaring in Fp4 using CVMA

To compute the squaring of A ∈ Fp4 , we will replace the bi terms in Eq.(7.3)
by ai , with i ∈ {0, 1, 2, 3} obtaining A2 as follows:

A2 = (2a1a3 − 2a0a3 − 2a1a2 + a
2
2)α + (2a2a3 − 2a0a3 − 2a1a2 + a

2
0)α

2

+(2a0a1 − 2a0a3 − 2a1a2 + a
2
3)α

3 + (2a0a2 − 2a0a3 − 2a1a2 + a
2
1)α

4,

= {2(a0 − a1)(a2 − a3) − 2a0a2 + a
2
2}α + {2(a0 − a2)(a1 − a3) − 2a0a1 + a

2
0}α

2

+{2(a0 − a2)(a1 − a3) − 2a2a3 + a
2
3}α

3 + {2(a0 − a1)(a2 − a3) − 2a1a3 + a
2
1}α

4,

= {2(a0 − a1)(a2 − a3) − a2(2a0 − a2)}α + {2(a0 − a2)(a1 − a3) − a0(2a1 − a0)}α
2

+{2(a0 − a2)(a1 − a3) − a3(2a2 − a3)}α
3 + {2(a0 − a1)(a2 − a3)

−a1(2a3 − a1)}α
4. (7.6)

Let A2 = S1α + S2α
2 + S3α

3 + S4α
4. From Eq.(7.6), S1, S2, S3, S4 can be obtained

as follows.

S1 = T5 − a2(a0 +T1), S2 = T6 − a0(a1 −T2),
S3 = T6 − a3(a2 +T3), S4 = T5 − a1(a3 −T4).

With
T1 = a0 − a2, T2 = a0 − a1, T3 = a2 − a3, T4 = a1 − a3, T5 = 2T2T3, T6 = 2T1T4.

The cost of each computed term is given in the following Table 7.4. The

TABLE 7.4: The detailed cost of a squaring in Fp4 using CVMA.

Computed Terms Cost

T1, T2, T3, T4 Ap

T5, T6 Mp +Ap

S1, S2, S3, S4 Mp + 2Ap

overall cost for computing a squaring by CVMA is then 6Mp + 14Ap . It saves
10Ap than Karatsuba based squaring for Fp4 elements.
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7.3.1.3 Frobenius mapping in Fp4 using CVMA

Since, α5 = 1, then, αp = (α5)
p−2

5 α2 = α2. Recall that the Frobenius map,
denoted as πp : (A) = (a0α + a1α

2 + a2α
3 + a3α

4)p , is the p-th power of the
vector which can be derived as follows:

Ap = (a0α + a1α
2 + a2α

3 + a3α
4)p

= a
p
0α

p + a
p
1α

2p + a
p
2α

3p + a
p
3α

4p

= a0α
2 + a1α

4 + a2α + a3α
3

= a2α + a0α
2 + a3α

3 + a1α
4

= (a2,a0,a3,a1). (7.7)

From the above procedure it is clear that the Frobenius map on an Fp4 ele-
ment by applying CVMA is free of cost.

7.3.1.4 Inversion in Fp4sed in [San+16]

Let L be an Fp4 element, which is the result of the product of the Frobenius
maps Ap ,Ap2

,Ap3
. The inversion of A can be obtained as follows.

L = ApAp2
Ap3

, s = AL ∈ Fp ,
A−1 = s−1L,

where s ∈ Fp element represented as (−s,−s,−s,−s) in normal basis. The
calculation cost becomes ((9Mp + 22Ap) × 3Mp) + 4Mp + Ip = 31Mp + 66Ap + Ip .

7.3.1.5 Optimized Fp4nversion using CVMA

Let A = (a0,a1,a2,a3) be an element in Fp4 . The proposed optimized method
applies subfield calculation in Fp2 as

B = AAp2
∈ Fp2 ,

A−1 = B−1Ap2
,

where, B ∈ Fp2 = (b0,b1,b1,b0) in the normal basis. While p ≡ 2 (mod 5),
Frobenius mapping Ap2

is equal to (a3,a2,a1,a0), i.e. coefficients only change
the basis position without costing any Fp operation. Therefore, b0 and b1 are
given as follows:

b0 = −(a0 + a1 − a2 − a3)
2 + 3(a0 − a2)(a1 − a3) − 2(a0 − a1)(a2 − a3) − a0a3,

b1 = −(a0 + a1 − a2 − a3)
2 + 2(a0 − a2)(a1 − a3) − (a0 − a1)(a2 − a3) − a1a2,

which costs (4MP + Sp + 12Ap). Then, B−1 can be calculated as follows:

s = BBp ∈ Fp ,

B−1 = s−1Bp ,
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where s = (−s,−s,−s,−s) in the normal basis defined in Eq.(7.2). The Frobe-
nius mapping Bp becomes (b1,b0,b0,b1) and s can be expressed as s = −(b0 −

b1)
2 +b0b1. Therefore, one inversion cost over Fp2 is 3Mp + Sp + 2Ap + Ip . If B−1

is represented as (b′0,b′1,b′1,b′0), A
−1 = B−1Ap2

= (a′0,a′1,a′2,a′3) is calculated as
follows with a cost (7Mp + 12Ap).

a′0 = (b
′
0 −b

′
1)(a1 − a0) −b

′
0a0 + (b

′
0 −b

′
1)(a0 − a3),

a′1 = (b
′
0 −b

′
1)(a1 − a0) −b

′
1a1 + (b

′
0 −b

′
1)(a0 − a3) + (b

′
0 −b

′
1)(a2 − a1),

a′2 = (b
′
0 −b

′
1)(a1 − a0) −b

′
1a2,

a′3 = (b
′
0 −b

′
1)(a1 − a0) −b

′
0a3 + (b

′
0 −b

′
1)(a2 − a1).

Then, by applying this method, inversion cost over Fp4 becomes 14Mp + 2Sp +
26Ap + Ip . In what follows, this chapter considers the cost of one Fp squaring,
as a similar cost of one Fp multiplication. The details of CVMA based opera-
tions in Fp2 for the above inversion is described in the following sections.

7.3.1.6 Calculation over Fp2 based on towering Eq.(7.2)

Let X = (x0,x1,x1,x0) and Y = (y0,y1,y1,y0) be two Fp2 elements. In this
paragraph, we present the cost of the multiplication of X and Y , the squaring
of X and its Frobenius.

Multiplication: Let R be the result of computing the multiplication XY ,
R = (r0, r1, r1, r0) is calculated as follows:

r0 = −(x0 − x1)(y0 −y1) − x0y0,
r1 = −(x0 − x1)(y0 −y1) − x1y1.

It is simple to verify that the cost of computing R = XY is (3Mp + 4Ap).

Squaring: Let R be the result of computing the squaring of X . R = X 2 =

(r0, r1, r1, r0) can be computed as follows.

r0 = −(x0 − x1)
2 − x0

2,

r1 = −(x0 − x1)
2 − x1

2.

This calculation costs (3Sp + 5Ap).

Frobenius map: According to Eq.(7.7), Frobenius mapping Xp is calculated
with no-cost. It consists only in changing the positions of the Xi as Xp =

(x1,x0,x0,x1).
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Inversion: The inversion of X denoted R = X−1 = (r0, r1, r1, r0) is calculated
using the following steps.

u = XXp ,
X−1 = u−1Xp ,

where u = (−u,−u,−u,−u) is given by u = −(x0 − x1)
2 + x0x1 Therefore, the

inversion in Fp2 requires (3Mp + Sp + 2Ap + Ip).

7.3.1.7 Frobenius mapping in Fp16 using CVMA

Let A = (a0 + a1β + a2γ + a3βγ ) be certain vector in Fp16 where a0,a1,a2,a3 ∈

Fp4 . By the definition, Frobenius map of A, i.e. πp : (A) = (a0 + a1β + a2γ +
a3βγ )

p , can be computed as Frobenius map of each Fp4 vector separately ac-
cording to Eq.(7.7). The Frobenius map of a0 is obtained as (x0α +x1α

2+x2α
3+

x3α
4)p = (x2α + x0α

2 + x3α
3 + x1α

4), where xi ∈ Fp . Similarly, for a1, a2 and a3,
it will be obtained by swapping the coefficients position. The Frobenius map
of the basis elements βp ,γp , (βγ )p can be obtained as follows:

βp = (β2)
p−1

2 β

= (α − 1)
p−1

2 β ,

γp = (γ 2)
p−1

2 γ

= (β)
p−1

2 γ

= (β2)
p−1

4 γ

= (α − 1)
p−1

4 γ ,

βpγp = (α − 1)
p−1

2 β(α − 1)
p−1

4 γ

= (α − 1)
3(p−1)

4 βγ .

Using the above calculations, the Frobenius map forAp is obtained as follows:

Ap = (x2α + x0α
2 + x3α

3 + x1α
4)

+(x6α + x4α
2 + x7α

3 + x5α
4)(α − 1)

(p−1)
2 β

+(x10α + x8α
2 + x11α

3 + x9α
4)(α − 1)

(p−1)
4 γ

+(x14α + x12α
2 + x15α

3 + x13α
4)(α − 1)

3(p−1)
4 βγ . (7.8)

Here, it requires 3 multiplication of Fp4 elements (α − 1)
(p−1)

2 , (α − 1)
(p−1)

4 , (α −

1)
3(p−1)

4 , with the 2nd, 3rd and 4th term of Eq.(7.8) respectively; costing 27 Fp

multiplication, whereas in Karatsuba case it is just 14 Fp multiplication.

7.3.2 Quartic Twist of KSS-16 Curves

The KSS-16 elliptic curve has CM discriminant of D = 1 and it’s embedding
degree k = 16 is a multiple of 4. Therefore, the maximum twist available
for KSS-16 is the quartic twist or degree d = 4 twist. Let (α − 1) has no square
root in Fp4 . Then, the quartic twisted curve E′ of curve E and their isomorphic
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mappingψ4 can be given as follows:

ψ4 :E′(Fp4)[r ] 7−→ E(Fp16)[r ] ∩Ker(πp − [p]),

(x ,y) 7−→ ((α − 1)1/2x , (α − 1)3/4y), (7.9)

recall that E is defined in Eq.(6.1) and E′ is the twisted elliptic curve defined
as y2 = x3 + ax(α − 1)−1, a ∈ Fp . Since points on the twisted curve are
defined over a smaller field than Fp16 ; therefore, their vector representation
becomes shorter, resulting in faster ECA and ECD during Miller’s loop.

Rational points: Let, Q′ = (x′,y′) be a rational point in E′(Fp4). From
Eq.(7.2), we have (α − 1)1/2 = β and (α − 1)3/4 = βγ . Therefore, the map given
in Eq.(7.9) enables toll free mapping and remapping between Q = (x ,y) and
Q′ = (x′,y′). Table 6.4 shows the vector representation of Q = (xQ ,yQ ) =
((α − 1)1/2xQ ′, (α − 1)3/4yQ ′) ∈ Fp16 according to Eq.(7.2).

It is important here to show that (α − 1) is QNR in Fp4 . From the definition of
Eq.(7.2), α is one of the zeros of Φ5(x), therefore α5 = 1. As a result, Frobenius
map αp = α2(α5)(

p−2
5 ) = α2, since p ≡ 2 mod 5.

(α − 1)
p4−1

2 = (α − 1)(p
2+1)(p

2−1
2 )

= ((α − 1)(α − 1)p
2
)(

p2−1
2 )

= ((α − 1)(α4 − 1))(
p2−1

2 )

= ((α5 − α4 − α + 1)(
p2−1

2 )

= ((−α4 − α + 2)(p+1)(p−1
2 )

= ((−α4 − α + 2)(−α4 − α + 2)p)(
p−1

2 )

= (−α − α2 − α3 − α4 + 4)(
p−1

2 )

= 5(
p−1

2 ),

where, 5(
p−1

2 ) is the Legendre symbol (5/p) = −1, which refers (α − 1) is a QNR
in Fp4 .

7.3.3 Overview: Sparse and Pseudo-Sparse Multiplication

Pseudo 8-sparse refers to a certain length of vector’s coefficients where in-
stead of 8 zero coefficients, there are seven 0’s and one 1 as coefficients. Mori
et al. [Mor+14] shown the pseudo 8-sparse multiplication for BN curve in
affine coordinates where the sextic twist is available. In [Mor+14], pseudo
8-sparse is found a little more efficient than 7-sparse in similar coordinates
and 6-sparse in Jacobian coordinates.

Let us consider T = (xT ′β ,yT ′βγ ), Q = (xQ ′β ,yQ ′βγ ) and P = (xP ,yP ), where
xp ,yp ∈ Fp given in affine coordinates on the curve E(Fp16) such that T ′ =
(xT ′,yT ′), Q′ = (xQ ′,yQ ′) are in the twisted curve E′ defined over Fp4 .
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7-Sparse Multiplication: We start this paragraph by presenting the 7-sparse
multiplication of the elliptic curve doubling of T + T = R(xR,yR) given in
[Ara+11; Gre+13].

lT ,T (P) = (yp −yT ′βγ ) − λ(xP − xT ′β),

λT ,T =
3x2

T ′β
2 + a

2yT ′βγ
=

3x2
T ′βγ

−1 + a(βγ )−1

2yT ′
=
(3x2

T ′ + a(α − 1)−1)γ

2yT ′
= λ′γ (7.10)

Here λT ,T is the gradient of the line going through the rational points T , P .
Let, a(α − 1)−1 = δ ∈ Fp4 . Since a and (α − 1) is already know at this stage,
therefore, a(α − 1)−1 can be pre-calculated. It will save calculation cost during
ECD inside the Miller’s loop. Now the line evaluation and ECD are obtained
as follows:

lT ,T (P) = yp − xpλ
′
T ,Tγ + (xT ′λ

′
T ,T −yT ′)βγ ,

x2T ′ = (λ′T ,T )
2γ 2 − 2xT ′β = ((λ′T ,T )

2 − 2xT ′)β
y2T ′ = (xT ′β − x2T ′β)λ

′
T ,Tγ −yT ′βγ = (xT ′λ

′
T ,T − x2T ′λ

′
T ,T −yT ′)βγ

(7.11)

Calculations of Eq.(7.10) and Eq.(7.11) can be optimized as follows:

A =
1

2yT ′
,B = 3x2

T ′ + δ ,C = AB,D = 2xT ′,

x2T ′ = C
2 −D,E = CxT ′ −yT ′,y2T ′ = E −Cx2T ′, F = −CxP

lT ,T (P) = yP + Fβ + Eβγ (7.12)

The elliptic curve addition phase (T , Q) and line evaluation of lT ,Q (P) can
also be optimized similarly to the above procedure. Let the elliptic curve
addition of T +Q = R(xR,yR) computed as follows.

lT ,Q (P) = (yp −yT ′βγ ) − λT ,Q (xP − xT ′β),

λT ,Q =
(yQ ′−yT ′)βγ

(xQ ′−xT ′)γ
=
(yQ ′−yT ′)γ

xQ ′−xT ′
= λ′T ,Qγ ,

xR = ((λ′T ,Q )
2 − xT ′ − xQ ′)β

yR = (xT ′λ
′
T ,Q − xR′λ

′
T ,Q −yT ′)βγ .

(7.13)

The common calculations in Eq.(7.13) can be reduced as follows:

A =
1

xQ ′ − xT ′
,B = yQ ′ −yT ′,C = AB,D = xT ′ + xQ ′,

xR′ = C
2 −D,E = CxT ′ −yT ′,yR′ = E −CxR′, F = −CxP

lT ,Q (P) = yP −CxPγ + Eβγ = yP + Fβ + Eβγ . (7.14)

Comparing with Table 6.4, it can be noticed that yP , F and E in Eq.(7.12) and
Eq.(7.14) are coefficients in the basis position of α , β , and βγ of an Fp16 vector.
Therefore, among the 16 coefficients of lT ,T (P) and lT ,Q (P) ∈ Fp16 , only 9 coef-
ficients yP ∈ Fp , CxP ∈ Fp4 and E ∈ Fp4 are non-zero. The remaining 7 zero
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coefficients lead to an efficient multiplication, which we call 7-sparse multi-
plication in KSS-16 curve. Another important thing is, vectors A,B,C,D,E, F
are calculated in Fp4 extension field while performing operations in Fp16 .

7.3.4 Pseudo 8-sparse Multiplication for KSS-16 Curve using
Type-II Towering

The main idea of pseudo 8-sparse multiplication is finding a more sparse form
of Eq.(7.12) and Eq.(7.14), which allows reducing the number of multiplica-
tion of Fp16 vector during Miller’s algorithm evaluation. To simplify both of
Eq.(7.12) and Eq.(7.14), y−1

P is multiplied to both side of these two equations
since yP remains the same through the Miller’s algorithms loop calculation.
We get the following equations.

y−1
P lT ,T (P) = 1 −CxPy−1

P γ + Ey−1
P βγ , (7.15a)

y−1
P lT ,Q (P) = 1 −CxPy−1

P γ + Ey−1
P βγ , (7.15b)

Although the Eq.(7.15a) and Eq.(7.15b) do not get more sparse, but 1st coeffi-
cient becomes 1. Such a vector is defined as pseudo sparse form in this chapter.
This form realizes more efficient Fp16 vectors multiplication in Miller’s loop.
However, it is clear that the Eq.(7.15b) creates computation overhead than
Eq.(7.14). We have to compute y−1

P lT ,Q (P) in the left side and xPy
−1
P , Ey−1

P on
the right. The same goes between Eq.(7.15a) and Eq.(7.12). Since the com-
putation of Eq.(7.15a) and Eq.(7.15b) are almost identical, therefore the rest
of the chapter shows the optimization technique for Eq.(7.15a). To overcome
these overhead computations, the following techniques can be applied.

• xPy
−1
P is omitted by applying further isomorphic mapping of P ∈ G1.

• y−1
P can be pre-computed. Therefore, the overhead calculation of Ey−1

P
will cost only 4 Fp multiplication.

• y−1
P lT ,T (P) doesn’t effect the pairing calculation cost since the final expo-

nentiation cancels this multiplication by y−1
P ∈ Fp .

To overcome the CxPy
−1
P calculation cost, xPy−1

P = 1 is expected. To obtain
xPy
−1
P = 1, the following isomorphic mapping of P = (xP ,yP ) ∈ G1 is intro-

duced.

7.3.4.1 Isomorphic map of P = (xP ,yP ) → P̄ = (xP̄ ,yP̄ ).

Although the KSS-16 curve is typically defined over Fp16 as E(Fp16), for effi-
cient implementation of Optimal-Ate pairing, certain operations are carried
out in a quartic twisted isomorphic curve E′ defined over Fp4 as shown in
Section 7.3.2. For the same, let us consider Ē(Fp4) is isomorphic to E(Fp4) and
certain z ∈ Fp as a quadratic residue (QR) in Fp4 . A generalized mapping
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between E(Fp4) and Ē(Fp4) can be given as follows:

Ē(Fp4)[r ] 7−→ E(Fp4)[r ],

(x ,y) 7−→ (z−1x , z−3/2y),

where, Ē is the elliptic curve defined by y2 = x3 + az−2x , and z, z−1, z−3/2 ∈ Fp .
The mapping considers z ∈ Fp is a quadratic residue over Fp4 which can be
shown by the fact that z(p

4−1)/2 = 1 as follows:

z(p
4−1)/2 = z(p−1)(p3+p2+p+1)/2

= 1(p
3+p2+p+1)/2

= 1 QR ∈ Fp4 . (7.16)

Therefore, z is a quadratic residue over Fp4 .
Now based on P = (xP ,yP ) be the rational point on curve E, the considered
isomorphic mapping of Eq.(7.16) can find a certain isomorphic rational point
P̄ = (xP̄ ,yP̄ ) on the curve Ē as follows:

y2
P = x3

P + axP ,

y2
Pz
−3 = x3

Pz
−3 + axPz

−3,

(yPz
−3/2)2 = (xPz

−1)3 + az−2xPz
−1, (7.17)

where P̄ = (xP̄ ,yP̄ ) = (xPz−1,yPz−3/2) and recall that the general form of the
curve Ē is given as follows:

y2 = x3 + az−2x . (7.18)

To obtain the target relation xP̄y
−1
P̄
= 1 from above isomorphic map and ratio-

nal point P̄ , let us find twist parameter z as follows:

xP̄y
−1
P̄
= 1

z−1xP (z
−3/2yP )

−1 = 1
z1/2(xP .y−1

P ) = 1

So, z = (x−1
P yP )

2. (7.19)

Now using z = (x−1
P yP )

2 and Eq.(7.17), P̄ can be obtained as

P̄(xP̄ ,yP̄ ) = (xPz
−1,yPz−3/2) = (x3

Py
−2
P ,x3

Py
−2
P ), (7.20)

For the same isomorphic map we can obtain Q̄ on curve Ē defined over Fp16

as follows:
Q̄(xQ̄ ,yQ̄ ) = (z

−1xQ ′β , z−3/2yQ ′βγ ), (7.21)

where from Eq.(7.9), Q′(xQ ′,yQ ′) ∈ E′.

At this point, to use Q̄ with P̄ in line evaluation we need to find another
isomorphic map that will map Q̄ 7→ Q̄′, where Q̄′ is the rational point on
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curve Ē′ defined over Fp4 . Such Q̄′ and Ē′ can be obtained from Q̄ of Eq.(7.21)
and curve Ē from Eq.(7.18) as follows:

(z−3/2yQ ′βγ )
2 = (z−1xQ ′β)

3 + az−2z−1xQ ′β ,

(z−3/2yQ ′)
2β2γ 2 = (z−1xQ ′)

3β3 + az−2z−1xQ ′β ,

(z−3/2yQ ′)
2 = (z−1xQ ′)

3 + z−1xQ ′a(zβ)
−2.

From the above equations, Ē′ and Q̄′ are given as,

Ē′ : y2
Q̄ ′
= x3

Q̄ ′
+ a(zβ)−2xQ̄ ′. (7.22)

Q̄′(xQ̄ ′,yQ̄ ′) = (z
−1xQ ′, z−3/2yQ ′) = (xQ ′x

2
Py
−2
P ,yQ ′x3

Py
−3
P ). (7.23)

Now, by applying P̄ and Q̄′, the line evaluation of Eq.(7.15b) becomes:

y−1
P̄
lT̄ ′,Q̄ ′(P̄) = 1 −C(xP̄y

−1
P̄
)γ + Ey−1

P̄
βγ ,

l̄T̄ ′,Q̄ ′(P̄) = 1 −Cγ + E(x−3
P y2

P )βγ , (7.24)

where xP̄y
−1
P̄
= 1 and y−1

P̄
= z3/2y−1

P = (x−3
P y2

P ). The Eq.(7.15a) becomes the
same as Eq.(7.24). Compared to Eq.(7.15b), the Eq.(7.24) will be faster while
using in Miller’s loop in combination of the pseudo 8-sparse multiplication
recalled in Algorithm 14.

Algorithm 14: Pseudo 8-sparse multiplication for KSS-16 curve.
Input: A,B ∈ Fp16

A = (a0 + a1β) + (a2 + a3β)γ , B = 1 + (b2 +b3β)γ
A = a0 + a2γ + a1γ

2 + a3γ
3, B = 1 +b2γ +b3γ

3

ai ,bi ∈ Fp4 where i = 0, 1, 2, 3
Output: C = AB = (c0 + c1β) + (c3 + c4β)γ ∈ Fp16

1 t0 ← a3 ×b3, t1 ← a2 ×b2, t4 ← b2 +b3 . (18Mp)

2 c0 ← (a2 + a3) × t4 − t1 − t0, c0 ← c0 × (α − 1) . (9Mp)

3 c1 ← t1 + t0 × (α − 1)
4 t2 ← a1 ×b3, t3 ← a0 ×b2, c2 ← t3 + t2 × (α − 1) . (18Mp)

5 c3 ← (a0 + a1) × t4 − t3 − t2 . (9Mp)

6 C ← C +A
7 return C = (c0 + c1γ ) + (c3 + c4γ )β . (Total 54Mp)

However, to apply Eq.(7.24) in Miller’s algorithm, we need the following
pre-computations once in every Miller’s Algorithm execution.

• Computing P̄ and Q̄′,

• Computing y−1
P̄
= (x−3

P y2
P ) and

• Deducing the z−2 term from curve Ē′ of Eq.(7.22).

• Calculating az−2(α − 1)−1 = z−2δ used during ECD of curve Ē′.
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Among the above terms a = 1 and δ = (α − 1)−1 is pre-calculated during
parameter setup. Rest of the operations are calculated as follows using Algo-
rithm 15. The remaining part of the Miller’s algorithm i.e. the multiplication

Algorithm 15: Pre-calculation and mapping P 7→ P̄ and Q′ 7→ Q̄′.
Input: P = (xP ,yP ) ∈ G1,Q′ = (xQ ′,yQ ′) ∈ G′2
Output: Q̄′, P̄ ,y−1

P , z−2, z−2δ

1 A← xPy
−1
P . (1Ip4 + 1Mp4)

2 B ← A2 . (1Sp4)

3 xP̄ ,yP̄ ← BxP . (1Mp4)

4 xQ̄ ′ ← BxQ ′ . (1Mp4)

5 yQ̄ ′ ← AByQ ′ . (2Mp4)

6 y−1
P ← y−1

P̄
. (1Ip4)

7 z−2 ← B2 . (1Sp4)

8 z−2 ← z−2δ . (used during ECD in Eq.(7.22); 1Mp4)

9 return Q̄′ = (xQ̄ ′,yQ̄ ′), P̄ = (xP̄ ,yP̄ ),y−1
P , z−2, z−2δ

by prime p[Q] or [p2]Q can be evaluated by applying skew Frobenius map
[Sak+08].

7.3.4.2 Skew Frobenius Map to Compute [p]Q̄′

From the definition of Q ∈ G2 we recall that Q satisfies [πp − p]Q = O or
πp(Q) = [p]Q , which is also applicable for Q̄′. Applying skew Frobenius map
we can optimize [p]Q̄′ calculation in Miller’s algorithm as follows:

(xQ̄ ′β)
p = (xQ̄ ′)

pβp , (yQ̄ ′βγ )
p = (yQ̄ ′)

pβpγp .

After remapping the above terms tern as follows:

(xQ̄ ′)
pβp−1 = (xQ̄ ′)

p(β2)
p−1

2 , (yQ̄ ′)
pβp−1γp−1 = (yQ̄ ′)

p(β2)
p−1

2 (γ 2)
p−1

2 .

The above (xQ̄ ′)p and (yQ̄ ′)p terms can be computed using Eq.(7.7) without any
costs. The rest can be done similar to Section 7.3.1.7 with a cost of 18Mp .

7.3.5 Final Exponentiation

Thanks to the cyclotomic polynomial and the definitions of r and k , the ex-
ponent p16−1

r broken down into two parts. We have,

p16 − 1
r

= (p8 − 1)
(p8 + 1)

r
.

The first part, (p8 − 1) is the simple part of the final exponentiation because it
is easy to be performed thanks to a Frobenius operation, an inversion and a
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FIGURE 7.1: Skew Frobenius mapping in 2 KSS-16 curve.

multiplication (in Fp16 . However, it has a necessary consequence for the com-
putation of the second part of the final exponentiation. Indeed, powering f ,
the result of the Miller loop, to the p8 − 1 makes the result unitary [SB04]. So
during the hard part of the final exponentiation, which consists of computing

f
p8+1
r ), all the elements involved are unitary. This simplifies computations, for

example, any future inversion can be implemented as a Frobenius operator,
more precisely f −1 = f p

8
which is just a conjugation [SB04], [SL03].

The hard part (p
8+1)
r can be efficiently calculated using Ghammam’s et al.’s

works [GF16a] addition chain algorithm.
In this chapter, we reduce the number of temporary variables used in the

[GF16a] to calculate f
857500 (p

8+1)
r

1 , where f1 is the result of computing the first
part of the final exponentiation. The number d = 857500, chosen in [GF16a]
results efficient addition chain calculation that ultimately helps efficient hard
part evaluation. Table 7.5 shows the space-optimized final exponentiation.
The squaring during hard part computation appeared operation, and it can
be efficiently carried out using Granger et Scott [GS10] cyclotomic squaring.
Their method consists of: Let A be a G3 element that is actually in a cyclo-
tomic subfield. So A = (a0 + a1γ ) ∈ F∗p16 , it verifies A(p

8+1) = 1. Therefore,
(a0 + a1γ )(a0 − a1γ ) = 1 or a2

0 = 1 + a2
1γ

2 = 1 + a2
1β can be obtained, where

Ā = (a0 − a1γ ) is a conjugate of A. By using this relation we can obtain the
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cyclotomic squaring as follows:

A2 = a2
0 + a

2
1β + 2a0a1γ

= a2
0 + a

2
1β + ((a0 + a1)

2 − a2
0 − a

2
1)γ

= 1 + a2
1β + a

2
1 + ((a0 + a1)

2 − 1 − a2
1β − a

2
1)γ

= (1 + 2a2
1β) + ((a0 + a1)

2 − 1 − a2
1(1 + β))γ

Here, only two squaring in Fp8 where in normal Fp16 squaring requires 2 mul-
tiplications in Fp8 .

Instead of computing the cyclotomic squaring, Karabina has proposed in
[Kar13b] a new method for computing the squaring in the cyclotomic sub-
group. This method is called compressed squaring. It contains two steps,
compression where we compute the squaring of the compressed form of an
element in the cyclotomic subgroup of Fpk . Then, before performing another
operation except the squaring, we have to use the decompression form of
the element in question. In his chapter, Karabina proved that his method is
applicable when the extension degree k = 2a3b with a,b ∈ N and a,b > 0
and he presented the example of computing the compressed squaring in the
cyclotomic subgroup of Fp12 . However, in our work, we consider only the
cyclotomic squaring.

The overall optimizations can be seen as the following Algorithm 16.

7.4 Experimental Result

This section gives details of the experimental implementation. The source
code can be found in Github1. The implemented code is not optimized for
any specific platform. Instead, it is written keeping in mind of scalability
with the change of parameters. The sole purpose of the piece of code is to
compare the Optimal-Ate pairing operations between CVMA (this work) and
Karatsuba based implementations [Kha+17b] while applying state-of-art al-
gorithms.

7.4.1 Experiment Environment and Assumptions

Table 7.6 shows the implementation environment used to evaluate the pro-
posal.

The authors made no attempts to utilize multiple cores of the CPU. The data
type of mpz_t of GMP is used to define the big integer in Fp . The code is
compiled with -O3 flag in gcc. To compare the prime field operations of pair-
ing, we assumed that 8 prime field addition Ap in the above environment is

1https://github.com/alaminkhandaker/KSS16-opt-ate
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TABLE 7.5: Final Exponentiation with reduced temporary vari-
ables of [GF16a].

Operation Cost

Input: f ,u,p, r

Output: f d
(p8+1)

r
1

Temp.Var:t , t0, t1, · · · , t14

f1 ← f p
8
, f1 ← f1 ∗ f

−1

t0 ← f 2
1 , t1 ← t2

0 f 2
1 , f 4

1 2Sc16

t2 ← f (u+1)
1 , t3 ← t (u+1)

2 f (u+1)
1 , f (u+1)2

1 2Eu

t4 ← t3 ∗ t1 f (u+1)2+4
1 = f B1 1Mp16

t5 ← tu4 , t6 ← t5
4 f uB1 , f 5B

1 1Eu + 1Mp16 + 2Sc16

t7 ← t8
1 , t8 ← t2

7 f 32
1 , f 64

1 4Sc16

t9 ← t7 ∗ t−1
1 , t10 ← t2

9 f 28
1 , f 56

1 1Mp16 + 1Sc16

t11 ← tu5 , t12 ← tu11 f u
2B

1 , f u
3B

1 2Eu

t13 ← t12 ∗ t9 f (u
3B+56)

1 = f A1 1Mp16

t9 ← tu13, t2 ← t−2
9 f uA1 , f −2uA

1 1Eu + 1Sc16

t10 ← t5
6 , t10 ← t5

10 f 25B
1 , f 125B

1 2Mp16 + 2Sc16

t0 ← t2 ∗ t
−1
10 f −2uA−125B

1 = f c2
1 1Mp16

t3 ← t2
0 , t2 ← t4

2 f 2c2
1 ; f −8uA

1 3Sc16

t2 ← t2 ∗ t9 f −7uA
1 1M16

p

t2← t2 ∗ t3 f 2c2−7uA
1 = f c6

1 1M16
p

t3 ← tu9 , t6 ← tu3 f u
22A

1 ; f u
3A

1 2Eu

t7 ← tu6 , t10 ← t2
3 f u

4

1 ; f 2u2A
1 1Eu + 1Sc16

t9 ← t5
5 , t9 ← t5

9 f 5uB
1 ;f 25uB

1 2M16
p + 4Sc16

t4 ← t3
9 , t9 ← t4 ∗ t9 f 75uB

1 ;f 100uB
1 1C16 + 1Mp16

t10 ← t2
10 f 4u2A

1 1Sc16

t14 ← (t10 ∗ t4)
−1 f −4u2A−75uB

1 = f c1
1 1Mp16

t3 ← t10 ∗ t
−1
3 f 3u2A

1 1Mp16

t3 ← t3 ∗ t9 f 3u2A+100xB
1 = f c5

1 1Mp16

t11 ← t5
11,t9 ← t2

11 f 5u2B
1 ; f 10u2B

1 1Mp16 + 3Sc16

t4 ← t9 ∗ t6 f u
3A+10u2B

1 = f c4
1 1Mp16

t6 ← t2
6 ,t9 ← t5

9 f 2u3A
1 f 50u2B

1 1M16
p + 3Sc16

t9 ← t9 ∗ t11,t9 ← t9 ∗ t6 f 55u2B
1 ;f 2u3A−55u2B

1 = f c0
1 2M16

p

t12 ← t24
12 f 24u3B

1 1C16 + 3Sc16

t5 ← t−1
7 ∗ t

−1
12 f −u

4A−24u3B
1 1M16

p

t8 ← t3
8 , t6 ← t8 ∗ t1 f 196

1 1C16 + 1Mp16

t7 ← t5 ∗ t6 f −u
4A−24u3B+196

1 = F c3
1 1Mp16

t8 ← t7
13 f 7A

1 = f c7
1 2Mp16 + 2Sc16

t1 ← t
p
14 ∗ t

p3

7 ∗ t
p5

3 ∗ t
p7

8 f
c1p+c3p

3+c5p
5+c7p

7

1 3Mp16 + 4(15M)

t2 ← t
p2

0 ∗ t
p6

2 f
c2p

2+c6p
6

1 1Mp16 + 2(12M)

t ← t9 ∗ t2 ∗ t1 ∗ t
p4

4 f
d
(p8+1)

r
1 3Mp16 + 1(8M)

return t

almost equivalent to 1 multiplication(Mp) in Fp with respect of time. The as-
sumption is based on the average time of 1 million iterations of Ap and Mp of
operand size ≈ 334-bit. The authors also found that for the above settings, the
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Algorithm 16: The improved Optimal-Ate pairing algorithm for KSS-16
curve using CVMA
Input: u, P ∈ G1 ⊂ E(Fp4),Q′ ∈ G′2 ⊂ E′(Fp4)

Output: e(Q̄′, P̄)
1 Pre-compute Q̄′, P̄ ,y−1

P , z−2, z−2δ . (see Alg. 15)

2 f ← 1, T̄ ′← Q̄′

3 for i = blog2(u)c downto 1 do
4 f ← f 2 · l̄T̄ ′,T̄ ′(P̄), T̄ ′← [2]T̄ ′ . (apply Alg. 14 )

5 if u[i] = 1 then
6 f ← f · l̄T̄ ′,Q̄ ′(P̄), T̄ ′← T̄ ′ + Q̄′ . (apply Alg.14 to solve Eq.(7.24))

7 if u[i] = −1 then
8 f ← f · l̄T̄ ′,Q̄ ′(P̄), T̄ ′← T̄ ′ − Q̄′ . (apply Alg.14 to solve Eq.(7.24))

9 Q1 ← [u]Q̄′ . (here Q1 = T̄ ′)
10 Q2 ← [p]Q̄′ . (Skew Frobenius map Section 7.3.4.2)

11 f ← f · lQ1,Q2(P̄) . (Alg.14)

12 ft ← f p
3

. (Forbenius map of p3)

13 f ← f · ft . (Alg.14)

14 f ← f · lQ̄ ′,Q̄ ′(P̄) . (Alg.14)

15 f1 ← f (p
8−1) . (1Ip16 + 1Mp16)

16 f ← f
d
p8+1
r

1 . (Alg.7.5)

17 return f

TABLE 7.6: Computational environment.

CPU* Memory Compiler OS Language Library

Intel(R) Core(TM)

i5-6500 CPU @ 3.20GHz
4GB GCC 5.4.0 Ubuntu 16.04 LTS C GMP v 6.1.0 [Gt15]

assumptions hold in other environments. The authors also compare the cy-
cles count of the operations, obtained from CPU’s Time Stamp Counter. It is
worth mentioning that none of the time and cycles promise constant output
for a specific operation in a particular environment due to several operating
system factors.

The parameter is chosen according to [BD17]’s suggestion for to make DLP
size secure enough against exTNFS [KB16] as is shown in Table 7.7. The
chosen parameter is twist-secure but does not guarantee subgroup security.
However, finding both twist-secure and subgroup secure parameters with
the lowest hamming weight can be a matter of time.

7.4.2 Result and Analysis

Table 7.8 shows the total number of operations in Fp for notable finite field
operation applied in pairing calculation. The negative value refers to the
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TABLE 7.7: Selected parameters for 128-bit security level ac-
cording to [BD17].

Curve Integer u HW(u) blog2uc blog2 p(u)c blog2 r (u)c blog2 p
kc

KSS-16 u = −233 − 232 − 213 − 211 + 26 + 1 6 34 334 259 5344

decrements of operations after applying the CVMA technique. As aforemen-
tioned, CVMA reduces the number of Ap for multiplications and squaring
over the extension field. Although the Frobenius map in Fp4 is free of cost;
however, the Frobenius map in Fp16 in CVMA costs more than Karatsuba
based constructions. The inversion in Fp4 is costlier in CVMA. But in terms of
total operation, the CVMA approach shows better performance than Karat-
suba approach.

Then, in Table 7.9 we compare Miller algorithm with CVMA with Miller al-
gorithm with Karatsuba concerning operation count. Table 7.11 shows com-
parison for Final exponentiation in terms of operation count.

In the following Table 7.10 we compare the Pseudo 8-sparse multiplication
with CVMA with Miller algorithm with Karatsuba concerning operation count.

Miller’s algorithms proposed pre-computation cost is negligible compared to
the rest of the computation. The Karatsuba based implementation takes 101
less Fp multiplication than CVMA in Miller’s algorithm. However, such an
advantage is overtaken by the number of reduced addition in CVMA com-
pared to Karatsuba. The 3.4% improvement is seemingly very insignificant in
terms of 1 pairing. However, a real pairing-based protocol requiring multiple
pairings can be benefited from it.

Table 7.12 shows execution time in millisecond (rounded 2 decimal places)
and cycle counts for Optimal-Ate pairing implementation for the Table 7.6
settings. The primary purpose of this execution time comparison is to show
that the theoretic optimization also reflects in the real implementation. How-
ever, the implementation does not guarantee constant time operation which
is crucial in the context of the side-channel attack. The negative value refers
to CVMA’s efficiency over Karatsuba based implementation. The cycle counts
are almost coherent with the time performances. The execution time also
binds with the respective operation counts of Table 7.9, Table 7.11. The total
pairing time is significantly influenced by the hard part of the final expo-
nentiation. It may seem confusing that 0.7% reduction of operation count
for the FE hard part in CVMA, results in relatively more faster execution
time. However, we relate this irregularity to cyclotomic squaring operation.
Since towering is involved, therefore, the extension field operations are im-
plemented in top-down order. Therefore, in CVMA, the Fp8 squaring for cy-
clotomic squaring operation, calls Fp4 squaring; which is more efficient than
the Karatsuba counterpart (Table 7.8). The further time-profile investigation
finds that the number of times GMP library calls its memory allocation/real-
location impacts in the execution time.
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TABLE 7.9: Miller’s algorithm (MA) operation comparison with
respect to Fp addition.

CVMA Karatsuba Increment

of Ap

approx %
Operations Mp Ap Ip Mp Ap Ip

MA 6679 23663 41 6578 27194 41 -2723 -3.4

MA pre-com 98 212 2 94 280 2 -36 -3.5

TABLE 7.10: Comparison in terms of operation count for
Pseudo 8-sparse multiplication.

CVMA Karatsuba
Increment of Ap approx %

Mp Ap Mp Ap

Pseudo 8-sparse multiplication 54 205 54 229 -24 -3.6

7.5 Summary

This chapter shows several improvement ideas for Optimal-Ate pairing in
the less studied KSS-16 curve while revisiting [Kha+17b] to find more effi-
cient Miller’s algorithm implementation technique for Optimal-Ate pairing

• applied a combination of normal basis and the polynomial basis for Fp16

extension field operation.

• The selling point for of CVMA in this work is Fp4 extension field op-
eration. It requires fewer Fp additions than its Karatsuba counterparts.
However, Inversion and Frobenius map for the Fp16 is still expensive
for the applied towering.

• The authors optimized inversion operation cost for CVMA approach.

• Optimized the pseudo 8-sparse multiplication for CVMA, which be-
comes 3.6% efficient than the similar method presented in IndoCrypt’17
[Kha+17b].

• The final exponentiation by Ghammam et al. [GF16a] is more memory-
optimized now.

The main drawback of this CVMA setting is the inversion in Fp4 and Frobe-
nius map in Fp16 . As a future improvement, we would like to find settings
which can overcome these obstacles. The implementation and execution time
given here is a comparative purpose. It can be more optimized by careful
low-level prime field implementation.
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TABLE 7.11: Comparison in terms of operation count for Final
exponentiation (FE).

CVMA Karatsuba Increment

of Ap

approx %
Operations Mp Ap Aui Mp Ap Aui

Final exp. [hard] 19134 93933 2744 19102 96129 686 -1796 -0.7

Final exp. [easy] 217 792 215 890 -82 -3.1

TABLE 7.12: Time comparison in millisecond [ms] of CVMA vs
Karatsuba based implementation of Pseudo 8-sparse Optimal-

Ate.

CVMA Karatsuba
Increment in %

[-ve refers decrement]

≈ Time [ms] Cycles ≈ Time [ms] Cycles Time Cycles

Pairing pre-

computation
0.05 159161 0.05 156660 0 1.6

Miller’s algo. 2.23 7125491 3.45 11010338 -35.4 -35.3

FE [easy] 0.12 378786 0.13 413408 -7.7 -8.4

FE [hard] 7.13 22765766 10.18 32507719 -30.0 -30.0

Total 9.53 30429204 13.81 44088125 -31.0 -31.0
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Chapter 8

Efficient G2 Scalar Multiplication
in KSS-16 Curve

8.1 Introduction

8.1.1 Background and Motivation

Pairing-based protocols are getting popular in many cryptographic applica-
tions. In general, pairing is a bilinear map of two rational point groups G1
and G2 to a multiplicative group G3 [SCA86]. The typical notation of pair-
ing is G1 ×G2 → G3. Pairing algorithms involve computations on elements
in all three pairing groups, G1, G2 and G3. However, most of the protocols
usually require additional scalar multiplication and exponentiation in any
of these three groups. The Gallant-Lambert-Vanstone (GLV) method is an
elegant technique to accelerate the scalar multiplication which can reduce
the number of elliptic curve doubling by using Straus-Shamir simultaneous
multi-scalar multiplication technique. However, efficiently computable en-
domorphisms are required to apply GLV for the elliptic curves. This chapter
shows the GLV technique by deriving efficiently computable endomorphism
for Kachisa-Schaefer-Scott (KSS) [KSS07] pairing-friendly curves of embed-
ding degree k = 16 (KSS-16) in the context of Optimal-Ate pairing.

The motivation to work on KSS-16 curve came from the recent work of Bar-
bulescu et al. [BD17] and Khandaker et al. [Kha+17b], where they concluded
that with the new parameters for pairing-based protocols, KSS-16 curve is a
better choice for Optimal-Ate pairing over BN curve.

Moreover, Scalar multiplication dominates the execution time of any elliptic
curve cryptography (ECC) algorithms. The conventional approach to accel-
erate scalar multiplication are log-step algorithm such as binary and non-
adjacent form (NAF) methods. However, in the context of asymmetric pair-
ing where there exists no efficiently computable isomorphism between G1
and G2, a more efficient approach is to use GLV [Sak+08; KN17]. In order
to accelerate scalar multiplication, Gallant-Lambert-Vanstone [GLV01] pro-
posed a technique for rational points of prime order known as GLV method.
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Fundamentally, it divides the scalar into half of the bit length of the origi-
nal one that reduces the number of doubling. The critical point of this tech-
nique is that there should have to be an efficiently computable endomor-
phism. Otherwise, the advantage obtained from reduced doubling will not
affect the acceleration.

8.1.2 Contribution

The significant contributions of this chapter are (I) obtaining the endomor-
phism to enable GLV decomposition for G2 rational point in KSS-16 curve.
(II) Deriving dimension 2, 4 and 8 GLV decomposition along with finding ef-
ficiently computable Frobenius maps. (III) Implementation of the derived
techniques and their comparison. This chapter shows that increasing the
dimension of decomposition not necessarily accelerate the scalar multipli-
cation. In the case of G2 points of KSS-16 curve, our experiment finds that
dimension 4 is the fastest.

8.1.3 Related Works

There is a vast literature on GLV decomposition in pairing-friendly curves i.e.
Barreto-Naehrig [BN06], Kachisa-Schaefer-Scott (KSS) curve of embedding
degree 18, [Sak+08; KN17; Nog+09; FLS15; GLS11]. The common fact of in
such literature is, they all applied GLV on sextic twisted curves. However, in
our knowledge till date, there is no literature on GLV decomposition for KSS
curve of embedding degree 16 where at most degree 4 twist is available.

8.2 Fundamentals

We refer to the following :

• Kachisa-Schaefer-Scott curve of embedding degree k = 16 defined in
Section 6.2.1 of Chapter 6.

• Elliptic curve point addition and doubling from Section 2.6 in Chapter
2.

• Fp16 towering from Eq.(3.6) from Chapter 3.

• Fp16 extension field arithmetic from Section 6.2.2 in Chapter 6.

• Optimal-Ate pairing on KSS-16 curve from Section 6.2.3 in Chapter 6.

for the related fundamentals to understand the proposal this chapter. The
fundamental of GLV is summarized in the following section.

8.2.1 Gallant, Lambert, and Vanstone (GLV) Decomposition

In CRYPTO 2001 [GLV01], Gallant, Lambert, and Vanstone found that any
multiple [s]Q of a point Q of prime order r lying on an elliptic curve with a
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low-degree endomorphism Φ over Fp can be calculated as follows:

[s]Q = s1Q + s2Φ(Q), (8.1)

wheremax |s1 |, |s2 | ≤ C1
√
r for some explicit constantC1 > 0. The main idea of

the GLV trick is it exists essentially in an algorithm that finds a decomposi-
tion of an arbitrary scalar multiplication [s] for 0 ≤ s ≤ r into two scalar mul-
tiplications, while the new scalars are having only about half the bit length
of the original scalar. This immediately enables the elimination of half the
doubling by employing the Straus-Shamir simultaneous multi-scalar point
multiplication. Later on Galbraith-Lin-Scott (GLS) have shown that over Fp2 .
This chapter focuses on such a trick for the KSS-16 curve in the context of
Optimal-Ate pairing.

8.3 Proposed GLV technique for G2 Rational Point
on KSS-16 Curve

As aforementioned, Optimal-Ate pairing is computed over a twisted curve.
Therefore, the following sections will describe the twist property of KSS-16
curve and the procedure to obtain GLV decomposition in the G2 group of a
KSS-16 curve.

8.3.1 Quartic Twist of KSS-16 Curves

There exists a twisted curve with a group of rational points of order r for a KSS-
16 curve. This isomorphic rational point group includes a twisted isomorphic
point of Q ∈ G2 ⊂ E(Fpk ), typically denoted as Q′ ∈ E′(Fpk/d ), where k is the
embedding degree and d is the twist degree. Since the pairing-friendly KSS-
16 [KSS07] curve has CM discriminant of D = 1 and 4|k ; therefore, a quartic
twist is available.

Let β be a certain quadratic non-residue in Fp4 . The quartic twisted curve E′

of KSS-16 curve E defined in Eq.(6.1) and their isomorphic mapping ψ4 are
given as follows:

E′ : y2 = x3 + axβ−1, a ∈ Fp , (8.2)
ψ4 : E′(Fp4)[r ] 7−→ E(Fp16)[r ] ∩Ker(πp − [p]),

(x ,y) 7−→ (β1/2x , β3/4y), (8.3)

where Ker(·) denotes the kernel of the mapping and πp denotes Frobenius
mapping for rational point.

For the above mapping, the vector representation of

Q = (xQ ,yQ ) = (β1/2xQ ′, β3/4yQ ′) ∈ Fp16
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is obtained according to the given towering in Eq.(7.1). Here, xQ ′ and yQ ′ are
the coordinates of the rational point Q′ on quartic twisted curve E′.

8.3.2 Elliptic Curve Operation in Twisted Curve E′

Since E′ in Eq.(8.2) is different from E, therefore, the elliptic curve addition
and doubling operation slightly changed. Let us consider T = (γxT ′,γωyT ′),
Q = (γxQ ′,γωyQ ′) and P = (xP ,yP ), where xp ,yp ∈ Fp given in affine coordinates
on the curve E(Fp16) such that T ′ = (xT ′,yT ′), Q′ = (xQ ′,yQ ′) are in the twisted
curve E′ defined over Fp4 . Let the elliptic curve doubling of T +T = R(xR,yR).

λ =
3x2

T ′γ
2 + a

2yT ′γω
=

3x2
T ′γω

−1 + a(γω)−1

2yT ′
,

=
(3x2

T ′ + ac
−1αβ)ω

2yT ′
= λ′ω,

since γω−1 = ω, (γω)−1 = ωβ−1, and aβ−1 = (a + 0α + 0β + 0αβ)β−1 = aβ−1 =

ac−1αβ , where α2 = c. Now the ECD are obtained as follows:

xR = (λ
′)2ω2 − 2xT ′γ = ((λ′)2 − 2xT ′)γ ,

yR = (xT ′λ
′ − x2T ′λ

′ −yT ′)γω.

The elliptic curve addition phase (i.e. T , Q) can be written as T + Q =
R(xR,yR).

λ =
(yQ ′ −yT ′)γω

(xQ ′ − xT ′)γ
=
(yQ ′ −yT ′)ω

xQ ′ − xT ′
= λ′ω,

xR = ((λ
′)2 − xT ′ − xQ ′)γ ,

yR = (xT ′λ
′ − xR′λ

′ −yT ′)γω.

8.3.3 Finding Endomorphism between p and u

Let us find an endomorphism between the prime p and the integer u from
using the Hasse’s theorem

p + 1 − t ≡ 0 mod r ,

as follows:

p ≡ t − 1 mod r ,
35p ≡ 2u5 + 41u mod r . (8.4)

The modulus of order r defined in Eq.(6.2b) can be expressed as

u8 + 48u4 + 625 mod r ≡ 0. (8.5)
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From the above equation we approach to find the relation between p and u
as follows:

2u8 + 96u4 + 2 · 54 mod r ≡ 0,
35pu3 − 41u4 + 96u4 + 2 · 54 mod r ≡ 0,

35pu3 + 55u4 + 2 · 54 mod r ≡ 0,
7pu3 + 11u4 + 2 · 53 mod r ≡ 0,

11u4 + 2 · 53 mod r ≡ −7pu3,
11u + 2 · 53u−3 mod r ≡ −7p. (8.6)

Let us take 4-th power of both side of the Eq.(8.6).

74p4 ≡ (11u + 2 · 53u−3)4 mod r ,

≡ 114u4 + 8 · 53113 + 24 · 56112u−4 + 32 · 11 · 59u−8

+ 24512u−12 mod r . (8.7)

Multiplying u−12 with Eq.(8.5) result in the following relation.

u−4 + 48u−8 + 54u−12 mod r ≡ 0.

Afterward multiplying 2458 with the above equation is obtained as follows:

2458u−4 + 48 · 2458u−8 + 24512u−12 mod r ≡ 0,

which helps to simplify the Eq.(8.7) as

74p4 ≡ 114u4 + 8 · 53113 + 24 · 56112u−4 + 32 · 11 · 59u−8

− 2458u−4 − 48 · 2458u−8 mod r ,

≡ 114u4 + 8 · 53113 + 2504 · 56u−4

+ 992 · 58u−8 mod r . (8.8)

At this point let us multiply 992 · 54u−8 with Eq.(8.5) to obtain

992 · 54 + 992 · 48 · 54u−4 + 992 · 58u−8 mod r ≡ 0.

Using the above relation, Eq.(8.8) can be expressed as

74p4 ≡ 114u4 + 8 · 53113 + 2504 · 56u−4 − 992 · 48 · 54u−4

− 992 · 54 mod r ,

≡ 114x4 + 5688 · 53 + 14984 · 54u−4 mod r . (8.9)

Now, let us multiply 14984u−4 with Eq.(8.5) to obtain the following equation
as

14984u4 + 14984 · 48 + 14984 · 54 mod r ≡ 0. (8.10)
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Substituting the above equation in Eq.(8.9) the final relation can be obtained
as follows:

74p4 ≡ 114x4 + 5688 · 53 − 14984u4 − 14984 · 48 mod r ,

≡ (14641 − 14984)u4 + (711000 − 719232) mod r ,

≡ −343u4 − 8232 mod r ,

7p4 ≡ −u4 − 24 mod r . (8.11)

Finally,u4 ≡ −7p4 − 24 mod r is the endomorphism we are interested in. Since
the relation is obtained for u4, therefore, we can apply it for 2 dimension
GLV decomposition. The reason can be anticipated clearly as the order r is a
polynomial of degree 8 of the integer u.

8.3.4 GLV for the Group Having Order r (u)

We can apply at mostφ(16) = 8 dimension GLV decomposition for G2 rational
point group; since the KSS-16 is a curve defined over an extension field of
degree 16. Here φ is the Euler’s totient function. However, as discussed
in the introduction, there is always a trade-off between the number of pre-
computation and the dimension of GLV for any curve.

In the context of KSS-16, p16 − 1 can be divisible by r from the definition of
pairing. Therefore, we got the following equations.

p16 ≡ 1 (mod r ), (8.12a)

p8 ≡ −1 (mod r ), (8.12b)

p4 ≡
√
−1 ≡ i (mod r ). (8.12c)

Since −1 is a QNR in Fp , therefore,
√
−1 exists in Fp .

8.3.4.1 Dimension 8 GLV Decomposition

Since order r of the KSS-16 curve defined in Eq.(6.2b) is a degree 8 polynomial
of integer u, therefore, to obtain dimension 8 GLV decomposition of a scalar
s as the following form

s = s0 +us1 +u
2s2 +u

3s3 +u
4s4 +u

5s5 +u
6s6 +u

7s7,
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we need to find a relation between above degrees of u and prime p. Let us
first obtain a relation between degree 1 of u and p as follows:

p ≡ t − 1 (mod r ),

35p ≡ 2u5 + 41u (mod r ), (see Eq.(8.4))

35p ≡ u(2u4 + 41) (mod r ),

35p ≡ u(2(−7p4 − 24) + 41) (mod r ), (see Eq.(8.11))

35p ≡ u(−14p4 − 7) (mod r ),

5p ≡ u(−2p4 − 1) (mod r ),

u ≡ 5p(−2p4 − 1)−1 (mod r ),

u ≡ 5p(−2i − 1)−1 (mod r ), (see Eq.(8.12c))

u ≡ 5p(−2i − 1)−1(−2i − 1)(2i − 1)/5 (mod r ),
u ≡ p(2i − 1) (mod r ),

u ≡ 2p5 −p (mod r ). (8.13)

8.3.4.2 Dimension 4 GLV Decomposition

To obtain the dimension 4 decomposition, we derive the relation between
degree 2 of u and p as follows:

u2 ≡ p2(2p4 − 1)2 (mod r ),

u2 ≡ p2(−4 − 4p4 + 1) (mod r ), (see Eq.(8.12b))

u2 ≡ −4p6 − 3p2 (mod r ). (8.14)

8.3.4.3 Dimension 2 GLV Decomposition

Modular equation for dimension 2 GLV is already obtained in Eq.(8.11). How-
ever, we can verify that as follows:

u4 ≡ p4(−4p4 − 3)2 (mod r ),

u4 ≡ p4(−16 + 24p4 + 9) (mod r ), (see Eq.(8.12b))

u4 ≡ −7p4 − 24 (mod r ). (see Eq.(8.12b)) (8.15)

Beside u,u2 and u4 we also need to find the endomorphisms for u3,u5,u6 and
u7. Using the above Eq.(8.13), Eq.(8.14) and Eq.(8.15), they can be given as
follows:

u3 ≡ 11p3 − 2p7,

u5 ≡ 38p − 41p5,

u6 ≡ 117p6 + 44p2,

u7 ≡ −278p3 − 29p7.
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8.3.4.4 Dimension 2 GLV with Joint Sparse Form

In [GHP04], Solinas proposed a joint sparse form (JSF) for two integers. Let
say the two integers are s0 and s1. The JSF representation of s0 and s1 will
ensure that their joint Hamming weight is minimal among all signed bi-
nary representations of the same pair of integers. Therefore, we combined
2-dimensional GLV with JSF to make the scalar multiplication faster.

8.3.5 Applying Straus-Shamir Simultaneous Multi-Scalar Mul-
tiplication Technique

In what follows let us denote the 2-dimension as 2-Split, 4-dimension as
4-Split and 8-dimension as 8-Split scalar multiplication. In our experimen-
tal implementation, we adopted the parameter suggested in [BD17]. Using
[BD17]’s settings the integer u is obtained as 35-bit and order r as 263-bit.
Therefore, the maximum bit length of an s is ≤ 263-bit.

8.3.5.1 2-Split and 4-Split Scalar Multiplication

The 2-Split scalar multiplication can be expressed as

[s]Q = [s0]Q + s1[u
4]Q . (8.16)

For the above representation, we need at most 22 pre-computed points and
2-bit (one for s0 and another is s1) simultaneous multi-scalar multiplication.
Similarly, 4-Split can be calculated as

[s]Q = [s0]Q + s1[u
2]Q + s2[u

4]Q + s3[u
6]Q , (8.17)

using 24 pre-computed rational point patterns applied in 4-bit (s3, s2, s1, s0)
simultaneous multi-scalar multiplication.

8.3.5.2 8-Split Scalar Multiplication

The 8-Split multiplication can be a little bit tricky since the usual way will
calculate 28 pre-computed points. Since u = 35-bit, the maximum length of
the scalar after the dimension 8 decomposition will be ≤ 35-bit. Therefore, at
most 35 pre-computed points will be utilized during the multi-scalar multi-
plication. As a result, we separated the scalar into two groups as (s3, s2, s1, s0)

and (s7, s6, s5, s4). Then we pre-computed 24 + 24 = 32 rational points. Figure
8.1(a) shows the pre-computation steps. Among the 32 pre-computed points
each of the points will be utilized at least once during multi-scalar multipli-
cation. Finally, we combined the result of the two separately obtained multi-
scalar multiplication by one extra elliptic curve addition. As a result we can
save 28 − 32 = 224 pre-computation. Figure 8.1(b) shows the computation of
the loop where simultaneous multi-scalar multiplications are carried out.
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FIGURE 8.1: (a) Pre-computation of rational points for dimen-
sion 8 GLV. (b) Computation of SCM for dimension 8 GLV.

To obtain the pre-computed rational points we need to calculate

[p]Q , [p2]Q , · · · , [p7]Q

as shown in Figure 8.1(a). Thanks to Frobenius map which can be calculated
with a few multiplications in Fp . Moreover, since rational points in G2 have
isomorphic twisted points in G′2 ⊂ E′(Fp4), therefore, skew Frobenius map
[Sak+08] can be applied as shown in the Section 8.3.6.

8.3.6 Skew Frobenius Map to Compute [p]Q̄′

From the definition of Q ∈ G2, we recall that Q satisfies [πp − p]Q = O or
πp(Q) = [p]Q , which is also applicable for Q̄′. Applying skew Frobenius map
we can optimize [p]Q̄′ calculation. The detailed procedure to obtain the skew
Frobenius map of Q′ = (xQ ′,yQ ′) ∈ G′2 ⊂ E′(Fp4) is given bellow:

(xQ ′γ )
p = (xQ ′)

pγp .

After remapping

(xQ ′)
pγp−1 = (xQ ′)

p(γ 2)
p−1

2 ,

The (γ 2)
p−1

2 term can be simplified as follows:

(γ 2)
p−1

2 = (β2)
p−1

4 , since p ≡ 5 mod 8,

= (α)
p−1

4 −1α ,

= (α2)
p−5

8 α ,

= c
p−5

8 α . (8.19a)
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Recall that c = 2 in Eq.(7.1).

Similar way the skew Frobenius map of yQ ′ is given as,

(yQ ′γω)
p = (yQ ′)

pγpωp .

After remapping

(yQ ′)
pγp−1ωp−1 = (yQ ′)

p(γ 2)
p−1

2 (ω2)
p−1

2 .

(γ 2)
p−1

2 is calculated same as Eq.(8.19a). The (ω2)
p−1

2 term is calculated as fol-
lows:

(ω2)
p−1

2 = (γ 2)
p−1

4 , since p ≡ 5 mod 8,

= β
p−1

4 −1β ,

= (α)
p−5

8 β ,

= (α)
p−5

8 −1αβ ,

= (α2)
p−13

16 αβ ,

= c
p−13

16 αβ .

The above constant terms will be pre-calculated. Now the xQ ′)
p , (yQ ′)p ∈ Fp4

can be easily calculated where the coefficients will change positions and sign
while multiplying with basis elements. For example (xQ ′)p(γ 2)

p−1
2 ∈ Fp4 can

be calculated as

(xQ ′)
p(γ 2)

p−1
2 = (a0 + a1α + a2β + a3αβ)

pc
p−5

8 α ,

= (−a1c + a0α − a3cβ + a2αβ)c
3p−7

8 .

Here it costs 4 multiplication in Fp . In the similar way (yQ ′)p(γ 2)
p−1

2 (ω2)
p−1

2 can
be calculated in costing 4 Mp . Therefore, a single skew Frobenius map will
cost 8 multiplications in Fp .

During the pre-computation stage of GLV method we also need to compute
[p2]Q′, [p3]Q′, [p4]Q′, [p5]Q′, [p6]Q′, [p6]Q′, and [p7]Q′ skew Frobenius maps.
The procedure is similar to computing [p]Q′. Interestingly, the coefficients
basis positions after the skew Frobenius map is similar for [p]Q′ and [p5]Q′

pair; [p3]Q and [p7]Q′ pair, [p2]Q′ and [p6]Q′ pair. Only constant multiples
will be different.

8.4 Experimental Result Analysis

To determine the advantage of the derived GLV techniques, in one hand we
applied the twisted mapping to map rational point Q ∈ G2 ⊂ E(Fp16) to its
isomorphic point Q′ ∈ G′2 ⊂ E′(Fp4). After that, we performed the scalar
multiplication ofQ′. Then the resulted points are re-mapped to G2 in Fp16 . On
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the other hand, we performed scalar multiplication using the GLV techniques
derived in Section 8.3. In the experiment, 100 randomly generated scalars of
size ≤ r (263-bit) are used to calculate SCM for all the cases. Average value
of execution time presented in the millisecond is considered for comparison.
The source of the experimental implementation can be found in Github 1.

In the experiment, KSS-16 curve over Fp16 is obtained as y2 = x3 + 1 by ap-
plying the parameters of Barbulescu et al. [BD17] for 128-bit security level.
Table 8.2 shows the experiment environment used for comparative evalua-
tion. No optimization is done to execute the program in multithreading.

TABLE 8.1: Curve parameters.

u = 35-bit p r t

235 − 232 − 218 + 28 + 1 339 -bit 263 -bit 270 -bit

TABLE 8.2: Experimental Implementation Environment.

CPU Memory Compiler OS
Language &
Library

Intel(R) 2.7 GHz
Core(TM) i5

16GB 4.2.1
macOS High
Sierra 10.13.6

C
GMP v 6.1.0 [Gt15]

TABLE 8.3: Maximum length of scalar s after GLV decomposi-
tion in different dimensions.

Max bit length

of s after GLV

Normal

binary
2-Split 2-Split JSF 4-Split 8-Split

263-bit 139-bit 139-bit 69-bit 35-bit

Table 8.3 shows the maximum bit length after applying the GLV technique on
a scalar of length 263-bit. Table 8.4 shows the number of operation required
to perform single ECA and ECD in E′(Fp4). Table 8.5 shows the result with
respect to ECA and ECD count and time [ms]. From the results, it is clear that
4-Split is the fastest among the techniques followed by the 8-Split. Logically
8-Split should be faster than the 4-Split since its loop length is half of the 4-
Split. In other words, 8-Split requires about less than half of 4-Split’s ECD
during loop execution. However, combining two 4-Split for one 8-Split in-
creases the number of ECA. As a result, the total ECA count in the loop for 8-
Split is almost the same a 4-Split. The significant fall back of 8-Split compared
to 4-Split comes from its number of pre-computed rational points. Moreover,
the total number of pre-computation also increases the other overhead cal-
culations such as initialization, memory allocation, padding 0 in MSB of the

1https://github.com/eNipu/candar_glv.git

https://github.com/eNipu/candar_glv.git


126 Chapter 8. Efficient G2 Scalar Multiplication in KSS-16 Curve

TABLE 8.4: ECD and ECA cost in E ′(Fp4).

ECD cost in E′(Fp4) ECA cost in E′(Fp4)

3M4 + 8A4 + 1I4 + 1Mp 2M4 + 6A4 + 1I4

decomposed scalar smaller than the max length. Which also impacts on the
execution time.

TABLE 8.5: Comparative result of average execution time in
[ms] for scalar multiplication.

Pre-computation
In SCM

Algorithm Time [ms]

Operation #ECA #ECD #ECA #ECD

Normal binary 0 0 120 262 42.81

2-Split 5 6 98 138 28.48

2-Split JSF 8 6 66 138 25.16

4-Split 24 20 64 68 19.09

8-Split 52 47 67 34 21.85

8.5 Summary

This chapter shows the explicit formula to apply the GLV decomposition to-
gether with Straus-Shamir multi-scalar multiplication technique for efficient
G2 scalar multiplication which is a significant operation in many pairing-
based protocols. The experimental implementation confirms the correctness
of the derived technique. The comparative implementations show that di-
mension 4 is faster than 8 and 2. There is still scope to make the technique bet-
ter by optimizing the pre-computation which will reduce the number of ECA
and ECD. As a future work, we would like to reduce the pre-computation
cost by optimizing the Frobenius map calculation together with the applica-
tion of non-adjacent form (NAF) and evaluate the acceleration in a pairing-
based protocol.
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Chapter 9

Conclusion and Future Works

The primary objective of this thesis was to contribute to settling pairing-
based cryptography protocols into practical use. The innovative protocols
mentioned in this thesis still obstruct with execution time. To solve this prob-
lem, we proposed several improvements to accelerate pairing and related
algorithms.

Chapter 2 defines the necessary fundamentals. Chapter 3 shows a com-
parative implementation of scalar multiplication for sextic twisted KSS-18
curve and quartic twisted KSS-16 curve. Chapter 4 proposes pseudo 12-sparse
multiplicationn to accelerate pairing over KSS-18 curve at the 192-bit secu-
rity level. Chapter 5 proposes efficient scalar multiplication for G2 rational
point groups using skew Frobenius map in KSS-18 curve. In Chapter 6, we
presented state-of-the-art improvement of Miller’s algorithm for pairing at
128-bit security level using KSS-16 curve. Chapter 7 shows the technique to
improve finite field arithmetic targeted for Fp16 extension field using CVMA.
This chapter also revisits the work of Chapter 6 providing further improve-
ments. In Chapter 8, we presented the necessary procedure to decompose
scalars for scalar multiplication in G2 group in KSS-16 curve. We also pre-
sented several decompositions and suggested that 4-dimension decomposi-
tion is optimal for the purpose.

From the experimental results presented with each chapter, resembles that
our proposed methods can substantially improve pairing calculation for the
targeted curves and accelerate processing times. Therefore, our research will
contribute to the acceleration of high-level security protocols such as ID-
based encryption and homomorphic encryption.

As future works, we would like to complete our ongoing, i.e., scalar multi-
plication on G1 and efficient exponentiation on G3. Besides, we also want
to explore the possibilities of improving other pairing-friendly curves that
may exhibit more efficient pairing. We want to improve the implementa-
tion program. The ultimate target is to apply our improvements in the real
pairing-based application such as ID-Based encryption and group signature
at a practical level.
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Appendix A

Software Library

A.1 ELiPS Library

Most of the implementations of this research are compiled in an install-able
library. The library is named as ELiPS. ELiPS: Stands for Efficient Library
for Pairing-based Security. ELiPS is solely developed in Information Security
Lab, Okayama University. The paring group researchers of the solely devel-
oped it over the years. There was a previous version of ELiPS which only
supports 32-bit Unix OS.

The part I contributed is opened in the following GitHub link https://github.

com/ISecOkayamaUni/ELiPS_KSS16 under GNU GPL v3.0 license. Installation
instruction can also be found in the library documentation of the GitHub
link.

The main goal of this library is

• to give the researchers a tool that can be easy to install, configure and
use regardless of platforms they use.

• With a basic idea of pairing-based cryptography, anyone will be able to
use this library for their research of cryptography protocols.

The current version of the library used GNU Build Systems, i.e., Autotools 1

for the building. Therefore it is now install-able in Unix like OS, i.e., Mac OS
X, Ubuntu 32, 64, Raspbian. The big numbers are implemented using GNU
arbitrary precision arithmetic library GMP 2. The library will be updated as
an incremental basis. Since to this date, ELiPS is still under development
software, commercial implementations may not be correct or secure and may
include patented algorithms.

1http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
2https://gmplib.org

https://github.com/ISecOkayamaUni/ELiPS_KSS16
https://github.com/ISecOkayamaUni/ELiPS_KSS16
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://gmplib.org
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