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Chapter 1

Introduction

Random walks are one of the most fundamental classes of stochastic processes and well-
studied topics in harmonic analysis, geometry, graph theory and group theory, to say
nothing of probability theory. These are defined to be time-homogeneous Markov chains
whose transition probability is adapted to the structures of the underlying state space.
From the probabilistic and geometric perspectives, many authors have been tried to study
long time asymptotics of random walks in various settings. In particular, a central limit
theorem (CLT), that is, a generalization of the Laplace-de Moivre theorem, must be a
central problem and is studied intensively and extensively. Roughly speaking, the CLT
asserts that the limiting distribution of random walks under an appropriate scaling of
space and time is nothing but the normal distribution. Furthermore, a functional CLT
(Donsker’s invariance principle) is well-known as a stronger assertion and it means that
the distribution of a corresponding rescaled path-valued process converges to that of
Brownian motion. These mathematical backgrounds basically motivate author’s study.
For the classical results on random walks, see Spitzer [66]. We refer to Woess [79] for
rich results on random walks on infinite state spaces with extensive references therein.
See also Lawler—Limic [48] for relation between random walks and potential theory and
Barlow [5] for properties of heat kernels of random walks.

Our main concerns of this thesis are long time asymptotics of random walks on infinite
graphs. In particular, we pay much attention to geometric features of the graph such as the
periodicity and the volume growth, which play important role to obtain the asymptotics
(see e.g., Spitzer [66] and Woess [79]). A covering graph of a finite graph, which is a
discrete analogue of covering spaces, is a basic and typical example equipped with the
above two geometric features. In this study, we usually employ ideas from the method of
homogenization. Generally speaking, homogenization theory is a method which relates
a periodic system to the corresponding homogenized system through a scaling relation
between the time and the underlying state space (cf. Bensoussan—Lions—Papanicolaou [8]).
However, since the notion of the scale change on graphs is not defined, it is not possible
to apply this method directly to the case where the underlying space is an infinite graph.
Therefore, it is necessary to find a realization of the graph, preserving the geometric



features, in a space on which a scaling is defined.

We now focus on an infinite graph which is equipped with the periodicity. A typical
example of such infinite graphs is a crystal lattice, that is, a covering graph X of a finite
graph X, whose covering transformation group I is finitely generated and abelian. It is
regarded as a generalization of the square lattice, the triangular lattice, the hexagonal
lattice, the dice lattice and so on (see Figure 1.1). We remark that the crystal lattice has
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Figure 1.1: Crystal lattices with the covering transformation group I' = (04, o) = Z?

inhomogeneous local structures though it has a periodic global structure. Let us briefly
review the history of the study of random walks on crystal lattices. In Kotani—Shirai-
Sunada [43], an asymptotic behavior of the n-step transition probability of symmetric
random walks on crystal lattices was obtained. As mentioned above, there is an essential
difficulty to establish CLTs for random walks on crystal lattices, because such a graph
does not have any appropriate spatial scaling. In order to overcome this difficulty, Kotani
and Sunada [41] introduced the notion of standard realization of a crystal lattice X, which
is a discrete harmonic map @y from X into the Euclidean space I' ® R equipped with the
Albanese metric associated with the given transition probability. It characterizes an equi-
librium configuration of X in a geometric point of view. In Kotani-Sunada [40], they
discussed the relation between the standard realization of X and the CLT for symmetric
random walks on X. As the scaling limit, they captured a homogenized Laplacian on
I' ® R. In terms of probability theory, it means that, for fixed 0 < ¢t < 1, a sequence
of I' ® R-valued random variables {n="2®q(w)}52, converges to B; as n — oo in law.
Here {w,}>°, is the given symmetric random walk on X and (B;)o<t<1 is a standard
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Brownian motion on I' ® R equipped with the Albanese metric. In their proof, both the
symmetry of the given random walk {w,}>, and the harmonicity of the realization @
play an important role to show the convergence of the sequence of infinitesimal generators
associated with {n=2®q(wpy) : 0 < ¢ < 1}22,. Indeed, these properties are effectively
used to delete a diverging drift term as n — oo from the homogenized Laplacian. See also
Kotani [38] for the proof of CLT for magnetic transition operator on X via this technique.
Moreover, Kotani and Sunada [42] obtained the large deviation principle (LDP) for ran-
dom walks on X (see also Section 2.6). Among these papers, they developed a hybrid
field of several traditional disciplines including graph theory, geometry, discrete group
theory and probability theory. Since this new field, called discrete geometric analysis,
was introduced by Sunada, it has been making new interactions with many other fields.
For example, Le Jan employed discrete geometric analysis effectively in a series of recent
studies of Markov loops (see e.g., [49, 50]). We refer to Sunada [70, 71] for recent progress
of discrete geometric analysis.

On the other hand, it turns out that the notion of volume growth affects the long
time asymptotics of random walks on finitely generated groups or Cayley graphs of them.
Suppose a finitely generated group I' with the generating set {77,735, ..., 77"} satisfies

#F Vv Ve k=12, e =1,-1,i=1,2,....,n} <C-V(n) (n € N)

for some constant C' > 0 and some function V(n). If V(n) < n?(n € N) for some
d € N, then we call I' a group of polynomial volume growth. Otherwise, we call it a
group of superpolynomial volume growth. Generally, it is difficult to characterize a finitely
generated group itself in terms of its volume growth. For example, all non-amenable
groups have ezponential volume growth, however there are also many amenable groups of
exponential volume growth. In fact, this kind of difficulty comes from the diversity and
complexity of the algebraic structures of finitely generated groups. We refer to Saloff-
Coste [65] for basic problems and results for random walks on such groups including the
case of superpolynomial volume growth. On the contrary, there is a remarkable theorem
on a group of polynomial volume growth due to Gromov, which asserts that it is essentially
characterized as a nilpotent group (cf. Gromov [25] and Ozawa [59]). Hence, we find a
large number of papers on long time asymptotics of symmetric random walks on state
spaces with a nilpotent structure. We refer to Wehn [78], Tutubalin [75] and Stroock—
Varadhan [68] for related early works, Raugi [63], Pap [61], Watkins [77] and Alexopoulos
[3] for CLT' for centered random walks on nilpotent Lie groups. See also Breuillard [10] for
an overview of random walks on Lie groups with extensive references. For local CLT's on
nilpotent Lie groups, Alexopoulos [1, 2], Breuillard [11], Diaconis—Hough [17] and Hough
[28] may be consulted.

In view of these developments, it is natural to ask whether the long time asymptotic of
random walks on a covering graph X whose covering transformation group I is a finitely
generated group of polynomial volume growth is obtained or not. The graph X is regarded
as a generalization of a crystal lattice or the Cayley graph of a finitely generated group



of polynomial volume growth. A typical example of such I' is the 3-dimensional (3D)
discrete Heisenberg group I' = H3(Z) (see Figure 1.2). Thanks to Gromov’s theorem
mentioned above, I' has a finite extension of a torsion free nilpotent subgroup [ <.
Therefore, X is regarded as a covering graph of the finite quotient graph f\X whose
covering transformation group is I. Hence, we may assume that X is a covering graph of
a finite graph X, whose covering transformation group I' is a finitely generated, torsion
free nilpotent group of step r (r € N) without loss of generality. We now mention a few
related works on long time asymptotics of random walks on a I™-nilpotent covering graph
X. Ishiwata [29] discussed symmetric random walks on X and extended the notion of
standard realization of crystal lattices to the nilpotent case, so that the similar problems to
the case of crystal lattices could be considered. As a result, a semigroup CLT was obtained
through the standard realization ®( of X into a nilpotent Lie group G = G such that I"
is isomorphic to a cocompact lattice in G equipped with a scalar multiplication called a
one-parameter family of canonical dilations (7.)eso (cf. Malcév [56]). More precisely, he
captured the homogenized sub-Laplacian on G associated with the Albanese metric on
g as the CLT-scaling limit. Here g™ stands for the generating part of the Lie algebra
g of G. We note that the diverging drift term appears only in g(!)-direction due to the
basic property of the dilation operator. Hence, it is sufficient to introduce the notion of
harmonicity of the realization ®; only on g for proving the CLT in the nilpotent case.
In spite of such developments, long time asymptotics of non-symmetric random walks on
nilpotent covering graphs have not been studied sufficiently though an LDP on X was
obtained in Tanaka [72] (see also Section 2.6).
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Figure 1.2: A part of the Cayley graph of I' = H3(Z)

If we consider the non-symmetric case, the same method as the symmetric case does
not work well for proving CLTs because the diverging drift term arising from the non-
symmetry of the given random walk does not vanish. To overcome this difficulty, Ishiwata,
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Kawabi and Kotani [31] introduced two kinds of schemes for proving functional CLT's
(FCLTs) for a non-symmetric random walk {w,}>°, on a crystal lattice X. One is to
replace the usual transition operator by the transition-shift operator, which “deletes”
the diverging drift term. Combining this scheme with a modification of the harmonicity
of the realization ®,, they proved that a sequence {n=/2(®o(wpny) — [nt]pr(7,));0 <
t < 1}:):1 converges in law to a I' ® R-valued standard Brownian motion (B;);>¢ as
n — oo. Here pr(7,) € I' ® R is the so-called asymptotic direction which appears in
the law of large numbers for the random walk {®g(w,)}5>, on I' ® R (see Proposition
2.5.1). The other is to introduce a one-parameter family of I' ® R-valued random walks
(€ (5))0§E§1 which “weakens” the diverging drift term, where this family interpolates the
original non-symmetric random walk &3 := Oo(wy) (n=0,1,2,...) and the symmetrized
one £©. Putting e = n~/? and letting n — oo, we capture a drifted Brownian motion
(Bi+pr(7p)t)o<i<1 as the limit of a sequence {n—1/2§[(§ﬂ_”2>; 0<¢<1}> . See Trotter [74]
for related early works. It is worth mentioning that this scheme is well-known in the study
of the hydrodynamic limit of weakly asymmetric exclusion processes. See e.g., Kipnis—
Landim [36], Tanaka [72] and references therein. In Alexopoulos [2], a non-centered
random walk on a finitely generated group of polynomial volume growth I' is discussed.
For the same reason as above, in the non-centered case, the diverging drift term prevents
us from obtaining CLTs. He introduced another kind of scheme to avoid this problem. It
is to establish a measure-change formula for the given non-centered transition probability
on I', to “change” the situation into the drftless one. We note that it corresponds to a
kind of Girsanov’s formula on I". As an application of this scheme, he proved a CLT and
a generalization of the Berry—Esseen type estimate for non-centered random walks on I'.

The main purpose of this thesis is to investigate long time asymptotics of non-symmetric
random walks on covering graphs in view of the three schemes explained above. We now
state frameworks and results with the organization of this thesis.

Chapter 2: We lay the foundations that will be needed in all subsequent chapters. We
give several definitions, notations and properties of graphs and random walks, as well as
those of function spaces on a metric space in Section 2.1. We review basic materials on
nilpotent Lie groups and corresponding Lie algebras in Section 2.2. In particular, the
notion of limit group of a nilpotent Lie group is introduced, which is defined by a certain
deformation of the original Lie-group product through the dilation operator. Note that
it plays a very important role to establish main results in Chapters 4 and 5. Section
2.3 concerns with two notions on nilpotent Lie groups. One is the Carnot—Carathéodory
metric, which is an intrinsic metric appeared in the context of sub-Riemannian geometry.
The other is homogeneous norms, which is compatible with dilations and behaves like a
“norm” on G. In Section 2.4, we summarize the theory of discrete geometric analysis
on finite graphs which was developed by Kotani and Sunada. After that, we apply the
theory to introduce the notion of modified harmonic realization of both a crystal lattice
and a nilpotent covering graph (Definitions 2.4.5 and 2.4.6). As is well-known, there is an
important relation between the notion of martingale and that of harmonicity. In Section
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2.5, such relations for Markov chains with values in both a crystal lattice and a nilpotent
covering graph are clearly stated (Lemmas 2.5.1 and 2.5.3). Finally, in Section 2.6, we
summarize the known results on LDP on covering graphs due to Kotani—-Sunada [42, 39]
and Tanaka [72], with a relation between the LDPs and geometric aspects such as the
Gromov—Hausdorff limit of scaled covering graphs.

Chapter 3: The content of this chapter is based on author’s paper [58|, discussing a
measure-change formula for non-symmetric random walks on a I'-crystal lattice X. In
Section 3.1, we establish the measure-change formula by using a variational method due
to Alexopoulos [2]. We introduce a function F': Xy x Hom(I', R) — R by (3.1.1), where
Xo = I'\X is the quotient graph. We show that, for a fixed vertex x € X, there exists
a unique minimizer A\, = A\.(z) € Hom(I',R) of the function F' (Lemma 3.1.1). By using
this minimizer \.(z), we then construct a new transition probability p on the crystal
lattice such that it is still non-symmetric but the asymptotic direction pg(y,) vanishes
(see (3.1.4) for the definition). This means that, under the new transition probability
p, the modified harmonic realization ®( is regarded as the harmonic realization. We
apply the measure-change formula to give yet another approach to the proof of CLTs
(Lemma 3.2.3 and Theorem 3.2.1) for non-symmetric random walks on a crystal lattice
in Section 3.2. More precisely, we show that, in a Holder space over ' ® R, a sequence
{n_l/ZQ)o(w(p)) 0 0 <t <1399, converges in law to a I' ® R-valued standard Brownian

[nt]
motion (By)o<i<1 as n — oo. Here {wép)};’f’:o is the random walk on X governed by the

changed transition probability p. In the proof, the diverging drift term vanishes thanks to
the (p-)harmonicity of the realization ®y. Moreover, an asymptotic relation between the
given n-step transition probability and the changed one is also discussed (see Theorem
3.2.5). The measure-change formula is regarded as a discrete analogue of Girsanov’s
formula, which is well-studied in stochastic analysis. Indeed, in Fujita [23], a discrete
Girsanov’s formula for non-symmetric random walks on Z! was established. We discuss
a relation between our formula and the above Girsanov’s formula in the case where the
quotient graph is a bouquet graph in Section 3.3.

Chapter 4: This chapter is based on author’s paper [32], which is jointwork with Satoshi
Ishiwata and Hiroshi Kawabi. We establish CLT's for non-symmetric random walks on a
[-nilpotent covering graph X by using the transition-shift scheme mentioned above. We
give settings and statements of main results in Section 4.1. Let &y : X — G = G be
the modified standard realization of X, where the Lie algebra g of G is equipped with the
Albanese metric. Since the modified harmonicity of ® is defined only on gV, we remark
that the modified harmonic realization ®; has the ambiguity except for the component
corresponding to g(. Through the map @, in Section 4.2, we obtain a semigroup CLT
(Theorem 4.1.2), which means that the n-th iteration of the “transition shift operator”
converges to a diffusion semigroup on G as n — oo with a suitable scale change on
(G. The infinitesimal generator —A of the diffusion semigroup is the homogenized sub-
Laplacian with a non-trivial g(®-valued drift 8(®,) arising from the non-symmetry of the
given random walk, where g := [gV), gM)]. The drift 3(®o) seems to depend on the
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(?)_ambiguity mentioned above.

choice of a modified harmonic realization ®( due to the g
On the contrary, we show that it is independent of the choice of ®y (Proposition 4.2.3).
Furthermore, by imposing an additional natural condition (C), we prove an FCLT in
a Holder space over G (Theorem 4.1.3) in Section 4.3. Note that the FCLT is much
stronger than Theorem 4.1.2. Roughly speaking, we capture a G-valued diffusion process
associated with —A through the CLT-scaling limit of the non-symmetric random walk on
X. We call the condition (C) the centered condition. As is emphasized in Breuillard [10,
Section 6], the situation of the non-centered case is quite different from the centered case
and thus some technical difficulties arise to obtain CLTs. That is why there are few papers
which discuss CLTs for non-centered random walks on nilpotent Lie groups. We obtain,
in Theorem 4.1.2, a semigroup CLT for the non-centered random walk {&,, 1= ®o(w,)}2,
on G with a canonical dilation 7,,-1/2, while Crépel-Raugi [15] and Raugi [63] proved
similar CLT's for the random walk to (4.1.6) with spatial scalings whose orders are higher
than 7,,-1/2. On the other hand, we need to assume the centered condition (C) to obtain
an FCLT (Theorem 4.1.3) for {¢,}22, in the Holder topology, which is stronger than the
uniform topology. In Section 4.4, we extend the measure-change method established in
Section 3 to the nilpotent case and establish a CLT and an FCLT (Theorems 4.4.2 and
4.4.3) as generalizations of Theorems 4.1.2 and Theorem 4.1.3.

Let us give another motivation of this study from rough path theory, which will be
discussed in Section 4.5. It is known that rough path theory was initiated by Lyons in [54]
to discuss line integrals and ordinary differential equations (ODEs) driven by an irregular
path such as a sample path of Brownian motion B = (B;)o<;<1 on R%. Rough path theory
makes us possible to handle a Stratonovich type stochastic differential equation (SDE)
driven by Brownian motion B as a deterministic ODE driven by standard Brownian
rough path (i.e., Stratonovich enhanced Brownian motion) B = (B,B), where B is a
couple of Brownian motion B itself and its Stratonovich iterated integral B. Thus, rough
path theory provides a new insight to the usual SDE-theory and it has developed rapidly
in stochastic analysis. For more details on an overview of rough path theory and its
applications to stochastic analysis, see Lyons—Qian [55], Friz—Victoir [22] and Friz—Hairer
[19]. In the rough path framework, several authors have studied Donsker-type invariance
principles. Among them, Breuillard-Friz—Huesmann [12] first studied this problem for
Brownian rough path. Namely, they captured Stratonovich enhanced Brownian motion
B = (B,B) on R? as the usual CLT-scaling limit of the natural rough path lift of an
Re-valued random walk with the centered condition. We also refer to Bayer—Friz [6]
for applications to cubature and Chevyrev [14] for a recent study on an extension to
the case of Lévy processes. Here we should note that there are good approximations to
Brownian motion which do not converge to B but instead to a distorted Brownian rough
path B = (B,B+ 3), where 3 is an anti-symmetric perturbation of B. For example, Friz—
Gassiat—Lyons [18] constructed such a rough path called magnetic Brownian rough path
as the small mass limit of the natural rough path lift of a physical Brownian motion on R?
in a magnetic field. Through this approximation, they showed an effect of the magnetic
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field appears explicitly in the anti-symmetric perturbation term 3. See also e.g., Lejay—
Lyons [51] and Friz—Oberhauser [21] for related results on this topic. In view of the
background described above, we discuss a random walk approximation of the distorted
Brownian rough path B from a perspective of discrete geometric analysis. Since the
unique Lyons extension of B of order r (r > 2) can be regarded as a diffusion process on
a free step-r nilpotent Lie group G (R?), we obtain such a diffusion process in Corollary
4.5.4 through the CLT-scaling limit of a non-symmetric random walk on a nilpotent
covering graph X as a direct application of Theorem 4.1.3. Besides, we observe that the
non-symmetry of the random walk on X affects the anti-symmetric perturbation term of
B explicitly. Recently, Lopusanschi-Simon [53] and Lopusanschi-Orenshtein [52] proved
a similar invariance principle for B to ours. However, they did not discuss an explicit
relation between the perturbation term, called the area anomaly, and the non-symmetry
of the given random walk. In view of that, Corollary 4.5.4 gives a new approach to such
an invariance principle in that we pay much attention to the non-symmetry of random
walks on X.

Finally, in Section 4.6, we concern with an FCLT for a non-symmetric random walk
{wp}22, on X through a non-harmonic realization ® : X — G, though the modified
harmonicity of realizations play an important role in the proof of the FCLT (Theorem
4.1.3). We employ the so-called corrector method, which is often used in the study of
invariance principles on random media (see e.g., Kumagai [45]). By noting the definition
of the (g(V-)modified harmonic realization ®,, we introduce the g("-corrector of a non-
harmonic realization ® by the difference of g(")-components of ® and ®. In fact, we notice
that this corrector is easy to estimate thanks to the periodicity of these realizations.
By using the estimation, we show that, under the centered condition, the sequence of
stochastic processes given by the geodesic interpolation of the G-valued scaled random
walk {7, -12®(wy)}}_, also converges to the same diffusion as captured in Theorem 4.1.3.
See Theorem 4.6.2 for details.

Chapter 5: This chapter is based on author’s paper [33], which is jointwork with Satoshi
Ishiwata and Hiroshi Kawabi. As a continuation of Section 4, we study another kind of
CLTs for a non-symmetric random walk {w,}>°, on a I-nilpotent covering graph X by
applying the scheme for weakening the diverging drift term. Settings and statements of
main results are given in Section 5.1. We first introduce a one-parameter family of transi-
tion probabilities (p:)o<c<1 on X as the linear interpolation between the given transition
probability p; := p and the symmetrized one py, that is, p. :=po+e(p —po) (0 <e <1).
For each ¢, we take a modified harmonic realization @((f) : X — G associated with the
transition probability p., and define a one-parameter family of G-valued random walks
(€@ )geecy by € := 0P (w,) (n =0,1,2,...). In Section 5.2, several properties of the
family of modified harmonic realizations (®;”)o<.<; are discussed. In the proof of a main
result (Theorem 5.1.1), a g@-valued drift (@), which is like 3(®o) in Section 4, will
appear in the limiting infinitesimal generator and we need to know the behavior of it
as € \, 0. We show that the sequence of g®®-valued drift vanishes as ¢ \, 0 under a
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1/2 and

natural condition (A1). See Proposition 5.2.1. As a result, by putting ¢ = n~
letting n — oo, we prove a CLT (Theorem 5.1.1) for the family of G-valued random

walks {f("71/2)};l’°:1 in Section 5.3. Furthermore, in Section 5.4, we show that a sequence
o0

{Tn—1/2 (5[(7’;]_1/2)) c0<t < 1}n:1 converges in law to a G-valued diffusion process as
n — oo under suitable assumptions (A1) and (A2). See Theorem 5.1.2. Here the dif-
fusion process is generated by the homogenized sub-Laplacian with the g(V-valued drift
pr(7p) defined on G equipped with the Albanese metric g(()o) associated with the sym-
metrized transition probability pg. To our best knowledge, there seems to be few results
on CLTs in the nilpotent setting in which a g(V-valued drift appears in the infinitesimal
generator of the limiting diffusion. On the other hand, as we have already mentioned,
there are many papers on CLTs in which g®-valued drift like 3(®,) appears in the in-
finitesimal generator of the limiting diffusion. In view of these circumstances, the study
of the long time asymptotics of random walks on more general graphs by applying our
“weakening” scheme would be an interesting problem. In closing this section, we sum-
marize the limiting infinitesimal generators and limiting diffusions captured in Chapters
4 and 5, as well as them on crystal lattices captured in Ishiwata—Kawabi-Kotani [31].
Chapter 6: This chapter is based on the author’s paper [32], which is jointwork with
Satoshi Ishiwata and Hiroshi Kawabi. We give several concrete examples of non-symmetric
random walks on I'-nilpotent covering graphs in the case where I' is the 3D discrete
Heisenberg group H?(Z). We review some basics on H?*(Z) in Section 6.1. We consider
a non-symmetric random walk on the 3D Heisenberg triangular lattice (resp. the 3D
Heisenberg dice lattice) in Section 6.2 (resp. in Section 6.3), as a generalization of the
triangular lattice (resp. the dice lattice) to the nilpotent case. In both sections, explicit
calculations on several quantities of random walks and several figures are given.
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Chapter 2

Preliminaries

2.1 Notations

Let X = (V, E) be a locally finite, connected and oriented graph, where V' is the set of all
vertices and F is the set of all oriented edges. The graph X possibly have multiple edges
or loops and is equipped with the discrete topology induced by the graph distance. For an
edge e € F, we denote by o(e) and t(e) the origin and the terminus of e, respectively. The
inverse edge of e € F is defined by an edge, say €, satisfying o(€) = t(e) and t(e) = o(e).
Let E, be the set of all edges whose origin is © € V, that is, E, = {e € E|o(e) = z}.
A path ¢ in X of length n is a sequence ¢ = (eq, e,...,¢€,) of n edges ey, es,...,¢, € F
with o(e;+1) = t(e;) for i =1,2,...,n — 1. We denote by €, ,(X) the set of all paths in
X of length n € NU {oo} starting from = € V. Put Q,(X) = Q, o (X) for simplicity.
We introduce a transition probability, that is, a function p : E — [0, 1] satisfying

Z ple) =1 (x€V) and p(e)+p(e) >0 (e € E).

eck,

The value p(e) represents the probability that a particle at the origin o(e) moves to the
terminus ¢(e) along the edge e € E in a unit time. The random walk associated with p
is the X-valued time-homogeneous Markov chain (Q,(X),P,, {w,}°,), where P, is the
probability measure on Q,(X) satisfying

P ({c=(e1,€2,... €0, %%,...)}) = p(e1)p(ea) - - - p(ey) (c € Q,(X))

and wy,(c) := o(ep41) for n € NU{0} and ¢ = (e, ea,...,€pn,...) € Q. (X).
We define the transition operator L associated with the transition probability p by

Lf(x):=> ple)f(tle)) (z€V, f:V—R)

EEEI

and the n-step transition probability p(n,z,y) by
p(n,x,y) = L"(z)  (neN,zyeV),
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where 9§, stands for the Dirac delta function at y. We put p(c) = p(e1)p(ez2) - - - p(en)
for ¢ = (e1,e9,...,6,) € Qun(X). If there is a function m : V. — (0,00) such that
p(e)m(o(e)) = p(e)m(t(e)) for e € E, then the random walk is called (m-)symmetric or
reversible, and the function m is called a reversible measure. Note that m is determined
up to constant multiplication.

For a metric space 7, we denote by C.(7) the space of all continuous functions
f T — R vanishing at infinity with the usual sup-norm || f||Z, = sup,.+ | f(z)]. We also
denoted by Cy(T) the space of all continuous functions which are supported compactly.

Throughout this thesis, C' denotes a positive constant that may change from line to line
and O(-) stands for the Landau symbol. If the dependence of C' and O(-) are significant,
we denote them like C'(IV) and On(-), respectively.

2.2 Nilpotent Lie groups and its limit groups

Let us review some properties of nilpotent Lie groups and the corresponding limit group.
For more details, see e.g., Alexopoulos [1] and Ishiwata [29]. We also refer to Alexopoulos
2, 3] Crépel-Raugi [15] and Goodman [24] for related topics.

Let (G,-) be a connected and simply connected nilpotent Lie group of step r and
(g,[,]) the corresponding Lie algebra. Note that the exponential map exp : g — G is
globally defined and thus log = exp~! : G — g is also globally defined.

We now construct a new product * on G in the following manner. Set n; := g and
i1 = [g, i) for & € N. Since g is nilpotent, we have

g=m DOny D---DOn, D nyq = {04}

The integer 7 is called the step number of g or G. We define the subspace g*) of g
by ny = g® @ nyyq for k = 1,2,...,r. Then the Lie algebra g is decomposed as g =
gV ag? @ -@g" and each Z € g is uniquely written as 7 = ZW + 2@ ... 4 7)),
where Z®) € g® for k =1,2,...,r. We define a map 7% : g —» g by

TO(Z)=eZW 4220 1. 1770 (6>0,Zcyg)
and also define a Lie bracket product [-,-] on g by

21, 2] = lim 1O [0(20), 75 Z)] (21,22 € ).
We introduce a map 7. : G — G, called the dilation operator on G, by

7(9) == exp (119 (log (9)))  (€>0,9€ @),

which, roughly speaking, gives the scalar multiplication on G. We note that 7. may not
be a group homomorphism, though it is a diffeomorphism on G. The inverse map of 7. is
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given by 71/, for ¢ > 0. By making use of the dilation map 7., a Lie-group product * on
G is defined as follows:

g * h = l{% Te (Tl/s(g) ' Tl/a(h)) (ga h € G) (221)

The Lie group G = (G, %) is called the limit group of (G, -). Note that the Lie group G
is stratified of step r in the sense that (g, [-,-]) is decomposed as g = @,_, g satisfying

6™, g0] C gt (k+e <),
’ =0, (k+0>r),

and the subspace g(*) generates g. The Lie algebra go, of G = (G, *) coincides with
(g,[-,-]) (cf. [29, Lemma 2.1]). It should be noted that the dilation map 7. : G — G
is a group automorphism on (G, *) (see [29, Lemma 2.1]). The exponential map exp :
oo — G coincides with the original exponential map exp : g — G. Furthermore, for
any g € G, the inverse element of g in (G, -) coincides with the inverse element in (G, ).

We set dj, = dimg g® for k =1,2,...,randd =dy+do+---+d,. Fork=1,2,...,r,
we denote by {Xl(k),XQ(k), . ,X(g’:)} a basis of the subspace gi*). We introduce several
kinds of global coordinate systems in G through exp : g — G. We identify the nilpotent
Lie group G with R? as a differentiable manifold by

e canonical (-)-coordinates of the first kind :

T dk
R 3 (g, @, .., g") — g=exp (ZZggk)Xi(kD eG

k=1 i=1
e canonical (-)-coordinates of the second kind :
R4 9(9(1)’ 9(2), o ’g(r))
— g =exp (950 X)) - exp (g L XYL e (917 X77)
- exp (gff VXT) - exp (gérff)_lelf,f)_l) ceeexp (g TV XTTY)
. exp (gle)X( )) exp (g((ﬁ) 1X§1)—1) ..... exp (ggl)Xfl)) el

e canonical (x)-coordinates of the second kind :

R? (g, g%, ... ")
o o) () M ) N x ()
g exp (gd * ) * exp (gd —1x dr—l) * ook CXD (gl* )

# exp (93 DX wexp (o7 1*X§J_f)_1) xwexp (g0 XY

% ook exp (gdl) X( )) * exXp (91(11)—1*X$)—1) k ok eXP (gﬁ)Xfl)) € G,

where we write g% = (ggk),gék), o ,gdk)) R for k =1,2,.
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We give the relations between the deformed product and the given product on G as
an easy application of the Campbell-Baker—-Hausdorff (CBH) formula

1
lOg (eXp(Zl) . eXp(Zg)) = Zl + ZQ + 5[21, ZQ] S R (Zl, ZQ € g) (222)
The following is straightforward from the definition of the deformed product.
log (g * h)‘g(k) = log (g - h)’gm (9,h e G, k=1,2). (2.2.3)

We notice that the relation above does not hold in general for k = 3,4, ..., r. The following
identities give us a comparison between (-)-coordinates and (x)-coordinates. For g € G,
we have the following.

g =¢® (=12, dp, k=1,2), (2.2.4)

o =g+ N OkP(g)  (i=1.2....d k=34,...7) (2.2.5)
0<|K|<k—1

for some constant C, where K stands for a multi-index ((i1, k1), (i2, k2), - . ., (i¢, k¢)) with

length |K| := ki + ko + -+ + k, and P5(g) := g -gg”) . -glgfe). The invariances (2.2.3)

(51
and (2.2.4) play an important role to obtain main results. For g,h € G, we also have

(g+h) =(g-h" (=12 di, k=12), (2:2.6)

1\
G+ =N+ Y CroPF(9P*(g-h)

| K1 |+|K2|<k—1
|K2[>0

(i=1,2,. ., dp k=3,4,...,7) (2.2.7)
by using (2.2.4) and (2.2.5), where PX(g) := gg“) * gg”) ook gz(fe). See [29, Section 2]
for more details.

2.3 Carnot—Carathéodory metric and homogeneous
norms

As is well-known, a nilpotent Lie group G is a candidate of the typical sub-Riemannian
manifolds, which is a certain generalization of a Riemannian manifold. The notion of the
Carnot—Carathéodory metric naturally appears when we investigate distances between
two points in G. It is an important intrinsic metric in this context and is degenerate in
the sense that we only go along curves which are tangent to a “horizontal subspace” of
the tangent space of G. We discuss several properties of the Carnot—Carathéodory metric
on a nilpotent Lie group G in this section. Note that the definition of such an intrinsic
metric in more general setting is found in some references. See e.g., Varopoulos—Saloff-
Coste-Coulhon [76] for details.
We start with the definition of the Carnot-Carathéodory metric on G.

20



Definition 2.3.1 We endow G with the Carnot—Carathéodory metric dcc, which is an
intrinsic metric defined by

w e Llp([0> 1]70)7 Wy = g, W1 = ha}

w is tangent to gV (2.3.1)

1
doc(g,h) == inf{/ [[0¢ ]| gy dt
0
for g,h € G, where we write Lip([0, 1]; G) for the set of all Lipschitz continuous paths and
|- lyw stands for a norm on g,

We see that the subspace g!) satisfies the so-called Hérmander condition in g, that is,
Ly (g) = T,G for any g € G, where Lyu)(g) denotes the evaluation of g at g € G. The
Carnot-Carathéodory metric is then well-defined in the sense that dcc(g, h) < oo for every
g,h € G, thanks to the Hormander condition on g(!) (cf. Mitchell [57]). Furthermore, the
topology induced by the Carnot-Carathéodory metric doc coincides with the original one
of G. We emphasize that dcc is behaved well under dilations. More precisely, we have

dcc(TE(g),Te(h» = 8dcc<g, h) (8 >0, g, h e G) (232)

We now present the notion of homogeneous norm on G. The one-parameter group of
dilations (7.).>0 allows us to consider scalar multiplications on nilpotent Lie groups. We
replace the usual Euclidean norms by the following functions.

Definition 2.3.2 A continuous function || - || : G — [0,00) is called a homogeneous
norm on G if

(i) [lg|l =0 if and only if g = 1¢, and

(ii) ||7=g|| = €llg|| fore >0 and g € G.

One of the typical examples of homogeneous norms is given by the Carnot—Carathéodory
metric doc. We define a continuous function || - ||cc : G — [0, 00) by

l9llcc == dec(1a, 9) (g €@).

Then | - ||cc is a homogeneous norm on G thanks to (2.3.2). Another basic homogeneous
norm is given in the following way. We denote by {ka),XQ(k), o ,Xé]:)} a basis of g*)
for k = 1,2,...,r. We introduce a norm | - ||, on g*) by the usual Euclidean one. If
7 € g is decomposed as Z = ZW + 73 ... 4 70 (ZH®) ¢ g*)) we define a function
I llo: § —> [0,00) by

1/k
1Z0lg =D 120155
k=1

We set ||g]|om := || log (¢)|ls for g € G. We then observe that || - ||gom is & homogeneous
norm on G. The homogenuity (ii) leads to the most important fact that all homogeneous
norms on (G are equivalent, which is similar to the case of norms on Euclidean space.
More precisely, we have the following.
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Proposition 2.3.3 (cf. Goodman [24]) If || ||, and || -||2 are two homogeneous norms
on G, then there exists a constant C' > 0 such that

1
5||9||1 < gl < Cllgllx (g €G).

For more details, we also refer to Bonfiglioli-Lanconelli-Uguzzoni [9].

2.4 Discrete geometric analysis

2.4.1 Discrete geometric analysis on graphs

We present some basics of discrete geometric analysis on graphs due to Kotani-Sunada [42]
or Sunada [69, 70, 71]. We consider a finite graph X, = (V4, Ey) and an irreducible random
walk on X, associated with a non-negative transition probability p : Ey — [0,1]. We
find a unique positive function m : Vo — (0, 1], which is called the invariant probability
measure on Vy, by applying the Perron-Frobenius theorem. We put m(e) := p(e)m(o(e))
for e € Ey. We easily see that m has the following properties:

dode)=1,  m)= Y e (zeV)

e€Ey e€(Ep)s
We define the symmetry and the non-symmetry of the random walk on Xj.

Definition 2.4.1 The random walk on Xq is said to be (m-)symmetric if m(e) = m(e)
holds for e € Ey. Otherwise, it is called (m-)non-symmetric.

We define the 0-chain group and the 1-chain group of X, by

Co(Xo,R) := { Z a,T | a, € R}, C1(Xo,R) := { Z Qe

zeVy ecky

a. € R, €= —e},

respectively. The boundary operator 0 : C(Xo, R) — Cy(Xo, R) is defined by the linear
map satisfying d(e) = t(e) — o(e) for e € Ey. Note that d(e) = —d(e) for e € Ey due to
e = —e. The first homology group H;(Xy,R) is defined by Ker (9) C C1(X,, R), which is
a vector space over R whose dimension is |Ey|/2 — |Vg| + 1. We also define the 0-cochain
group and the 1-cochain group by

CoUXo,R) :={f: Vo — R}, CYXq,R):={w: Ey — R|w(E) = —w(e)},

respectively. An element of C1'(Xy, R) is also called a 1-form on Xj. We equip C°(Xy, R)
and C*(X, R) with inner products given by

(f1, fa)o = Zfl(iﬁ)fQ(l') (f17f2 ECO(XO7R))7

zeVh

{(wy,wa)y = % Z wi(e)ws(e) (wl,wg € C'I(XO,R)),

e€Fy
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respectively. We introduce the difference operator d : C°(Xy, R) — C'(X,,R) by the
linear map satisfying df () = f(t(e)) — f(o(e)) for f € C°(Xo,R) and e € Ey. Note that
df (e) = —df (e) for f € C°(Xy,R) and e € Ey. The first cohomology group H'(X, R) is
defined by C'(Xy,R)/Im (d). By the discrete analogue of the Poincaré duality theorem,
we have H!(Xo,R) = (H;(Xo,R))". We define an operator g, : C*(X,,R) — C°(Xy, R)
associated with the trasition probability p by

Spw(x) == Y plewle) (zeT).

GG(Eo)x

Then the transition operator L : C°(Xy,R) — C°(X,, R) associated with the transition
probability p is defined by

Lf(x) = (I—6d)f(x)= Y ple)f(tle))  (f€C’(Xo,R), z€ V).

EE(EO)I

Since the operator I — L is regarded as a discrete analogue of the Laplacian, the operators
d and ¢, play roles of the exterior differentiation and its formal adjoint. However, ¢, :
C'(Xp,R) — C°(Xy,R) is the adjoint operator of d : C°(Xy, R) — C'(Xy, R) if and
only if the random walk on X is (m-)symmetric (cf. [42, page 852]). We now introduce
a l-chain

Y=Y m(e)e € Ci(Xo,R).

ecFEy

We present several properties of ,.

Lemma 2.4.2 (cf. [42, Proposition 2.1]) (1) d(v,) =0, that is, v, € Hi(Xo, R).
(2) The random walk on Xy is (m-)symmetric if and only if v, = 0.

Proof. By definition, we see

O(yp) = Y mle)t(e) = Y mle)ole).

e > eH(e) = 3 m(eole)
- = ;az e(; pE)m(t(e)) = ; m(x)z,
3 me)te) - Z eé%:mam(o(e)) O
| = Ez:mm; (Z) ple) = 3 m(a)

we obtain the first item. The second one readily follows from

b=y O () ) =0 = o) =mE) (€ Fy)

ecEy
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This completes the proof. 1

This 1-cycle v, is called the homological direction, which is regarded as a quantity to
measure the homological drift of the given random walk on Xy. To see this, we review
the following:

Proposition 2.4.3 (cf. Sunada [69]) Let V be a vector space over R and f : Ey — V

a map. We define a sequence of V-valued random variables {n;}2, by

ni(c) == f(e;) (c = (e1,e9,...,) € Qz(XO)).
Then we have

lim 1 Zm(c) = Z m(e)f(e) Pg-a.s.

n—oo 1 cE
echo

Proof. Let (Q,(Xo), Py, w = {w,}2,) be an irreducible Markov chain with values in Xj.
We write Q, for the probability measure on €2, (X) induced by m. Thanks to the positivity
of m, we see that P,-almost sure events are QQ,-almost sure ones and vice versa. Since X is
finite, this Markov chain is recurrent and therefore it is ergodic on (Qr(Xo), IP’x). Namely,
the probability space (Qx(Xo), Qx) with the shift operator T': Q,(Xy) — ,.(Xo) given
by T'c =T(e,)5, = (ent1)02, is a measure-preserving dynamical system (cf. Klenke [37,
Theorem 20.29]). Note that 7, = n, o T ! for n = 2,3,.... By applying the Birkhoff
individual ergodic theorem, we have

1 < 1 « . _
i Zlm = 2771 o Tt — E%[ng] = Z m(e)f(e) Pg-as.

e€FEy
as n — 0o, which completes the proof. I

Indeed, taking V = C(Xo,R) and f(e) = e for e € Ey in Proposition 2.4.3 immediately
leads to the law of large numbers (LLN) on C;(Xo, R).

1
lim —(e; +ex+---+e,) =7, Praec=(e,e...,6,,...)€ Q(Xp).
n—,oo N,

We introduce the notion of modified harmonic 1-form on X, which is the discrete
analogue of that of harmonic forms on Riemannian manifolds. A 1-form w € C'(Xy, R)
is said to be modified harmonic if

dpw(z) + (Yp,w) =0 (x € V), (2.4.1)

where (7,,w) = ¢(x0,R){(1p» W)c1(x,,r) 1S constant as a function on Vy. We denote by
H!(Xo) the space of modified harmonic 1-forms and equip it with the inner product and
the norm given by

(wi,wallp =Y mle)wr(e)wa(e) = (Y wi)(yprw2) (w1, w2 € H'(Xo)),

ecFEy

ol oy = (D ile)ule)? = (p,0)?) Y e H (X))

e€Fy
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associated with the transition probability p. The following proposition is noting but the
discrete analogue of the Hodge—Kodaira theorem.

Proposition 2.4.4 (cf. [42, Lemma 5.2]) The linear map ¢ : H'(Xy) — H'(X,, R)
defined by
o(w) == W] (w € H'(Xo))

gives an isomorphism of H'(X,) onto H'(Xy, R).

For the sake of completeness, we give the proof of Proposition 2.4.4.

Proof. Suppose that [w] = 0, that is, w = df for some f € C°(Xy,R). Thanks to the
fact that w = df is modified harmonic and 9(7,) = 0, we have

Spw = Opdf = — ¢y (x0,R) (Vp A )1 (x0,R) = —Co(X0,R) (O (W), ) co(x0,m) = 0.

Therefore, it follows that Lf = (I — d,d)f = f. Since X, is connected, we see that the
function f is constant and thus w = df = 0, which leads to the injectivity of ¢.

For the surjectivy of ¢, we show that, for any w € C*(Xy, R), there is f € C( Xy, R)
such that w+df € H'(Xp). It is sufficient to find f satisfying (I — L) f = — ({7, w) +w).
For this sake, we only to show

<<’Yp, w> + 5pw7 m>0 =0,
by noting Im (I — L) = (Ker (I — tL))L = (Rm)*. The left-hand side is written as
<7pv OJ><1, m>0 + <6pw> m>0 = <7p7w> + <5pwv m>0

Therefore, we have

(Gpo,m)o =~y m(z) Y ple)w(e) = —{ypw),

zeVp e€(Eo)z

which completes the proof of Proposition 2.4.4. 1

2.4.2 Modified harmonic realization of a crystal lattice

Let I be a finitely generated abelian group. Suppose that I' is torsion free. Then we may
assume [' & Z? without loss of generality, where d = rankI'. Now let X = (V, E) be
a [-crystal lattice. Namely, X is a covering graph of a finite graph X, whose covering
transformation group is I'. The graph X is also represented as X, = I'\ X, the quotient
graph of X. Let p: Ey — [0,1] and m : V; — (0, 1] be a transition probability on
X and the normalized invariant measure on Xy, respectively. We write p : E — [0, 1]
and m : V. — (0,1] for the I'-invariant lifts of p : Ey — [0,1] and m : V; — (0, 1],
respectively. Namely,

p(ve) = ple), m(yx) =m(x) (veT,e€ E,zeV).
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Let m(Xo) be the fundamental group of X,. Then we find a canonical surjective
homomorphism p : m(Xg) — I by the general theory of covering spaces. This map
gives rise to a surjective homomorphism p : Hy(Xy,Z) — I', where H;(Xy,Z) stands
for the first homology group of X, with Z-coefficients. Then we have a surjective linear
map pr : Hi(Xo,Z) ® R = Hy(Xo,R) — I ® R. We consider the transpose ‘pg :
Hom(T',R) — H(X,,R), which is a injective linear map. Here Hom(T',R) denotes the
space of homomorphisms from I' into R. By noting Proposition 2.4.4, we induce a flat
metric gy associated with the transition probability p on the Euclidean space I'®@R through
the following diagram:

T @R, go) <“— H, (X, R)

Idual 1dua1

Hom(I', R)—— H' (X0, R) = (H}(X), (-, )»).

This metric gq is called the Albanese metric on I' ® R.

From now on, we realize the crystal lattice X into the continuous model (I' ® R, go)
in the following manner. A periodic realization of X into I' ® R is defined by a piecewise
linear map ¢ : X — [' ® R satisfying

O(oz) =P(z)+o0®1 (cel,zeV).

. We review the definition of the modified harmonicity of the periodic realization of a
crystal lattice X.

Definition 2.4.5 (cf. [42, page 854]) The periodic realization ®q is said to be modified
harmonic if

Ldy(x) — Po(x) = pr(7p) (xeV).
We note that this equation is also written as
> p(e{@0(t(e) = @o(o(e) } = pa(,) (2 V). (24.2)

Furthermore, such a realization is uniquely determined up to translation. Indeed, if ®,
and ®f are two modified harmonic realizations, then we see

L(®o(x) — Ph(7)) = Ro(x) — B4(x)  (z€V)

and it follows from the connectedness of X that &y — @}, is constant. We call the quantity
pr(7p) the asymptotic direction of the given random walk on X,. We should emphasize
that v, = 0 implies pr(y,) = 0. However, the converse does not always hold. If we equip
I' ® R with the Albanese metric, then the modified harmonic realization &5 : X —
(I ® R, go) is especially called the modified standard realization.
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We define a special periodic realization 5 : X — I' ® R by
Hom(r' &) (&, @0 (%)) o = / w  (z€V,weHom(T,R)), (2.4.3)

where z, is a fixed reference point satisfying ®g(z,) = 0 and @ is the lift of w to X. Here

/w:/a ::g@(e)

for a path ¢ = (eq,...,e,) with o(e;) = x, and t(e,) = x. It should be noted that this
line integral does not depend on the choice of a path c¢. Then we immediately see that
the periodic realization defined by (2.4.3) enjoys (2.4.2). See [31, Section 3.1].

2.4.3 Modified harmonic realization of a nilpotent covering graph

We introduce a notion of the modified harmonic realization of a nilpotent covering graph
as an extension of Kotani-Sunada [42] and Ishiwata [29].

Let ' be a torsion free, finitely generated nilpotent group of step r and X = (V, E)
a [-nilpotent covering graph, that is, a covering graph of a finite graph X, with the
covering transformation group I'. We denote by 7 : X — X the covering map. Let
p: Ey — [0,1] and m : Vj — (0, 1] be a transition probability on X, and the normalized
invariant measure on X, respectively. We write p : E — [0,1] and m : V' — (0, 1] for
the T-invariant lifts of p : Ey — [0, 1] and m : Vj — (0, 1], respectively.

As in the case of crystal lattices, we would like to realize the nilpotent covering graph
X into some continuous state space equipped with a scalar multiplication. Malcév’s
theorem [56] asserts that there exists a connected and simply connected nilpotent Lie
group G = Gr of step r such that I' is isomorphic to a cocompact lattice in G. Namely,
I' is a discrete subgroup of G such that I'\G is compact and u(I'\G) < oo for a Haar
measure on G. Let g = g ®g?® @--- g be the corresponding Lie algebra. We denote
by 7 : G — G/[G, G| the canonical projection. Since I' is a cocompact lattice in G, the
subset 7(I') C G/[G,G] is also a lattice in G/[G,G] (cf. Malcév [56] and Raghunathan
[62]). By gV = G/[G, G], the subgroup 7(I') is regarded as a lattice in g*.

We take a canonical surjective homomorphism p : m(Xo) — ' and this map gives
rise to a surjective homomorphism p : Hy(Xy,Z) — T'/[I',T] = 7(T") by abelianization.
Then we have a surjective linear map pg : Hi(Xo,R) — 7(T') ® R = gV, We identify
Hom(7(T'), R) with a subspace of H!( Xy, R) by using the transposed map *pr. We restrict
the inner product ((-,-)), on H'(Xp, R) to the subspace Hom(7(T'), R) and take it up the
dual inner product (-,-)qp on m(I') ® R. Then, as in the case of crystal lattices, a flat
metric gy is induced on g and we call it the Albanese metric on gtV). This procedure
can be summarized as follows:
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(6", 90) = 7(I) ® R=<""H, (X, R)

Idual Idual Idual

Hom(gW,R) & Hom(7(T), R)—— H! (X, R) & (Hl(XO), (-, o»p).
PR
A map & : X — G is said to be a periodic realization of X when it satisfies
O(yz) =~ -2(x) (yel,zeV).

We are now in a position to give the definition of the modified harmonicity of the realiza-
tion of X, as a generalization of [42, 29].

Definition 2.4.6 (cf. [32, 33]) The realization ®q is said to be modified harmonic if

Z p(e)log (CDO (o(e))_1 G (t(e)))

BGEZ

—pe(y)  (@eV).  (244)

g

Note that such a realization is uniquely determined up to gV-translation. We also
call the quantity pg(7,) the (g(V-)asymptotic direction of the given random walk on Xj.
If we equip g with the Albanese metric gy, then the modified harmonic realization
® : X — G is called the modified standard realization.

Remark 2.4.7 The modified harmonic realization ®q : X — G has the ambiguity of the
components corresponding to the subspace g® @ g® @ --- @ g, though gV -components
completely controlled by (2.4.4) up to gV -translation. However, it is sufficient to establish
CLTs for non-symmetric random walks on X . Indeed, in showing CLTs of semigroup-type
in Sections 3 and 4, the modified harmonicity (2.4.4) will be used effectively to handle the
diverging drift term which appears in g\, See the proof of Theorems 4.1.2 and 5.1.1.

Fix a reference point x, € V and define a realization &y : X — G by
Hom(g<1)7R)<w, log (CDO(x)) ’g(l)>g(1) = / w (w € Hom(g(l),R), T € V), (2.4.5)

where @ is the lift of w = ‘pr(w) € H'(Xy,R) to X. The following lemma asserts that
such @, enjoys the modified harmonicity (2.4.4).

Lemma 2.4.8 (cf. [32, Lemma 3.2]) The periodic realization ®q : X — G defined by
(2.4.5) is the modified harmonic realization.
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Proof. For each w = ‘pr(w) € H' (X, R) = H'(X,) and x € V, Equation (2.4.5) yields

Hom(g(l)7R)<w, Z p(e) log (‘I)o (o(e))_l ON (t(e))) g(1>>g<1)

EEEI

= > D)oo 2 {w, Tog (20 (t()))] o — log (@o o(e)))

e€FEy

= ple)a(e)

= —(dpw) (7(2))

= (Yp,w) = Hom(g<1),R)<w7PR(’Yp)>g(1>-

g >g(1>

This gives the desired equation (2.4.4). 1§

2.5 Markov chains

Let us consider a time-homogeneous Markov chain (£2,(X),P,, {w,}22,) with values in
a ['-covering graph X, where I' is a torsion free, finitely generated group. Let m, :
Q(X) — Qn(X)(n € NU{0}) be a projection defined by m,(c) := (eq,eq,...,€n)
for ¢ = (e1,e2,...,€n,...) € Q,(X). Denote by {F,}>2, the filtration such that Fy =
{0,9,(X)} and F, = o(m,"(A) ‘ A C Qn(X)) for n € N. We mention that F,, is a
sub-o-algebra of F, :=\/,_ F;, for n € N.

Suppose first that I' is abelian, that is, X is a crystal lattice. We denote by ® :
X — I'® R a periodic realization of X. We then have the I' ® R-valued Markov chain
(Q(X), Py, {&a}22,) defined by &,(c) = ®(w,(c)) for n € NU {0} and ¢ € Q,(X),
through the map ®. By applying the ergodic theorem, we easily verify that the law of
large numbers on I' ® R

lim lgn() = pR(’yp)v P, -a.s. (251)

n—o0 N,
holds.
The notion of martingales plays a crucial role in the theory of stochastic processes.
We give a certain characterization of modified harmonic realizations of crystal lattices in
view of martingale theory. Indeed, we have the following:

Lemma 2.5.1 (cf. [42, Proposition 5.3]) A periodic realization &y : X — I' @ R
is the modified harmonic realization if and only if the I' ® R-valued stochastic process

{&, — nPR(Wp)}ZOZO is an {F,}-martingale.

The similar assertion to Lemma 2.5.1 holds in the case where I' is nilpotent, that is,
X is a ['-nilpotent covering graph. Let G = Gt be the nilpotent Lie group in which
I' is embedded as a cocompact lattice. We denote by & : X — G a I'-equivariant
realization. Then this map yields a G-valued Markov chain (Q,(X),P,, {£,}5°,) defined
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by &u(c) == ®(wy(c)) for n € NU{0} and ¢ € Q,(X). This gives rise to the g-valued
random walk

Z,(c) := log (&.(c)) = log (®(wn(c))) (n e NU{0}, c € Q,(X)).
Note that an LLN on g™ holds as in the case of crystal lattices.

Lemma 2.5.2 Asn — oo, we have

1

gEn(?\gm — pr(Yp), Pe-a.s. (2.5.2)

Proof. Without loss of generality, we may put ®(z) = 1g. For ¢ = (e, es,...) € Q,(Xo),
we write

=)y = D {108 (@(2(e))) |0, — 108 (@(0())) |y }-

=1

We take a basis {X1 X ), . ,Xéi)} of g and put
Fi(e) :=log (®(t(e))) ‘XJED —log (®(o(e))) ‘X;Cl) (ee E).

We fix k= 1,2,...,d;. Then we easily see that F) : E — R satisfies Fj(€) = —Fj(e) for
e € F and the I'-invariance. Therefore, we apply Proposition 2.4.3 to obtain

N -
lim _:”(C)|X]i” = Z m(e)Fr(€) = o1 (xom) (Vps Fi)or(xor),  Po-aus.,

n—oo 1 e
€ 0

where ¢ stands for a lift of e to X. Let us take any z € Hy (X, R) and represent it as a
closed path ¢y = (eq,es,...,¢e;). Then we see

01 (Xo.8) (25 Fi) o (xo ) = ZFk e;) = log (®(t(c))) ] xo —log ((o(e)) |y = pr(2)] v,

where c is a lift of ¢y to X. By taking z = v, € H;(Xo, R), we conclude (2.5.2). 1

In closing this subsection, we state a relation between the modified harmonicity and
martingales in the nilpotent setting. We will use the following in the proof of Lemma
4.3.2 and Lemma 5.4.3.

Lemma 2.5.3 (cf. [32, Lemma 3.3]) Let {XV, x{V ... é})} be a basis of gV). Then
a I'-equivariant realization 9 : X — G is the modzﬁed harmomc realization if and only
if the stochastic process

{E”‘Xfl) —npR(’}/p)’Xi@)}:o:O (Z = 1,2,...,d1),
with values in R, is an {F,}-martingale.
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Proof. Suppose that @ is modified harmonic. For n € N and A € F,,, we have

B S|y = (n+ Dpr()| v : A

= Y p(c){ log <<I>0 (t(en+1))> |y = (n+ Dpz()| xo }1A(C)

c€Qe (X)

= > p) D wle) [{mg (%(t(e)))}xfn—prp)\X;m}—npmp)\X;n]lA(c'),

CEQn(X)  e€B )

where EF+ stands for the expectation with respect to the probability measure P,. In terms
of the modified harmonicity of ®, this is equal to

Z p(c’){ log (q)o (0(€n+1))> }Xiu) — npr(7p) ‘Xfl) }1,4(0/)

CIEQ(L'JL (X)

= EF= [E"’X.(l) - npR(fyp)|Xg1) ; A}

Thus it follows that the process {Z, |, — npR(’yp)|Xg1)}f:0 is an {F, }-martingale. The
converse is obvious from the argument above. 1

2.6 Large deviation principles

Large deviation principles (LDP) are one of the most fundamental and important limit
theorems and well-studied topics in probability theory as well as the LLNs and the CLTs.
Before mentioning the results on LDPs on covering graphs, we start with a quick review
of LDPs by using a simple exqample. Let {£,}22; be a sequence of R-valued i.i.d. random
variables defined on (Q, F,P), with mean y and variance o2. We set S, = & +&+---+&,
for n € N. We now assume that an LLN holds for {,}>,, that is,

IP’( lim lSn = ,u) =1.

n—oo M,

However, LDPs concern with how exponentially fast the probability that “rare” events
such as

P(%Sn > x) (x > p)

occur decays as n — oo, though such probability tends to zero as n — oo by the LLN.
More precisely, the LDP finds a lower semi-continuous function I : R — [0, o], called the
rate function, satisfying

1 1
. >
lim — logIP<—nSn > x) =—1I(z) (x > p).

n—oo M,

Note that such LDP is known as Cramér’s theorem, which is one of the most fundamental
formulations in the theory of large deviations.
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Let us go back to related results on LDPs on covering graphs. Kotani and Sunada
[42] established an LDP on a I'-crystal lattice X = (V, F) and discussed a relation with
the pointed Gromov—Hausdorff limit of crystal lattices from a geometric perspective. See
also Kotani [39] for related topic on the LDP, and Gromov [26] and Pansu [60] for the
existence of the Gromov—Hausdorff limit in this setting. We fix a periodic realization
®: X — I'® R (not necessarily harmonic) and consider a I' ® R-valued Markov chain
(Q.(X), Py, {& = ®(wn)}22,) for z € V. For A € Hom(T',R) = R?, we set

1 P
B(A) = ng;oﬁlogE [exp (A(&))]-
Note that the existence of the limit in the right-hand side is always guaranteed. Moreover,
f : Hom(I',R) — R is analytic and its Hessian is positive definite. We now define a
function 7 : I'®@ R — R U {oo} by the Fenchel-Legendre transform of 3, that is,
1€ = s {MO-BN}  (€eRY.

A€Hom(T',R)
It is not difficult to see that I is lower semi-continuous. Then we have the following LDP

for the random walk {&,}5%,.

Proposition 2.6.1 (cf. Kotani—-Sunada [42, Proposition 1.5]) An LDP holds for
the I' ® R-valued random walk {&,}5°, with the rate function I : ' @ R — R U {oo}.
Namely, for any Borel measurable subset A C T' ® R, we have

— inf 7(§) < liminf 1 log P, <lfn € A)
n

£eA° n—oo M
1 1
< lim sup —log]P’x<—£n c A) < —inf 1(¢),
n—oo T n EeA

where A° and A stands for the interior and the closure of A, respectively.

As a generalization of the above result to the nilpotent case, Tanaka [72] also estab-
lished an LDP and discussed a similar geometric relation to the case of crystal lattices.
For related results on an LDP on nilpotent groups, we refer to Baldi-Caremelino [4].
Let X = (V, E) be a '-nilpotent covering graph and consider a G-valued Markov chain
(Q.(X), Py, {& = P(wn) }52,) for © € V', where G is a nilpotent Lie group such that I is
isomorphic to a cocompact lattice in G and ¢ : X — G a I'-equivariant realization. Let
h : G — G4 be a canonical diffeomorphism. Then an LDP for the G,.-valued random
walk {71/,h(&) ol is now stated as follows:

Proposition 2.6.2 (cf. Tanaka [72, Theorem 1.1]) An LDP holds for the G -valued
random walk {11 /,h(&,)}0ey with a rate function I : Goo — R U {oco}. Namely, for any
Borel measurable subset A C G4, we have

~ inf 1(€) < liminf - log P, (ﬁ mh(&) € A)
n

£eA° n—00
1
< limsup — log P, (Tl/nh(fn) € A> < —inf I(£).
n—oo T EeA
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We emphasize that, in this case, the rate function I : G, — R is hard to write down
explicitly. Because the proof of Proposition 2.6.2 is done by using an LDP on a g»-
valued absolutely continuous path space and several well-known lemmas in LDP theory
(the contraction principle and transfer lemma, see e.g., Dembo-Zeitouni [16]).

Let Dy :={g € G | I(g) < o0} be the effective domain of the rate function /. Tanaka
[72] also gave a geometric characterization of D; in terms of the Carnot—Carathéodory
metric doc.

Proposition 2.6.3 (cf. Tanaka [72, Theorem 1.2])
Dr = Buoo(1a) = {9 € Goo | doo(g,16) < 1},

On the other hand, the pointed I-nilpotent covering graph (X, z) endowed with the
scaled graph distance ed converges to (G, dcc, 1g) as € N\ 0 in the sense of pointed
Gromov—Hausdorff topology (cf. Pansu [60]).

Before closing this subsection, we briefly mention a relation between these two proposi-
tions putting an attention to the convergence above. The effective domain D; is regarded
as the set of points to which 71 /,h(&,) is “close” for sufficiently large n with some positive
probability. We can check that

, dec(la, T1/nh(én))
im
n—soo  d(z,wy,)/n

=1

On the other hand, if the trajectory of the random walk on X is geodesic, then we see
d(z,w,) = nand doc(1lg, 71 /nh(§n)) — 1 asn — oo. Thus, we see that 7 /,h(&,) converges
to a point in 9By, (1¢). This means that the G,-valued random walk {h(&,)}°%, tends
to infinity as n — oo and 7,,,h(&,) converges to a point in D;. The LDP detects such
a rare event, though the probability that the event occurs may be zero.
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Chapter 3

A measure-change formula for
non-symmetric random walks on
crystal lattices and its application

3.1 A measure-change technique

Throughout this chapter, Let I" be a finitely generated abelian group of rank d with no
torsions and X a I'-crystal lattice with X, := I'\X. Suppose that a time-homogeneous
Markov chain (€2,(Xo), P, {w,}32,) governed by a positive transition probability p :
Ey — (0,1] is given, to avoid several technical difficulty.

Let &y : X — I' ® R 2 R? be the modified harmonic realization. For brevity, write

/\[X]p@R = Hom(F,R)</\7 X)I‘@R ()\ S HOHI(F, R), xel'® R),
d®o(e) := Do (t(e)) — Po(o(e)) (e€ E).

We take an orthonormal basis {w;,ws, ..., wq} in Hom(,R)( € (H'(Xo), {+,-)p)) and
denote by {vi,vs,...,v4} its dual basis in I' ® R. Namely, w;[v;lrgr = 0;; for i,j =
1,2,...,d. We note that {vy,vy,...,v4} is an orthonormal basis of I' ® R with respect
to the Albanese metric gy associated with p. We may identify A = Ajw; + dows + -+ +
Aawg € Hom(T,R) with (A1, Ag,...,\g) € RY Furthermore, we write z; := w;[X|ror,
Do (2); = w;i[Po(z)|rer and 0; := 0/0N; for i =1,2,...,d and x € V.

The purpose of this section is to establish a measure-change formula of the non-
symmetric transition probability by applying a variational method given by Alexopoulos
[2]. Let us consider a function F' = F,(A) : Vo X Hom(I', R) — R defined by

EN =Y ple)exp (Hom(F,R)Q, d@o(a>F®R), (3.1.1)
e€(Ep)x

for z € Vyand A € Hom(I',R). We easily see that F' = F}()\) is positive on Vj x Hom(I', R)
with F,(0) = 1 for x € V. The following lemma plays a significant role to construct the
changed transition probability in our setting.
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Lemma 3.1.1 For every x € Vj, the function F,(-) : Hom(I',R) — (0, 00) has a unique
minimizer A\, = A\ ().

Proof. For a fixed x € 1}, we have

ainm:ai( > ple)exp (A[d%(“eﬂm))

e€(Fo)z
(5 o (Ersim)
e€(Eo)z =1

= 3 ple)exp (A[d@o(a]mR)d%(ai (i=1,2,....d, A € Hom(T,R)).

BE(EO)I

In other words,

<61Fx()\), . ,8de()\)>
= 3 ple)exp (A[d@o@}m)d%(a (ET®R) (AeHom(I,R)).  (3.12)

eG(EO):c
Then we have
0;0;Fy(\) = Z p(e) exp <)‘ [d@o(a]F®R)d®0(aid@o(aj
e€(Eo)z

for A € Hom(I', R) and 4,7 = 1,2,...,d, by repeating the calculation above. Therefore, it
follows that (@(‘)jFx(-))jj:l, the Hessian matriz of the function F,(-), is positive definite.
Indeed, consider the quadratic form corresponding to the Hessian matrix. Since

Z Z eXP( dq’o(éﬂF®R>d@o@id¢0@jfi&

= 3 ple)exp (A[d(l)o F®R) { chpo @) gz} (3.1.3)
e€(Eo)z

for & = (&1, &, ...,&) € R? and the transition probability p is positive, we easily see that
the Hessian matrix is non-negative definite. By multiplying both sides of (3.1.3) by m/(x)
and taking the sum which runs over all vertices of X, we have

> iife) exp (A[d20(@)] ) { Zd@o @&} 20 (E=(6. &) € RY),

ecFEy

Suppose now that the left-hand side of (3.1.3) is zero. Then we have
d
Z d@o(az& =0 (6 € EQ)
i=1
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This equation implies (P (z), &)ra = (Po(y), &)ra for all z,y € V', where (-, -)ga stands for
the standard inner product on R%. Let {01, 09,...,04} be a set of generators of I' = Z4.
It follows from the periodicity of ®y that (o;,&)re = 0 for ¢ = 1,2,...,d. Hence, we
conclude € = 0. Namely, we have proved the positive definiteness of the Hessian matrix.

This implies that the function F,(-) : Hom(I',R) — (0, 00) is strictly convex for every
x € V. Moreover, it is easily observed that

lim F,(\) =00 (z € Xo),
\)\|Rd—>oo

by definition. Consequently, we know that there exists a unique minimizer A\, = A\.(z) €
Hom(I',R) of F,(\) for each x € 1}, thereby completing the proof. 1

We are in a position to define a new transition probability on X,. We define a positive
function p : £y — (0, 1] by

ple) exp (somir (A (0(€)), Bo(£(E)) = @0 (0(@)) )5
ple) == (e € Ey). (3.1.4)
Fo(e) ()\*(0(6)))

We easily see that, by definition, the function p also gives a positive transition prob-
ability on Xy. Thus, the tran81t10n probability p : Ey — (0,1] yields an irreducible
random walk (Q (Xo), Px,{wn % o) with values in X and so does the random walk
(Q,(X),P,, {w}>2,) on X. We then find the normalized invariant measure m : Vo —
(0,1] by applying the Perron-Frobenius theorem again. Put m(e) := p(e)m(o(e)) for
e € Ey. We also denote by p: E — (0,1 and m : V —> (0 1] the I'-invariant lifts of
p: Ey — (0,1] and m : Vi — (0, 1], respectively. Let go ) be the (p-)Albanese metric
on F ® ]R associated with the transition probability p. We take an orthonormal basis
{w, Wi, wf’} of Hom(I,R) (€ (H!(Xo), (- -p))-

We define the transition operator L) : Coo(X) — Cso(X) associated with the tran-
sition probability p by

=Y pf(te) (xeV).

BEEI

Recalling (3.1.2) and the definition of A\, = A.(z) yields
(alF:c (/\*(l’)>, s ’adFa: (/\*<l’))) = Z p(e) exXp ()\*(I) [dq)0<€)] F®R> dq)()(N) 0
EE(E())U,;

for every x € Vy. This immediately leads to

Ly ®o() = p(e)ddo(e (zeV). (3.1.5)

CEEz

By (3.1.5), one concludes that the given p-modified standard realization o : X — I'®@R
in the sense of (2.4.2) is the harmonic realization under the new transition probability p.
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Remark 3.1.2 Equation (3.1.5) readily implies pr(7,) = 0. Furthermore, we emphasize
that the transition probability p : Ey — (0,1] coincides with the original one p : Ey —»
(0,1] provided that pr(y,) = 0.

Remark 3.1.3 In our setting, it is essential to assume that the given transition probabil-
ity p 1s positive. Because, if it were not for the positivity of p, the assertion of Lemma 4.2.1
would not hold in general. (There is a case where the function F,(-) has no minimizers.)

3.2 Application to the proof of CLTs

In Ishiwata—Kawabi-Kotani [31], two kinds of CLT's for non-symmetric random walks on
a crystal lattice X were established. We give yet another approach to prove an FCLT for
them, by using the changed transition probability (3.1.4). We emphasize in advance that
the (p-)harmonicity (3.1.5) plays an important role in the proof of the CLTs.

We fix a reference point z, € V such that ®q(x,) = 0 and put

fT(L”)(c) = @0(10,(1”)(0)) (n =0,1,2,...,ce Q. (X))

We define a measurable map X™ : Q, (X) — (Co([0,0), (I ® R, g(()p))),u) by

x" (c) :=%{s{gzﬁmw—[nm(s{szma—5{52}@)} (t>0), (3.2.1)

where Cy ([O, 1], F®R) denotes the set of all continuous paths from [0, 00) to I'®@R with the
compact uniform topology and p = u® is the Wiener measure on Cy ([O, 1], T®R, g(()p))).

We also denote by Lipy([0,1]; (I' ® R, gép))) the set of all Lipschitz continuous paths
w:[0,1] — I'® R with wy = 0. We set

lwr = wsl] i
Hol 1= _ <
[wlla-na1 50 iy o (< 1/2)

and define

[Nl a-mrn

Co ([0, 00), (T @ R, gif")) := Lipo ([0, 1]; (T @ R, giF)) (a <1/2),

which is a Polish space. We write 8™ (n = 1,2,...) for the image probability measure
on Cy ™ ([0,00), (T @ R, g(()p))) induced by X(™. Then the functional CLT is stated as
follows:

Theorem 3.2.1 The sequence {X™}22 | converges in law to a (T ® R,g(()p))—valued stan-

dard Brownian motion (Bt(p))tzo starting from the origin in Cg’a'Hél([O, ), (T'®R, g((]p))).

As the first step, we prove the following, which asserts the convergence of the discrete
laplacian on X under the suitable scaling.
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Lemma 3.2.2 For any f € C(T' ®R), as N — oo and & N\ 0 with N*e \, 0, we have

A X
N (p)
|- thrs - (20)[ —o

Here P. : Co(T @ R) — Co(X) (0 < e < 1) is a scaling operator defined by
P.f(z) == f(ePo(x)) (x € X)

and Ayy stands for the positive Laplacian — 2?21(82/8%2) on I' ® R associated with the

p-Albanese metric g(p).

Proof. For i,j =1,2,...,d and N € N, we define a function AY(®¢);; : V — R by

AN (@0)yj(a) = Z e (0 (t(0) = @o(@)) (@o(t(0) — @o(a)) (e V),

J
CEQI N

where p(c) := p(e1)p(e2) - --p(en) for ¢ = (e, e9,...,en) € Q. n(X). Then we have

(I - LY)P.f(z) =~y ggi (e2o(@) Y (o) (CDO (t(c)) — cpo(x))

(A
i=1 €9 N (X)

_% ) aa—f(gq’(l(@)AN(qDO)ij(x)+O((N5)3), (3.2.2)

xzﬁxj

by applying Taylor’s expansion formula. We see that the first term of the right-hand side
of (3.2.2) vanishes due to (3.1.5). For i,j = 1,2,...,d, we define a function A(®y);; :
Vo — R by

A(Qo)ij(z) = Y p(e)dPo(€)idDo(2);  (z € V).

EE(E())x

We note that A(®);((z)) = A'(Pg)ij(x) for x € V and 4,j = 1,2,...,d thanks to the
[-invariance of AY(®);;. Then, by using (3.1.5) again, we have

N (@) ZL@) (D0)yy) (v(z)) (v e V).

The ergodic theorem for L, (cf. [31, Theorem 3.2]) implies

=

% ] Ly (A(®0)i5) (m(z)) = Z m()A(Po)is () + O(%)

0 zeVp

il

Moreover, (2.4.3) and (3.1.5) lead to

> m(@) A(@o)i(2) = Y m(e)wP (e)w () = (W, w ), = 6y

zeVy ecEy



fori,j =1,2,...,d. By putting it all together, we obtain

1 A( 1
I-Liy)P.f =P (S27) + 0(N%) +0( ).
= IR = B (52 5) 1 ove) + 0
Finally, by letting N — oo and € \, 0 with N2 \, 0, we complete the proof. 1

Lemma 3.2.2 immediately leads to the following lemma. (See [31, Theorem 2.1 and
Lemma 4.2] for details.)

Lemma 3.2.3 (1) For any f € Coo(T @ R), and 0 < s < t, we have

X
lim ‘L[{S]_[ns]Pn_l/Qf — Pn—1/2€_(t_5)A(P)/2f =0.

n—oo ) o

(2) We fix 0 <t; <ty <---<ty<oo(f €N). Then, we have
() xx) == (BYLBY LB (s oo),
where (Bt(p))tzo is a (I @R, gép))—valued standard Brownian motion with Bép) =0.

Having obtained Lemma 3.2.3, it is sufficient to show the tightness of {3(™}°2, for
completing the proof of Theorem 3.2.1.

Lemma 3.2.4 The sequence {PM™ 1}, is tight in C’g’o"Hél([O, ), (T ® R, g(()p))),

Proof. By virtue of the celebrated Kolmogorov’s criterion, the assertion follows from the
existence of a positive constant C' independent of n such that

EP=- [

%™ — x| (,,)] <Ct—s)*™  (0<s<t mneN). (3.2.3)

For this sake, it is sufficient to show that, for k,¢ € NU {0} with k < ¢, there is a
constant C' > 0 independent of n such that

X - x| (.,J < (g_—k)m (0<s<t mneN). (3.2.4)

B |
n

Indeed, suppose that (3.2.4) holds. For 0 < s < t, we take k,/ € N U {0} satisfying
k/n <s<(k+1)/nand {/n <t < (£ +1)/n. Since the stochastic process 2™ is given
by the linear interpolation, we have

%2 = %00 = = )22 - 2,
% - 22 = (0t = 0% - 2
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By using (3.2.4) and the triangle inequality, we have

B [[x - 2015
< 34’”*1{(/{;—1— 1 —n5)4m-c(%)2m+(§'(¥>2m+ (nt_€>4m.0(%>2m}
o (- - ) e

which is the desired estimate (3.2.3).
We now show (3.2.4). We put

ld®olloo = max [|dPo(€)] ;-

Then we have

FP= [H%(Z) . 36(;)‘ 4m]

g(()p)
1 idm  ~ Am
- (%> P [ ’&gp) _ £l(€p)Hg(()p):|

< Cn? max max{ 3 p(c)(@o(t(c))—¢0(x)>4m}, (3.2.5)

1=1,2,....d z€F i
CEQQE,Z—/@(X)

1

where F stands for the fundamental domain of X containing x, € V. In terms of ¢ =
(e1,€9,...,e-k) € Qu, 1—(X), we write

im

(®o(t() — @) " = {3 (d@ofe)) }

7 1
We use Lemma 2.5.1 and the Burkholder-Davis—Gundy inequality to obtain

/—

> e X (o) }

Ea

CEQz,g,k(X) j:1
Lk 2y 2m
<clny Y p@{ Y (do(er) ]
CGQI’g_k(X) ]:1
< Climy [1dPol[5" (¢ — k)*™ (3.2.6)
fort=1,2,...,d and z € F, where C(,, stands for the positive constant which appears

in the Burkholder-Davis—Gundy inequality with the exponent 4m. Combining (3.2.5)
with (3.2.6) immediately implies (3.2.4) and this completes the proof. 1

Let p(n,z,y) be the n-step transition probability defined by p(n,z,y) = L{,d,(z)
for n € N and x,y € V We are interested in a relation between the n-step transition
probabilities p(n,x,y) and p(n,z,y). We here give a certain asymptotic formula for
p(n,z,y) and p(n,z,y) as n — oo.
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Theorem 3.2.5 There exist some positive constants Cy and Cy such that
Cip(n, z,y) exp (nM,) < p(n,z,y) < Cop(n,z,y) exp (nM,)
for alln € N and x,y € V, where

My =3~ m(@) (o (@) p2(05)) o — Loz Fo(Mu(@)) ).

xeVp
Proof. For n € N and z,y € V', we have

p(n, z,y) = > p(e)p(ea) -~ plen)

(e1,€25..,6n)EQ n(X)
o(e1)=z,t(en)=y

=Y penlen) - plen) exp(ZA ICHCHIN

(e1,62,,en)€Qz,n (X)
o(e1)=x,t(en)=y

X Foery (Ae(0(€1))) ™ Foteay (Au(0(e2)))
— Y pedple) -+ ple)

(61762,,..,€n)€91,n(x)
o(e1)=z,t(en)=y

X exp <Z)\ o(e;) dq)o €)|rer — ZlogFa(e (/\ (0 (e,))))

-1

By applying Proposition 2.4.3:
- 1
—Zfez -3 @ )f(e)+0<ﬁ) (f: By — R), (3.2.7)
e€Fy
we obtain

2

) [420(@)]rer — 1og Fugey (Aulo(e:))) )
(

>\ (ofe
; i(e) ()\* 0
3 mia) (0
m;vom(w)

(
6)) [d®o(€)|rer — log Fiy e ()\*(o(e)))) + O(l)

n

[ S dd(e } ®R—logFm(>\*(m))>+O<%)

ee EO)w

(
1
(A*(fv) [Pr ()] o — 108 Fa (A*(m))) + 0<5>
for x,y € V. Here we used the (2.4.2) for the final line. Finally, we obtain

p(n 2, 5) = pln, . y)exp (1Y m(@) (An(@) [p5(0)] 1 — log Fa(Mu(@)) ) +O(1))

xzeVp

for x,y € V. This completes the proof. 1
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Remark 3.2.6 Let us consider the case where the I'-crystal lattice X is given by a cov-
ering graph of an (-bouquet graph (¢ € N) consisting of one vertex & € Vi and {-loops.
Without using the ergodic theorem (3.2.7) in the proof of Theorem 3.2.5, we also obtain

p(n,z,y) = > per)p(ez) -~ plen)

(81732 ~~~~~ en)eﬂx,n(x)
o(er)=x,t(en)=y

X exp (Z As(@) [dPo (€ F®R> Fa(M(2) "

= p(n,z,y) exp </\*(a:) [®o(y) — @O(x)}m) Fy(M(@) " (3.2.8)

for everyn € N and z,y € V.

3.3 A relation with a discrete analogue of Girsanov’s
formula

In closing this chapter, we discuss a relation between our formula (3.2.8) and a discrete
analogue of Girsanov’s theorem due to Fujita [23].

Let X = (V, E) be a crystal lattice covered with a one-bouquet graph X, = (Vy, Ep);
Vo = {x} and Ey = {e, €}, by the group action I' = (o) = Z'. We consider a random
walk on X, with the transition probability

ple)=p and pe)=1-p (0<p<1).

We take a bijective linear map pg : Hy(Xo,R) — I' @ R(2 R!) by pr([e]) = 0. Then we
have 7, = (2p—1)[e] and pr(y,) = (2p—1)o. Let {u} C Hom(T',R) = (H'(Xo,R), (-, -)»)
be a dual basis of {c ® 1 =0} C I' ® R. We easily see that (u,u)), = 4p(1 — p). Hence
the orthogonalization {v} C Hom(I',R) of {u} is given by

1
—_— U
4p(1 —p)

To the end, we identify Av € Hom(I',R) with A € R. We denote by {v} C I'®R the dual
basis of {v}. Then we observe that the realization &g : X — (I' ® R; {v}) defined by
48y(?) 1
0(€) =0 = ——=—=v
4p(1 —p)
is the modified standard realization of X.
We now consider a function F' = F, () defined by (3.1.1), that is,

A

4p(1_p)>+(1—p)exp<—;) (A € R).

Fa(N) = pex ( w(i-p)
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Then the minimizer A\, = A\.(x) and F,(\,) are given by

A=Vl —plog?=L R\ = Vap(d ).

p

respectively. We fix x € V satisfying ®o(z) = 0. For y € V, we write ®o(y) = k(y)v.
Then the formula (3.2.8) implies

— 1\ —k(w)/2
pn.z) =pnay)- (o0) (VB ) T meNye)
In Fujita [23, page 115], the formula above is called a discrete analogue of Girsanov’s
theorem for a non-symmetric random walk {Z,, }°2, on Z' given by the sum of independent
random variables {&}2, with P(§; = 1) = pand P(§; = —1) =1 —pfori = 1,2,....
Hence we may regard (3.2.8) as a generalization of the discrete Girsanov’s theorem to the
case of non-symmetric random walks on the /-bouquet graph.
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Chapter 4

CLTs of the first kind for
non-symmetric random walks on
nilpotent covering graphs

4.1 Settings and Statements

Throughout this chapter, suppose that X is a I'-nilpotent covering graph of a finite graph
X, that is, I' is a torsion free, finitely generated nilpotent group of step r. Let G be the
connected and simply connected nilpotent Lie group of step r such that I is isomorphic to
a cocompact lattice in G and g = O, _, g®) the corresponding Lie algebra. For notations
or properties of random walks on X, nilpotent Lie group G and its Lie algebra, see Section
2.

We now give the settings and statements of CLTs of the first kind in the present
section. At the beginning, we need to introduce a special function space in order to
discuss CLTs. For ¢ > 1, we define

Coog(X X Z) 1= {f = f(2,2) : X x Z—R| f(-,2) € CoalX), [[fllocs < 50},

where || f]|s.q Is @ norm on Cy 4(X X Z) given by

1fC 2% 1
coq = , C, =
Hf” q Z 1+|Z’q q £Zzl+|2’q<m
Then we see that (Co 4(X x Z), || - [|o0,q) is & Banach space. We introduce the transition-
shift operator L, : Cu o(X X Z) — C (X X Z) by
L,f(x,z) = Z ple)f(t(e),z +1) (xeV,ze€Z) (4.1.1)

eeEa:

and the approzimation operator P. : Coo(G) — Cx (X X Z) by

P.f(z,z) = f(TE((I)Q(Z‘) * exp(—sz(fyp)))> 0<e<l,zeV, zeZ). (412)

We give an important property of the family of approximation operators (P.)o<-<1.
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Lemma 4.1.1 Let g > 1. Then ((Coo,q(X X Z), || - ||oo7q;735))0<5<l is a family of Banach

spaces approzimating to the Banach space (Coo(G), || - ||$) in the sense of Trotter [74]:
1P flloca < IfIIS  and i [[Peflloo.g = IFIS (f € Cx(@)).

Proof. The former assertion follows from
G 2o o
1P e = Z e Z sl

We prove the latter one. Let gy € G' be an element which attains || f||.c = sup,eq |f(9)]-
We fix z € Z. Then we have

IP-F (o)l 2 1£90)| = inf | Flgn) = F (7 (@(2) + exp(—2px(3)) )|

On the other hand, we have

inf doc (g0, 7. (@o(e) * exp(—2pa())) )
— & inf deo(r1/-(90), @o(w) * exp(—2px(3p)) ) < M

for some M = M(z) > 0. From the continuity of f, for any § > 0, there exists ' > 0 such
that dcc(go, h) < 0’ implies |f(go) — f(h)| < 6. By choosing a sufficiently small ¢ > 0, we
have

dcc <go,7'5 (Po(z) * exp(—sz(’yp)))> <

for some z, € X. Then we have

inf [7(90) = f(7=(@ol) + exp(~2px(3)) )|
< \f g0) = f (7 (@o() * exp(—zpa(3,))) )| < 0
and this implies lim. o || P-f(+, 2)|lc = || fl|s for z € Z. By using the dominated conver-
gence theorem, we obtain lim.\ g ||P: f|lco,r = || f]|co. This completes the proof. |1

We extend each Z € g as a left invariant vector field Z, on G as follows:

d

Z.f(g) = e

flogxexp(e2))  (f € C¥(G), g € G).

e=0

We put

B(@0) i= Y nle) log (@0 (0(@) ™" - @0(t(?)) - exp(—pa (1)) )

eckEy

g@’

where € stands for a lift of e € Ejy to X. It should be noted that , = 0 implies 5(®g) = 0.
However, even if pr(7,) = 04, the quantity 5(®) does not vanish in general. Furthermore,
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B(®q) does not depend on the choice of the g®-component of the modified harmonic
realization ®q : X —> G though it has the ambiguity in the component corresponding
to g® @ g® @ --- @ g". See Proposition 4.2.3 for details and Chapter 6 for a concrete
example.

Then the following is a semigroup-type CLT of the first kind.

Theorem 4.1.2 For g > 4r + 1, the following hold:
(1) For 0 < s <t and f € Cs(G), we have

lim Hﬁyﬂ—[m af — P e “—SV‘fH —0, (4.1.3)
m?q

n—o0

where (e=*) > is the Cy-semigroup with the infinitesimal generator A on C°(G) defined
by

d1
1
A= 7;%2 — B(Dy)., (4.1.4)

where {V1,Va, ..., Vy, } denotes an orthonormal basis of ("), go).
(2) Let u be a Haar measure on G. Fiz z € Z. Then, for any sequence {x,}5>, C V with

lim 7,-1/2 <<I>0(mn) xexp (— sz(yp))> =ge(

n—oo

and for any f € Coo(G), we have
lim LIIP, o f2n, 2) = e f(g) /”Ht (h) u(dh) — (t>0), (4.1.5)

where H(g) is a fundamental solution to the heat equation with drift

0
(875 +A)ult,g) =0 (t>0,9€G).
We now fix a reference point x, € V' such that ®y(z.) = 15 and put
&n(c) := Qo (wn(c)) (n e NU{0}, c € Q.. (X)).

We then have a G-valued random walk (€2, (X ), P,., {&,.}0° ) starting from 1. For ¢ > 0,
we define a map X : Q,.(X) — G by

X" () == (&m](C) xexp ((— [nt]pR(vp))> (neN, ce (X)),

Denote by D,, the partition {t, = k/n|k = 0,1,...,n} of [0,1] for n € N. We de-
fine a G-valued continuous stochastic process ()" )o<i<1 by the geodesic interpolation of
{Xt(: )}Z:Ovvith respect to the Carnot-Carathéodory metric dee. It is worth noting that
(4.1.5) implies

lim > ple)f (XM (e / H,(h Yu(dh) (€ Ca(@)). (4.1.6)

CGQI* (X)
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Let d; = dimg g. We consider an SDE
di
dY; =Y Vi(Y)) 0dB] + B(®o). (V) dt, Yo =1g, (4.1.7)
i=1
where (By)o<i<i = (B, B?,...,BM)o<i<i is an R%-valued standard Brownian motion
with By = 0. Let (Y;)o<t<1 be the G-valued diffusion process which solves (4.1.7). In
Proposition 4.5.3 below, we prove that the infinitesimal generator of (Y;)o<t<1 coincides
with —A defined by (4.1.4). Let Lip,([0,1];G) be the set of all Lipschitz continuous
path w : [0,1] — G such that wy = 15. We also set, for a < 1/2,

} dec(ws, w
CE9((0,1];G) = {w € Cug([0,156) ¢ J[wlla := sup doclws, ) .

5,t€[0,1] ‘t - S‘a

We define

COeHO([0,1]; G) 1= Tipy, (0, 1;G) ™ (4.1.8)
which is separable in the a-Hélder topology (cf. Friz-Victoir [22, Section 8]). Let P™ be
the image measure on C’(l]’g'Hél([O, 1]; G) induced by Y™ for n € N.

We now in a position to present an FCLT of the first kind for the non-symmetric
random walk {w,}>*, on X.

Theorem 4.1.3 We assume the centered condition (C): pr(7,) = 04. Then the sequence
(yt(n))qgtg (n=1,2,...) converges in law to the G-valued diffusion process (Y;)o<i<1 in
C;)Z;a_HOl([Q 1];G) asn — oo for all a < 1/2.

Let us make comments on Theorems 4.1.2 and 4.1.3. As is emphasized in Breuillard
[10, Section 6], the situation of the non-centered case pr(7y,) # 04 is quite different from
the centered case pr(7,) = 0, and thus some technical difficulties arise to obtain CLTs.
That is why there are few papers which discuss CLTs for non-centered random walks on
nilpotent Lie groups. We obtain, in Theorem 4.1.2; a semigroup CLT for the non-centered
random walk {&,}2%, on G with a canonical dilation 7,-1/2, while Crépel-Raugi [15] and
Raugi [63] proved similar CLTs for the random walk to (4.1.6) with spatial scalings whose
orders are higher than 7,,-1/2. On the other hand, in the present paper, we need to assume
the centered condition (C) to obtain an FCLT (Theorem 4.1.3) for {&,}>°, in the Holder
topology, stronger than the uniform topology in C1,([0, 1]; G). In Section 4.5, we mention
a method to reduce the non-centered case pr(y,) # 04 to the centered case by employing
a measure-change technique based on the one discussed in Section 3.

4.2 Proof of Theorem 4.1.2

In what follows, we set
d®o(e) = Dy(o(e)) " - By(t(e)) (e € E),
1dPo]loe = gé%f{” log (d®(€)) ‘g(l) ng) + || log (d®(e)) |g<2> H;g)}
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Here, we need to care the difference between d®, above and the one introduced in Section
3.1, though we use the same symbol for simplicity. The difference comes from whether
the underlying space is commutative or not. We should mention that

(20(a) - (1)) = O(%) (121)

7

forx e Viee Qun(X),i=1,2,...,dpand k =1,2,...,r. We also write

p=pr(n), e’ =exp(2pr(n) (2€R)

for brevity.
The following lemma is significant to prove Theorem 4.1.2.

Lemma 4.2.1 Let f € C°(G) and ¢ > 4r + 1. Then we have

HN%Q(I — LN)P.f - PEAfHoo,q —5 0

as N — oo and & N\, 0 with N*e \ 0, where L, is the transition-shift operator defined by
(4.1.1) and A is the sub-elliptic operator defined by (4.1.4).

Proof. We divide the proof into several steps.

Step 1. We first apply Taylor’s formula (cf. Alexopoulos [2, Lemma 5.3]) for the (x)-
coordinates of the second kind to f € C5°(G) at 7.(®o(z) x e7*) € G. By recalling that
(G, *) is a stratified Lie group, we have

N—52(I — LYP.f(z,2)
e*? a (k)
S Z TX” F (7o (@o(z) xe777)) Z p(c) (BN(Z',Z,C))”
(3,k) c€Qy N (X)
€k1+k272 (k; & Ek1+k272
_ x (k1) x(k2) X(kQ)X(kl))
< . Z 2N 11% 12% + ‘ Z 2N 19% 11%
(i1,k1)>(32,k2) (32,k2)>(i1,k1)
_, k k
< f(r(@o(@) ke ) S p(e)(B(w,z0) 1 (Bula, 2, 0))
CGQI,N(X)
€k1+k2+k3—2 83]0

- > 6N aF 50 > p(c)(BN(I’Z’C))z(ﬁ)

(k2) o _(k3)
(il,kl),(ig,kz),(i;g,kg) ag'll* gi2* a‘g'LEt"‘ CeQz,N(X)

x (Bn(z,z, c))gi)(BN(x, z,c))(k3) (xeV,zel), (4.2.2)

i3%

for some 0 € G with lﬁfk)\ < gk‘(BN(x,z,c))Ef)| fori=1,2,...,d, and k = 1,2,...,r,
where the summation Z(n,m)z(m,@) runs over all (i1, k;) and (ig, ko) with k; > ko or
ki1 = ko, i1 > 15. Here we set

By(z,z,¢) = e % &) L x Dy (t(c)) ke NP (NeN, 2z €V, 2€Z, ceQn(X)).
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We denote by Ord.(k) the terms of the right-hand side of (4.2.2) whose order of ¢ equals
just k. Then (4.2.2) is rewritten as

1
vzl - LNYP.f(x,2) = Orde(—1) + Ord.(0) + Y _Ord.(k)  (z €V, z€Z),
k>1
where

Ord.( ZXZ* 7. (@o(z) *x e77)) Z p(c)(BN(:c,z,c))Ei),

c€Qy N(X)
Ord.(0) = ——ZXZ* 7. (Po(z) x e77)) Z p(c ){(BN(IL’ z c))( )
c€Qy N (X)
—l (BN(%Z,C)) (BN@ z C))( )[[Xi)aX(l ‘X@)
2
1<X<v<d;
Z XX f (7 (Do () + e7))
1<zg<d1
x 3 p()(By(z,2.0) ) By, 2.0) )
c€Qy N (X)

and ), -, Ord.(k) is given by the sum of the following three parts:

di —

Z Z —XZ* (72 (Po(x) * ) Z p(c)(By(z, z, c))gf),

CEQm7N(X)
6k21+k272 6k‘1+k272
LN =-( Y XX+ Y —xiPx)
(21 kl) (7,2 kg) (i2,k2)>(i17k1)
k1+ko>3 k1+k2>3
s k
X f(7e(Po(z) xe**)) Z p(c)(Bn(z, 2 c))( 1)(BN(x,z,c))§2i),
CGQx’N(X)
€k1+k2+k372 83f
23(5’ N> - Z oN o a a (k3) (9)
(il,kl),(iz,kz),(ig,kg,) g’b gl gl3*
k k
X Z p(c)(BN(x,z,c))Eli)(BN(x z c)) (BN(x z c))( 8).

Ceﬂx,N(X)

To complete the proof of Lemma 4.2.1, it is sufficient to show the followings:
(1) Ord.(—1) = 0.
(2) We have

Ord.(0) = —Af (7 (Po(z) x e ) + O(%) (4.2.3)
(3) As N — oo and € N\, 0 with N?e \ 0, we have

HIi{Ea N)HOO,q —0 (Z - 17273)~ (424)
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Step 2. We here show (1). We fix i = 1,2,...,d;. By recalling (2.4.4) and (2.2.3), we
have inductively

Z p(c) (BN(:U,z,c))Ei)

CGQx,N(X)
— Z p(c) Z p(e){ log (q)O(x)_l - p(t(c)) - e—(N—l)p> ‘X“)
e, n-1(X) e€By(cry i

+ log ((I)o (o) - o (t(e)) e_p> ‘X(l)}

i

= > p(d)log <<I>o(x)’1-<1>0(t(c’)).ef(Nfl)p)

C,GQI,Nfl(X)

0 (xeV,z€Z).

xM

Step 3. We prove the item (2). First consider the coefficient of Xi(f) F (7o (®o(z) x e77))
which is given by

1
-y 2 o{Bulnz0)]
c€Qy N (X)
1Y Bl (Bl ) DX o
1< <v<d, v
1
=~ > plo)log (By(z,2,0) |0 (eV,i=12,.. d)
€y N (X) !

Let us fix i = 1,2,...,ds. We then deduce from (2.4.4) and (2.2.3) that, for z € V and
z €1,

1

- N Z p(C) lOg (BN(:E727C))‘XZ_(2)
CEQm,N(X)
= —% Z p(cd) Z p(e) log ((ezﬂ * Po(z) ! x By (t(d)) * e’(“N’l)p)
€y N—1(X) e€ By .y
* (e(”N’l)p x O (o(e))_1 x O (t(e)) * e’(”N)p)) ‘X@)

Sy X (e m) T dfa(e) )

' €Qy N_1(X)

x2

Y pe) DD ple)log (€FHVI ddg(e) - e )

&)
¢/ €Qq,N-1(X) e€Byer) B

1 N-1
=R X pe) X pe)lon (I dmyfe) )|
k=0 c€Q, 1 (X) e€Ey () i

For g,h € G, we denote by [g,h] := g-h-g ' h~! the usual commutator of g and h.
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Then we have

Z p(e) log (e(Hk)” ~d®dy(e) - 6_(Z+k+1)p)

x®
e€by () ?
= Z p(e) log ([e(erk)p,dCI)o(e)} - d®q(e) 'e_p> @
e€Ey(c) X
= > p(e)tog ([, a0o(e)] )|, + D ple)log (dPofe) - ¢ )] o
eCly(c) ! e€Ey (o)
= Z p(e) log (d@g(e) . e_p)|X(2> (z€Z,k=0,1,...,N —1)
EEEt(C> ‘

by again using (2.4.4). Since the function

M;(z) := Z p(e) log (d@o(e) . e_”) ‘Xi(g) (1=1,2,...,do, x €V)

eck,

satisfies M;(yx) = M;(z) for v € " and € V due to the I'-invariance of p and the
I-equivariance of @y, there exists a function M, : Vo — R such that M; (7 (z)) = M;(z)
fort=1,2,...,dy and x € V. Moreover, we have

LFM;(m(z)) = L*M;(z)  (keN,i=1,2,....dp, z €V)

by using the I-invariance of p. Then the ergodic theorem (cf. [31, Theorem 3.2]) for the
transition operator L gives

_% > p(e)log (Bu(w,2,0)) |y

CEQI,N(X)

=~ Y m@Mie) +0(5) = @) 0 +O() (reVizeB).  (425)

We next consider the coefficient of Xi(*1 'X ](i) S (7= (®o(z) x €7**)) which is given by

1

~N Z p(c) (BN(x, z,c))z(i) (BN<1],Z,C))§? (xeV,z€Z,i,j=1,2,...,dy).

CEQLN(X)

02



Fixi,7=1,2,...,d;. Then (2.4.4) and (2.2.3) imply
1 (1) (1)
~ 5% Z p(c)(By(z, 2,¢)),, (BN(:B,Z,C))].*

CEQm,N(X)

= ToN p(c) Z p(e)

€0, N—1(X) e€E (1)

log (BN,I(x, 2, c’)) X + log (d@O(e) . e’p) ‘Xi(l)}

{
{ log (BN_l(m, z, c’)) ‘X](.l) + log (dCIDO(e) . e_p) ’X(”}
{

J

Z p(d)log (By_1(z,z,¢)) ‘Xi(l) log (By-1(z, z,)) ‘X;_l)

E€Qy N_1(X)

+ Z e) log (dPo(e) - e_p)‘Xiu) log (d®o(e) - e_p)‘xj(”}

EEEt(C/)

1

_NZ Y (o) D ple)log (ddo(e) - e7)| g log (dPole) - ¢7) |y
k=0 ceQy n(X) e€ By ' !

for z € V and 2z € Z. In the same argument as above, the function N;; : V' — R defined
by

Nij(x) == Z p(e) log (d®q(e) \Xm log (d®y(e )]X@) (i,j=1,2,....dy, z€V)

eckE,

is T-invariant and then there exists a function NVj; : Vo — R such that NVj; (7 (z)) = Ny;(z)
for x € V. We also have

LN (r(2)) = L*Ny(z)  (keN,i,j=1,2,....dp, 2 €V)

by using the I-invariance of p. Hence, we obtain

1
~ 5N Z p(c)(BN(x,z,c))l(.i)(BN(x,z,c));i)
CGQZ’N(X)
| Nl .
=—gn 2 " Ni(z)
k=0
| V2

= 2N LkMJ( (z ))

:"Z +O<N)

IGVO

1
_ 1 Z ) 1og (do(@) - €7) |y 1og (dP0(@) - €7) | yo» + O(N). (4.2.6)

EEEO
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by virtue of the ergodic theorem. Recall that {V},Va,..., Vg } denotes an orthonormal
basis of (g(!), go). We especially put Xi(l) =V, fori=1,2,...,d;. Let {wy,wa,...,wq, } C
Hom (g™, R) — H'(X,,R) be the dual basis of {V;, V4,

i,7=1,2,...,dy. It follows from (2.4.5) that

> mile)log (Ao (@) - ¢*)|,, log (4o (?) - ¢ ),

..., Vg, . Namely, w;(V}) = d;; for

= ) m(e)log (dPo(e)) |w log (d®y(e)) ‘vj — P ()| PR () |Vj
m(e) pr(wi)(e) pr(w;) () — wilpr(7p))w; (P (15))
m(e)wi(e)w;(e) — (p, wi) (p, wj) = (Wi, wj)p = bij- (4.2.7)

Hence, we obtain (4.2.3) by combining (4.2.5) with (4.2.6) and (4.2.7).

Step 4. We show (3) at the last step. We first discuss the estimate of Z; (e, N). By using
(2.2.7) and (4.2.1), we have

‘ <<I>O(x)_1 * O (t(c)))ff)
<c ¥ ‘7751 (@0()™)

|K1|+|K2|<k
|K2|>0

<C YNSRI (e (@) e ) ),

[ |+ | K |<k
‘K2‘>0

P () 000

for i = 1,2,...,d; and k = 1,2,...,r. Then (2.2.2) implies that there is a continuous
function @)1 : G — R such that

‘ (QDO(a:)_l * D (t(c))>(k)

¥

< Qi (e (@) xe7P)) Y el (4.2.8)

|K1|+|K2|<k
|K2[>0

...,7. Thus, (2.2.2) and (4.2.8) yields

fori=1,2,...,d, and k =1, 2,
|(BN(x707C))(k)

%

<C 3 PR (@f@) "+ B (H0) ) |[PE ()
|L1|+|La|=k
|L1|,|L2]>0

< Cla/f Qa(7e(Ro(x) x 7)) > NN Iy

|L1|+|L2|=k | K1+ K2|<|L1]
|L1],] L2]>0 | K2[>0

= O)2|" Q2 (7 (Po(x) ¥ e*) ) F(e, N)

(4.2.9)
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for some continuous function Q3 : G — R, where F'(¢, N) denotes the polynomial of ¢
and N which satisfies " 2N"1F (g, N) = 0 as N — 00,e \, 0 and N2\ 0.
On the other hand, combining (4.2.9) with pr(v,) € g™V gives

€k_2

(k)
T‘ (BN(:U’ 25 C>)’L* |

= EICT_Q‘ <[ezp, Bn(z,0,¢)], * By (z,0, c)) .

1%k

k—2

< C’% Z ‘7351([6”781\;(90,0,0)}*)‘)PfQ(BN(x,O,c))‘
sy

k—2

< CJ2P* Qs (re (@olw) e )) F(e, N)
(i=1,2,....de, k=3,4,....r,z €V, 2€Z, c€ Qn(X)) (4.2.10)

for some continuous function )3 : G — R. Hence, we obtain [|Z;(e, N)|x, — 0 as
N — 00,6 N\ 0 and N% N\, 0 in Cy (X X Z) by using (4.2.10). This follows from
2k < 2r < ¢. In the same argument as above, we also obtain ||Z(g, N)|jocq — 0 as
N — 00, e \, 0 and N% \, 0 in Cw, (X x Z)-topology since the order of |z| in Zy(e, N)
satisfies 2 x 2k < 4r < q.

Finally, we study the estimate of the term Z3(e, N). We recall that f € C§°(G)
and supp 9°f/ (8g§fi)0g§ff)8ggf)) C supp f. Therefore, it suffices to show by induction on

kE=1,2,...,r that, if eN < 1,
e*|(Bn(z, 2, c))ff)| < |z|F QW (7.(Po(x) x e ") % 0) x eN (4.2.11)
for some continuous function Q®) : G — R, where 6 € G appears in the remainder term

of (4.2.2). The cases k = 1 and k = 2 are obvious. Suppose that (4.2.11) holds for less
than £. Then we have

gk‘(BN@,Z,C))Z(.f)’ < CeF Z ‘7351 (q)o(x)—1>

A CORRAON

| K1 |+ K2 <k
|K2[>0
by using (2.2.7). Since
—1y (k1) 2 . 1y )
(®o(z) )™ = (e 0 s (7o) % (remr (72(Do () # €777) 5 0) )), (ky <k — 1),

we have inductively

| (‘Do(x)_l)(kl)

i1%

< |z|k1Q(T€(<I>0(:p) x e °P) x 9)
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for a continuous function @) : G — R and k; < k — 1. We thus obtain

8k’ (Bn(z, 2, c))(k)

Q%

<G Y NP (e k (a8) (s (7(@0(@) 5 ) 1)) )|

| K|+ K2 | <k
|K2|>0
|K1|+|K2|<k
|K2|>0

< |z|F QW (7.(Po(x) % ) x 0) x eN

for some continuous function Q%) : G — R. Therefore, (4.2.11) holds for k =1,2,....,r
and this implies that ||Z3(g, N)||ocq — 0 as N — 00, € \, 0 and N2 \ 0 in Cy (X x Z)
since the order of |z| in Z3(e, N) satisfies 3k < 3r < ¢. This completes the proof. 1

We now give the proof of Theorem 4.1.2 by using this lemma. We note that the

infinitesimal operator A in Lemma 4.2.1 enjoys the following property.

Lemma 4.2.2 (cf. Robinson [64, page 304]) The range of A — A is dense in Coo(Q)
for some A > 0. Namely, (A — A)(C°(G)) is dense in Coo(G).

Proof of Theorem 4.1.2. (1) We follow the argument in Kotani [38, Theorem 4]. Let
N = N(n) be the integer satisfying n'/> < N < n'/®+1 and ky and ry be the quotient and
the remainder of ([nt] — [ns])/N(n), respectively. Note that ry < N. We put ey := n~%/2
and hy := Ne3. Then we have N = N(n) — oo,

ew < Ve < 197 0,
and hy < (14+n'?)-n™t — 0 as n — co. We also see that
rven < Ney < (1+0'%)-n7" =50 (n— o0).
Hence, we have

nt] — [ns] —ry
N
Since C§°(G) C Dom(A) C Co(G) and C§°(G) is dense in Co(G), the operator
A is densely defined in Coo(G). We use this fact and Lemma 4.2.2 to apply Trotter’s
approximation theorem (cf. Trotter [74] and Kurtz [47]). We obtain, for f € C§°(G),

knhy = [

Ney = ([nt] — [ns] —ry)ey =t —s  (n— o0).

lim
n—oo

LNNP L f — Pn,l/ze*“*)*‘fH —0. (4.2.12)
w?q

Then Lemma 4.2.1 implies

I

lim 5

n—oo

(I— L) Pyassf — pnl/z,AfHooq =0 (4.2.13)
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for all f € C§°(G). We thus have
H,Cglt]_[ns}Pn—l/zf - Pn—l/ze_(t_s)AfH
00,q

< |- £p)Puins

n—1/2f — Pn—1/2e_(t_s)AfH . (4214)
00,9

.y
On the other hand, we have

‘ooq

([ — E;N)’Pn_uzf — Pn_l/QAfHooq + TN‘C:?VHPH_I/2Af||OOq

| =cp)Psaf

STNgifH P

STN%S?V

1
?(I_EZN)Pn_l/Qf_Pn_l/zAfH q+rN€?VHAfHOGO. (4.2.15)
N w?

We obtain (4.1.3) for f € C§°(G) by combining (4.2.13), (4.2.14) and (4.2.15) with
ryedr — 0(n — o). For f € C(G), we also obtain the convergence (4.1.3) by fol-
lowing the same argument as [31, Theorem 2.1].

(2) For t > 0 and z € Z, we have

L3Py f (2, 2) — e f(9)]
< ‘ﬁz[ynt]']?nfl/zf(%m Z) - ’Pnfl/ze_tA l‘m ‘ + ‘P -1/2€ tAf(JTna Z) - e_tAf(g)|

< (L + |2 LIIP s f = Ppape™ fHOO’q
e (s (@oli) » exp(—2pa()) ) — e 1(0)|

We thus obtain (4.1.5) by (4.1.3) and the continuity of the function e™*f : G — R.
This completes the proof of Theorem 4.1.2. 1

To the end, we give several properties of 5(®y).

Proposition 4.2.3 (1) If the random walk on X is m-symmetric, then B(®y) = 0.
(2) Let ®g, ©o : X —> G be two modified harmonic realizations. Then

5(@0) = 5(‘50) - [PR(’Yp);lOg (‘bo( ) ! q’o ” ) (5U € V)-

In particular, if either
e log O (w.) o = log ()
* pr(7p) = Oy ~
holds, then we have 5(®g) = S(Dy).

o for some reference point x, € V', or

Proof. Assertion (1) is easily obtained as follows:

5@’0):%2{ (e) log (ddo (e )‘<2>+m()10g(dq)0 )‘(2)}
:‘Z (€)) log (d®o(e )|(2>—0

o7



Next we show Assertion (2). We set W(z) := ®o(z) - Bo(x) for z € V. We note that the
map ¥ : X — G is I-invariant. Since the g(V)-components of ®, and ZI\DO are uniquely
determined up to gV-translation, there exists a constant vector C € g such that
log (¥(z)) ’g(l) = C for x € V. Define a function F; : V. — R by Fj(z) := log (¥(z)) |X§2>
fori =1,2,...,dy and x € V. Then we see that the function F; is ['-invariant. Hence,
there is a function F; : Vy —> R satisfying }A?’Z(W(x)) = F;(z) for x € V. Then we obtain

B(®@0) = > _ i(e) log (‘I’(O@) (dBp(2) - e?) e - W (1(e)) ,e,p>

ecFEy o

= A@0) - 3 e){ log (¥(1@))| , ~log (¥(o(@))| , } ~ (). €l
do

= B(®y) — Z (1 (xo,8) (Tps sz'>Cl(XO,R))Xi(2) — [pr(7p), C] ‘g@)
=1
do

= B(®0) = > (coxom @), Fo)oogom) X = [or(3), €|
=1

= 6(60) - [PR(’Yp), 0”9(2)7

where we used (2.2.2) for the second line and ~, € H; (X, R) for the fourth line. 1§

4.3 Proof of Theorem 4.1.3

We now assume the centered condition (C): pr(7,) = 04, throughout this subsection. For
k=1,2,...,7, we denote by (G® .) and (G™, %) the connected and simply connected
nilpotent Lie group of step k£ and the corresponding limit group whose Lie algebras are
(gWeg?@a---@g®, [, ]) and (g eg?P®---®g™, [, ]), respectively. For the piecewise
smooth stochastic process (y,f”))ogtgl = ( )L ym:2 - ,yt(”)”")ogtgl defined in Section
2, we define its truncated process by

yt(n;k) _ (yt(n),l’ ytn),27 . ’ytn)vk) c G(k) (() <t<l1, k= 1,2,... ,T)

in the (-)-coordinate system. To complete the proof of Theorem 4.1.3, it is sufficient to
show the tightness of {P(™}>°  (Lemma 4.3.1) and the convergence of the finite dimen-
sional distribution of {¥™}°2, (Lemma 4.3.4).

In the former part of this subsection, we aim to show the following.

Lemma 4.3.1 Under (C), the family {P™}° | is tight in C’g’:'Hél([O, 1]; G), where « is
an arbitrary real number less than 1/2.

As the first step of the proof of Lemma 4.3.1, we prepare the following lemma.

o8



Lemma 4.3.2 Let m,n be positive integers. Then there exists a constant C' > 0 which is
independent of n (however, it may depend on m) such that

E™ ooV, )Py < Ct— s (0<s<t<1), (43.1)

Proof. The proof is partially based on Bayer—Friz [6, Proposition 4.3]. We split the proof
into several steps.

Step 1. At the beginning, we show

l— k:>2m

EP= [dcc(yt(:; 2, yﬁf”)ﬂ < O( (nom €N, ti,t, € D, (k< 1)) (43.2)

n
for some C' > 0 independent of n (depending on m). By recalling the equivalence of two
homogeneous norms || - ||cc and || - ||nom (cf. Proposition 2.3.3), we readily see that (4.3.2)
is equivalent to the existence of positive constants CY) and C® independent of n such
that

n)\— n m { — k\2m
B [[[log (D) ) ol | < €0 (=) (4.3.3)

n

n)\— n m { — k\2m
& [lhog (041 Ao l] (B sy

n

Step 2. We now show (4.3.3). We see

B [H log ((yt(:))il ' yt(:)) ’g(l) ||3:71L>}

(S rm 01)

(L)A‘m-d%m max max{ Z p(c) log ((PO(x)—l.@o(t(C)))’

vn i=1,2,dy mEF x®
CeQm,Z—k(X)

am

IN

}, (4.3.5)

where F stands for the fundamental domain in X containing the reference point x, € V.
Fori=1,2,....,d1,z € F, N e Nand c = (eg,€e2,...,en) € Q. y(X), we put

N
/\/lg\l],z)(c) = j\/lg\%/ff)(qm;c) = log ((I)O(x)*l - dy (t(c))> ’X(l) = Z log (d®o(e;)) ‘Xi(l).
i =1

By Lemma 2.5.3, {M%’m)}}’v":l is an R-valued martingale for every ¢ = 1,2,...,d; and
x € F. Therefore, we apply the Burkholder-Davis-Gundy inequality with the exponent
4m to obtain

> p@ME@) " = Y pe) (X tos (dole)) | y)

CEQI’N(X) CGQLN(X) Jj=1
N 2 2m
<cimy S w3 o (dole)) 1)
CeQz,N(X) -]:1
< Climy ld®o || 27 N?™ (4.3.6)
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fori=1,2,...,dy, v € F and N € N, where C4,,) stands for the positive constant which
appears in the Burkholder—Davis—Gundy inequality with the exponent 4m. In particular,
by putting N = /¢ — k, (4.3.6) leads to

4m
3 ple)log (@0(:v)_1 - B, (t(c))) ‘Xm < Cim ldo | (¢ — k>, (4.3.7)
CEQ;C,ka(X) ‘
Thus, we obtain

n)\— n m m { — kN 2m V — kN 2m
B [H log ((‘yt(k)) 1 yt(e ))|g(1)||g(l)} < d2 C Hd(I)0||4 ’ (T) = C(l)( >

n

by combining (4.3.5) with (4.3.7), which is the desired estimate (4.3.3).

Step 3. Next we prove (4.3.4). In the similar way to (4.3.5), we also have

B [H log (V) - Vi |g(2>Hg<z>]

§<%>2m-d§m.max max{ 3" p(c)log(tl)o(x)_l-@O(t(c))>‘2m2>}. (4.3.8)

1=1,2,...,d2 zEF i
Ceﬂx,éfk(X)

An elementary inequality (a1 + ag + - -+ + ax)*™ < K*™ 1 (a3™ + a3™ - - - + a3™) yields

log (4)0(3:)71 - Dy (t(c))) j::z)

= log <(I>0 (0(61))71 0N (t(e1)) T ‘bO(O(ee—k))il - @ (t(eé—k))) ‘j:;)
o~k

= (D 108 (d®o(e)) |y _% > > XV xMe

j=1 1<j1 <jo<l—k 1<A<v<dy

x { Tog (a®o(e,)) | o Tog (dPoless) | oo

2m
— log (d®o(e;,)) ’Xﬁ” log (d®o(ej,)) ‘Xgl) })

<3 g log (do(e;)) |X£2>)2m

j=1

2m
+ L max < Z log (d(DO €, )‘Xu) log (d@o €js )‘X@))

1< <v<dy =
1<i1<je<bl—k

2m
+ L max ( Z log (d(IDO ej, )‘X(l) log (d<I>0 €js )‘Xu)) }, (4.3.9)

1<A<v<d;
1<j1<ja <~k

where we put
(1) (1)
e, e [P0 X

1
L.=—
2
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We fix 1 = 1,2,...,dy. Then the Jensen inequality gives

{—k 2m -k 2m
(D tog (do(ey) ) = (¢~ k)2m<ze 1o (4%0(cs)) )
j=1 J=1
l—k 1 9
S (f . k)2m - log (d(I)O(e])) XT?2)
j=1
< (€= k™ [dy 4. (4.3.10)

For1<A<v<d,ze€F, NeNandc= (e, e,...,ex) € Qn(X), we put

/’\‘/t“g\/f\,u,z) (C) _ MS\?7V7I)((I)O§ C) = Z log (d(I)O €J1 |X log (dq)o €js )‘X(l)
1<j1<j2<N
J2—1
= Z log (d®o(ej,)) Xu)(z log dq’o(egl))\Xm)
J2=2 n=1

We clearly observe that {M%’”’”};’@zl is an R-valued martingale for every 1 < A <v <d
and x € F due to Lemma 2.5.3. Hence, we apply the Burkholder-Davis—Gundy inequality
with the exponent 2m to obtain

ST )M ()

c€Qy N (X)
J2—1 2\ m
<c, S p {Z log (d®o(e;,) \X<1><Z log (dy(c;,)) \Xm) }
c€Qy N (X) Jo=2 j1=1
N 1 9 J271 2m
<Chry Y. p(c)NmZN_llog(d(l)o(ejz))‘)gl)(zlog(d@g(ejl))‘xg))
c€Qe N(X) J2=2 n=1
1/2
(zm)NmZN_l{ Z p(c)log (dPo( 6]2)‘)((1)}
Jo=2 €y N (X)
271 4m~y 1/2
x{ Z p(c)(Z log (d(IDO(ejl)HX;l)) }
€y N (X) ji=1
o 3271 4m~ 1/2
e ldo |2 N Z { S p(c)(Z log (dcpo(ejl))\X@) } . (4.3.11)
jo= 2 €0y N (X) ji=1

where we used Jensen’s inequality for the third line and Schwarz’ inequality for the fourth
line. Then we have

jo—1

Z p(c) ( Z log (d®o(e;,)) }X§1)>4m

CEQIJ\[(X) j1:1
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jo—1

<cim Y p(c)(zlog(dcbo(ejl))ligw)m

CEQI,N(X) j1:1
J271 1 2m
= Climy (2= 1> > p(C)(Z o1 log (d®o(e;, )|X<1>)
€y N (X) ji=172
Ja—1 1
SClmis™ > plo)> - — log (d@o(eﬁmx(l) < cln [l ddo|imiam (4.3.12)
c€Qy N (X) o172

by applying the Burkholder—Davis—Gundy inequality with the exponent 4m. It follows
from (4.3.11) and (4.3.12) that

ST (M ()

€y, N(X)
1/2
2m)||d‘1’0||2mNmZ (et lao i
J2= 2
1
< Clom Climy 1d Do |2 N Z N = CFr A (A || NP (4.3.13)
J2= 2

We now put N = ¢ — k. Then (4.3.13) implies

Z p(c){ ( Z log (dCIDU(ejI)) ‘Xgl) log (d(I)O(ejQ)) |X51>)2m

c€Qy o k(X) 1<j1<ga<l—k

2m
+ ( Z 10g (d@o(ejl)) ‘Xl(/l) 10g (d@o(ej2)) }X§1)> }
1<j1<ja<l—k
< 20T Clm ld@o I3 (0 — k)*™ (1< A <v <dy). (4.3.14)
By combining (4.3.8) with (4.3.9), (4.3.10) and (4.3.14), we obtain

B |

[10g (V)™= D) o 1 |

< (%)2 Zmgem= 1qu>0\|4’”{1+2Lc(2mc4m)}<£ k)?m 0(2)<£;k>2m.

This is the desired estimate (4.3.4), and thus we have shown (4.3.2).

Step4. We finally prove (4.3.1). Suppose that ¢, < s < tx1 and ¢, < ¢t < tpyq for
some 1 < k < ¢ < n. Since the stochastic process y.(’” is given by the dcc-geodesic
interpolation, we have

doc (Y2 ytkH )= (k— nS)dcc(yt: 2 ytk+1 ),
dec(V"2, YY) = (nt — Odec(V2, Vi0P).
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By using (4.3.2) and the triangle inequality, we have

RFe [dcc(ys(m 2, yt(n; 2))47”}
< 34’"*1{(% L1 ns)4m _ C<%>2m n C(MT_1>2m + (nt — £)4m . C’(%)Zm}
< C{<tk+1 — )" 4 (te — tppr) ™ 4 (t — te)2m} <Ot —s)™,

which is the desired estimate (4.3.1) and we have proved Lemma 4.3.2. 1§

In what follows, we write
AV = @)Y (neN0<s<t<1)
for simplicity. By using Lemma 4.3.2, we obtain the following.

Lemma 4.3.3 Form,ne N, k=1,2,...;randa < 22217 there exist an F-measurable

set Q,(gn) C Q,.(X), a non-negative random variable Klin) € L'™(Q,,(X) = R; P,,) such
that Py () =1 and

doo (VB (), VP (€)) < K(e)(t —s)*  (ce WM, 0<s<t<1).  (43.15)

Proof. We partially follow Lyons’ original proof (cf. [54, Theorem 2.2.1]) for the extension
theorem in rough path theory. We show (4.3.15) by induction on the step number k =
1,2,...,7.

Step 1. In the cases k = 1,2, we have already obtained (4.3.15) in Lemma 4.3.2. Indeed,
(4.3.15) for k = 1,2 are readily obtained by a simple application of the Kolmogorov—
Chentsov criterion with the bound

5C

,C(n) m <
|| k ||L4 (Pz,) = (1 _ 2_9)(1 _ Qa—e)

(n,meN, k=1,2), (4.3.16)

where § = (2m — 1)/4m and C' is a constant independent of n, which appears in the
right-hand side of (4.3.1). See e.g., Stroock [67, Theorem 4.3.2] for details.

Step 2. Suppose that (4.3.15) holds up to step k. Then, for n € N, there are F,.-

measurable sets { an) ¥_, and non-negative random variables {/€§") }_, such that P, (ﬁg”)) =

1forj=1,2,...,k and

(@Y () [lge, < Ki()(0 = s
=12 kceQ™0<s<t<1) (4317

with K € L¥/5(Q, (X) = R; P,,) for m € Nand j = 1,2,... k.
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Wefix 0 <s<t<1landn € N. Set Qk—H ﬂ - Q(” We denote by A the partition
{s =ty <ty < -+ <ty =t} of the time interval [s t] mdependent of n € N. We define
two G**+_valued random variables Z(t and Z (A)S? by

> 0 (] =k+ 1)?
Z(A)W = 2" 2™ ek z

respectively. For i =1,2,... dy1, (2.2.2) and (4.3.15) imply

(Z@)D )Y = (2@ @) )

n (k+1) n (k+1)
‘ (Zt(N),z,thl( ) * Zt(N) 1,tN (C))Z* - (Zt(N),g,tN (C))Z*

Z CKl»KQIPfl (Zt(JTVL)2tN 1( )),PKQ( tN— 1tN(C))

| K1 |+|K2|=k+1
| K1, K2|>0

¢ Z ’PKl (dyt;\j)*z In— 1 ‘ ’PKQ tN) LtN (C)) ‘
| K1 |+|K2|=k+1
| K1|,|K2|>0

S o 2 (k+1)ar ~n
< KOty —ty-2)# 0 < K (05—t = 9)) (c € Q7))

IN

where the random variable I/C\,E:)l : Q. (X) — R is given by

K@ =c 3 Q@ )(c),

K1 |+ Ko =k+1
[K1 .| K2[=0

QB (e) = K (K (0) - K (e) (K = ((i1, k), (ins k2, - -, (i, Ke)) ).

14

Note that /E,(Ql is non-negative and it has the following integrability:

B (Rt <o 3D B [(RDRE R

k1,...,ke>0

< C Z HEM* [(I/C\I(fz)>4m/k>‘] kx/(k+1) ‘.

Fi,oke>0 A=l
k1+ko+-+kp=k+1

where we used the generalized Holder inequality for the second line. By removing points
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in A successively until the partition A coincides with {s,¢}, we have
n (k—l—l)
[ENE)

<|(z@\ fva D () 5+ +/ck+1()(%(t_s)

/=1
< (Zi’;) (k+1 ‘+1Ck+1( ) (k+1)ac((k,+1) )( 8)(k+1)o<

< Eéi’l(c)(t — ) (=12 dya, c€ ), (4.3.18)

) (k+1)«

where ((z) denotes the Riemann zeta function ((z) := >~ (1/n*) for z € R.

We will show that the family {Z (A)g?} satisfies the Cauchy convergence principle.
Let § > 0 and take two partitions A = {s =ty < t;--- < ty = t} and A" of [s,1]
independent of n € N satisfying |A[, |A’| < . We set A := AU A’ and write

Egzﬁﬂ [tg,tg_;d] = {thSZO < 81 < -0 < Syp, :tg_H} (620,1,...,]\7— 1)
By using (4.3.18), we have

(@5 @)~ (2@ E)
(Z00 @5 20 @) = (2B () + -2 ZBr)fy) 1y (@)
=L + (ZL @ 2 (@)
~ (R0 @)1 = (Z@)) * - ZBa)ft) 1 (0)
gﬁﬁx@me¢wwma+ﬂzﬂx@ B (0)

_ (Z(zo)gﬁg (C) -k Z(AN 1>tN . (C))(,k—H)

Tx

(i=1,2,...,dg1, c€ A)).

N-—1
< ’CIE:T—lI-l(C)(t€+1 — tg)(FDe
=0
. N—-1
< ICl(chr)l(C) ( max(tey1 — te)(kﬂ)a_l) (tex1 —te)
=0
<KW ()t —s) x 0Dl (=12 dyyy, c € Q). (4.3.19)



We thus obtain

(ZQ)RE)F - (205 @)

Tx

< |E@RE) - (@)

< 2R ()t — ) x SEIN 50 (1= 1,2,... ey, c € Q)

+ !<Z<ﬁ><”><c>>£f“) - (@ @)

as 0 N\, 0 uniformly in 0 < s <t <1 by (4.3.19). Therefore, noting the estimate (4.3.18),
there exists a random variable

lim Z(A 2”) o) (ce™ ,
2 = { A (A)si(0) (ce ) o 0<s<t<l1)
g (c € Qe (X)\ 1),

satisfying

| @) g < Kt = )50 (e Q).

Our final goal is to show
Z0)(c) = Y ()« Y () (0<s<t <1 ee Q).
However, it suffices to check that
EW ()Y = @)Y 0<s<t<1,ced) (4.3.20)
by the definition of ZU). We fix i = 1,2,...,dys; and ¢ € ). Put

W () == (@) - EH ) 0<s<t<).
Then we easily see that W% (c) is additive in the sense that
Wl (e) =W, (0)+0,,(c)  (0<s<u<t<l). (4.3.21)

Since the piecewise smooth stochastic process (yt(n))ogtgl is defined by the dcc- geodesic
interpolation of {Xt(:)}}zzo, we know

1@V (@) " g < KL = 9)F02 (ce )

for some set Q(+1 with P, (Q,::l) = 1 and random variable l%,(ﬁr)l : Q. (X) — R. Then
we have

w0 < (R0 + R @) (= 5)* e (0<s <t <1, ce O nOf).

We may write Q +1 instead of Qk an ﬁ,(gl by abuse of notation, because its probability is
equal to one. For any small ¢ > 0, there is a sufficiently large N € N such that 1/N < e.
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We obtain, as € \ 0,

‘\Dé,t ’ “I’o 1/N )"_\Ijil/N,Z/N( c) + +\I][Nt}/Nt< )’
n >(n a— 1 1 1 [Nt]
< (K (o) + Ky (0)) e+ 1{ NTNTUTN +<t - T>}
[Nt]- times

= (K (0) + K (0)e® oy — 0 (0<t <1, ce Q)

by (4.3.21) and (k41)a—1 > 0. This implies that Wf (c) =0for 0 <t < landce 61(21
Therefore, it follows from (4.3.20) that

V() =W, ()~ W ()=0 (0<s<t<1,cel)),

which means (4.3.19). Consequently, there exist a F.-measurable set Ql(:&-)l C Q.. (X)
with probability one and a non-negative random variable IC,SJ?_?1 € L'(Q,,(X) = R; P,,)

satisfying

*

doc (VD (e), YD () < KW (e)(t —5)* (0<s<t<1,ce Q).

This completes the proof of Lemma 4.3.3. 1
Proof of Lemma 4.3.1. For m,n € N and & < 221 it follows from (4.3.15) that

RPae [dcc (y(n r ytn r )4m} < EPe [<,C£n))4m} (t— S)4ma
for 0 < s <t < 1. We thus have, by (4.3.16),
]EPCC* |: (y(”l r (n 7‘))4mi| S C(t o 8>4ma (0 S S S t S 1)

for a positive constant C' > 0 independent of n € N. By applying the Kolmogorov tight-
ness criterion (cf. Friz—Hairer [19, Section 3.1]), we have shown that the family {P™}>
is tight in CY O"Hél([O 1];G) for any o < 4me=L < 1 L Gince m € N is arbitrary, we
conclude that {P™}>  is tight in Coa HOI([O, 1]; G) for any o < 1/2. 1

We conclude Theorem 4.1.3 by showing the following convergence of the finite dimen-
sional distribution.

Lemma 4.3.4 Let { € N. For fited 0 < 51 < s < -+ < sy < 1, we have

d
(yg?),ys(g),...,y(n))Q(YS“YSQ,_”,YSZ) (n — o).

Se

Proof. We only prove the convergence for ¢ = 2. General cases (¢ > 3) can be also proved
by repeating the same argument. Put s = s; and ¢ = s5. Then, by applying Theorem

4.1.2, we obtain (X", Xt(n)) 9, (Ys,Y:) as n — oo in the same way as [31, Lemma 4.2].
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On the other hand, Lemma 4.3.3 tells us that there exists a non-negative random variable
K" e L4™(Q, (X) — R; P,.) such that

doo (Y (e), Y (€)) < KM (e)(t — 8)* Pp-as.  (0<s<t<1).

Now suppose that ¢, <t <t forsome k =0,1,...,n—1. For all £ > 0 and sufficiently
large m € N, by using Chebyshev’s inequality, we have

]Pa:* (dCC (Xt(n)’ t(n)) > 6)

1 [ n n)\ 4m

1 e, [ (n) ~yy(m) \4m
< B [dec (0, Vi)™
1

an— 1 €4m

1
< B
€4m

() ey = 1) = B (K] =0 (n = oo).

Thus, Slutzky’s theorem (cf. Klenke [37, Theorem 13.8]) allows us to obtain the desired

convergence (Y™, Y™) 9, (Y,,Y;) as n — oo. This completes the proof. K

4.4 A comment on CLTs of the first kind in the non-
centered case

As was already mentioned, the centered condition (C) is crucial to establish the FCLT
(Theorem 4.1.3). We present a method to reduce the non-centered case pr(7,) # 04 to the
centered case as a generalization of the measure-change technique in the case of crystal
lattices discussed in Section 3.

We consider a positive transition probability p : E — (0, 1] to avoid several technical
difficulties. Then the random walk on X associated with p is automatically irreducible.
Let &y : X — G be the (p-)modified harmonic realization. We define a function F' =
F,(\) : Vo x Hom(g), R) — R by

FeN) = 3 p()exb (stomieer 2 (A 108 (420(@))] )0 ) (4.4.1)

GE(EO)Z

for z € Vy and A € Hom(g™",R). Since the lemma below is obtained by following the
argument in Lemma 3.1.1, we omit the proof.

Lemma 4.4.1 For every x € V;, the function F,(-) : Hom(g¥),R) — (0,00) has a
unique minimizer A\, = \.(r) € Hom(g™M, R).

We now define a positive function p : Ey — (0, 1] by

€x Hom(g(1),R )‘* 0(6) 710g d(I)O(E) g1 /g
ple) = P (o )<F(()(A*)(O<e))() o) )p(e) (c€Ey).  (44.2)
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It is straightforward to check that the function p also gives a posmve transition probability
on X, and it yields an irreducible Markov chain (Q,(X),P,, {wn % ) with values in X.
We then find a unique positive normalized invariant measure m : V; — (0, 1] by applying
the Perron-Frobenius theorem again. We set m(e) := p(e)m(o(e)) for e € Ey. We also
denote by p : E — (0,1] and m : V' — (0, 1] the I'-invariant lifts of p : Ey — (0, 1]
and m : V; — (0,1] to X, respectively. The Albanese metric on g associated with
the transition probability p is denoted by g(()p). We write {Vl(p),Vz(p), .. .,Vd(f)} for an
orthonormal basis of (gt ,g( ))

Let L) : Coo(X) — Cx(X) be the transition operator associated with the transition
probability p. By virtue of Lemma 4.4.1, we have

Z p(e) exp (Hom a0,) (A, log (d®(@ )‘ ) (1)) log (d®o(@ )‘ m =0 (relh)

BG(EO)x

Hence, we conclude

(L) = I)(log Dol o)) (@) = > p(e)log (dPo(e))| 1y =0, (z€V).  (443)

EEEz

This means that the (p-)modified harmonic realization &5 : X — G in the sense of
(2.4.4) is regarded as the (p-)harmonic realization and pr(v,) = 0.
We fix a reference point z, € V such that ®¢(z,) = 1¢ and put

P (c) := @o (w(c)) (n e NU{0}, c € Q,.(X)).
This yields a G-valued random walk (€, (X),P,. {57(1”)};’10:0). We define

VI (e) i= 1102 (€8) (€)= 712 (@0 (wf ()

for k =0,1,...,n,t, € D, and ¢ € ,, (X). We consider a G-valued stochasiic process
(yt(”;p))ogtgl defined by the dcc-geodesic interpolation of {yt(:;p)};;:o. Let (Y;)o<t<1 be
the G-valued diffusion process which solves the SDE

Z ((Y) 0 dB] + B (@), (V) dt, Yo =1g,

where

@(P)(Q)O) = Z m(e) log (‘1)0 (0@3)71 - Py (t(a)>

ecFEy

e

The following two theorems are CLTs for non-symmetric random walks associated with
the changed transition probability p. We remark that the proofs of these theorems below
are done by combining the ones of Theorems 4.1.2 and 4.1.3 with the argument in Theorem
3.2.1 and Lemma 3.2.3.
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Theorem 4.4.2 Let P. : Coo(G) — Cux(X) be the approximation operator defined by
P.f(x) = f(Te(CI)O(:c))) for 0 < e <1 and x € V. Then we have, for 0 < s <t and
f e Cu(@G),

X
lim HLE’;?’["S]PWW f = P, ajpe =940 fH —0, (4.4.4)

n—oo

where (e74®),5q is the Cy-semigroup with the infinitesimal generator Ay on C§°(G)
defined by
1 &

Ap =3 > (VP)? — B0 (@), (4.4.5)
i=1

Theorem 4.4.3 The sequence (yf”;”’)ogtgl (n=1,2,3,...) converges in law to the G-
valued diffusion process (Yi)o<t<1 in C’S’GQ'HOI([O, 1;G) as n — oo for all o < 1/2.

We emphasize that the transition probability p coincides with the given one p under the
centered condition (C). Therefore, Theorem 4.4.2 and 4.4.3 are regarded as extensions of
Theorems 4.1.2 (under the centered condition (C)) and 4.1.3 to the non-centered case.
We might prove Theorem 4.1.3 without the centered condition (C) via Theorem 4.4.3.
We will discuss this problem in the future.

4.5 An explicit representation of the limiting diffu-
sions and a relation with rough path theory

Let us consider an SDE on RY

d
d& =) Ui(&) odBi + Up(&)dt, & =z € RV, (4.5.1)

=1

where Uy, Uy, . .., Uy are C*°-vector fields on R? and (B;)o<i<1 = (B}, B2, ..., Bd)o<i<1 is
a d-dimensional standard Brownian motion. The symbol o denotes the usual Stratonovich
type stochastic integral. As is well-known, a number of authors have studied explicit rep-
resentations of the unique solution to (4.5.1) as a functional of It6/Stratonovich iterated
integrals under some assumptions on vector fields Uy, Uy, ...,U;. In particular, Kunita
[46] has obtained the explicit formula by using the CBH formula in the case where the Lie
algebra generated by Uy, Uy, ..., Uy is nilpotent or solvable. Castell [13] gave a universal
representation formula, which contains the above results in the nilpotent case and extends
the study of Ben Arous [7] to more general diffusions.

We now recall the result in [13] when the Lie algebra generated by Uy, Uy, ..., Uy is
nilpotent of step 7. We first introduce several notations of multi-indices. Set Z*?) =
{0,1,...,d}* and let I = (iy,dq,...,ix) € ™ be a multi-index of length |I| = k.
For vector fields Uy, Ui,...,Us; on R? and I = (iy,4s,...,ix) € I, we denote by
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U' the vector field of the form U! = [U;, [Us,, -+ ,[Ui_,, U] --]]- For a multi-index
I = (iy,99,...,i;) € I we define the Stratonovich iterated integral B! by

B! .= / odBj}! 0 dB? -+ 0 dB}*,
AR)[0,¢]

where A®[0,¢] := {(ti,ta,..., 1) €[0, |0 <t; <ty < - <tp <tlfor 0<t <1
and BY = t for convention. Next we introduce notations of the permutations. Denote
by & be the symmetric group of degree k. For a permutation o € &, we write e(0)
for the cardinality of the set {i € {1,2,...,k — 1}|o(i) > o(i + 1)}, which we call
the number of inversions of o. For I = (iy,4y,...,i;) € I and o € &, we put
1, = (ig(l), ig(g), ... ,ig(k)) e I®),

Proposition 4.5.1 (cf. [13]) Let Uy, Uy, . .., Uy be bounded C™-vector fields on RY such
that the Lie algebra generated by Uy, Uy, ..., Uy is nilpotent of step r. We consider the
solution (& )o<t<1 of (4.5.1). Then we have

§t:exp<i Z C{UI)(CL’O) 0<t<1) as,

k=1 1cz(k)

where
I (=1)°)

s ("))

Here we give several concrete computations of ¢! U?.
elf I =(i)eZIW weseec! =Bl for 0<t<1landi=0,1,...,d. Therefore, we have

d d
> U= BiU; =tUy+ > _ BiU..
=0 =1

Iez(®)

I 4
Bl

o If I = (i,7) € T with i # j, we also see

1 [t : : , :
1/ / (odBj o dB;} — odB! o dB;) (1 < j),
0o Jo

¢ =
1 [t , , : .
—1/ / (odB;odB} —odB! odB,) (i>j).
o Jo
Since [U;, U;] = —[U;, U;] holds for i # j, we have

1 [t v . . . 4
Z c{UI: Z 5/O /0 (cdB; o dB} — odB’ o dB,)[U;, Uj]

1ez(2) 0<i<j<d

1/t R
- ¥ 5 /0 (BldB] — BldB))[U;, Uj).

0<i<j<d
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The stochastic integral

t
%/(Bgng—Bgng) 0<t<1,1<i<j<d)

0
indicates the well-known Lévy’s stochastic area enclosed by the Brownian curve {(B?, BJ) €
R?|0 < s <t} and its chord.

We now provide an explicit representation of (Y;)o<t<1, the solution to the SDE (4.1.7).
As mentioned in Section 2.1, since G is identified with R? (d=dy+dy+---+d,), we may
apply Proposition 4.5.1 by replacing Uy, Uy, ..., Uy by Vo, Vi, ..., Vy,, where Vy = 5(®Dg)..
Then we have

Theorem 4.5.2 The limiting diffusion process (Y;)o<i<1 is explicitly represented as

Y;—exp (tﬁ (I)Q +ZB£ 1%

+ Y / (BidBI — BidB)[Vi, V] +Z 3 c{v1> 1),  (4.5.2)

0<i<y<d k=3 (k)
where V:k] = [[‘/;1*7 [[‘/15*7 T [[‘/ik_l’“ ‘/%*ﬂ T ]]]] Jor I = (i17i27 <. 77’16) eI®,

We should note that some of [Vi,, V] (0 < i < j < dy) in (4.5.2) may vanish because
{[Vis, Vjsl }1<i<j<a is not always linearly independent.

In closing this subsection, we prove that the infinitesimal generator of (Y;)p<i<1 coin-
cides with —A defined by (4.1.4).

Proposition 4.5.3 The Cy-semigroup (e *)o<i<1 coincides with the Co-semigroup (Ty)o<i<1
on Cw(QG) defined by T, f(g) = E[f(Y,?)] for g € G, where (Y )o<i<1 is a solution to the
stochastic differential equation

dyy = Z Vie(Y?) 0 dBi + B(®0). (Y dt, Y!=ge€G. (4.5.3)

Proof. By recalling Lemma 4.2.2, the linear operator A satisfies the maximal dissipa-
tivity, that is, A — A is surjective for some A > 0. Therefore, the Lumer—Fillips theorem
implies that (e=*4)o<;<; is the unique Feller semigroup on C,(G) whose infinitesimal gen-
erator extends ( — A, C§°(G)). By applying It6’s formula to (4.5.3), we easily see that
the generator of (Y;)o<i<1 coincides with —A on C§°(G). Therefore, it suffices to show
that the semigroup (7})o<:<1 enjoys the Feller property, that is, Tt(COO(G)) C Cx(G) for
0<t< 1.

Suppose f € Coo(G). For any € > 0, we choose a sufficiently large R > 0 such that
|f(g)| < € for g € Br(1¢)¢, where Br(1lg) = {9 € G|dcc(1lg,g9) < R}. Then, for
g € Bor(1¢)¢, we have

IT.f(9)] SE[IfY?)] : declg, V) < Rl +E[|f(Y7)| : decly, YY) > R]
< e+ ||fII$P(dcc(g, YY) > R).
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By combining Proposition 2.3.3 and the Chebyshev inequality with Theorem 4.5.2,
P(dcc(g, YY) = R) =P(dcc(16.Y:) > R)
< P(C|Yllstom > R)

< Cel(3] 3 e

ez(k)

1/kN 2

g<k)> }

Now we recall the following fact (cf. Friz-Riedel [20, Lemma 2]): For a multi-index I =
(31,92, ...,ix) € I there exists a constant C' depending only on k such that

. . N2
E[(/ odB;;odB;;--.odB;:) ] <ot (0<t<1)
AR [0,¢]
In view of this bound, we obtain

P(d Y?) > R) < Ct
(CC(gat>— )—E
Taking a sufficiently large R > 0 such that C||f||StR™? < e, we conclude |T}f(g)| < 2¢

for g € Bap(1¢)°. This implies that T} (Coo(G)) C Coo(G) for 0 <t < 1.

In the end of this section, we discuss the free case and give a relation between The-
orem 4.5.2 and rough path theory. Consider the step-r non-commutative tensor algebra
TM(RY) =R @ (P;_, (R?)®*). The tensor product on T (R) is defined by

(90,91, ---,9r) @ (ho,ha,..., hy) = (gohOaQOhl +giho, ..., ng ® hr_k).
k=0

An element g = (go, g1, ..., 9,) € T™(R?) is occasionally written as g = go + g1+ - - - + gr-
We define two subsets of T (R?) by

TVVRY = {ge TORY [go=1},  T(RY = {A e TORY|A, =0},

respectively. It is easy to see that Tl(r) (R%) is a Lie group under the tensor product ®,.
In fact, 1 = (1,0,0,...,0) is the unit element of Tl(r) (R%) and the inverse element of
g € T(RY) is given by g~ = S (=1)%(g — 1)®*. The Lie bracket on T(](T)(Rd) is
defined by [A,B] = A®, B— B®, Afor A,B € Tér) (R%). Note that Tér) (R?) is the Lie
algebra of the Lie group T\" (R?), that is, 7," (R is the tangent space of T\" (R?) at 1.
The diffeomorphism exp : 74" (R?) —s T\ (R9) is defined by

exp(A) =1+ %A@rk (A e T (RY).
k=1

Let {ej,ey,...,eq} be the standard basis of RY. We introduce a discrete subgroup
gz C TO(T) (R%) by the set of Z-linear combinations of e, e,,...,eq together with
[eil, [eiQ,--- ,[eik_l,eik] H for il,ig,...,ik = 1,2,...,d and k = 273,...,7'.
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We now set I' = GU)(Z?) := exp (g (Z)). We also define g”(R?) and G (R?) anal-
ogously. Then we see that (G(” (RY), ®r) is the nilpotent Lie group in which I' is included
as its cocompact lattice and the corresponding limit group coincides with (G M(RY), ®r)
itself. We call (G(T) (R9), ®r) the free mlpotent Lie group of step r and (g J(RY), [, ]) the
free nilpotent Lie algebra of step r. Let g) = R? and g®) = [R? [RY,--- | [R,RY]---]]
(k-times) for k = 2,3,...,7. Then we see that the Lie algebra g™ (R?) is decomposed into
g og@@-.-@g"). The free nilpotent Lie group G (R?) is highly related to rough path
theory, as is seen below (cf. Friz—Victoir [22]). Let (B;)o<i<1 = (B}, B%, ..., B%)o<i<1 be
a d-dimensional standard Brownian motion. We give the following two remarks.

(1) Consider the case r = 2. Then a T1(2) (RY)-valued path (B;)o<i<; defined by

Bt.—exp<ZBZe,+ 3y ( /BéodBi—BﬁodBi)ei(X)ej)

l<z<]<d
—HZBZeﬁZ //OdB’odB e®e; (0<t<1)
7,7=1

is regarded as a G®(R%)-valued path with probability one. We call it Stratonovich en-
hanced Brownian motion or standard Brownian rough path, which is a canonical lift of a
sample path of the d-dimensional Brownian motion. We usually identify standard Brow-
nian rough path (B;)o<i<; with its increment (By,) := (B! ® By)o<s<i<1-

(2) Consider the case r > 3. We also see that the TI(T) (RY)-valued path (By)o<i<1 defined
by

Bt::1+z Z (/ OdellOdB;;"'OdBZ:)eil®ei2®"'®eik
AKR)[0,4]

k=1 ij,i2,...,ix€{1,2,...,d}

for 0 < t < 1, is regarded as a G (R%)-valued path with probability one, analogously
in (1). Note that this path (B;)o<t<1 is nothing but the Lyons extension (or lift) of
Stratonovich enhanced Brownian motion introduced in (1) to G (R?).

Let I' = G"(Z%) and X be a I-nilpotent covering graph. Then we see that X is
realized into the free nilpotent Lie group G = G (R?) through the modified harmonic
realization ®y : X — G, because I' is a cocompact lattice in G. Then Theorem 4.5.2
reads in terms of rough path theory. Precisely speaking, the G (R%)-valued diffusion
process (Y;)o<t<1 which solves (4.1.7) is represented as the Lyons extension of the so-
called distorted Brownian rough path of order 7.

Corollary 4.5.4 Let {Vi,Va,...,V4} be an orthonormal basis of gt with respect to the
Albanese metric go. We write

B(@o)= Y B(®)7[Vi V)] €g?,

1<i<j<d
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where we note that {[V;,V;] : 1 <i < j <d} C g? forms a basis of g@. Let B(®) =
(B(q)o)ij)jj:1 be an anti-symmetric matriz defined by

B(®g)?  (1<i<j<d),
B(Po)7 := ¢ —B(®)Y (1< j<i<d),
0 (i =j).

Then the G (RY)-valued diffusion process (Y;)o<i<1 coincides with the Lyons extension
of the distorted Brownian rough path

B,=1+B,+B €cGORY) (0<s<t<1)

of order r, where

d t s
B, =) BiV,eR!, B, := / / odB, ® odB, + tB(®,) € R? @ R%.
i=1 0 /0

4.6 FCLTs in the case of non-harmonic realizations

As was discussed, the modified harmonicity of the I'-equivariant realization &g : X —
G plays a crucial role to conclude the invariance principle (Theorem 4.1.3). Then one
may wonder if the same invariance principle as Theorem 4.1.3 holds or not when we
consider a general I'-equivariant realization ® : X — (. In this final section, we give
an affirmative answer to this problem by employing the notion of so-called “corrector”,
which is frequently seen in the study of invariance principles on random environments
(see e.g., Kumagai [45]).

Let us give a rough overview of the proof in the case of a ['-crystal lattice X. For
simplicity, we consider the centered case, that is, pr(y,) = 0. Let &5 : X — '@ R be
the harmonic realization and ® : X — I' ® R a I'-periodic realization. We define the
corrector of ® by

Cor(z) := ®(x) — Oy(x) (xeV),

which measures the difference between ®(x) and ®q(x). Note that the set {Cor(z) |z € V'}
is finite. Because, by the periodicity of ® and ®,, we have Cor(yz) = Cor(z) for v € T
and x € V. Thus, we may write {Cor(z) |z € V} = {Cor(z) |z € F}, where F stand for
a fundamental domain of X. In particular, there exists a positive constant C' > 0 such
that max,cr |Cor(z)|rgr < C. According to Ishiwata—Kawabi-Kotani [31, Theorem 2.2],
we have already known

1 .
<%¢0(w[nt]>>0§t§1 > (Bt)OStSI in law

as n — oo, where {w,}>°, is a non-symmetric random walk on X and (By)o<i<; is a
d-dimensional standard Brownian motion on I' ® R with respect to the Albanese metric.
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On the other hand, we observe

1 1
Cor(wpy)| < < — 0 (n— o0)

B (wi) — ——Do( ‘
for all 0 < ¢ < 1. In fact, we are able to show that {n 1/2®(wp,) : 0 <t < 1} also
converges in law to (B;)o<i<1 as n — 0.

In what follows, we try to prove this assertion rigorously in the case of a I'-nilpotent

covering graph X. However, we need to notice that the situation quite differs from the case
of crystal lattices due to the non-commutativity of I'. We assume the centered condition
(C). Let & : X — G be a modified (g(¥-)harmonic realization and ® : X — G a
(not necessarily modiﬁed harmonic) realization. We define the (gV-)corrector Corya) =
COI‘gu) (CI)) X — g by

Coryw (7) := log (®()) |g(1> log (®o(z )| @ (x eV).

This corrector measures the difference between only the g(V-components of the har-
monic realization and the non-harmonic one. As in the case of crystal lattices, the set
{Corywy(w) |2 € V} is finite thanks to Corya)(yz) = Coryu(z) for v € I' and x € V.
We may thus write {Cor(x) |z € V} = {Cor(z) |z € F}, where F stand for a funda-
mental domain of X. The FCLT (Theorem 4.1.3) asserts that the family of stochastic
processes {y o0, introduced in Section 4.1 converges in law to the G-valued diffu-
sion process (Yt)0<t<1 which solves (4.1.7) in COQHOI([O 1;G) as n — oo for a < 1/2.
Since B(®g) € g@, the drift of the limiting infinitesimal generator A of (Y;)o<t<1, does
not depend on the choice of g®-components of ®y(z) (z € V) by Proposition 4.2.3, we
may put ®o(z)® = &(2)@ for x € V and i = 2,3,...,r without loss of generality. Let
@E"’)Ogtgl (n € N) be the G-valued stochastic processes defined by just replacing ®q by
® in the definition of (D™ )g<i<1. We now show that the same pathwise Holder estimate

as Lemma 4.3.3 also holds for the stochastic process (?ﬁ”))ogtg (n € N).

Lemma 4.6.1 For m,n € N and o < 2’1‘ there exist an Fo-measurable set Q

Q,.(X) and a non-negative random variable ICT e L™ (Qx (X) — R,Px*) such that
dec (P (0), 7 (0)) <K ()t —9)* (ce@” 0<s<t<1), (4.6.1)
Proof. Fix n € Nand 1 < k < /¢ <n. By triangular inequality, we have
dcc(yk/myz/n) < dCC(yk/na yk/n) + dcc(yk/n, yg/n> + dcc(yg/n, yg/n)
We set Zt(") = (yt(”))—l * ?ﬁ”) for 0 <t <1 and n € N. By definition, we see that
log (Z,E%)b@) = %Corg(l)(wk) (meN, k=0,1,...,n)
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and there is a constant C' > 0 such that H log Z,S/Zn |g(1)|| o < Cn~ 172 for n € N and
k=0,1,2,...,n. Moreover, it follows from the choice of the. components of ®y(z) (x € V)
that || log( k/q)m) oo = Cn~? forn € Nand k =0,1,2,...,n. By Proposition 2.3.3,
we have

1/i C
= 5

forn € Nand £k = 0,1,2,...,n. Then Lemma 4.3.3 and (4.6.2) imply the existences
of an F.,-measurable set ﬁin) C ., (X) and a non-negative random variable Ein)
L4 (Q,.(X) — R;P,.) such that P, (@) = 1 and

(4.6.2)

dw@%owz<mmmmm—czmmgkﬁ

—(n —(n C 0— kN« C
doc(Pnle). V(@) € — + K00 (=) + —=

~Vn n vn
SKT”)(C)(E;I“)“ ceq™ 0<k<t<n).  (463)

For 0 < s <t <1, wetake 0 < k < ¢ < mnsothat k/n < s < (k+ 1)n and ¢/n <

t < (4 1)/n. Since the stochastic process (?ﬁ"))oggl is also give by the dcc-geodesic
interpolation, we have

dec (ys 7y(k+1 /n) (k —ns)doc (yz(ﬁ)m?gz)ﬂyn)’
dec (yz/m ¢ )) = (nt )dCC(yé/nayfj—l)/n)

Then, by the triangular inequality and (4.6.3), we obtain

dec(V (), " (¢)

< dec (P (€), Py n(€)) + doc (FDirnymle) Vo)) + doc (V). D (e))

— 1 —(n {—k—1 —(n 1\«
< (k=m0 () + K0 () ot = 0K (1)
£ k+1 a  l—k—1\ {\e

<KMO{(5 ) () (-0 )

<KW (e)(t - sa (ce ™).

This completes the proof. 1

This Lemma leads to the following invariance principle for the family of stochastic

processes (?ﬁ”) Jo<t<1-

Theorem 4.6.2 The sequence (?E"f)ogtg (n=1,2,...) converges in law to the G-valued
diffusion process (Y)o<t<1 in C’?’GQ'HOI([O, 1;G) as n — oo.

Proof. We split the proof into two steps.
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Step 1. We show that the sequence (?ﬁ"))oggl (n=1,2,...) converges in law to (Y;)o<i<1
in C1,([0,1;G) as n — oo. For 0 < t < 1, we take an integer 0 < k < n so that
k/n <t < (k+1)/n. Then, by the triangular inequality, (4.3.15), (4.6.1) and (4.6.2), we
have, P, -almost surely,

dCC (yt(n) ) yin))
(n) ~,(n) (n) 33 (0 53(n)
< dCC<yk/n7yt ) +dcc(yk/n7yk/n> +dcc<yk/n7yt )

k(- s SR -ty

< {K§”>+E§"’+C}<%)a (mEN,a<

Let p be a metric on Cq,([0,1]; G) defined by

2m — 1). (4.6.4)

4m

p(w(l),w@)) ‘= max dcc(w,gl), w§2)) (w(l), w® e C1. ([0, 1]; G))

0<t<1

We denote by 1 € C1,([0,1]; G) the identity map. By applying the Chebyshev inequality
and (4.6.4), we have, for ¢ > 0 and m € N,

P, (p(y(”),?(n)) > 6)
- (S)MEM [p(yw,?(”’)‘*m]
< <§>4 EF=+ [Orgtaécl doo( t(n)>y£n))4m}

Then, Slutzky’s theorem leads to obtain the convergence in law of {?_‘”)}g;l to the diffu-
sion process (Y;)o<t<1 in C1,([0,1]; G) as n — .

Step 2. The previous step immediately implies the convergence of the finite-dimensional
distribution of (yin)>0§t§1. On the other hand, we show that the sequence of image
probability measures {F(n) =P, o @(”) )~1hee s tight in C’gf‘Hél([O, 1]; G), by noting
Lemma 4.6.1 and by following the same argument as the proof of Lemma 4.3.1. Therefore,

we conclude the desired convergence in law, by combining these two. This completes the
proof. 1
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Chapter 5

CLT's of the second kind for
non-symmetric random walks on
nilpotent covering graphs

5.1 Settings and statements

As with the previous chapter, suppose that X is a ['-nilpotent covering graph of a finite
graph Xy, where I' is a torsion free, finitely generated nilpotent group of step r. Let
G = GTr be the connected and simply connected nilpotent Lie group of step r such that
I" is isomorphic to a cocompact lattice in G, and g = @, _, g®) the corresponding Lie
algebra.

Let us give the settings and statements of CLTs of the second kind in the present
section. For the given transition probability p, we introduce a family of I'-invariant

transition probabilities (p.)o<c<1 on X by

pe(€) :=pole) + eq(e) (e € B), (5.1.1)

where

. 1 . m(t(e)) . . _1 N m(t(e)) .
i) 1= 5 () + @), ale)i= 5 (pl0) - T EH@).

We note that the family (p.)o<c<1 is given by the linear interpolation between the transi-
tion probability p = p; and the m-symmetric probability py. Moreover, the homological
direction 7,_ equals €7, for every 0 < e <1 (cf. [42, Proposition 2.3]).

Let L) be the transition operator associated with p. for 0 < e < 1. We also denote
by g((f) the Albanese metric on g(*) associated with p.. We write G ., for the nilpotent Lie
group of step r whose Lie algebra is g = (g, g(()g)) ®g? @ -@g". Let @és) X — G
be the (p.-)modified harmonic realization for 0 < e < 1.

Here we assume
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(A1): For every 0 <e <1, it holds that
Zm ) log (® ( )t @éo)(x)ﬂg(l) =0, (5.1.2)
TEF

where F denotes a fundamental domain of X.

Since the modified harmonic realizations ((ID(()E))0<5<1 are uniquely determined up to g»-
translation, it is always possible to take (CID( ))0<5<1 satisfying (A1).
We define an approzimation operator P. : Coo(G(0)) — Cs(X) by

P.f(z) = f(n®(z)) (0<e<1,zeV)

We take an orthonormal basis {V;, V5, ..., Vg } of (g ,go ) Then the semigroup CLT of
the second kind is stated as follows:

Theorem 5.1.1 (1) For 0 <s <t and f € Cx(G(y)), we have

X
lim ‘L[”t] P f - Pnfl/ze—@—S)AfH —0, (5.1.3)
n—oo o0

where (€74 is the C°-semigroup whose infinitesimal generator A is given by

- __Z — pr(9p). (5.1.4)

(2) Let p be a Haar measure on Goy. Then, for any f € Cs(G(0)) and for any sequence
{z,}52, C V satisfying lim,, o0 7,,-1/2 (CD( 1/2)(%1)) =: g € G), we have

lim LE ]1/2)13” e f(a) = e f(g) = i Ho(h % g)f(h) u(dh)  (t>0), (5.1.5)
(0)

where Hy(g) is a fundamental solution to the heat equation
0
(5 +A)ult.g) =0 (>0, g€ G).

We now fix a reference point x, € V such that @50’(x*) = 1¢ and put
€9 (c) = o (wn(c)) (0<e<1,n=0,1,2,..., c€ Q. (X)).

Note that (A1) does not imply that <I>é€) (x4) = 1g for 0 < ¢ < 1 in general. We then
obtain a G-valued random walk (€, (X), P, {¢{¥}>2 ) associated with the transition
probability p.. Fort >0, n=1,2,... and 0 < e < 1, let X™ be a map from Q.. (X) to
G given by

X" e) =1 (g () (€ Qu (X)),
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We write D, for the partition {t, = k/n|k =0,1,2,...,n} of the time interval [0, 1] for
n € N. We define

yf}f’”)(c) = T,-1/2 (f,(;l(c)) =T,-1/2 (@(()E)(wk(c))) (tk € D,, c €y, (X))

and consider a G-valued continuous stochastic process (yt(s’"))ogtgl defined by the dcc-
geodesic interpolation of {J/t(: ) 3. Let d; = dimg g(Y). We consider a stochastic differ-

ential equation

dy
4V, = Y VOV 0 dB] + pa(). (Tt ¥y =1, (5.16)
i=1
where (B,)o<i<1 = (B}, B?,..., Bf*)o<i<1 is a standard Brownian motion with values in

R®% starting from By = 0. We know that the infinitesimal generator of (5.1.6) coincides
with —A defined by (5.1.4) (see Proposition 4.5.3). Let (Y;)o<t<1 be the G-valued diffusion
process which is the solution to (5.1.6). We write

Ca_Hél([O, 1]; G(o)) = {w € C([O, 1]; G(O)) : ||w|]a_H61 < OO} (Oé < 1/2)
for the set of all a-Holder continuous paths on G gy, where

o = sup Je0Le )
ool o<s<t<1 |t — s|®

+ dec(1a, wo) (w e C*M([0,1]; G (o))

Now we define

COCH (0, 1]: G o) = Lip([0,1]; Gop) ™™, 5.1.7
o) o

which is a Polish space (cf. Friz-Victoir [22, Section 8]). Let P©™ be the probability
measure on C**H([0,1]; G(p)) induced by the stochastic process Y™ for 0 < ¢ < 1 and
n € N.

To present the second result, we need to put an additional assumption.

(A2): There exists a positive constant C' such that, for k =2,3,...,r,

sup max || log (<I>((f) (z)'- (z)) !gm Hgm <C, (5.1.8)
0<e<1 zeF
where || - ||q00 denotes a Euclidean norm on g¥) = R% for k =2,3,...,r.

Intuitively speaking, the situations that the distance between (1385) and (I>(()O) tends to be
too big as € N\, 0 are removed under (A2). By setting

log (2 ()] 4 = log (8" (2))] 0y~ (@€ F, k=2,3,...,7)

for &7 : X — G with (5.1.2), the family (®{)o<.<; satisfies (A2). This means that it
is always possible to take a family (O )o<.<; satisfying (A2) as well as (A1).

Then the following theorem is the functional CLT of the second kind for the family of
non-symmetric random walks {ﬁy(f)}ff:o.
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—1/2
b

Theorem 5.1.2 We assume (A1) and (A2). Then the sequence O/ Jo<t<1 com-
verges in law to the diffusion process (Yt)0<t<1 in CO* 1[0, 1]; G (o)) as n — oo for all
a<1/2.

In Theorem 4.1.3, we captured a G-valued diffusion process and its infinitesimal gener-
ator is the homogenized sub-Laplacian associated with the Albanese metric gy = g[() ) with
a non-trivial drift 8(®) € g@. In particular, even in the centered case pg(7y,) = 0, the
non-trivial drift §(®y) remains in general. On the other hand, in this case, the limiting
diffusion (2)0<t<1 is generated by the homogenized sub-Laplacian on G g associated with
the Albanese metric 90 ) under pr(7p) = 04. See the end of this chapter.

5.2 A one-parameter family of modified harmonic re-

alizations ((Pég))()gggl

Let (pe)o<e<1 be the family of transition probabilities defined by (5.1.1). We easily see
p1 = p and p.(e) > 0 for e € E if 0 < & < 1, by definition. We also observe that the
invariant measure of the random walk associated with p. coincides with m for 0 < e < 1.
Moreover, py and ¢ are m-symmetric and m-anti-symmetric, respectively. Note that
Vp. = €7p forall 0 <e < 1.

For every 0 < ¢ < 1, we take the modified harrnomc realization (ID(E) X — G
associated with the transition probability p.. Namely, (ID ) is the T'- equivariant realization
of X satisfying

Z pe(e) log ( )( (e))—l .o (t(6)> e epr(Vp) (xeV). (5.2.1)
We put

Ao (e) = (o(e))_1 o) (t(e)) (0<e<1,e€ k),
The aim of this subsection is to study the quantity

By (@) =D ie(e) log (05 (@) ] o € 8®  (0<e<1),

ecky

where we put m.(e) = p-(e)m(o(e)) for e € E,. Note that, if the transition probability

po is m-symmetric, then 3 (P S )) = 04. Loosely speaking, this quantity will appear as a
coefficient of the second order term of the Taylor expansion of (I — Lé\g )P.f in e, which
we have to deal in the proof of Lemma 5.3.1. In particular, we are interested in the short
time behavior of . (® o )) as € \ 0 for later use. Intuitively there seems to be little hope
of knowing such behavior, because of the luck of any information about g(®-components
of the realizations CI>( for every 0 < ¢ < 1. However, the following proposition asserts
that 5(5)(@((]6 ) in fact approaches B(g) (P o )) = 0, as € \, 0 by imposing only (A1).
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Proposition 5.2.1 Under (A1), we have

. € 0
£1\1"1(1) ﬁ(g)(q)é )) = /B(O)(CI)(() )) = 0Og.

Fix a fundamental domain F of X. Set U®(z) = &9 (z)1 - oV (z) for 0 < e < 1
and z € V. Note that the map ¥© : V — @ is I-invariant. The following lemma is
essential to prove Proposition 5.2.1.

Lemma 5.2.2 Under (A1), we have

21{1(1) | log (T (2)) ‘g(l) Hg(l) =0 (x e F). (5.2.2)
In particular, there exists a constant C' such that

H log (\IJ(E)(J:))|9(1>HQ<1> <C 0<e<l,zerF).

Proof. We set (*(F) := {f : F — C} and equip it with the inner product and the
corresponding norm defined by

(f.9)ew =) f@)g(@), |flew :=<Z|f(x)|2)1/2 (f.9 € C(F)).

TeEF reF

respectively. Since the invariant measure m|z : F — (0, 1] is positive on the finite set
F, there are positive constants ¢ and C' such that

(o m@lr@P) " < Il < (Em@li@r) " (FelF). 623)

zeF zeF

It is easy to see that (?(F) is decomposed as ¢*(F) = (¢o) ® ¢1(F) by virtue of the
Perron-Frobenius theorem, where ¢y = |F|~'/? is the normalized right eigenfunction
corresponding to the maximal eigenvalue ag = 1 of L. We define

G(F):={felF): | FI2(f, myer) =0}.

Note that ¢5(F) is preserved by L and the transition operator L.y maps (3 (F) to itself for
all 0 < e < 1. Moreover, we should emphasize that the inverse operator of (I — L))|e ) :
(3(F) — (3(F) does exists since L. has a simple eigenvalue ap(e) = 1 for 0 < e < 1.
Let Q : (*(F) — (*(F) be the operator defined by

Qf(x) =Y ale)f(te))  (f € P(F), xeF).

66Ez

Then we verify that the transition operator L) has the decomposition of the form L) =
Loy + €@ for every 0 < e < 1. In order to show (5.2.2), it suffices to show

y{‘% | log (T©)(-)) ‘Xﬁ”“ﬂ(f) =0 (i=1,2,...,dy) (5.2.4)
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by noting (5.2.3). We remark that log (¥()( }X“) € (3(F) for i = 1,2,...,d; thanks to
(5.1.2). In the following, we fix i = 1,2,...,d;. The modified harmonicity of <I>(()€) gives

(I = L) (Tog (¥9(2)) ] 0 ) = ¢ [Q(log (@) y0) = pr() 0 |
for 0 < e <1 and x € F. This identity implies
[ log (¥()) ‘Xi(l) ||£2(.7-')

< €H<I - L(é)”e_%l(xo)H ' ||Q(log<1>(0) ' |X(1)) - pR(%)‘Xfl)”zZ(I)

<o = L |- {1020 O gl + ol 0} (525)
where we used ||Q| <1 for the final line. By combining (5.2.5) with the identity
(/- Ls) |z2 <]_L(0)>‘z_§1(f) [I_gQ{ef( (I - LO) |€2 }
we obtain
_ -1
105 (P90 [xo L ry < <N = La)agr |- (2 = @l )T = Lo i )
X {H log 2§ ')|X§“He2(f) - ||pR(7P)||g<1>}-

Here we can choose a sufficiently small constant 5 > 0 such that

_ 1
sup (1 - 5HQ|K§(I)(I - L(O))|e§1(f)H> <2

0<e<eg

Then we have
10g (W) |yl ry < 2517 = Lo a1 { 1108267 )l oy + om0 §
for sufficiently small ¢ > 0 and this implies (5.2.4). §

Proof of Proposition 5.2.1. By recalling (5.1.1) and that py is m-symmetric, we have

B (@) = > {%(m()(e) — i0(e)) 1og (42F()) | + = (0(e)a(e) log (407 (?)) o)}
= Z e) log (dCID(8 (€)) |g(2).

Then the identity
dq)éa)(e) — gy (o(e)) -d@éo)(e) ) (t(e))_l (0<e<l,e€kF),
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and (2.2.2) yield

B (@) = ¢ 37 m(ofe))a(e){ 1og (¥ (0())) |y, — Tog (¥ (+(®))) | }

e€FEy

+e¢ Z m(o(e))q(e) log (d@éo) (©)) ‘Xi@)
-2 Y mle(@)ae{T@® + 7@ + 7@ |, (5:26)
where _

70(@) = T (@) = | 1og (W) (0(2))) | log (408" @) .

79(6) = TE™(@) = |1og (¥9(0(0))) |y, 1og (P9 (@) )] |

79(@) = TE™ (@) = | log (40 )] o), log (PO #@) )] o |

Let {XF),XéQ),...,XC(é)} be a basis of g®. For i = 1,2,...,ds, we define a function
F9 vV — Rby F92) := log (TE(2))| @ for 0 < e < 1and x € V. Then we see

that the function Fi(a) is D-invariant. Hence, there exists a function F© : V; — R such
that £ (7(z)) = F9(z) for 0 < e < 1and z € V. Then, by noting d(7,.) = 0, we have

= >~ m(ofe))a(e){ log (¥ (0(@))) |y — log (¥ (12)) | o |
= 3 ((e) = ig(e)){ 1og (¥ (@) ] — Lo (¥ (t())) |y |

(e 1 . - ~ (e
= 00 (e 45 Don i,y 5 2 (ole) = Mol@)dF e

ecFEy
= _Co(Xo,R)<a(7pa)> F;(E)>CO(XO’R)
=0.

By applying Lemma 5.2.2 and the elementary inequality ||[Z1, Z2] ||g(2> < O Z1]l o || Za ] g
for Z1, Z, € gV and some C > 0, we find a sufficiently large C' > 0 satisfying

sup [|Z.7(@)]] 0 < C

0<e<1

for k = 1,2,3. Summing up the all arguments above and letting ¢ ™\, 0 in both sides of
(5.2.6), we obtain the desired convergence. This completes the proof. 1

We denote 7-[%5) (Xo) the set of all modified harmonic 1-forms on X,y. We equip ’H%E) (Xo)
with the inner product

(Wi, walp. =Y Me(e)wi(e)wae) — €y wi)(prw2) (w1, w2 € H)(X0)).

ecEy
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We may identify H!(X,, R) with 7—[%6) (Xo) for every 0 < e < 1 by applying the discrete
Hodge-Kodaira theorem. It should be noted that the identification map depends on
the parameter € and H%l)(Xo) = H'(Xy). Moreover, we also identify Hom(g"), R) with
Im(*pr) € H'(Xo,R). Therefore, Hom(g("), R) may be regarded as a subspace of each
”H(le) (Xo). For an element w € Hom(g", R), we denote *pr(w) € H'(X,, R) = "H%s)(XO) by
w®). Let g((f) be the Albanese metric on gV’ induced by the dual inner product of {(-,-))()
for 0 <e <1.

5.3 Proof of Theorem 5.1.1

We prove Theorem 5.1.1 in this subsection. A key claim to obtain the main theorem is
the following Lemma.

Lemma 5.3.1 For any f € C5°(G(p)), as N — 0o and € N\, 0 with N\, 0, we have
1 N X
H—N82(1 —LY)P.f - PEAfHOO —0,
where A is the sub-elliptic operator on C3°(G ) defined by (5.1.4).

Proof. We apply Taylor’s expansion formula (cf. Alexopoulos [2, Lemma 5.3]) for the
(x)-coordinates of the second kind to f € C§°(G(g)) at - ((I)(()E)(ZL‘)) € G(0). Then, recalling
that (G, *) is a stratified Lie group, we have

(- 1Y) P ()

Ne?
_ N W (9 0O (-1« 0 (1(e1))
= X [ (7 (%0 (2)) > pe(e) (@67 (@) B (1(0))
(3,k) c€Qy N (X)
eMRT2 k) 5o the) eMtRT2 k) 5 () ©)
(0 Syxixle Y S XX ) s (n (e @)
(i1,k1)>(42,k2) (i2,k2)>(i1,k1)
()1 3 (1N ) (3O (1)1 5 3O (1))
X Z pe(c)( Py (x) " = 0((0))_* o (z)7 * 0((0))'*
€0 N (X) " 2
k1+kotks—2 63
- Z - 6N 90" 9 (l{;)a (k3) ()
(il,kl),(iQ,kz),(iy,,kg) gil* gi2* giS*
Syt s e ()
< 3 pe(eP @ el (1)
€0 N (X) "
(h2) (ka)
< (8 @) @l (1)) (05 (@) 9 (1)), (5.3.1)
for x € V' and some 0 € Gg) satistying
()
0P| < (cpg%w « (t(c)))' (=12 . ,.dy k=12 1),
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where the summation Z(il,kl)z(iz,kz) runs over all (i1, k) and (ig, ko) with k; > ko or
ki = ko and iy > is. We denote by Ord.(k) the terms of the right-hand side of (5.3.1)
whose order of € equals just k. Then, (5.3.1) is rewritten as

1

N_g2(I — L)) P-f(x) = Ord.(—1) + Ord.(0) + ;Ord (xeV),
where
dy 1
Ord.(—1) = _NLE ZX(l)f(Ta(CI)(E)( ) Z pe(c) <(I>(()€)(x) Ly @(()E) (t(c)))f*)
i=1 c€Qy N(X)
and
Or(0) = — L 3™ x@ (7 (a0 © (-1 4 p© ®
1 (0) = = S XPf( (@ @)) Y p@{ (e @) 0 (10))
i=1 c€Qy, N (X)
_% Z [[X,(\l)vX & ‘X(2>
1< <v<dy
W &)
x (o (@ >(uc»)k*(@&Mxy4*<ﬁﬁ(ac»)y*}
1 (1 1) 5
“oN Z XX f (7 (8(2))
W &)
< Y (0@ ol (1)) (8@ w2l (k)
c€Qy N (X)

Step 1. We first estimate Ord.(—1). By recalling (2.2.3) and (5.2.1), we have inductively

> (2 @) <0 (1))

1k

CEQLN(X)
_ Z p5<0/) Z ps(e) (CI)(()s)(I)_l . q)(()e) (t(c/)) . q)(()e) (t(c/))—l . q)(()e) (t(e))>él)
ey n_1(X) e€E, (.1 ¢

= Z p-(c )log (@(6)( ) cb(()e) (t(d))) ’X,(l) + 5pR(’yp)|Xi(1>

C,EQZ,Nfl(X)

= Nepr(p)| g0 (@eVii=1,2,...,d). (5.3.2)

Step 2. Next we estimate Ord.(0). Let us consider the coefficient of Xi(f)f(Tg (CIDéa) (2))).
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It follows from (5.2.1) and (2.2.3) that

5 Y po{(e@ e (1)

¥

CEszN(X)
1 9/ - c M/ (. B 1)

-5 2 (@ e (k) (e @ 2l (1)) XD XD oo |

1< <v<dy

N >, pa 10g< J (@ )_1*@88)@(0)))‘)((2)

c€Qy N (X i
:_Z Z pe N> pele)log (A0 (e) |y (@€ V). (5.3.3)

k=0 /€9, (X e€Ey o '

Since the function

Zpe log dCD ))}X@) (0<e<1,i=1,2,...,dy, 2z €V)

eEEz

satisfies M® (yz) = M (z) for v € T and = € V due to the I-invariance of p and the
I'-equivariance of @y, there exists a function MES’ : Vo — R such that ./\/lga) (m(z)) =

Mi(g)(m) for0<e<1,i=1,2,...,dy and = € V. Moreover, we have
LE MO (m(2)) = L, Mi(z)  (keN,0<e<1,i=1,2...,dyz€V)

by the I'-invariance of p. We then find a sufficiently small 3 > 0 such that

1 RO (2)
< 2 (@) w0 (1)),
€y N (X) "
1 (&) (©) QNG (&) W) X]
-5 > (@0 (1)) (o @)+ o (1)) X XD g |
1< A<v<dy vx
1N—l
=5 2 LM (@)
k=0
1N—l
= LI(‘;)MEE) (7(x))
k=0
1
= @M (@) + 0. (5
16
e 1 .
= Bio(®5) |y + Oy (N> 0<e<eoi=12 ... d)

by applying the ergodic theorem (cf. [31, Theorem 3.4]) for the transition operator
L. Combining this calculation with Proposition 5.2.1 implies that the coefficient of

X(2)f(75 (@ég)(m))) vanishes as N — oo and £ \, 0 with N2 \ 0.

(2
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We also consider the coefficient of X X(l)f( ((ID(a ())). We have

v 2 p@(E @ 8 (1)) (25 @) 2 (1(0)))

¥
CEQI,N(X)

_%{ 2 ps(d)@‘g&)(‘r)1'(I)(()E)(t(cl))>(.l)<<1>[(f)(x)1-@85)(25(0')))(.1)

K3
E€Qy N_1(X)

+ Z pe log d(I)( )) }Xi(l) 10g (dq)ég)(e)) ‘X](.l)

eEEt(c’)
(1)}
Xj

+2(N — 1)pr(.)
:%Z Z pe(c) Z ps(e)log(dq)(()e)(e))‘xz,(l) log(d‘bée)(e)ﬂxj.”

N-1
k=0 CIGQz,k(X) eGEt(C/>

J*

X;l»OR(%E)

1
+5 (N = 1)529R(’Yp)}X§1>PR(’Yp)\X]<1)
N—

I
=
O

=
O
O
_I._
|

1
S (N = D) | ywpa(p)| o (w€V) (5.3.4)

by using (5.2.1) and (2.2.4), where the function Ni(ja) : V' — R is defined by

Z pe(e log d<I> )) |XZ-(1> log (d@éa)(e)) |X§.1>‘

ecF,

for 0 < e <1,4,7 =1,2,...,dy and z € V. In the same argument as above, Ni(js) is

[-invariant and there exists a function ./\/;(jg) : Vo — R such that _/\/Z.(je) (m(z)) = Ni(js) (z)
for z € V. We also have
LENS (r(2)) = NS (2) (heN,0<e<1,i,j=12....d,z€V)

by the ['-invariance of p. Thus, we choose a sufficiently small g, > 0 such that

1 «— . A
o O LNy (@) = o ZLk (x))
k=0

1 € !
= 5 2 m(@) (N (®)5) (@) + 04 ()
z€Vp
I ~ : ;
= 5 > fe(e) og (42 () o o (406 ()| o
e€Ey
1 ;..
+04(5)  O=e<ehij=12...d)  (535)

by the ergodic theorem. Recall that {Vi, Vs, ...V, } denotes the orthonormal basis in
(g, g(()o)). In particular, put Xi(l) =V, fori=1,2,...,d; and let {wy,ws,...,wy } be the
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dual basis of {V1,Va,..., Vg }. Then we have

- Z me(e)log (d® © @) )‘V log (d@ég)(é)”vj

€€E0
1 ) (Y (&) L,
= 5 (X (w2 (€) = (s i) (1 05) ) + 52200 03) ()
ecFEy
1 SIC! 1, -
= 5« ] >>(€) +§€ PR(Vp)’VlPMVpHV] <Z7j = 1727"'7d1)' (536>

The coefficient of XZ.(*I)X](i)f(T5 (d)(()e)(x))) equals
Lo @ o Lo 1 »
_<§<<(,UZ ,wj >>(5)+§N8 pR(Vp)lwa(’)/pﬂvj) +O€6 (N) (Z,] = 172,...,d1) (537)

by combining (5.3.4) with (5.3.5) and (5.3.6). Therefore, (5.3.7) and the continuity of
(- D) as e 0 (cf. [31, Lemma 5.2]) imply

Ord.(0) —» —~ ( ))) (5.3.8)

as N — oo and £ \, 0 with N?%e \, 0.
We finally discuss the estimate of ), Ord.(k). At the beginning, we show that the

coefficient of Xi(f)f(TE (@ée) (z))) vanishes as N — oo and € \, 0 with N2\, 0. Thanks
to
\(q»gf)( )L 0 (#(c) ) ‘ <ON*  (0<e<l,zeV),

(5.2.1) and (2.2.7), we have

k—2

% ST plo) (@5‘%)—1 « F) (t(c))):f)
z€Q, N(X)
e Y n{(w e )"

wGszN(X)

+ Z Cry i, P (‘I)(E( )" )PKQ( E)( )~ q)és)(t(c)))}

| K1 |+| K2 |<k—1

|K2|>0
SCM(k) (Ts(cpée)(x))><€k—2Nk—l+ Z k1=K Z 6k—2—|K1|N|K2|—1>
‘K1|§k;—2 ‘Kl‘-‘rlKQ‘ﬁk‘—l
|K2]>2
for v = 1,2,...,d; and some continuous function Mi(k) : G — R. This converges to

zero as N — oo and ¢ N\, 0 with N2%c N\, 0. We also observe that the coefficient of
Xk X(kQ)f(TE(CI)((f)(m))) converges to zero as N — oo and ¢ \, 0 with N? \, 0 by

i1% Q9%

following the same argument as above.
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We also consider the coefficient of (9°f/ 8g§fj)8g§ff)8g§ff))(9). Since f is compactly
supported, it is sufficient to show by induction on k =1,2,...,r that, if eN < 1, then

(k)
ek (@ff) ()" % 0% (t(c))) < M® (Tg(q>§f> () * 9)) x eN (5.3.9)
for i = 1,2,...,d; and some continuous function Mi(k) : G — R. The cases k = 1 and

k = 2 are clear. Suppose that (5.3.9) holds for less than k. We have

ek <<I>((f) (z) !« @l (t(c))>(k) = €k{ ((I)és)(;c)*l .o (t(c))) @ + Z Ck, K,

% i
| K1 |+|K2|<k—1
|K2|>0

x P (@5@@)—1)73“ (q>g€><x>—1 xS (t(c))) }

by using (2.2.2) and (2.2.7). Then we see that
o, g k1) . —1\ (k1)
(#57)7),. = (o= @ =0)7)
—1\ (k1)
=00+ (@) +0) )
q1%

Y CLnPREPR((00@ < 0)).
|L1|+|L2|=k1
|L1l],|L2|>0

Thus, we have inductively

(k1)

(o)

for a continuous function M : G — R and k; < k — 1. We then conclude

(k)
ek (@és)(a:)_l * <I>(()€) (t(c)))l*
< C(eka + Z M(TE ((ID(()S)(Q:) * 9))6k_|K1|N|K2|>
|K1|+|K2|<k—1
|K2|>0

< M® (Ts(cpg%;) . 9)) x eN.

(2

< M(cpff)(a;) ¥ 8)

11 %

for some continuous function Mi(k) : G — R. These estimates implies that ), ., Ord.(k)
converges to zero as N — oo and ¢ N\, 0 with N?e N\ 0.
Consequently, we obtain

- thyeto - o]

as N — oo and € \, 0 with N2 \, 0 by combining (5.3.1) with (5.3.2) and (5.3.8). This
completes the proof. 1
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Proof of Theorem 5.1.1. We basically follow the argument by Kotani [38, Theorem 4].
Let N = N(n) be the integer satisfying n'/> < N < n'/5 4+ 1 and let ky and ry be the

1/2 and

quotient and the remainder of ([nt] — [ns])/N(n), respectively. We put ey :=n~
hy := Ne%. Then we have kyhy = ([nt] — [ns] —ry)ek =t —s (n— o).
Since C§°(G o)) C€ Dom(A) C C(G(0)) and C§°(G o)) is dense in Coo (G o)), the linear
operator A is densely defined in C(G(g)). Furthermore, (A — A)(C5°(G(o))) is dense in
Coo(G(0y) for some A > 0 (cf. Robinson [64, p.304]). Hence, by combining Lemma 5.3.1

and Trotter’s approximation theorem (cf. [74]), we obtain
b
lim ‘LN U Buaiaf = Pyape” 904 fH —0  (feC(Gu). (5.3.10)
n—oo 00
On the other hand, Lemma 5.3.1 implies

lim
n—oo

X
(I = L) Pif = PronAf| =0 (FECF(G)).  (5:311)

Here we have

X
HL[M] [nSP —1/2f - P —1/26_(t_5)AfH

(n=1/2)

X
’ + HLN_w Py oapnf — Pn_l/ze—“—S)AfHOO. (5.3.12)

<\ = LX) Poaraf

It follows from || P,-1/2|| < 1 that

‘ X
oo

H (I =LY 1o ) By f

X
< T’NSN TN?(I — ngfl/Q))Pnfl/zf — Pnfl/Q'AfH + TNé“?VHPnA/zAfoO
N
1
< TNENH (I LZN71/2))P 1/2f P 1/2./4fH + TN‘C’:NHAfH (5313)

N5N
Then, we obtain (5.1.3) for f € C§°(G () by combining (5.3.10), (5.3.11), (5.3.12) and
(5.3.13) with ryed — 0(n — o0). For f € Cs(G(o)), we also obtain (5.1.3) by following
the same argument as [31, Theorem 2.1]. we complete the proof of Theorem 5.1.1. 1§

5.4 Proof of Theorem 5.1.2

In what follows, we assume (A2) as well as (A1). Put

|dDE) || = max max || log (A2 @) [y i (0<e<1).

We describe a relation between Hd@os |0 and ||d<I>OO)||oo for every 0 < e < 1. Thanks to
the identity

Aoy (e) = U (o(e)) - dd(e) - W (t(e)) ™ (0<e<1,e€ E),
[31, Lemma 5.3 (3)] and (A2), we obtain the following:
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Lemma 5.4.1 Under (A2), there exists a positive constant C' such that

sup 42 [oe < A7

0<e<

We denote by (GES;, -) and (GES;, %) the connected and simply connected nilpotent Lie

group of step k and the corresponding limit group whose Lie algebras are
((9(1)79(()0)) D 9(2) DD g(k)7 [., ]), ((9(1)79(()0)) D 9(2) DD g(/’f)7 [[.7 ﬂ)’

respectively. For the piecewise smooth stochastic process (yfs’”))ogtgl, we define its trun-
cated process by

D = (Y yEmE L yEI Y el k=12, 1)

in the (-)-coordinate system. We may put

€ 0
sup {1407 o + o= (3p)llgn b < ClARE” o + o () g = M,

0<e<1

by recalling Lemma 5.4.1.
1/2

As is well-known in probability theory, it suffices to show the tightness of {P™ "™

and the convergence of the finite dimensional distribution of {y.(”””’”)};o:l to obtain The-
orem 5.1.2. In the former part of this section, we aim to show the following.

-1/2

Lemma 5.4.2 {P®™ ™10 s tight in CO19([0,1]; G g)), where o < 1/2.

As the first step of the proof of Lemma 5.4.2, we prepare the following lemma.
Lemma 5.4.3 Let m,n be positive integers. Then there exists a constant C' > 0 inde-
pendent of n (however, it may depend on m) such that

(n=1/2)

B deo(YmAmd) yn T Pmdyim] < op _g2m (0<s<t<1). (5.4.1)

Proof. Our argument is partially based on Bayer—Friz [6, Proposition 4.3]. We split the
proof into several steps.

Step 1. First we show

(n—1/2) n=1/2 p. n—1/2 n. m 0 — k\2m
EF> |:dCC(yt(k ’ ’Z)ayt(e ’ ,2))4 ] = C( n )

(n,meN, ty,t, € D, (k<L) (5.4.2)

for some C' > 0 which is independent of n (depending on m). By noting the equivalence
of two homogeneous norms || - ||cc and || - ||[gom (cf. [32, Proposition 3.1]), we know that
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(5.4.2) is equivalent to the existence of positive constants C) and C® independent of n
such that

n—1/2 n n m { — k\2m
EP )[Hlog () |g(1)||2(1>}§0(1)< - ) ) (5.4.3)
n—1/2 - n— m { — k\2m
T og ()0 ] <e®(55) T G4
Step 2. We here prove (5.4.3). We have
EF+ [Hlog( (Vi)™ ytfn>| 1>Hg<1}
e e 2m
- ()" (X o )
1 4m m
<(77) ", 215%{ PIREEC
c€Qy ok
4m
x log (@ ©(; )—1.<p(()8)(t(c))>‘x(1)} 0<e<1), (5.4.5)

where F stands for the fundamental domain in X containing the reference point x, € V.
Fori=1,2,....d;,z € F,NeN,0<e<1landc=(eye,...,en) € L, nv(X), put

T (5) = log (dd(e;)) [0 = pr ()| 5

and

Ny (@50) 1= tog (357) - 970D ) = Nowlr)

N

xo =2 F0G).

j=1

We note that
(TG < 1426 oo + Nor(3p)llgr M (0<e< 1 i=1,2,....di,j=1,2,...,N).

Then we know that {st,i’m)}j’vozl is a martingale for every ¢ = 1,2,...,d; and x € F
(see Lemma 2.5.3). Hence, we apply the Burkholder-Davis—Gundy inequality with the
exponent 4m. By the elementary inequality (a + b)¥™ < 24m=1(g™ 4 p4™) for m € N, we
have

am
> poog (2 @) 0o (1),
c€Qy N(X) i
) im
§24m_1 Z pe(c){(./\/}(\;’gc)(c))4 +(N8;0R(7p)’Xg1>) }
c€Qy N (X) Z
N 2m
<omigtmy 3 @ TV} + 2N ()
c€Qy N(X) =1

< 24mc(4m) MQmNQm + 24m—1M4m64mN4m
(xreF,i=1,2...,d,0<ec<1 NeN). (546)
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In particular, (5.4.6) implies

n—1/2 _ n—1/2 am
Z Pp-1/2 (C) log <¢é )(.ZTJ) b Cbé )(t(c))> ‘X(l)
CEQm’g_k(X) i
< {armctyn, e 2ty (0 — ) (5.4.7)

by putting e = n~/2 and N = ¢ — k, where we should note that (¢ — k)/n < 1 since
1 <k </?<n. We then obtain
~1/24

(n1/2) ~(n-1/ n m
£ [H log (V! Ty Y )|g(1> ||2(1>}
0— kN2

< dm{2tmeln, Mo 4 2 1M4m}<€;k)2m — 0 (—=)"

by combining (5.4.5) with (5.4.7), which leads to (5.4.3).
Step 3. We show (5.4.4) at this step. We also see

() an g,n
Pm*[’k’g( Vi) o ))|g(2>Hg<2>}

1\ 2m
< (= ~d®™ max max{ c
- (n) 2 i=1,2,...,da TEF Z pe( )

CeQz,lfk(X)

x log (20 (2) 1 8 (1(0)) )

2m
XS”} 0<e<1). (5.4.8)
in the similar way to (5.4.5). Then it follows from (2.2.2) that

s (30 S0 G

= log (0 (ofe)) - @ (tler) -+ 0 (oler1)) " - 0 (tern))|
l—k
= <Z log (d@é‘f) (Gj)) ‘Xi(z) — % Z Z [[X)(\l)’ Xlgl)ﬂ ’Xi@)

1<j1<ja<b—k 1<A<v<d;

2m

% { log (dcbéf)(ejl)) ‘X(l) log (d®é€)<€j2)) |X<1)

— log (d@ (ej, )|X(1> log (d(I)( (ej,) )‘Xu)})zm
§32m_1{<210g dCI) |X >2m

2m
+ L max ( Z log (d®(()s)(ejl>) ‘Xil) log (dq)(()s)(ejz)) |Xf,1)>

1< <v<d;
1<j1<ja<l-k

2m
+ L max ( Z log (d@éa)(ejl))‘xy) log (dq)[(f)(ejg)ﬂxil)) }, (5.4.9)

1<A<v<dy L=
1<i1<je<bl—k
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where we put
1

L :=—- max max
2 i=1,2,...,ds 1<A<v<dy

We fix 1 = 1,2,...,dy. Then we have

[x5, XM @]

{—k 2m =k 1 2m
<Z log (d@ée)(ej)) ‘Xf)) = (- k>2m(z y— log (dq)E)E)(@j)) ‘Xf”)

— —1

’ E—]k 1

< ek s log (dq>g€>(ej))\§§2)

1

J
< ||| |4 (0 — kY < MV — k)P (5.4.10)

by applying the Jensen inequality. For 1 < A <v <dj,z € F,0<e <1, N € Nand
c=(er,ea,...,en) € n(X), we set

Jj2—1

N()\Vx)( (©), ¢) = Z Jf)(ﬁ) Zj(é (J2) ZJ)\ (J1)-

1<j1<j2<N Jj2=2 j1=1

Then we also see that N (@)1 g an R-valued martingale for every 1 < \ < v < d
N=1 g y

and x € F. By applying the Burkholder-Davis—Gundy inequality with the exponent 2m,
we have

Z . (C) (/'\V/—Jgf)\,u,z) (C))Qm

CGQ‘T‘N(X)
N jo—1 m
<Chy Y p{ X I x (X a7 jl)}
c€Qy N (X) Jo=2 j1=1
N 1 Jj2—1
<cgy, Y pOW -1 =P (X A0w)
CEQxﬁN(X) j2=2 ]1 1
2m m a 1 (&) (: \4m 1/2
<CEN Y (X TP 6)™)
J2=2 CEQI’N(X)
271 4m~ 1/2
A Y (X a06)")
CEQI’N(X) j1:1
N Jo—1
m m ATm 1 A dm~y 1/2
< Clopy M N m{ > p5<c)<zj)5)(]1>> } : (5.4.11)
J2=2 € N(X) ji=1

where we used Jensen’s inequality for the third line and Schwarz’ inequality for the final
line. Then the again use of the Burkholder-Davis—-Gundy inequality with the exponent
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4m gives

J2—1

. 1 (ZJAE jl)

CEQZ,N(X) Jl 1

4m

J2—1

Z ps <ZJAE (J1) >

CGQZ ~( Jj1=1

2m

J2—1
m [, m 1 . m
= Cé}m) (j2 — 1) Z pe(c) < Z ,—_1[7)56)(]1)2)
c€Q N (X) n=1 J2

J2—1 1

<clmiam > po) Y ——T (i)™ < Climy MR (5.4.12)
—1J2

CGQQC,N(X) J1=1

It follows from (5.4.11) and (5.4.12) that

A (A v, m \Tm 1 m 2m
> pOWNY@)™ <u@)M2N'§jN_1qmwﬂJ§f”
c€Qp N(X) J2=2
< Clony Climy M N2, (5.4.13)

Hence, (5.4.13) implies
2m
Z pg(c)< Z log (d@éf)(ejl)) ’X§1) log (dcb((f)(eﬁ)) ‘X£1)>

c€Qy N (X) 1</ <j2<N

<4 3T @ (V@)™ + (2] g o

CEQZ’N(X)

el X F06) "+ (il Y T90) )

1<j1<je <N 1<j1<j2 <N

N(NQ— 1)>2m

< 42m-1 { C2m C(4m MAm N2 g=2m ) pam _dm pram

N

2m
PN a3 (0 (S 50G)

€, N (X) j=1
S 42m71 {CQm C(4m M4mN2m 4 272mM4m€4mN4m
2 MM 2m N m (22’”0(2;:1) MmN™ 4 22m—1M2ms2mN2m> } (5.4.14)

where we used (5.4.6) for the final line.
We now put ¢ =n~'/2 and N = ¢ — k. Then we have, for 1 <\ < v < d,

)N XCIEEDS MWWMWMWWMwW

c€Qy ok (X) 1<h1<2<l—k

§42m71M4m<62m C(2m Lo-2m 22m+1c(2m 22m> (6 — k)*™ (5.4.15)
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due to (5.4.14) and (¢ — k)/n < 1. We obtain

e [Hlo 3 12, M) g 12, )\g@)HQ(z)}gC@)(@__/@)%

n

by combining (5.4.8) with (5.4.9), (5.4.10) and (5.4.15), where
0(2) — d§m32m71{M4m + 927, . 42m71M4m (C C + 2~ 2m + 22m+1c(2m M—™ + 22m) }

This means (5.4.4) and we thus obtain (5.4.2).

Step 4. We show (5.4.1) at the last step. Suppose that t; < s <ty and t, <t <ty
for some 1 < k < /¢ <n. Then we have

—1/2

n n; n’l/g,n; n —1/2 M n
doc(Y5m 2 Yin By () dao(V D,y ),

n=1/2 p- n=1/2 p. —1/2 n; n=1/2 n.
eV " 9T = (ot — Odec(V TP, Y0 T

. . . . -1/
by noting that the piecewise smooth stochastic process Y™ YEm)

geodesic interpolation. Hence, (5.4.2) and the triangle inequality yield

is given by the dcc-

EP&TI/Q) [dcc(ys(n’lm,n; 2)’ yt("_l/27n; 2))4m]
< 34”“1{(1{: +1—mns)'™. C(%)Qm + C(HT_l 4 (nt — )™ . C(%)zm}
< C{(tkﬂ —8)"" - (tg — trpr)™" + (£ — t£)2m} < Ot —s)™™.

This completes the proof of Lemma 5.4.3. 1

In what follows, we write
dys(i,n)* — (ys(s,n)>71 « yt(s,n) 0<e<lLneN0<s<t<l)

for brevity. We now show the following lemma by using Lemma 5.4.3.

Lemma 5.4.4 Form,ne N, k=1,2,...,r and «
set Q,(Cn) C Q..(X), a non-negative random variable /C,(:) € L'™(Q,.(X) = R; IP’;TW))
such that IP’&TW)(Q(H)) 1 and

dec (V7m0 (), YT 0) < KM (o)t —5)* (ce QM 0<s<t<1). (5.4.16)
Proof. As in the proof of Lemma 4.3.3, we partially apply Lyons’ original proof (cf. [54,

Theorem 2.2.1]) for the extension theorem in rough path theory to the proof. We prove
(4.3.15) by induction on the step number k =1,2,..., 7.

98



Step 1. In the cases k = 1,2, we have already obtained (5.4.16) in Lemma 5.4.3. In fact,
(5.4.16) for k = 1,2 are obtained by a simple application of the Kolmogorov—Chentsov
criterion with the bound

(n) 5C

S g mmeN =L (41D

|| k ||L4m(1P’§7n

where § = (2m — 1)/4m and C' is a constant independent of n which appears in the
right-hand side of (5.4.1).

Step 2. We now fix n € N. Assume that (5.4.16) holds up to step k. We note that this

assumption is equlvalent to the existences of measurable sets {Q( ) _, and non-negative

random variables {IC _, such that P(n )((AZS )) =1 and

—1/2

[[CA7 ) ”||Rdj <KM@t —sP*  (ceQP 0<s<t<1)  (5.4.18)

with I% e LI(Q,, (X) = R; IP’(nil/2 yforn,meNand j=1,2,... k.
We fix 0 < s <t <1,n € N and write Q,(Hl ﬂ] lQn). We denote by A the

partition {s = tg < t; < --- < ty = t} of the time interval [s,¢] independent of n € N.
We now define two G( A )—Valued random variables Z (t and Z (A)S? by

(Z(n))(j): {(dy(n 1/2 s )(J')) (1=1,2,...,k),

> 0 (G=k+1),
Z(AYW .z ) z(n
( )s,t : tot1 F Lty XK tN LEN

respectively. For ¢ = 1,2,... dy1, (2.2.2) and (5.4.18) implies
n (k+1) (k+1)
(Z2(A) )™ = (Z(AN\ {tv- DY (o)
n n (k+1) n (k+1)
(20 iy (05 280y (@) — (2821, (0)

tnN—2,tN-1 IN—1,tN
Z CK17K2P>'FKI (Zt(;)wfzv 1( ))PK2( tN— 1tN(C))

| K| +[Ka|=k+1
|51 ][ K2[>0

1/2 1/2
C Z ‘Pfﬁ(dytzv th 1 HPK2 dytN 175N) (C>)‘
|K1|+|K2|=k+1
| K1, K2|>0

=(n o 2 (k+1)« ~(n
< REL (Ot — t—) "0 < R (o) (5 (¢ = 5)) (ce Q).

IN

where the random variable 16,321 : Q. (X) — R is given by

K@) =C > Qn@Qr=(e),
| K1 |+|Ka|=k+1
|K1],| K2|>0

Q" () = K\ (c) -+ K (e) (K = ((in, k), (in a), . -, (igs o))
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We emphasize that l%,(ﬁgl is non-negative and has the following integrability:

—-1/2
EIP’ECZ &

[(’/C\ )4m/ k—O—l)] < C Z EIP’QC* —-1/2) [(ICI(JI) ''''' K](;)>4m/(k+1)i|

K1, k>0
K1+ +he=k+1

kx/(k+1)

<c Z HEPI* ~1/2y [ n))4m/k>\] < o0,

k1,....,k¢g>0
k1+---+kg=k‘+1

where we used the generalized Holder inequality for the second line. We then have
n k+1
(2(2) 7 ()

< [(Z(A\ it H ()

~(n 2 (k+1)a
+ fc;£1<c>(N —(t—9))

k+1)
<|(2({s,tH% ()"
n (k+1) n a «
< 1(2%(0), +fc,££1<> 20-40a¢ (k4 1)a) (t — 5)*+D
<KW ()t —s)EDe (=12, dyyq, c€ UY) (5.4.19)

by successively removing points until the partition A coincides with {s,t}, where ((2)
denotes the Riemann zeta function ¢(z) := > - (1/n*) for z € R.

We now show that the family {Z (A)g"t)} satisfies the Cauchy convergence principle.
Let 6 > 0 and we take two partitions A = {s =ty < t;--- < ty =t} and A of [s,1]
independent of n € N satisfying |A[, |A’| < . We set A := AU A’ and write

Ag A N [tg7tg+1] = {tg =8p0 < Sp1 < - < Syp, = tg_;,_l} (6 =0,1,.. .,N — 1)

Then (2.2.2) and (5.4.19) give

(@R @) - (EARE)

(2

n (k+1) NN (k+1)
GG *szhtN(c))i* —(ZB0)ih (€)% Z(An-1)in) 1y ()]

n k+1 n n k1
(Zt(o,l)h (C))(*+ : + (Zt(l,?fQ (C> Zt(N 1 tN( ))7(;*—’— )
-~ ~ (n k+1
( (AO)to t1< ))(*+ ) - (Z(Al)l(fl,)tg(c) * (AN l)tN 1 tN(C))§*+ )‘
< R (0t — )0 + )(zf?g(c) -+ Zé& 1 tN<c>>§f v

_ (Z(Ao)t?@( JERRRE" Z(AN 1>tN 1tN<C))(-k+1)

(2

(Z = 1,2, ce ,dk+1, cE @,(:_?1)

100



By repeating this kind of estimate and noting (k 4+ 1)a > 1, we obtain

(Z@)R@) = (2@)0) )]

Tx

N—lA
<D REA () (tegr — t) e
/=0
N N-1
< RO (maxtess — t) 7Y S (ters — 1)
/=0
<KD ()t —s) x 6FFDet (G =12 dyyy, e € Q). (5.4.20)

Thus, (5.4.20) leads to
(Z@)70) = (2@ @)

< |E@RE) = (@) @)+ |(EE)R @) - (2@)5 @)

<M ()t =) x 6FTDT 0 (i =12, dy, c € Q)
as 0 \( 0 uniformly in 0 < s <t < 1. Therefore, there exists, for 0 < s <t <1,

lim Z(A) () (ce ™),
sy [P eeh)

1o (c € Q. (X)\ Q).
satisfying
—(n) (k+1) n a n
[(Z0 @) lgor < KL @E =)D (e e 7)),
due to (5.4.19). We will show

20 (¢) = YU Pk Ly () (0 <s <t <1 ce )
as the last step. For this, it is sufficient to check that
EW ()Y = (@ ) 0<s<t<1,cedl) (5.4.21)

by the definition of ?g?. We fix i =1,2,...,dyyq and ¢ € Q,(Ql Put

1/2

Te)p = EN ) 0ss<t<).

1%

Wi (e) = (aVly
Then we easily see that W% ,(c) is additive in the sense that

V() =0 () + W () (0<s<u<t<l). (5.4.22)

. . . . -1/ .. .
Since the piecewise smooth stochastic process (ylf” ' 27n))0§t§1 is given by the dcc-geodesic
. . -1/
interpolation of {Xt(: l 2’n)}zzo, we have

—1/2

(@0 (@) "™ i < KL (o)t — ) (ce Q)
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for some set (2,(321 with P v )(Q,(Cﬁl) = 1 and random variable ICkJrl : Qe (X)) — R
Thus, we have

W (0)] < (K (e) + K@) (¢ — ) (0<s<t <1, el nOl).

We may write 5\2,(321 instead of Qk"H Q,(ﬁr)l by abuse of notation. Because its probability
equals one. For any small € > 0, there is a sufficiently large N € N such that 1/N < e.
We then obtain as ¢ \ 0,

’\I’é,t(c) = "118,1/1\/(0) + ‘I’il/N,2/N(C) +oe Tt \Ilth]/N,t(C)‘
—(n >(n a— 1 1 [Nt]
< (o) + (@)t — o S (1= 52 )
———
[Nt]-times

= (I%,(:gl(c) + Eé@l(c))g(k“)“’lt —0 0<t<1l,ce Q,ﬁzl)
by (5.4.22) and (k+41)a—1 > 0. This implies that Wf (c) =0for 0 <t < 1landc e Q,(:H
Hence, it follows from (5.4.22) that
V() =W (0) = Uy () =0 (0<s<t<1ce),
which leads to (5.4.21). Consequently, we know that there are a measurable set Q,@l C
Q. (X) with probability one and a non-negative random variable IC( w1 € LY(Q,, (X) —
R; IP);TI/Q)) satisfying
—1/2 . n—1/2 n: n o n
doo (VI Hm ), 9T e) S KGO = 5)T (€, 0<s <t <),
This completes the proof of Lemma 5.4.4. 1
Proof of Lemma 5.4.2. For m,n € N and a < 2m L it follows from (4.3.15) that

—1/2y

(n=1/2) - . n~1/2 nir)y 4m (n n)\4m ma
EP T [deo (Dt ) < B () (k- )
for 0 < s <t < 1. We thus have, by (5.4.17),
n—1/2 B _ ' m R
EPEC* )[dCC (ygn 1/2,n;r)’ytn 1/2,n,r))4 ] <C(t- S)4ma 0<s<t<1).

for a positive constant C' > 0 independent of n € N. Furthermore, thanks to (A-2) and
@éo)(x*) = 1, there is a sufficiently large constant C' > 0 such that

C @) gl <€ =120,

sup H log (

Thanks to the Kolmogorov tightness criterion We know that the family p%m) is
n 1

tight in C%*H9([0, 1]; G(q)) for a < 2mE=L < L LBy Jetting m — oo, we complete the
proof. 1

By using Lemma 5.4.4, we easily obtain the convergence of finite dimensional distri-
bution of (y<”’”2v"))o§t§1.
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Lemma 5.4.5 Let { € N. For fited 0 < s1 < 89 < --- < 8 < 1, we have

—1/2

n 1/2 n n—1/2 n (d)
(Y Em yn e YTy 2O (Y, YL Y,

as n — 0.

Proof. We only show that case of { = 2. General cases (¢ > 3) can be also proved
by repeating the same argument. For simplicity, we put s = s1,t = s5. We obtain

(/'\fs(nil/z’n),/\ft(nim’")) @, (Y,,Y;) as n — oo in the same way as [31, Lemma 5.5].

On the other hand, there exists a non-negative random variable K" € L™(Q,. (X) —
R; IP’;TUQ)) satisfying

_ —1/2
1/2, n~1/2n

'(©) SKD(e)(t—s)* PO as.  (0<s<t<1)

Tx

doc (Y7 (c), Y,

by Lemma 5.4.4. Suppose tp <t <t for some k£ =0,1,...,n — 1. Then we have, for
all € > 0 and sufficiently large m € N,

’n)a yt(niw’n)) > 5)

—1/2 —1/2

P (doo ("

I _p™/27 “1/2 0) | (n=1/2, )\ 4m
< B oo )]
1 P(’fl”) (n=1/20) ~(n=1/2,n)\4m
< 84_mE ) C(yk tk+1 ) ]
1 (n71/2) [ n m mo 1 (n71/2) n m
< BRI (b — )| = SBR[ — 0

as n — 0o, where we used Chebyshev’s inequality for the second line and (5.4.17) for
the final line. Hence, Slutzky’s theorem (cf. Klenke [37, Theorem 13.8]) tells us that the
desired convergence

—1/2

-1/2 , d
e m ey D (v, v
holds as n — oo. This completes the proof. 1
We complete the proof of Theorem 5.1.2, by combining Lemma 5.4.2 and Lemma 5.4.5.

As in Theorem 4.6.2, we can also extend Theorem 5.1.2 to non-harmonic cases. Let
((Dée))ogegl be the family of modified harmonic realizations associated with (p.)o<c<1 and
we take a family of realizations (q)(s))ogggl, which is not necessary to be that of harmonic
ones. In particular, we may put @éo) (z,) = ®©)(x,) = 14 for some reference point x, € V
and (1) = &©(2)® for z E V 0 <e<1landi=23,...,r without loss of
generality. Define Cor(g) X — gW by

Cor') () :=log (8@ (2))] o) — log (2§ (@))],y  (w€V,0<e<1).
Instead of (A1) and (A2), we impose the following assumptions on (CI)(E))Ogagl,
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(A1): For every 0 < e <1, it holds that
Zm ) log (@ ©(z)7t. @m)(x)ﬂg(l) =0, (5.4.23)
xeF

where F denotes a fundamental domain of X.

(A2)": There exists a positive constant C such that, for k =2,3,...,r,

() 1. O
oS<IiI<)1 max | log (@ (x)~" - @ () |g(k) Hg<k) <C, (5.4.24)
where || - ||y denotes a Euclidean norm on g®) = R% for k =2,3,.
We note that, thanks to (A1)’, we have
€ 0
Zm(x)Cor;(z) (x) = Zm(x)@or;(z)(@ (0<e<1). (5.4.25)
zeF zeF

In particular, there exists a positive constant M > 0 independent of ¢ € [0, 1] such that
MaX,er HCoréfZ)(x)Hgm <Mfor0<e<1.

Remark 5.4.6 We show that (A1)’ and (A2)" imply that the family (®; ))0<5<1 satisfies
(A1) and (AZ2), respectively. Indeed, by combining (5.4.25) and (A1)’, we see that

> m(a)log (B (2) - o (@))] )

reF
= Zm )Cor'®) o ( Zm Cor )+ Zm )log (@ ()" - @O (x)) |g(1)
zeF TEF reF

=0 (0<e<1),

which means that that the family ( )0<5<1 enjoys the assumption (A1) Furthermore,
by using (A2)" and &\ (2)® = O (z ) forreV,0<e<landi=23,...,r, we have
<C

sup max H log( : CD(()O)(ﬂU)) ‘goc) ||g(k> =

0<e<1 TEF

for some C' > 0, which implies that the family ((ID ))0<6<1 satisfies the assumption (A2).

Let (?ﬁg’”))ogtgl (0 <e <1, n€N) be the G(g)-valued stochastic processes defined by
just replacing ®f by ®© in the definition of (V™ )g<i<1. Recall that (V;)o<i<y is the
G-valued diffusion process which is the solution to the SDE (5.1.6).

Then we can show the following FCLT of the second kind as in the same way as
Theorem 4.6.2.

(n=1/2m

Theorem 5.4.7 The sequence (?t )

0<t<1 1,2,...) converges in law to the G-
valued diffusion process (Yi)o<t<1 in C’Oa HOI([O

1 G(oy) as n — oo.

1 (n
1
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We have captured in Chapters 4 and 5 two kinds of limiting infinitesimal generators
and limiting diffusions by applying the scheme to “delete” the diverging drift (Scheme 1)
and the scheme to “weaken” it (Scheme 2). Before closing this chapter, we summarize
them, as well as the case of crystal lattices obtained in Ishiwata-Kawabi-Kotani [31].

First we summarize the case of a I'-crystal lattice X. We denote by {w1,ws, ..., wq} an
orthonormal basis of Hom(I', R) and put z; = w;[X|rgr for i =1,2,...,dand x e ' ® R.
For simplicity, we write Ay = ZfZI(GQ /0x?) for the homogenized Laplacian on I' ® R
with respect to the Albanese metric go. For x € T®R, we put (x, V), = S0, 2,(0/dz;).
Recall that (g((f) = go(€))o<e<1 stand for the family of Albanese metrics associated with
a family of transition probability (p:)o<c<1. We note that go(1) = go. Then the limiting
infinitesimal generators on X are summarized as follows:

symmetric (7, = 0) non-symmetric (v, # 0)

centered (pr(7,) = 0) | non-centered (pr(7,) # 0)
A, /2 Scheme 1 Agy1y/2 Ago(1)/2
90 Scheme 2 Ago0)/2 Ago0)/2 + (Pr(1): V) 0)

Table 5.1: Limiting infinitesimal generators in the case of a crystal lattice X

Let (Bt(g()))ggtgl be a standard Brownian motion on (I'®R, go). Then the limiting diffusions
are also summarized as follows:

symmetric (y, = 0) non-symmetric (v, # 0)

centered (lpR(’yp) =0) non—centere(il (pr(7p) #0)
(B(QO))O<t<1 Scheme 1 (Bt(go(o)))ogtgl (OBISQO( )))ogtgl
£ PSS Scheme 2 (Bt(QO( )))ogtgl (Bt(gO( D4 tor(1p) Jo<t<1

Table 5.2: Limiting diffusion processes in the case of a crystal lattice X

Next we summarize the case of a I-nilpotent covering graph X. Let {V, V4, ..., Vg }
be an orthonormal basis of (g(!), go) and write A, := 3°% V2 for the homogenized sub-
Laplacian on G = Gp. Then the limiting infinitesimal generators on X are summarized
as follows:

symmetric (7, = 0) non-symmetric (7, # 0)

centered (pr(7,) = 04) | non-centered (pr(7,) # 04)
A, /2 Scheme 1| Agyn)/2 + 5(Po)- Agy1)/2 + (o).
g0 Scheme 2 Ago0)/2 Ago(0)/2 + pr(1p)s

Table 5.3: Limiting infinitesimal generators in the case of a nilpotent covering graph X
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We emphasize that, in the centered case, the limiting generator of Scheme 2 is noting
but the sub-Laplacian on G, while the drift §(®q) arising the non-symmetry of the ran-
dom walk on X still remains in the one of Scheme 1. As for the corresponding limiting
diffusions, we write down them only in the non-centered case.

e Scheme 1: We put Vy = S(®g).. Then,

d1 t

i=1 o<i<j<d ~ 70
where (B}, B?, ..., BM)o<i<1 is a standard Brownian motion on (g, 9(()1)) = (Rdl,gél)).
e Scheme 2: We put Vj = pr(7,).. Then,

di t
~ . 1 . ) ) .
Y;f = exp (tPR(’Yp)* + § BZV;* + E 5/ (B;ng - BgdB;)[[V;*v V}*H + - ')(1G)7
0

i=1 0<i<j<d;

where (B}, B2, ..., Bi")o<<1 is a standard Brownian motion on (g™, g(()o)) = (Rdl,g(()o)).

When we see Table 5.3 again, one may wonder if a G-valued diffusion process whose
drift term belongs to g @ g® can be captured or not through our schemes. To our best
knowledge, there seems to be no results which capture such a limiting diffusion process in
any nilpotent frameworks. As a further problem, we suggest a hybrid scheme of our two
ones and discuss a CLT corresponding to it in order to capture such a limiting diffusion.

For ¢ > 1, we define the transition-shift operator Ep,E : Coog(X XZ) — Cr o(X X Z)
associated with p. by

Zp,ef(x,z) = Zpg(e)f(t(e),z—l—l) (xe X, z€7).

eeEz

Let us fix b € g® and define, for 0 < ¢ < 1, the scaling operator P. C(G) —
Cooq(X X Z) by

Pf(z,2) = f(T€ (@és) (z) * exp(zb))) (re X, zeZ).

This new scheme is based on our two schemes. Namely, it provides an effect which not
only weakens the diverging drift term by introducing the family (p.)o<.<1 but creates an
arbitrary g®-drift b € g in the limiting infinitesimal generator. We still assume (A1)
and (A2). Then, thanks to b € g®, we might prove the followings as in the proof of
Theorems 4.1.2 and 5.1.1.

Conjecture 5.4.8 Forqg>4r+1,0<s <t and f € Coo(G), we have
nlinolo Hz\[]f:j—_l[ZS]ﬁn_l/Qf - 7/571—1/2e_(t_S)glfHOO g - 07
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where (e7™) =g is the Co-semigroup with the infinitesimal generator A on C3°(G) defined
by

di
1 2
A= -5 Z Vi = (pr(7p)« + b,
=1 cgM@g®

where {V1,Va, ..., Vy } denotes an orthonormal basis of (g, go).

Conjecture 5.4.9 Let (?fs’n))ogtgl be the G-valued stochastic process given by the doc-
geodesic interpolation of

yé‘;:)(c) = T,1/2 (cI)SE)(wk(c)) * exp(k%)) (k=0,1,...,n, c € Q, (X))

forn € N and 0 < e < 1. Then the sequence {ﬂn*”%)}go:l converges in law to the

G-valued diffusion process ) in C**HO([0,1]; G o)) which solves the SDE

dy
d@t = Z V;*(Q‘)t) o de + pR(’yp)*(th) dt — b(Q:jt) dt7 9{)0 = 1.
=1
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Chapter 6

Examples

6.1 The 3D Heisenberg group

It goes without saying that the most typical but non-trivial example of nilpotent Lie
groups of step 2 is the 3-dimensional Heisenberg group defined by

1 =z =z
G = H*(R) :z{ 01y
0 0 1

x,y,2 € R} = (]R3,*),

where the product « on R? is given by
(z,y,2) (¢, 2") = (x + 2"y + v, 2+ 2"+ 2v).

This Lie group naturally appears in a lot of parts of mathematics including Fourier anal-
ysis, geometry, topology and so on. First of all, we give a quick review of the basics
of G = H*(R). Let I' = H3(Z) be the 3-dimensional discrete Heisenberg group. Then,
G = H3(R) is the corresponding connected and simply connected nilpotent Lie group of
step 2 such that I' is isomorphic to a cocompact lattice in G. Furthermore, the corre-
sponding Lie algebra g is given by

0 = =z
g:{ 0 0 y x,y,zER}.
0 0 O

Let {Xi, X5, X3} be the standard basis of g, that is,

010 000 0 01
X;:=10 0 0|, Xo:=1]0 0 1|, X3:=1]0 0 0
000 000 000

We then see that the Lie algebra g is decomposed as g = g @ g®, where gt =
spang{ X1, X5} and g := spang{ X3}, due to the algebraic relations [X;, X,] = X3 and
(X1, X3] = [X2, X3] = 04 under the matrix bracket [X,Y]:= XY —Y X for X|Y € g.
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6.2 The 3D Heisenberg triangular lattice

Let ' be generated by v, = (1,0,0), 72 = (0,1,0) and 73 = (—1,1,0). We consider the
Cayley graph X = (V,E) of T’ with the generating set S := {v1,%v2, 73,77 5 Y5 575 - }-
Namely, V = Z* and £ = {(g,h) € V x V|h-g~' € 8§} (see Figure 6.1). If e € F is
represented as (g, h) for some g, h € V', then its inverse edge € is equal to (h, g). Moreover,
the left action I" on the Cayley graph X is given by

mg=(@+Lyz+y), tng=(@y+lz), yg=@-lLy+lz-y),
ng=@-Lyz-y), %no=(@y-12), wng=@E+ly-1z2+y-1),
for g = (x,y,2) € G. In view of the algebraic relation 3 * 73 = 75, we may call this
Cayley graph X a 3-dimensional Heisenberg triangular lattice. The quotient graph of
X by the action I' is the 3-bouquet graph Xy, = (V, Ey), where Vi = {x} and Ey =
{e1,eq,e3} U{e1,€9,€3} (see Figure 6.2).

Figure 6.1: A part of the 3-dimensional Heisenberg triangular lattice

Now we define a non-symmetric random walk on X. We introduce a transition prob-
ability p: E — (0,1] on X by setting

p((9,m9)) =&, p((9,729)) =1, p((9,739)) = ¢,
p((g.71'9)) =¢, p((9.7%'9)) =n, p((9,7'9)) ==,
where &, &', 1n,7',¢, (" >0, {+ & +n+n"+(+ ¢ =1and
Et=n—y=C—(=¢e>0. (6.2.1)

In what follows, we write

~ ~

§::f+§/a €::£_§/> ﬁ5:77+77,7 773:77—77/, QiZC‘f’Ca é::g_g,
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for brevity. The invariant measure on Vj = {x} is given by m(x) = 1. The quantity ¢
in (6.2.1) indicates the intensity of the non-symmetry of this random walk and it is clear
that the random walk is m-symmetric if and only if € = 0.

The first homology group of X is given by Hi(Xo,R) = {[e1], [ez], [e3]}. Since Xy is
a bouquet graph, the difference operator d : C°( Xy, R) — C'(X,, R) is the zero-map.
Then we have H'(Xo, R) = (H'(Xo), (-, -))») = C*(Xo,R). Moreover, we obtain

W= ple)le] = e(ler] = [ea] + [es]) € Hi(Xo, R) (6.2.2)

ecFEy
by definition. The canonical surjective linear map pg : Hy(Xo, R) — g is given by
pr(le]) = X1, pr(lea]) = X2, pr([es]) = Xz — X

Then we easily see that pg(7y,) = 05. We introduce a basis {u1, us} in Hom(gM, R) by

X =(V.E)

€2 Xo = (Vo, Eo)

Figure 6.2: The quotient Xq = (Vp, Fy) = I'\X and the nearest neighbor vertices of
(x7 y7 Z)

u (X)) =z, u(X)=y (X =xX; +yXs € g(l)u T,y € Z)-

It should be noted that {uy, us} is the dual basis of { X1, Xy} in gV, We write {w, w, w3} C

(H'(Xo,R), (-, -))p) for the dual basis of {[e1], [e2], [es]} C Hi(Xp, R). By direct computa-
tion, we obtain

2

<<W17w1>>p:é_g2 :g—g ’ <<w17w2>>p:gﬁ:€27
(wo,wa))p =) —i° = 1) — €7, ((wa, ws))p = 11C = €7, (6.2.3)
(w3, w3))p = C - 52 = C — &, (w1, w3))p = —SC = —¢”
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We know that u; = ‘pr(u1) = w1 — w3, us = ‘pr(uz) = wy + w3 form a Z-basis in
Hom (g™, R) by noting that Hom(g¥),R) is regarded as a 2-dimensional subspace of
H'(X,, R) through the injective map ‘pr. It follows from (6.2.3) that

~ ~

(i, u)y =E+¢, Qua,ual)y = =, (ua,ua))y = +C. (6.2.4)
Then the volume of the Albanese torus is computed as
vol(AI") ™1 o= yfdet ((fus, ug))?,_, = (€0 -+ + EOY2.

Moreover, the Albanese metric gy on gV is given by the following:

A+ ¢ s r\2
X1, X )gy = o = 1(AIbD)?,
(X1, X1) fﬁ+“§+(£ (n + ¢)vol( )

¢ r
X, X 5 — (vol(Alb
X Xaloo 577+77C+<5 CVO( )

5+C A 2
Xy, X 75 1(AIbD)2,
(X2, X2) g 577+77C+C5 = (£ + ¢)vol( )

We are now in a position to determine the modified standard realization &y : X — G.
Let € (i = 1,2,3) be a lift of e; € Ey to X and put ®o(0(€;)) = 1¢ = (0,0,0). Then we
easily see that the realization satisfying

Do(t(er) =m, Po(t(@)) =12, Po(t(Es)) = s

is the modified harmonic realization. Let {vy,v3} be the Gram Schmidt orthonormaliza-
tion of {u1,us}, and {V4,Va} be the dual basis of {vy,v,} in g, We put V5 := [V}, V5] =
Vi Vo — V5V, We then have

~

i Cful + uQ>

o= (E+ 87w, vy = (€+ )Y Avol(AT) ;

by (6.2.4) and hence we obtain

Vi= (€4 QX = (E+ )7,
:( ()™ 1/2vol(A1bF) 1X,,
o

ol(AIb") 71X,

Finally, 3(®0) € g'® and the infinitesimal generator A in Theorem 4.1.2 are calculated as
£ r 1, 0 o € .
respectively.
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6.3 The 3D Heisenberg dice lattice

As another example of nilpotent covering graphs, we introduce the 3-dimensional Heisen-
berg dice lattice. This graph is defined by a covering graph of a finite graph consisting
of three vertices with a covering transformation group I' = H?*(Z) (see Figure 6.3). We
emphasize that it is regarded as an extension of the dice graph discussed in [58] to the

nilpotent case.

Figure 6.3: A part of 3-dimensional Heisenberg dice lattice and the projection of it on the
ry-plane

Suppose that T' = H3(Z) is generated by two elements v; = (1,0,0) and v, = (0, 1,0).
We also set two elements g, := (1/3,1/3,1/3), g, := (—1/3,—1/3,—1/3) in G = H3}(R).
We put

Vi={g=n 5 xy*1lg|ir e {1,2}, ep =1 (1 <k < (), L e NU{0}},
Vo = {g:fyfll*...*f)/f;*gl‘ik6{172}, €k2i1(1§k§€),€€NU{0}},
Vs = {g:’yfll*-"*")/isj*gQ‘ik6{172}7 Ek:il(lékgg),geNU{O}}

We consider a H?3(Z)-nilpotent covering graph X = (V, E) defined by V = V; UV, U V3
and £ = F, U Ey, where

Ey={(g.h) eVi x Vol g ' sh =g, 7' *g1, 7% *81},
By ={(g.h) € Vi x V| g xh =gy, 11 %85 12 %85}

We note that X is invariant under the actions 7; and ;. Its quotient graph X, =
(Vo, Ep) = '\ X is given by Vy = {x,y,z} and Ey = {e;,¢;|1 <1i <6} (cf. Figure 6.4).
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From now on we define a non-symmetric random walk on X. We define the transition
probability p : E — (0, 1] by

p((9,9%1)) =&, p((g, 9%t *g) =1 p((9,9%7% ' *&1)) =¢,
p((g,9%8) =¢ p((9,9 %71 *8)) =, p((g,9 %72 % 8y)) =&,
p((g.9%8)) =7  p(ggxn'*g)) =8, p(lg.9%%" *&)) =q,
p((9.9%8,)) = p((9,9*n *8y)) =B, p((g,9 %72 %85) =,

for every g € Vi, where £,n,(, o, 5,7 > 0, 2(§+n+() = 1 and a+ 3+~ = 1. The invariant

measure m : Vy = {x,y,z} — (0, 1] is given by m(x) = 1/2 and m(y) = m(z) = 1/4.

Note that this random walk is (m-)symmetric if and only if & = 2¢, 5 = 21 and v = 2¢.
The first homology group H; (X, R) is spanned by the four 1-cycles

[c1] == [e1 %€, [co] :=e1*€3], [c3] :=[esax€5], [ca] = [es xEg).

Then the homological direction is calculated as

b _4277[03] - 7 _425[04].

The canonical surjective linear map pg : Hi(Xo, R) — gV is given by

pr(lei]) = X1, pr([ea]) = Xo,  pr([cs]) = = X1, pr([ed]) = —Xo.

Then we obtain

(0 —7)=2(C—=¢)

X. 3.1
1 2 (6.3.1)

PR(%> =

€5 €2

€6 €3

Figure 6.4: The quotient Xy = (Vp, Ey) of the 3D-Heisenberg dice graph X = (V, E)

Let {u,us} € Hom(g™, R) be the dual basis of {X1, X»} C g. We also denote by
{wi, we, w3, wa} C (HY(Xo,R), (-, -))p) the dual basis of {[c1],[ca], [c3], [ca]} € Hi(Xo, R).
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Namely, w;([¢;]) = d;; for 1 <, 5 < 4. Then the modified harmonicity (2.4.1) yields

wi(er) =6 — 4 _4277, wi(er) = —(1—B) — b _42777 wnles) = f g8 —4277’
T L I C R R
i) =a- T, e =0- T -0 5K
O e R len) = 2=,
w?’(el):_ﬁ_ﬁn’ w3(€2):_ﬁ—4277’ W3(€3):_ﬂ_42n7
wyler) = 8- 2 _4277, wiles) = —(1— ) — 2 —4277, wsle) = 7 2 —4an
ale) = =12, e = -1, anles) =~ 12,
e =115, wie@=1- T ag=ao-15E
By direct computation, we have
o)y = 2 2277 _ P +82’7)2, on, ), = — 2 F 2(2(6 +2).
(oo )y = - =20 (o = - C=2O=2)
(o = = +42< - +82027 (NS 208(5 “2) (632)
(wa 1))y = — (o — 2€)8(7 — 2{)7 (s, = 8 2277 (8 +82n)2’
(nnhy =~ EEZAHID e oy, = 12 GRS

Since the linear space Hom(g*, R) can be seen as a 2-dimensional subspace of H*(Xj, R)
through the injection ‘pgr, we see that uy = "pr(u;) = w1 — w3 and uy = "pr(us) = wy —wy
form a Z-basis in Hom (g™, R). We then obtain

—4 —4
<<u17u1>>p — w) <<u1,u2>>p — _w,
(g, 1)), = (B+21)(2 =B —2n) + day + 16£¢
2, W2//p — 8 .

by (6.3.2). Thus the volume of the Albanese torus is computed as

vol(Ale)_1 = i\/(ﬁ +2n — 4677){(5 +2n) — (B2 4+ 4n?) + day + 165(}.

Furthermore, the Albanese metric gy on gV is given by

(B+2n)(2 — B8 —2n) + day + 16£¢

< vol(Alb"),

<X17 X1>go =
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_ B+2n—4pn

2 —4
(X1, Xa)gy = IOl (AIY), (X, Xa)yy = p+2n— 460

vol(Alb).

We now determine the modified standard realization ®, : X — G = H3(R). Let
e (1 =1,2,3,4,5,6) be a lift of ¢; € Ey to X and put @0(0(€i)) = 1g. Then it follows
from (2.4.4) and (6.3.1) that the I'-equivariant realization ®y : X — G satisfying

Do (7)) = (@ (3a +7) I 2(C — é“)?m),
@Mma»:<ﬁ_1f&www12«—fxﬁr_®a+vxiﬂ<—a»

B0 (t(2)) = <ﬁ’ (3a +7) I €9 m),

By (£(1)) = < el G 37)4+ 20=9) —/{2>,

By (1(5)) = <1 g, ot 37)4+ 200=8) o, —lot 37)4+ 2(¢ — 5))’
@o(t(@)) = (- 8. —(a+ 37)4+ 2029 )

is the modified harmonic realization, where k1, k9 is two real parameters which indicates
the ambiguity of the realization corresponding to g®. Let {vy,v5} be the Gram-Schmidt
orthonormalization of the basis {u, us}, that is,

v = (ug, u )0, ve = (ug, ug )Y ?vo N(w ——<<u1’u2>>pu
1= ) P, vn = ) ol (A (wp = ot )

and {V1, 5} € g its dual basis. We write V3 := [V4, V3] = V1V, — V4V4. Then we obtain

vy = (—ﬁ i 2772_ 467]) 71/21/4, vy = (—ﬁ + 2772_ 4ﬁ7]> 1/QVOI(AIbF) (UQ + %m)

by (6.3.2). Moreover, we have

V= <B +2n — 4577>1/2X1 1 (6 +2n — 4577)1/2)(2,

2 2 2
) — 480\ /2
V, = <—5 i ”2 577) vol(AIbY) 71X,

Vs = vol(Alb") 71 X,

Finally, we see that 8(®o) € g and the infinitesimal generator A are calculated as

-2
_F < T ol(AIbT) Vs,

NE

B(@0) = Y (le:) — (@) log (do(@) - exp (= pe(3y)))

B —2n
8

e

<.
Il

N =~

A=—-(VZ+V5) - vol(AIb") V3.
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We should observe that the coefficient of 5(®y) does not include the parameters x; and
Ko, though the realization ® has the ambiguity of g(®-components.
Finally, we find the transition probability p : E — (0, 1] defined by (4.4.2), when

1 1 1 1 1 1
f*ﬁ, 77*67 Cil_l’ 04*6, 5*5, ’7*5-
Then we have
1 1 1 910
Yp = —5[62] + 5[04], Pr(Vp) = _EXQ’ vol(AIb") = —

Now consider the function F' = F,(\) : V; x Hom(g¥),R) — (0,00) defined by
(4.4.1). It is useful to write each log (d@o(@)) ‘9(1) (1 = 1,2,3,4,5,6) in terms of the
Albanese basis {V1, V4 }, that is,

_ 2 35 -
log (d®o(e1))],0) = %% + T\/_VQ log (d®o(&))| ) = —V2V4,

~ 2 3 5 . 2 3 5
log (d®o(e3)) ‘gu) = %‘/1 - \5/_‘/'2, log (d®o(e4)) ‘9(1) - _\/7_‘/1 _ \5/_‘/27

& ~ 2 3VO
log (d®o(e5)) ‘gu) = V2V, log (d®o(es)) ‘g(l) = _§V1 + \5/_‘/2

We write A = A\jv; + Avy € Hom(g("), R). Then one has

Fc(\) = i exp (@)\1 + 3—\/5)\2) + éexp ( - \/5)\1) + iexp (?Al - 3\5/5)\2>

+ 1exp ( — QM — ﬁ&) +éeXp <\/§)\1> + %GXP<— g/\l + %g&)v

Fy,(\) = 1eXp ( - ﬁ)\l — 3\/5)\2> + %GXP (\/5)\1> + éexp ( - Q)\l + %/\2),

L (\/5 3V5 ) <\/§2 3\/55 )

1 1
"‘geXp(— \/5)\1> +§€Xp 7)\1 — T)\Q

To find minimizers of the functions Fx(-), Fy(-) and F,(-), we solve the following equations

(0/00) Fx(A, As) = 0, (0/07\)Fy (A, s) = 0, (0)0M)Fy (M, A) = 0,
(0/0X2) Fi (A1, A2) = 0, (0/0A2) Fy(A1, A2) = 0 (0/OX2) Fp(A1, A2) =0

Then we obtain

Ae(x) = (0, %logﬁ),
A(y) = (— \/?ilog %g, ?logi’)), Me(z) = (g log %g, \ggl 3>
Hence we find
F(\(x) = ‘/§3+ L B Ony) = (M) =3-67/



and the transition probability p : Ey — (0, 1] is given by

3-+3 V3—1 3-V3

pler) = 3 ple2) = 1 ples) = 3

pleg == e = Bl e 2
1

p(€1) = p(ea) = p(e3) = p(es) = p(es) = p(es) = 3

Furthermore, we also obtain m(x) = 1/2, m(y) = m(z) = 1/4. Therefore, the homological
direction 7, is computed as

=3 (@ler) — (e e = 2 _4‘;“5(2[(;1] ~lea] + 2[es] — [ea)).

i=1

This implies

Pr(Yp) = L _4:;@{2)(1 — X5 +2x (X)) — (=X2)} = 0,.
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