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2.3 Carnot–Carathéodory metric and homogeneous norms . . . . . . . . . . . . 20

2.4 Discrete geometric analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Discrete geometric analysis on graphs . . . . . . . . . . . . . . . . . 22

2.4.2 Modified harmonic realization of a crystal lattice . . . . . . . . . . 25

2.4.3 Modified harmonic realization of a nilpotent covering graph . . . . . 27

2.5 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Large deviation principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 A measure-change formula for non-symmetric random walks on crystal

lattices and its application 35

3.1 A measure-change technique . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Application to the proof of CLTs . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 A relation with a discrete analogue of Girsanov’s formula . . . . . . . . . . 43

4 CLTs of the first kind for non-symmetric random walks on nilpotent

covering graphs 45

4.1 Settings and Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Proof of Theorem 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Proof of Theorem 4.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 A comment on CLTs of the first kind in the non-centered case . . . . . . . 68

4.5 An explicit representation of the limiting diffusions and a relation with

rough path theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 FCLTs in the case of non-harmonic realizations . . . . . . . . . . . . . . . 75

5 CLTs of the second kind for non-symmetric random walks on nilpotent

covering graphs 79

5.1 Settings and statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5



5.2 A one-parameter family of modified harmonic realizations (Φ
(ε)
0 )0≤ε≤1 . . . 82

5.3 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Proof of Theorem 5.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Examples 109

6.1 The 3D Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 The 3D Heisenberg triangular lattice . . . . . . . . . . . . . . . . . . . . . 110

6.3 The 3D Heisenberg dice lattice . . . . . . . . . . . . . . . . . . . . . . . . . 113

References 119

6



Chapter 1

Introduction

Random walks are one of the most fundamental classes of stochastic processes and well-

studied topics in harmonic analysis, geometry, graph theory and group theory, to say

nothing of probability theory. These are defined to be time-homogeneous Markov chains

whose transition probability is adapted to the structures of the underlying state space.

From the probabilistic and geometric perspectives, many authors have been tried to study

long time asymptotics of random walks in various settings. In particular, a central limit

theorem (CLT), that is, a generalization of the Laplace–de Moivre theorem, must be a

central problem and is studied intensively and extensively. Roughly speaking, the CLT

asserts that the limiting distribution of random walks under an appropriate scaling of

space and time is nothing but the normal distribution. Furthermore, a functional CLT

(Donsker’s invariance principle) is well-known as a stronger assertion and it means that

the distribution of a corresponding rescaled path-valued process converges to that of

Brownian motion. These mathematical backgrounds basically motivate author’s study.

For the classical results on random walks, see Spitzer [66]. We refer to Woess [79] for

rich results on random walks on infinite state spaces with extensive references therein.

See also Lawler–Limic [48] for relation between random walks and potential theory and

Barlow [5] for properties of heat kernels of random walks.

Our main concerns of this thesis are long time asymptotics of random walks on infinite

graphs. In particular, we pay much attention to geometric features of the graph such as the

periodicity and the volume growth, which play important role to obtain the asymptotics

(see e.g., Spitzer [66] and Woess [79]). A covering graph of a finite graph, which is a

discrete analogue of covering spaces, is a basic and typical example equipped with the

above two geometric features. In this study, we usually employ ideas from the method of

homogenization. Generally speaking, homogenization theory is a method which relates

a periodic system to the corresponding homogenized system through a scaling relation

between the time and the underlying state space (cf. Bensoussan–Lions–Papanicolaou [8]).

However, since the notion of the scale change on graphs is not defined, it is not possible

to apply this method directly to the case where the underlying space is an infinite graph.

Therefore, it is necessary to find a realization of the graph, preserving the geometric
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features, in a space on which a scaling is defined.

We now focus on an infinite graph which is equipped with the periodicity. A typical

example of such infinite graphs is a crystal lattice, that is, a covering graph X of a finite

graph X0 whose covering transformation group Γ is finitely generated and abelian. It is

regarded as a generalization of the square lattice, the triangular lattice, the hexagonal

lattice, the dice lattice and so on (see Figure 1.1). We remark that the crystal lattice has

Square lattice Triangular lattice

X0 = X0 =

σ1

σ2

σ1

σ2

Hexagonal lattice

X0 =

σ1

σ2

Dice lattice

X0 =

σ1

σ2

1

Figure 1.1: Crystal lattices with the covering transformation group Γ = ⟨σ1, σ2⟩ ∼= Z2

inhomogeneous local structures though it has a periodic global structure. Let us briefly

review the history of the study of random walks on crystal lattices. In Kotani–Shirai–

Sunada [43], an asymptotic behavior of the n-step transition probability of symmetric

random walks on crystal lattices was obtained. As mentioned above, there is an essential

difficulty to establish CLTs for random walks on crystal lattices, because such a graph

does not have any appropriate spatial scaling. In order to overcome this difficulty, Kotani

and Sunada [41] introduced the notion of standard realization of a crystal lattice X, which

is a discrete harmonic map Φ0 from X into the Euclidean space Γ⊗R equipped with the

Albanese metric associated with the given transition probability. It characterizes an equi-

librium configuration of X in a geometric point of view. In Kotani–Sunada [40], they

discussed the relation between the standard realization of X and the CLT for symmetric

random walks on X. As the scaling limit, they captured a homogenized Laplacian on

Γ ⊗ R. In terms of probability theory, it means that, for fixed 0 ≤ t ≤ 1, a sequence

of Γ⊗ R-valued random variables {n−1/2Φ0(w[nt])}∞n=1 converges to Bt as n → ∞ in law.

Here {wn}∞n=0 is the given symmetric random walk on X and (Bt)0≤t≤1 is a standard
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Brownian motion on Γ⊗ R equipped with the Albanese metric. In their proof, both the

symmetry of the given random walk {wn}∞n=0 and the harmonicity of the realization Φ0

play an important role to show the convergence of the sequence of infinitesimal generators

associated with {n−1/2Φ0(w[nt]) : 0 ≤ t ≤ 1}∞n=1. Indeed, these properties are effectively

used to delete a diverging drift term as n → ∞ from the homogenized Laplacian. See also

Kotani [38] for the proof of CLT for magnetic transition operator on X via this technique.

Moreover, Kotani and Sunada [42] obtained the large deviation principle (LDP) for ran-

dom walks on X (see also Section 2.6). Among these papers, they developed a hybrid

field of several traditional disciplines including graph theory, geometry, discrete group

theory and probability theory. Since this new field, called discrete geometric analysis,

was introduced by Sunada, it has been making new interactions with many other fields.

For example, Le Jan employed discrete geometric analysis effectively in a series of recent

studies of Markov loops (see e.g., [49, 50]). We refer to Sunada [70, 71] for recent progress

of discrete geometric analysis.

On the other hand, it turns out that the notion of volume growth affects the long

time asymptotics of random walks on finitely generated groups or Cayley graphs of them.

Suppose a finitely generated group Γ with the generating set {γ±1
1 , γ±1

2 , . . . , γ±1
ℓ } satisfies

#{γε1
k1
γε2
k2
. . . γεn

kn
| ki = 1, 2, . . . , ℓ, εi = 1,−1, i = 1, 2, . . . , n} ≤ C · V (n) (n ∈ N)

for some constant C > 0 and some function V (n). If V (n) ≤ nd (n ∈ N) for some

d ∈ N, then we call Γ a group of polynomial volume growth. Otherwise, we call it a

group of superpolynomial volume growth. Generally, it is difficult to characterize a finitely

generated group itself in terms of its volume growth. For example, all non-amenable

groups have exponential volume growth, however there are also many amenable groups of

exponential volume growth. In fact, this kind of difficulty comes from the diversity and

complexity of the algebraic structures of finitely generated groups. We refer to Saloff-

Coste [65] for basic problems and results for random walks on such groups including the

case of superpolynomial volume growth. On the contrary, there is a remarkable theorem

on a group of polynomial volume growth due to Gromov, which asserts that it is essentially

characterized as a nilpotent group (cf. Gromov [25] and Ozawa [59]). Hence, we find a

large number of papers on long time asymptotics of symmetric random walks on state

spaces with a nilpotent structure. We refer to Wehn [78], Tutubalin [75] and Stroock–

Varadhan [68] for related early works, Raugi [63], Pap [61], Watkins [77] and Alexopoulos

[3] for CLTs for centered random walks on nilpotent Lie groups. See also Breuillard [10] for

an overview of random walks on Lie groups with extensive references. For local CLTs on

nilpotent Lie groups, Alexopoulos [1, 2], Breuillard [11], Diaconis–Hough [17] and Hough

[28] may be consulted.

In view of these developments, it is natural to ask whether the long time asymptotic of

random walks on a covering graph X whose covering transformation group Γ is a finitely

generated group of polynomial volume growth is obtained or not. The graphX is regarded

as a generalization of a crystal lattice or the Cayley graph of a finitely generated group
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of polynomial volume growth. A typical example of such Γ is the 3-dimensional (3D)

discrete Heisenberg group Γ = H3(Z) (see Figure 1.2). Thanks to Gromov’s theorem

mentioned above, Γ has a finite extension of a torsion free nilpotent subgroup Γ̃ ◁ Γ.

Therefore, X is regarded as a covering graph of the finite quotient graph Γ̃\X whose

covering transformation group is Γ̃. Hence, we may assume that X is a covering graph of

a finite graph X0 whose covering transformation group Γ is a finitely generated, torsion

free nilpotent group of step r (r ∈ N) without loss of generality. We now mention a few

related works on long time asymptotics of random walks on a Γ-nilpotent covering graph

X. Ishiwata [29] discussed symmetric random walks on X and extended the notion of

standard realization of crystal lattices to the nilpotent case, so that the similar problems to

the case of crystal lattices could be considered. As a result, a semigroup CLT was obtained

through the standard realization Φ0 of X into a nilpotent Lie group G = GΓ such that Γ

is isomorphic to a cocompact lattice in G equipped with a scalar multiplication called a

one-parameter family of canonical dilations (τε)ε>0 (cf. Malcév [56]). More precisely, he

captured the homogenized sub-Laplacian on G associated with the Albanese metric on

g(1) as the CLT-scaling limit. Here g(1) stands for the generating part of the Lie algebra

g of G. We note that the diverging drift term appears only in g(1)-direction due to the

basic property of the dilation operator. Hence, it is sufficient to introduce the notion of

harmonicity of the realization Φ0 only on g(1) for proving the CLT in the nilpotent case.

In spite of such developments, long time asymptotics of non-symmetric random walks on

nilpotent covering graphs have not been studied sufficiently though an LDP on X was

obtained in Tanaka [72] (see also Section 2.6).

Case.2 ,ʹ࣍ ΓͷੜݩΛมͯ͠ߋಘΒΕΔผͷ CayleyάϥϑX = (V,E)্ͷ͋Δඇ
ରশϥϯμϜΥʔΫΛߏ͢Δ. ·ͣ, Γͷੜݩ γ1, γ2, γ3Λ

γ1 =

⎛

⎜⎝
1 1 0

0 1 0

0 0 1

⎞

⎟⎠ , γ2 =

⎛

⎜⎝
1 0 0

0 1 1

0 0 1

⎞

⎟⎠ , γ3 =

⎛

⎜⎝
1 0 1

0 1 0

0 0 1

⎞

⎟⎠

Ͱ༩͑Δ. γ1, γ2, γ3ٴͼ͜ΕΒͷݩٯୈ 2छඪ४࠲ඪܥʹΑͬͯ,

γ1 ←→ (1, 0, 0), γ2 ←→ (0, 1, 0), γ3 ←→ (0, 0, 1)

γ−1
1 ←→ (−1, 0, 0), γ−1

2 ←→ (0,−1, 0), γ−1
3 ←→ (0, 0,−1)

ͱಉҰ͞ࢹΕΔ.

z
y

x

O

ਤ 12 : ࢄHeisenberg܈ Γͷ CayleyάϥϑͷҰ෦, ͦͷ 2.

͞Βʹ, γ1, γ2, γ3 exp−1 : GΓ −→ gʹΑͬͯ, .ͷΑ͏ʹҠΔ࣍

exp−1(γ1) = X1, exp−1(γ2) = X2, exp−1(γ3) = X3.

Γ CayleyάϥϑX .ΔͷͱఆΊΔ͢༺࡞ʹͷΑ͏࣍ʹ g = (x, y, z) ∈ Γʹରͯ͠,

γ1g = (x+ 1, y, z + y), γ2g = (x, y + 1, z), γ3g = (x, y, z + 1),

γ−1
1 g = (x− 1, y, z − y), γ−1

2 g = (x, y − 1, z), γ−1
3 g = (x, y, z − 1).

ਤ 12͜ͷ߹ͷ CayleyάϥϑX ͷҰ෦Λද͢. O Γͷ୯Ґݩ 1Γ ↔ (0, 0, 0)Λද͢.

74

Figure 1.2: A part of the Cayley graph of Γ = H3(Z)

If we consider the non-symmetric case, the same method as the symmetric case does

not work well for proving CLTs because the diverging drift term arising from the non-

symmetry of the given random walk does not vanish. To overcome this difficulty, Ishiwata,
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Kawabi and Kotani [31] introduced two kinds of schemes for proving functional CLTs

(FCLTs) for a non-symmetric random walk {wn}∞n=0 on a crystal lattice X. One is to

replace the usual transition operator by the transition-shift operator, which “deletes”

the diverging drift term. Combining this scheme with a modification of the harmonicity

of the realization Φ0, they proved that a sequence
{
n−1/2

(
Φ0(w[nt]) − [nt]ρR(γp)

)
; 0 ≤

t ≤ 1
}∞
n=1

converges in law to a Γ ⊗ R-valued standard Brownian motion (Bt)t≥0 as

n → ∞. Here ρR(γp) ∈ Γ ⊗ R is the so-called asymptotic direction which appears in

the law of large numbers for the random walk {Φ0(wn)}∞n=0 on Γ ⊗ R (see Proposition

2.5.1). The other is to introduce a one-parameter family of Γ ⊗ R-valued random walks

(ξ(ε))0≤ε≤1 which “weakens” the diverging drift term, where this family interpolates the

original non-symmetric random walk ξ
(1)
n := Φ0(wn) (n = 0, 1, 2, . . .) and the symmetrized

one ξ(0). Putting ε = n−1/2 and letting n → ∞, we capture a drifted Brownian motion

(Bt+ρR(γp)t)0≤t≤1 as the limit of a sequence
{
n−1/2ξ

(n−1/2)
[nt] ; 0 ≤ t ≤ 1

}∞
n=1

. See Trotter [74]

for related early works. It is worth mentioning that this scheme is well-known in the study

of the hydrodynamic limit of weakly asymmetric exclusion processes. See e.g., Kipnis–

Landim [36], Tanaka [72] and references therein. In Alexopoulos [2], a non-centered

random walk on a finitely generated group of polynomial volume growth Γ is discussed.

For the same reason as above, in the non-centered case, the diverging drift term prevents

us from obtaining CLTs. He introduced another kind of scheme to avoid this problem. It

is to establish a measure-change formula for the given non-centered transition probability

on Γ, to “change” the situation into the drftless one. We note that it corresponds to a

kind of Girsanov’s formula on Γ. As an application of this scheme, he proved a CLT and

a generalization of the Berry–Esseen type estimate for non-centered random walks on Γ.

The main purpose of this thesis is to investigate long time asymptotics of non-symmetric

random walks on covering graphs in view of the three schemes explained above. We now

state frameworks and results with the organization of this thesis.

Chapter 2: We lay the foundations that will be needed in all subsequent chapters. We

give several definitions, notations and properties of graphs and random walks, as well as

those of function spaces on a metric space in Section 2.1. We review basic materials on

nilpotent Lie groups and corresponding Lie algebras in Section 2.2. In particular, the

notion of limit group of a nilpotent Lie group is introduced, which is defined by a certain

deformation of the original Lie-group product through the dilation operator. Note that

it plays a very important role to establish main results in Chapters 4 and 5. Section

2.3 concerns with two notions on nilpotent Lie groups. One is the Carnot–Carathéodory

metric, which is an intrinsic metric appeared in the context of sub-Riemannian geometry.

The other is homogeneous norms, which is compatible with dilations and behaves like a

“norm” on G. In Section 2.4, we summarize the theory of discrete geometric analysis

on finite graphs which was developed by Kotani and Sunada. After that, we apply the

theory to introduce the notion of modified harmonic realization of both a crystal lattice

and a nilpotent covering graph (Definitions 2.4.5 and 2.4.6). As is well-known, there is an

important relation between the notion of martingale and that of harmonicity. In Section
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2.5, such relations for Markov chains with values in both a crystal lattice and a nilpotent

covering graph are clearly stated (Lemmas 2.5.1 and 2.5.3). Finally, in Section 2.6, we

summarize the known results on LDP on covering graphs due to Kotani–Sunada [42, 39]

and Tanaka [72], with a relation between the LDPs and geometric aspects such as the

Gromov–Hausdorff limit of scaled covering graphs.

Chapter 3: The content of this chapter is based on author’s paper [58], discussing a

measure-change formula for non-symmetric random walks on a Γ-crystal lattice X. In

Section 3.1, we establish the measure-change formula by using a variational method due

to Alexopoulos [2]. We introduce a function F : X0 ×Hom(Γ,R) −→ R by (3.1.1), where

X0 = Γ\X is the quotient graph. We show that, for a fixed vertex x ∈ X0, there exists

a unique minimizer λ∗ = λ∗(x) ∈ Hom(Γ,R) of the function F (Lemma 3.1.1). By using

this minimizer λ∗(x), we then construct a new transition probability p on the crystal

lattice such that it is still non-symmetric but the asymptotic direction ρR(γp) vanishes

(see (3.1.4) for the definition). This means that, under the new transition probability

p, the modified harmonic realization Φ0 is regarded as the harmonic realization. We

apply the measure-change formula to give yet another approach to the proof of CLTs

(Lemma 3.2.3 and Theorem 3.2.1) for non-symmetric random walks on a crystal lattice

in Section 3.2. More precisely, we show that, in a Hölder space over Γ ⊗ R, a sequence

{n−1/2Φ0(w
(p)
[nt]) : 0 ≤ t ≤ 1}∞n=1 converges in law to a Γ ⊗ R-valued standard Brownian

motion (Bt)0≤t≤1 as n → ∞. Here {w(p)
n }∞n=0 is the random walk on X governed by the

changed transition probability p. In the proof, the diverging drift term vanishes thanks to

the (p-)harmonicity of the realization Φ0. Moreover, an asymptotic relation between the

given n-step transition probability and the changed one is also discussed (see Theorem

3.2.5). The measure-change formula is regarded as a discrete analogue of Girsanov’s

formula, which is well-studied in stochastic analysis. Indeed, in Fujita [23], a discrete

Girsanov’s formula for non-symmetric random walks on Z1 was established. We discuss

a relation between our formula and the above Girsanov’s formula in the case where the

quotient graph is a bouquet graph in Section 3.3.

Chapter 4: This chapter is based on author’s paper [32], which is jointwork with Satoshi

Ishiwata and Hiroshi Kawabi. We establish CLTs for non-symmetric random walks on a

Γ-nilpotent covering graph X by using the transition-shift scheme mentioned above. We

give settings and statements of main results in Section 4.1. Let Φ0 : X −→ G = GΓ be

the modified standard realization of X, where the Lie algebra g of G is equipped with the

Albanese metric. Since the modified harmonicity of Φ0 is defined only on g(1), we remark

that the modified harmonic realization Φ0 has the ambiguity except for the component

corresponding to g(1). Through the map Φ0, in Section 4.2, we obtain a semigroup CLT

(Theorem 4.1.2), which means that the n-th iteration of the “transition shift operator”

converges to a diffusion semigroup on G as n → ∞ with a suitable scale change on

G. The infinitesimal generator −A of the diffusion semigroup is the homogenized sub-

Laplacian with a non-trivial g(2)-valued drift β(Φ0) arising from the non-symmetry of the

given random walk, where g(2) := [g(1), g(1)]. The drift β(Φ0) seems to depend on the
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choice of a modified harmonic realization Φ0 due to the g(2)-ambiguity mentioned above.

On the contrary, we show that it is independent of the choice of Φ0 (Proposition 4.2.3).

Furthermore, by imposing an additional natural condition (C), we prove an FCLT in

a Hölder space over G (Theorem 4.1.3) in Section 4.3. Note that the FCLT is much

stronger than Theorem 4.1.2. Roughly speaking, we capture a G-valued diffusion process

associated with −A through the CLT-scaling limit of the non-symmetric random walk on

X. We call the condition (C) the centered condition. As is emphasized in Breuillard [10,

Section 6], the situation of the non-centered case is quite different from the centered case

and thus some technical difficulties arise to obtain CLTs. That is why there are few papers

which discuss CLTs for non-centered random walks on nilpotent Lie groups. We obtain,

in Theorem 4.1.2, a semigroup CLT for the non-centered random walk {ξn := Φ0(wn)}∞n=0

on G with a canonical dilation τn−1/2 , while Crépel–Raugi [15] and Raugi [63] proved

similar CLTs for the random walk to (4.1.6) with spatial scalings whose orders are higher

than τn−1/2 . On the other hand, we need to assume the centered condition (C) to obtain

an FCLT (Theorem 4.1.3) for {ξn}∞n=0 in the Hölder topology, which is stronger than the

uniform topology. In Section 4.4, we extend the measure-change method established in

Section 3 to the nilpotent case and establish a CLT and an FCLT (Theorems 4.4.2 and

4.4.3) as generalizations of Theorems 4.1.2 and Theorem 4.1.3.

Let us give another motivation of this study from rough path theory, which will be

discussed in Section 4.5. It is known that rough path theory was initiated by Lyons in [54]

to discuss line integrals and ordinary differential equations (ODEs) driven by an irregular

path such as a sample path of Brownian motion B = (Bt)0≤t≤1 on Rd. Rough path theory

makes us possible to handle a Stratonovich type stochastic differential equation (SDE)

driven by Brownian motion B as a deterministic ODE driven by standard Brownian

rough path (i.e., Stratonovich enhanced Brownian motion) B = (B,B), where B is a

couple of Brownian motion B itself and its Stratonovich iterated integral B. Thus, rough
path theory provides a new insight to the usual SDE-theory and it has developed rapidly

in stochastic analysis. For more details on an overview of rough path theory and its

applications to stochastic analysis, see Lyons–Qian [55], Friz–Victoir [22] and Friz–Hairer

[19]. In the rough path framework, several authors have studied Donsker-type invariance

principles. Among them, Breuillard–Friz–Huesmann [12] first studied this problem for

Brownian rough path. Namely, they captured Stratonovich enhanced Brownian motion

B = (B,B) on Rd as the usual CLT-scaling limit of the natural rough path lift of an

Rd-valued random walk with the centered condition. We also refer to Bayer–Friz [6]

for applications to cubature and Chevyrev [14] for a recent study on an extension to

the case of Lévy processes. Here we should note that there are good approximations to

Brownian motion which do not converge to B but instead to a distorted Brownian rough

path B = (B,B+β), where β is an anti-symmetric perturbation of B. For example, Friz–

Gassiat–Lyons [18] constructed such a rough path called magnetic Brownian rough path

as the small mass limit of the natural rough path lift of a physical Brownian motion on Rd

in a magnetic field. Through this approximation, they showed an effect of the magnetic
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field appears explicitly in the anti-symmetric perturbation term β. See also e.g., Lejay–

Lyons [51] and Friz–Oberhauser [21] for related results on this topic. In view of the

background described above, we discuss a random walk approximation of the distorted

Brownian rough path B from a perspective of discrete geometric analysis. Since the

unique Lyons extension of B of order r (r ≥ 2) can be regarded as a diffusion process on

a free step-r nilpotent Lie group G(r)(Rd), we obtain such a diffusion process in Corollary

4.5.4 through the CLT-scaling limit of a non-symmetric random walk on a nilpotent

covering graph X as a direct application of Theorem 4.1.3. Besides, we observe that the

non-symmetry of the random walk on X affects the anti-symmetric perturbation term of

B explicitly. Recently, Lopusanschi–Simon [53] and Lopusanschi–Orenshtein [52] proved

a similar invariance principle for B to ours. However, they did not discuss an explicit

relation between the perturbation term, called the area anomaly, and the non-symmetry

of the given random walk. In view of that, Corollary 4.5.4 gives a new approach to such

an invariance principle in that we pay much attention to the non-symmetry of random

walks on X.

Finally, in Section 4.6, we concern with an FCLT for a non-symmetric random walk

{wn}∞n=0 on X through a non-harmonic realization Φ : X −→ G, though the modified

harmonicity of realizations play an important role in the proof of the FCLT (Theorem

4.1.3). We employ the so-called corrector method, which is often used in the study of

invariance principles on random media (see e.g., Kumagai [45]). By noting the definition

of the (g(1)-)modified harmonic realization Φ0, we introduce the g(1)-corrector of a non-

harmonic realization Φ by the difference of g(1)-components of Φ and Φ0. In fact, we notice

that this corrector is easy to estimate thanks to the periodicity of these realizations.

By using the estimation, we show that, under the centered condition, the sequence of

stochastic processes given by the geodesic interpolation of the G-valued scaled random

walk {τn−1/2Φ(wk)}nk=0 also converges to the same diffusion as captured in Theorem 4.1.3.

See Theorem 4.6.2 for details.

Chapter 5: This chapter is based on author’s paper [33], which is jointwork with Satoshi

Ishiwata and Hiroshi Kawabi. As a continuation of Section 4, we study another kind of

CLTs for a non-symmetric random walk {wn}∞n=0 on a Γ-nilpotent covering graph X by

applying the scheme for weakening the diverging drift term. Settings and statements of

main results are given in Section 5.1. We first introduce a one-parameter family of transi-

tion probabilities (pε)0≤ε≤1 on X as the linear interpolation between the given transition

probability p1 := p and the symmetrized one p0, that is, pε := p0 + ε(p− p0) (0 ≤ ε ≤ 1).

For each ε, we take a modified harmonic realization Φ
(ε)
0 : X −→ G associated with the

transition probability pε, and define a one-parameter family of G-valued random walks

(ξ(ε))0≤ε≤1 by ξ
(ε)
n := Φ

(ε)
0 (wn) (n = 0, 1, 2, . . .). In Section 5.2, several properties of the

family of modified harmonic realizations (Φ
(ε)
0 )0≤ε≤1 are discussed. In the proof of a main

result (Theorem 5.1.1), a g(2)-valued drift β(ε)(Φ
(ε)
0 ), which is like β(Φ0) in Section 4, will

appear in the limiting infinitesimal generator and we need to know the behavior of it

as ε ↘ 0. We show that the sequence of g(2)-valued drift vanishes as ε ↘ 0 under a
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natural condition (A1). See Proposition 5.2.1. As a result, by putting ε = n−1/2 and

letting n → ∞, we prove a CLT (Theorem 5.1.1) for the family of G-valued random

walks {ξ(n−1/2)}∞n=1 in Section 5.3. Furthermore, in Section 5.4, we show that a sequence{
τn−1/2

(
ξ
(n−1/2)
[nt]

)
: 0 ≤ t ≤ 1

}∞
n=1

converges in law to a G-valued diffusion process as

n → ∞ under suitable assumptions (A1) and (A2). See Theorem 5.1.2. Here the dif-

fusion process is generated by the homogenized sub-Laplacian with the g(1)-valued drift

ρR(γp) defined on G equipped with the Albanese metric g
(0)
0 associated with the sym-

metrized transition probability p0. To our best knowledge, there seems to be few results

on CLTs in the nilpotent setting in which a g(1)-valued drift appears in the infinitesimal

generator of the limiting diffusion. On the other hand, as we have already mentioned,

there are many papers on CLTs in which g(2)-valued drift like β(Φ0) appears in the in-

finitesimal generator of the limiting diffusion. In view of these circumstances, the study

of the long time asymptotics of random walks on more general graphs by applying our

“weakening” scheme would be an interesting problem. In closing this section, we sum-

marize the limiting infinitesimal generators and limiting diffusions captured in Chapters

4 and 5, as well as them on crystal lattices captured in Ishiwata–Kawabi–Kotani [31].

Chapter 6: This chapter is based on the author’s paper [32], which is jointwork with

Satoshi Ishiwata and Hiroshi Kawabi. We give several concrete examples of non-symmetric

random walks on Γ-nilpotent covering graphs in the case where Γ is the 3D discrete

Heisenberg group H3(Z). We review some basics on H3(Z) in Section 6.1. We consider

a non-symmetric random walk on the 3D Heisenberg triangular lattice (resp. the 3D

Heisenberg dice lattice) in Section 6.2 (resp. in Section 6.3), as a generalization of the

triangular lattice (resp. the dice lattice) to the nilpotent case. In both sections, explicit

calculations on several quantities of random walks and several figures are given.
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Chapter 2

Preliminaries

2.1 Notations

Let X = (V,E) be a locally finite, connected and oriented graph, where V is the set of all

vertices and E is the set of all oriented edges. The graph X possibly have multiple edges

or loops and is equipped with the discrete topology induced by the graph distance. For an

edge e ∈ E, we denote by o(e) and t(e) the origin and the terminus of e, respectively. The

inverse edge of e ∈ E is defined by an edge, say e, satisfying o(e) = t(e) and t(e) = o(e).

Let Ex be the set of all edges whose origin is x ∈ V , that is, Ex = {e ∈ E | o(e) = x}.
A path c in X of length n is a sequence c = (e1, e2, . . . , en) of n edges e1, e2, . . . , en ∈ E

with o(ei+1) = t(ei) for i = 1, 2, . . . , n − 1. We denote by Ωx,n(X) the set of all paths in

X of length n ∈ N ∪ {∞} starting from x ∈ V . Put Ωx(X) = Ωx,∞(X) for simplicity.

We introduce a transition probability, that is, a function p : E −→ [0, 1] satisfying∑
e∈Ex

p(e) = 1 (x ∈ V ) and p(e) + p(e) > 0 (e ∈ E).

The value p(e) represents the probability that a particle at the origin o(e) moves to the

terminus t(e) along the edge e ∈ E in a unit time. The random walk associated with p

is the X-valued time-homogeneous Markov chain (Ωx(X),Px, {wn}∞n=0), where Px is the

probability measure on Ωx(X) satisfying

Px

(
{c = (e1, e2, . . . , en, ∗, ∗, . . . )}

)
= p(e1)p(e2) · · · p(en)

(
c ∈ Ωx(X)

)
and wn(c) := o(en+1) for n ∈ N ∪ {0} and c = (e1, e2, . . . , en, . . . ) ∈ Ωx(X).

We define the transition operator L associated with the transition probability p by

Lf(x) :=
∑
e∈Ex

p(e)f
(
t(e)
)

(x ∈ V, f : V −→ R)

and the n-step transition probability p(n, x, y) by

p(n, x, y) := Lnδy(x) (n ∈ N, x, y ∈ V ),
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where δy stands for the Dirac delta function at y. We put p(c) = p(e1)p(e2) · · · p(en)
for c = (e1, e2, . . . , en) ∈ Ωx,n(X). If there is a function m : V −→ (0,∞) such that

p(e)m
(
o(e)

)
= p(e)m

(
t(e)
)
for e ∈ E, then the random walk is called (m-)symmetric or

reversible, and the function m is called a reversible measure. Note that m is determined

up to constant multiplication.

For a metric space T , we denote by C∞(T ) the space of all continuous functions

f : T −→ R vanishing at infinity with the usual sup-norm ∥f∥T∞ = supx∈T |f(x)|. We also

denoted by C0(T ) the space of all continuous functions which are supported compactly.

Throughout this thesis, C denotes a positive constant that may change from line to line

and O(·) stands for the Landau symbol. If the dependence of C and O(·) are significant,

we denote them like C(N) and ON(·), respectively.

2.2 Nilpotent Lie groups and its limit groups

Let us review some properties of nilpotent Lie groups and the corresponding limit group.

For more details, see e.g., Alexopoulos [1] and Ishiwata [29]. We also refer to Alexopoulos

[2, 3] Crépel–Raugi [15] and Goodman [24] for related topics.

Let (G, ·) be a connected and simply connected nilpotent Lie group of step r and

(g, [·, ·]) the corresponding Lie algebra. Note that the exponential map exp : g −→ G is

globally defined and thus log = exp−1 : G −→ g is also globally defined.

We now construct a new product ∗ on G in the following manner. Set n1 := g and

nk+1 := [g, nk] for k ∈ N. Since g is nilpotent, we have

g = n1 ⊃ n2 ⊃ · · · ⊃ nr ⊋ nr+1 = {0g}.

The integer r is called the step number of g or G. We define the subspace g(k) of g

by nk = g(k) ⊕ nk+1 for k = 1, 2, . . . , r. Then the Lie algebra g is decomposed as g =

g(1) ⊕ g(2) ⊕ · · · ⊕ g(r) and each Z ∈ g is uniquely written as Z = Z(1) + Z(2) + · · ·+ Z(r),

where Z(k) ∈ g(k) for k = 1, 2, . . . , r. We define a map τ
(g)
ε : g −→ g by

τ (g)ε (Z) := εZ(1) + ε2Z(2) + · · ·+ εrZ(r) (ε ≥ 0, Z ∈ g)

and also define a Lie bracket product [[·, ·]] on g by

[[Z1, Z2]] := lim
ε↘0

τ (g)ε

[
τ
(g)
1/ε(Z1), τ

(g)
1/ε(Z2)

]
(Z1, Z2 ∈ g).

We introduce a map τε : G −→ G, called the dilation operator on G, by

τε(g) := exp
(
τ (g)ε

(
log (g)

))
(ε ≥ 0, g ∈ G),

which, roughly speaking, gives the scalar multiplication on G. We note that τε may not

be a group homomorphism, though it is a diffeomorphism on G. The inverse map of τε is
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given by τ1/ε for ε > 0. By making use of the dilation map τε, a Lie-group product ∗ on

G is defined as follows:

g ∗ h := lim
ε↘0

τε
(
τ1/ε(g) · τ1/ε(h)

)
(g, h ∈ G). (2.2.1)

The Lie group G∞ = (G, ∗) is called the limit group of (G, ·). Note that the Lie group G

is stratified of step r in the sense that (g, [[·, ·]]) is decomposed as g =
⊕r

k=1 g
(k) satisfying

[[g(k), g(ℓ)]]

{
⊂ g(k+ℓ) (k + ℓ ≤ r),

= 0g (k + ℓ > r),

and the subspace g(1) generates g. The Lie algebra g∞ of G∞ = (G, ∗) coincides with

(g, [[·, ·]]) (cf. [29, Lemma 2.1]). It should be noted that the dilation map τε : G −→ G

is a group automorphism on (G, ∗) (see [29, Lemma 2.1]). The exponential map exp :

g∞ −→ G∞ coincides with the original exponential map exp : g −→ G. Furthermore, for

any g ∈ G, the inverse element of g in (G, ·) coincides with the inverse element in (G, ∗).
We set dk = dimR g

(k) for k = 1, 2, . . . , r and d = d1+d2+ · · ·+dr. For k = 1, 2, . . . , r,

we denote by {X(k)
1 , X

(k)
2 , . . . , X

(k)
dk

} a basis of the subspace g(k). We introduce several

kinds of global coordinate systems in G through exp : g −→ G. We identify the nilpotent

Lie group G with Rd as a differentiable manifold by

• canonical (·)-coordinates of the first kind :

Rd ∋ (g(1), g(2), . . . , g(r)) 7−→ g = exp
( r∑

k=1

dk∑
i=1

g
(k)
i X

(k)
i

)
∈ G,

• canonical (·)-coordinates of the second kind :

Rd ∋(g(1), g(2), . . . , g(r))
7−→ g = exp

(
g
(r)
dr
X

(r)
dr

)
· exp

(
g
(r)
dr−1X

(r)
dr−1

)
· · · · · exp

(
g
(r)
1 X

(r)
1

)
· exp

(
g
(r−1)
dr−1

X
(r−1)
dr−1

)
· exp

(
g
(r−1)
dr−1−1X

(r−1)
dr−1−1

)
· · · · · exp

(
g
(r−1)
1 X

(r−1)
1

)
· · · · exp

(
g
(1)
d1
X

(1)
d1

)
· exp

(
g
(1)
d1−1X

(1)
d1−1

)
· · · · · exp

(
g
(1)
1 X

(1)
1

)
∈ G,

• canonical (∗)-coordinates of the second kind :

Rd ∋(g(1)∗ , g(2)∗ , . . . , g(r)∗ )

7−→ g = exp
(
g
(r)
dr∗X

(r)
dr

)
∗ exp

(
g
(r)
dr−1∗X

(r)
dr−1

)
∗ · · · ∗ exp

(
g
(r)
1∗ X

(r)
1

)
∗ exp

(
g
(r−1)
dr−1∗X

(r−1)
dr−1

)
∗ exp

(
g
(r−1)
dr−1−1∗X

(r−1)
dr−1−1

)
∗ · · · ∗ exp

(
g
(r−1)
1∗ X

(r−1)
1

)
∗ · · · ∗ exp

(
g
(1)
d1∗X

(1)
d1

)
∗ exp

(
g
(1)
d1−1∗X

(1)
d1−1

)
∗ · · · ∗ exp

(
g
(1)
1∗ X

(1)
1

)
∈ G∞,

where we write g(k) = (g
(k)
1 , g

(k)
2 , . . . , g

(k)
dk

) ∈ Rdk for k = 1, 2, . . . , r.
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We give the relations between the deformed product and the given product on G as

an easy application of the Campbell–Baker–Hausdorff (CBH) formula

log
(
exp(Z1) · exp(Z2)

)
= Z1 + Z2 +

1

2
[Z1, Z2] + · · · (Z1, Z2 ∈ g). (2.2.2)

The following is straightforward from the definition of the deformed product.

log (g ∗ h)
∣∣
g(k)

= log (g · h)
∣∣
g(k)

(g, h ∈ G, k = 1, 2). (2.2.3)

We notice that the relation above does not hold in general for k = 3, 4, . . . , r. The following

identities give us a comparison between (·)-coordinates and (∗)-coordinates. For g ∈ G,

we have the following.

g
(k)
i∗ = g

(k)
i (i = 1, 2, . . . , dk, k = 1, 2), (2.2.4)

g
(k)
i∗ = g

(k)
i +

∑
0<|K|≤k−1

CKPK(g) (i = 1, 2, . . . , dk, k = 3, 4, . . . , r) (2.2.5)

for some constant CK , where K stands for a multi-index
(
(i1, k1), (i2, k2), . . . , (iℓ, kℓ)

)
with

length |K| := k1 + k2 + · · ·+ kℓ and PK(g) := g
(k1)
i1

· g(k2)i2
· · · g(kℓ)iℓ

. The invariances (2.2.3)

and (2.2.4) play an important role to obtain main results. For g, h ∈ G, we also have

(g ∗ h)(k)i∗ = (g · h)(k)i (i = 1, 2, . . . , dk, k = 1, 2), (2.2.6)

(g ∗ h)(k)i∗ = (g · h)(k)i +
∑

|K1|+|K2|≤k−1
|K2|>0

CK1,K2PK1
∗ (g)PK2(g · h)

(i = 1, 2, . . . , dk, k = 3, 4, . . . , r) (2.2.7)

by using (2.2.4) and (2.2.5), where PK
∗ (g) := g

(k1)
i1

∗ g(k2)i2
∗ · · · ∗ g(kℓ)iℓ

. See [29, Section 2]

for more details.

2.3 Carnot–Carathéodory metric and homogeneous

norms

As is well-known, a nilpotent Lie group G is a candidate of the typical sub-Riemannian

manifolds, which is a certain generalization of a Riemannian manifold. The notion of the

Carnot–Carathéodory metric naturally appears when we investigate distances between

two points in G. It is an important intrinsic metric in this context and is degenerate in

the sense that we only go along curves which are tangent to a “horizontal subspace” of

the tangent space of G. We discuss several properties of the Carnot–Carathéodory metric

on a nilpotent Lie group G in this section. Note that the definition of such an intrinsic

metric in more general setting is found in some references. See e.g., Varopoulos–Saloff-

Coste–Coulhon [76] for details.

We start with the definition of the Carnot–Carathéodory metric on G.
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Definition 2.3.1 We endow G with the Carnot–Carathéodory metric dCC, which is an

intrinsic metric defined by

dCC(g, h) := inf
{∫ 1

0

∥ẇt∥g(1) dt
∣∣∣w ∈ Lip([0, 1];G), w0 = g, w1 = h,

w is tangent to g(1)

}
(2.3.1)

for g, h ∈ G, where we write Lip([0, 1];G) for the set of all Lipschitz continuous paths and

∥ · ∥g(1) stands for a norm on g(1).

We see that the subspace g(1) satisfies the so-called Hörmander condition in g, that is,

Lg(1)(g) = TgG for any g ∈ G, where Lg(1)(g) denotes the evaluation of g(1) at g ∈ G. The

Carnot-Carathéodory metric is then well-defined in the sense that dCC(g, h) < ∞ for every

g, h ∈ G, thanks to the Hörmander condition on g(1) (cf. Mitchell [57]). Furthermore, the

topology induced by the Carnot-Carathéodory metric dCC coincides with the original one

of G. We emphasize that dCC is behaved well under dilations. More precisely, we have

dCC

(
τε(g), τε(h)

)
= εdCC(g, h) (ε ≥ 0, g, h ∈ G). (2.3.2)

We now present the notion of homogeneous norm on G. The one-parameter group of

dilations (τε)ε≥0 allows us to consider scalar multiplications on nilpotent Lie groups. We

replace the usual Euclidean norms by the following functions.

Definition 2.3.2 A continuous function ∥ · ∥ : G −→ [0,∞) is called a homogeneous

norm on G if

(i) ∥g∥ = 0 if and only if g = 1G, and

(ii) ∥τεg∥ = ε∥g∥ for ε ≥ 0 and g ∈ G.

One of the typical examples of homogeneous norms is given by the Carnot–Carathéodory

metric dCC. We define a continuous function ∥ · ∥CC : G −→ [0,∞) by

∥g∥CC := dCC(1G, g) (g ∈ G).

Then ∥ · ∥CC is a homogeneous norm on G thanks to (2.3.2). Another basic homogeneous

norm is given in the following way. We denote by {X(k)
1 , X

(k)
2 , . . . , X

(k)
dk

} a basis of g(k)

for k = 1, 2, . . . , r. We introduce a norm ∥ · ∥g(k) on g(k) by the usual Euclidean one. If

Z ∈ g is decomposed as Z = Z(1) + Z(2) + · · · + Z(r) (Z(k) ∈ g(k)), we define a function

∥ · ∥g : g −→ [0,∞) by

∥Z∥g :=
r∑

k=1

∥Z(k)∥1/k
g(k)

.

We set ∥g∥Hom := ∥ log (g)∥g for g ∈ G. We then observe that ∥ · ∥Hom is a homogeneous

norm on G. The homogenuity (ii) leads to the most important fact that all homogeneous

norms on G are equivalent, which is similar to the case of norms on Euclidean space.

More precisely, we have the following.
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Proposition 2.3.3 (cf. Goodman [24]) If ∥ · ∥1 and ∥ · ∥2 are two homogeneous norms

on G, then there exists a constant C > 0 such that

1

C
∥g∥1 ≤ ∥g∥2 ≤ C∥g∥1 (g ∈ G).

For more details, we also refer to Bonfiglioli–Lanconelli–Uguzzoni [9].

2.4 Discrete geometric analysis

2.4.1 Discrete geometric analysis on graphs

We present some basics of discrete geometric analysis on graphs due to Kotani–Sunada [42]

or Sunada [69, 70, 71]. We consider a finite graphX0 = (V0, E0) and an irreducible random

walk on X0 associated with a non-negative transition probability p : E0 −→ [0, 1]. We

find a unique positive function m : V0 −→ (0, 1], which is called the invariant probability

measure on V0, by applying the Perron–Frobenius theorem. We put m̃(e) := p(e)m
(
o(e)

)
for e ∈ E0. We easily see that m̃ has the following properties:∑

e∈E0

m̃(e) = 1, m(x) =
∑

e∈(E0)x

m̃(e) (x ∈ V ).

We define the symmetry and the non-symmetry of the random walk on X0.

Definition 2.4.1 The random walk on X0 is said to be (m-)symmetric if m̃(e) = m̃(e)

holds for e ∈ E0. Otherwise, it is called (m-)non-symmetric.

We define the 0-chain group and the 1-chain group of X0 by

C0(X0,R) :=
{∑

x∈V0

axx
∣∣∣ ax ∈ R

}
, C1(X0,R) :=

{∑
e∈E0

aee
∣∣∣ ae ∈ R, e = −e

}
,

respectively. The boundary operator ∂ : C1(X0,R) −→ C0(X0,R) is defined by the linear

map satisfying ∂(e) = t(e) − o(e) for e ∈ E0. Note that ∂(e) = −∂(e) for e ∈ E0 due to

e = −e. The first homology group H1(X0,R) is defined by Ker (∂) ⊂ C1(X0,R), which is

a vector space over R whose dimension is |E0|/2− |V0|+ 1. We also define the 0-cochain

group and the 1-cochain group by

C0(X0,R) := {f : V0 −→ R}, C1(X0,R) := {ω : E0 −→ R |ω(e) = −ω(e)},

respectively. An element of C1(X0,R) is also called a 1-form on X0. We equip C0(X0,R)
and C1(X0,R) with inner products given by

⟨f1, f2⟩0 =
∑
x∈V0

f1(x)f2(x)
(
f1, f2 ∈ C0(X0,R)

)
,

⟨ω1, ω2⟩1 =
1

2

∑
e∈E0

ω1(e)ω2(e)
(
ω1, ω2 ∈ C1(X0,R)

)
,
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respectively. We introduce the difference operator d : C0(X0,R) −→ C1(X0,R) by the

linear map satisfying df(e) = f
(
t(e)
)
− f
(
o(e)

)
for f ∈ C0(X0,R) and e ∈ E0. Note that

df(e) = −df(e) for f ∈ C0(X0,R) and e ∈ E0. The first cohomology group H1(X0,R) is
defined by C1(X0,R)/Im (d). By the discrete analogue of the Poincaré duality theorem,

we have H1(X0,R) =
(
H1(X0,R)

)∗
. We define an operator δp : C

1(X0,R) −→ C0(X0,R)
associated with the trasition probability p by

δpω(x) := −
∑

e∈(E0)x

p(e)ω(e) (x ∈ V0).

Then the transition operator L : C0(X0,R) −→ C0(X0,R) associated with the transition

probability p is defined by

Lf(x) := (I − δpd)f(x) =
∑

e∈(E0)x

p(e)f
(
t(e)
) (

f ∈ C0(X0,R), x ∈ V0

)
.

Since the operator I−L is regarded as a discrete analogue of the Laplacian, the operators

d and δp play roles of the exterior differentiation and its formal adjoint. However, δp :

C1(X0,R) −→ C0(X0,R) is the adjoint operator of d : C0(X0,R) −→ C1(X0,R) if and

only if the random walk on X0 is (m-)symmetric (cf. [42, page 852]). We now introduce

a 1-chain

γp :=
∑
e∈E0

m̃(e)e ∈ C1(X0,R).

We present several properties of γp.

Lemma 2.4.2 (cf. [42, Proposition 2.1]) (1) ∂(γp) = 0, that is, γp ∈ H1(X0,R).
(2) The random walk on X0 is (m-)symmetric if and only if γp = 0.

Proof. By definition, we see

∂(γp) =
∑
e∈E0

m̃(e)t(e)−
∑
e∈E0

m̃(e)o(e).

Since ∑
e∈E0

m̃(e)t(e) =
∑
e∈E0

m̃(e)o(e)

=
∑
x∈V0

x
∑

e∈(E0)x

p(e)m
(
t(e)
)
=
∑
x∈V0

m(x)x,

∑
e∈E0

m̃(e)o(e) =
∑
x∈V0

x
∑

e∈(E0)x

p(e)m
(
o(e)

)
=
∑
x∈V0

m(x)x
∑

e∈(E0)x

p(e) =
∑
x∈V0

m(x)x,

we obtain the first item. The second one readily follows from

γp =
1

2

∑
e∈E0

(
m̃(e)− m̃(e)

)
e = 0 ⇐⇒ m̃(e) = m̃(e) (e ∈ E0).
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This completes the proof.

This 1-cycle γp is called the homological direction, which is regarded as a quantity to

measure the homological drift of the given random walk on X0. To see this, we review

the following:

Proposition 2.4.3 (cf. Sunada [69]) Let V be a vector space over R and f : E0 −→ V
a map. We define a sequence of V-valued random variables {ηi}∞i=1 by

ηi(c) := f(ei)
(
c = (e1, e2, . . . , ) ∈ Ωx(X0)

)
.

Then we have

lim
n→∞

1

n

n∑
i=1

ηi(c) =
∑
e∈E0

m̃(e)f(e) Px-a.s.

Proof. Let
(
Ωx(X0),Px, w = {wn}∞n=0

)
be an irreducible Markov chain with values in X0.

We write Qx for the probability measure on Ωx(X) induced by m̃. Thanks to the positivity

ofm, we see that Px-almost sure events are Qx-almost sure ones and vice versa. SinceX0 is

finite, this Markov chain is recurrent and therefore it is ergodic on
(
Ωx(X0),Px

)
. Namely,

the probability space
(
Ωx(X0),Qx

)
with the shift operator T : Ωx(X0) −→ Ωx(X0) given

by Tc = T (en)
∞
n=1 = (en+1)

∞
n=1 is a measure-preserving dynamical system (cf. Klenke [37,

Theorem 20.29]). Note that ηn = η1 ◦ T n−1 for n = 2, 3, . . . . By applying the Birkhoff

individual ergodic theorem, we have

1

n

n∑
i=1

ηi =
1

n

n∑
i=1

η1 ◦ T i−1 −→ EQx [η0] =
∑
e∈E0

m̃(e)f(e) Px-a.s.

as n → ∞, which completes the proof.

Indeed, taking V = C1(X0,R) and f(e) = e for e ∈ E0 in Proposition 2.4.3 immediately

leads to the law of large numbers (LLN) on C1(X0,R).

lim
n→∞

1

n
(e1 + e2 + · · ·+ en) = γp, Px-a.e. c = (e1, e2, . . . , en, . . . ) ∈ Ωx(X0).

We introduce the notion of modified harmonic 1-form on X0, which is the discrete

analogue of that of harmonic forms on Riemannian manifolds. A 1-form ω ∈ C1(X0,R)
is said to be modified harmonic if

δpω(x) + ⟨γp, ω⟩ = 0 (x ∈ V0), (2.4.1)

where ⟨γp, ω⟩ := C1(X0,R)⟨γp, ω⟩C1(X0,R) is constant as a function on V0. We denote by

H1(X0) the space of modified harmonic 1-forms and equip it with the inner product and

the norm given by

⟨⟨ω1, ω2⟩⟩p :=
∑
e∈E0

m̃(e)ω1(e)ω2(e)− ⟨γp, ω1⟩⟨γp, ω2⟩
(
ω1, ω2 ∈ H1(X0)

)
,

∥ω∥H1(X0) :=
(∑

e∈E0

m̃(e)ω(e)2 − ⟨γp, ω⟩2
)1/2 (

ω ∈ H1(X0)
)
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associated with the transition probability p. The following proposition is noting but the

discrete analogue of the Hodge–Kodaira theorem.

Proposition 2.4.4 (cf. [42, Lemma 5.2]) The linear map φ : H1(X0) −→ H1(X0,R)
defined by

φ(ω) := [ω]
(
ω ∈ H1(X0)

)
gives an isomorphism of H1(X0) onto H1(X0,R).

For the sake of completeness, we give the proof of Proposition 2.4.4.

Proof. Suppose that [ω] = 0, that is, ω = df for some f ∈ C0(X0,R). Thanks to the

fact that ω = df is modified harmonic and ∂(γp) = 0, we have

δpω = δpdf = −C1(X0,R)⟨γp, df⟩C1(X0,R) = −C0(X0,R)⟨∂(γp), f⟩C0(X0,R) = 0.

Therefore, it follows that Lf = (I − δpd)f = f . Since X0 is connected, we see that the

function f is constant and thus ω = df = 0, which leads to the injectivity of φ.

For the surjectivy of φ, we show that, for any ω ∈ C1(X0,R), there is f ∈ C0(X0,R)
such that ω+df ∈ H1(X0). It is sufficient to find f satisfying (I−L)f = −

(
⟨γp, ω⟩+δpω

)
.

For this sake, we only to show ⟨
⟨γp, ω⟩+ δpω,m

⟩
0
= 0,

by noting Im (I − L) =
(
Ker (I − tL)

)⊥
= (Rm)⊥. The left-hand side is written as

⟨γp, ω⟩⟨1,m⟩0 + ⟨δpω,m⟩0 = ⟨γp, ω⟩+ ⟨δpω,m⟩0

Therefore, we have

⟨δpω,m⟩0 = −
∑
x∈V0

m(x)
∑

e∈(E0)x

p(e)ω(e) = −⟨γp, ω⟩,

which completes the proof of Proposition 2.4.4.

2.4.2 Modified harmonic realization of a crystal lattice

Let Γ be a finitely generated abelian group. Suppose that Γ is torsion free. Then we may

assume Γ ∼= Zd without loss of generality, where d = rankΓ. Now let X = (V,E) be

a Γ-crystal lattice. Namely, X is a covering graph of a finite graph X0 whose covering

transformation group is Γ. The graph X0 is also represented as X0 = Γ\X, the quotient

graph of X. Let p : E0 −→ [0, 1] and m : V0 −→ (0, 1] be a transition probability on

X0 and the normalized invariant measure on X0, respectively. We write p : E −→ [0, 1]

and m : V −→ (0, 1] for the Γ-invariant lifts of p : E0 −→ [0, 1] and m : V0 −→ (0, 1],

respectively. Namely,

p(γe) = p(e), m(γx) = m(x) (γ ∈ Γ, e ∈ E, x ∈ V ).

25



Let π1(X0) be the fundamental group of X0. Then we find a canonical surjective

homomorphism ρ : π1(X0) −→ Γ by the general theory of covering spaces. This map

gives rise to a surjective homomorphism ρ : H1(X0,Z) −→ Γ, where H1(X0,Z) stands

for the first homology group of X0 with Z-coefficients. Then we have a surjective linear

map ρR : H1(X0,Z) ⊗ R ∼= H1(X0,R) −→ Γ ⊗ R. We consider the transpose tρR :

Hom(Γ,R) −→ H1(X0,R), which is a injective linear map. Here Hom(Γ,R) denotes the
space of homomorphisms from Γ into R. By noting Proposition 2.4.4, we induce a flat

metric g0 associated with the transition probability p on the Euclidean space Γ⊗R through

the following diagram:

(Γ⊗ R, g0) oooo ρR

OO

dual
��

H1(X0,R)OO

dual
��

Hom(Γ,R) � �
tρR

// H1(X0,R) ∼=
(
H1(X0), ⟨⟨·, ·⟩⟩p

)
.

This metric g0 is called the Albanese metric on Γ⊗ R.
From now on, we realize the crystal lattice X into the continuous model (Γ ⊗ R, g0)

in the following manner. A periodic realization of X into Γ⊗ R is defined by a piecewise

linear map Φ : X −→ Γ⊗ R satisfying

Φ(σx) = Φ(x) + σ ⊗ 1 (σ ∈ Γ, x ∈ V ).

. We review the definition of the modified harmonicity of the periodic realization of a

crystal lattice X.

Definition 2.4.5 (cf. [42, page 854]) The periodic realization Φ0 is said to be modified

harmonic if

LΦ0(x)− Φ0(x) = ρR(γp) (x ∈ V ).

We note that this equation is also written as∑
e∈Ex

p(e)
{
Φ0

(
t(e)
)
− Φ0

(
o(e)

)}
= ρR(γp) (x ∈ V ). (2.4.2)

Furthermore, such a realization is uniquely determined up to translation. Indeed, if Φ0

and Φ′
0 are two modified harmonic realizations, then we see

L
(
Φ0(x)− Φ′

0(x)
)
= Φ0(x)− Φ′

0(x) (x ∈ V )

and it follows from the connectedness of X that Φ0−Φ′
0 is constant. We call the quantity

ρR(γp) the asymptotic direction of the given random walk on X0. We should emphasize

that γp = 0 implies ρR(γp) = 0. However, the converse does not always hold. If we equip

Γ ⊗ R with the Albanese metric, then the modified harmonic realization Φ0 : X −→
(Γ⊗ R, g0) is especially called the modified standard realization.
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We define a special periodic realization Φ0 : X −→ Γ⊗ R by

Hom(Γ,R)
⟨
ω,Φ0(x)

⟩
Γ⊗R =

∫ x

x∗

ω̃
(
x ∈ V, ω ∈ Hom(Γ,R)

)
, (2.4.3)

where x∗ is a fixed reference point satisfying Φ0(x∗) = 0 and ω̃ is the lift of ω to X. Here

∫ x

x∗

ω̃ =

∫
c

ω̃ :=
n∑

i=1

ω̃(e)

for a path c = (e1, . . . , en) with o(e1) = x∗ and t(en) = x. It should be noted that this

line integral does not depend on the choice of a path c. Then we immediately see that

the periodic realization defined by (2.4.3) enjoys (2.4.2). See [31, Section 3.1].

2.4.3 Modified harmonic realization of a nilpotent covering graph

We introduce a notion of the modified harmonic realization of a nilpotent covering graph

as an extension of Kotani–Sunada [42] and Ishiwata [29].

Let Γ be a torsion free, finitely generated nilpotent group of step r and X = (V,E)

a Γ-nilpotent covering graph, that is, a covering graph of a finite graph X0 with the

covering transformation group Γ. We denote by π : X −→ X0 the covering map. Let

p : E0 −→ [0, 1] andm : V0 −→ (0, 1] be a transition probability on X0 and the normalized

invariant measure on X0, respectively. We write p : E −→ [0, 1] and m : V −→ (0, 1] for

the Γ-invariant lifts of p : E0 −→ [0, 1] and m : V0 −→ (0, 1], respectively.

As in the case of crystal lattices, we would like to realize the nilpotent covering graph

X into some continuous state space equipped with a scalar multiplication. Malcév’s

theorem [56] asserts that there exists a connected and simply connected nilpotent Lie

group G = GΓ of step r such that Γ is isomorphic to a cocompact lattice in G. Namely,

Γ is a discrete subgroup of G such that Γ\G is compact and µ(Γ\G) < ∞ for a Haar

measure on G. Let g = g(1)⊕g(2)⊕· · ·⊕g(r) be the corresponding Lie algebra. We denote

by π̂ : G −→ G/[G,G] the canonical projection. Since Γ is a cocompact lattice in G, the

subset π̂(Γ) ⊂ G/[G,G] is also a lattice in G/[G,G] (cf. Malcév [56] and Raghunathan

[62]). By g(1) ∼= G/[G,G], the subgroup π̂(Γ) is regarded as a lattice in g(1).

We take a canonical surjective homomorphism ρ : π1(X0) −→ Γ and this map gives

rise to a surjective homomorphism ρ : H1(X0,Z) −→ Γ/[Γ,Γ] ∼= π̂(Γ) by abelianization.

Then we have a surjective linear map ρR : H1(X0,R) −→ π̂(Γ) ⊗ R ∼= g(1). We identify

Hom(π̂(Γ),R) with a subspace of H1(X0,R) by using the transposed map tρR. We restrict

the inner product ⟨⟨·, ·⟩⟩p on H1(X0,R) to the subspace Hom(π̂(Γ),R) and take it up the

dual inner product ⟨·, ·⟩alb on π̂(Γ) ⊗ R. Then, as in the case of crystal lattices, a flat

metric g0 is induced on g(1) and we call it the Albanese metric on g(1). This procedure

can be summarized as follows:
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(g(1), g0)OO

dual
��

∼= π̂(Γ)⊗ R oooo ρR

OO

dual

��

H1(X0,R)OO

dual
��

Hom(g(1),R) ∼= Hom(π̂(Γ),R) � �
tρR

// H1(X0,R) ∼=
(
H1(X0), ⟨⟨·, ·⟩⟩p

)
.

A map Φ : X −→ G is said to be a periodic realization of X when it satisfies

Φ(γx) = γ · Φ(x) (γ ∈ Γ, x ∈ V ).

We are now in a position to give the definition of the modified harmonicity of the realiza-

tion of X, as a generalization of [42, 29].

Definition 2.4.6 (cf. [32, 33]) The realization Φ0 is said to be modified harmonic if∑
e∈Ex

p(e) log
(
Φ0

(
o(e)

)−1 · Φ0

(
t(e)
))∣∣∣

g(1)
= ρR(γp) (x ∈ V ). (2.4.4)

Note that such a realization is uniquely determined up to g(1)-translation. We also

call the quantity ρR(γp) the (g(1)-)asymptotic direction of the given random walk on X0.

If we equip g(1) with the Albanese metric g0, then the modified harmonic realization

Φ0 : X −→ G is called the modified standard realization.

Remark 2.4.7 The modified harmonic realization Φ0 : X −→ G has the ambiguity of the

components corresponding to the subspace g(2) ⊕ g(3) ⊕ · · · ⊕ g(r), though g(1)-components

completely controlled by (2.4.4) up to g(1)-translation. However, it is sufficient to establish

CLTs for non-symmetric random walks on X. Indeed, in showing CLTs of semigroup-type

in Sections 3 and 4, the modified harmonicity (2.4.4) will be used effectively to handle the

diverging drift term which appears in g(1). See the proof of Theorems 4.1.2 and 5.1.1.

Fix a reference point x∗ ∈ V and define a realization Φ0 : X −→ G by

Hom(g(1),R)
⟨
ω, log

(
Φ0(x)

)∣∣
g(1)

⟩
g(1)

=

∫ x

x∗

ω̃
(
ω ∈ Hom(g(1),R), x ∈ V

)
, (2.4.5)

where ω̃ is the lift of ω = tρR(ω) ∈ H1(X0,R) to X. The following lemma asserts that

such Φ0 enjoys the modified harmonicity (2.4.4).

Lemma 2.4.8 (cf. [32, Lemma 3.2]) The periodic realization Φ0 : X −→ G defined by

(2.4.5) is the modified harmonic realization.
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Proof. For each ω = tρR(ω) ∈ H1(X0,R) ∼= H1(X0) and x ∈ V , Equation (2.4.5) yields

Hom(g(1),R)

⟨
ω,
∑
e∈Ex

p(e) log
(
Φ0

(
o(e)

)−1 · Φ0

(
t(e)
))∣∣∣

g(1)

⟩
g(1)

=
∑
e∈Ex

p(e)Hom(g(1),R)

⟨
ω, log

(
Φ0

(
t(e)
))∣∣

g(1)
− log

(
Φ0

(
o(e)

))∣∣∣
g(1)

⟩
g(1)

=
∑
e∈Ex

p(e)ω̃(e)

= −(δpω)
(
π(x)

)
= ⟨γp, ω⟩ = Hom(g(1),R)

⟨
ω, ρR(γp)

⟩
g(1)

.

This gives the desired equation (2.4.4).

2.5 Markov chains

Let us consider a time-homogeneous Markov chain (Ωx(X),Px, {wn}∞n=0) with values in

a Γ-covering graph X, where Γ is a torsion free, finitely generated group. Let πn :

Ωx(X) −→ Ωx,n(X) (n ∈ N ∪ {0}) be a projection defined by πn(c) := (e1, e2, . . . , en)

for c = (e1, e2, . . . , en, . . . ) ∈ Ωx(X). Denote by {Fn}∞n=0 the filtration such that F0 =

{∅,Ωx(X)} and Fn := σ
(
π−1
n (A)

∣∣A ⊂ Ωx,n(X)
)
for n ∈ N. We mention that Fn is a

sub-σ-algebra of F∞ :=
∨∞

n=0Fn for n ∈ N.
Suppose first that Γ is abelian, that is, X is a crystal lattice. We denote by Φ :

X −→ Γ⊗ R a periodic realization of X. We then have the Γ⊗ R-valued Markov chain

(Ωx(X),Px, {ξn}∞n=0) defined by ξn(c) := Φ
(
wn(c)

)
for n ∈ N ∪ {0} and c ∈ Ωx(X),

through the map Φ. By applying the ergodic theorem, we easily verify that the law of

large numbers on Γ⊗ R
lim
n→∞

1

n
ξn(·) = ρR(γp), Px-a.s. (2.5.1)

holds.

The notion of martingales plays a crucial role in the theory of stochastic processes.

We give a certain characterization of modified harmonic realizations of crystal lattices in

view of martingale theory. Indeed, we have the following:

Lemma 2.5.1 (cf. [42, Proposition 5.3]) A periodic realization Φ0 : X −→ Γ ⊗ R
is the modified harmonic realization if and only if the Γ ⊗ R-valued stochastic process{
ξn − nρR(γp)

}∞
n=0

is an {Fn}-martingale.

The similar assertion to Lemma 2.5.1 holds in the case where Γ is nilpotent, that is,

X is a Γ-nilpotent covering graph. Let G = GΓ be the nilpotent Lie group in which

Γ is embedded as a cocompact lattice. We denote by Φ : X −→ G a Γ-equivariant

realization. Then this map yields a G-valued Markov chain (Ωx(X),Px, {ξn}∞n=0) defined
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by ξn(c) := Φ
(
wn(c)

)
for n ∈ N ∪ {0} and c ∈ Ωx(X). This gives rise to the g-valued

random walk

Ξn(c) := log
(
ξn(c)

)
= log

(
Φ
(
wn(c)

)) (
n ∈ N ∪ {0}, c ∈ Ωx(X)

)
.

Note that an LLN on g(1) holds as in the case of crystal lattices.

Lemma 2.5.2 As n → ∞, we have

1

n
Ξn(·)

∣∣
g(1)

−→ ρR(γp), Px-a.s. (2.5.2)

Proof. Without loss of generality, we may put Φ(x) = 1G. For c = (e1, e2, . . . ) ∈ Ωx(X0),

we write

Ξn(c)
∣∣
g(1)

=
n∑

i=1

{
log
(
Φ
(
t(ei)

))∣∣
g(1)

− log
(
Φ
(
o(ei)

))∣∣
g(1)

}
.

We take a basis {X(1)
1 , X

(1)
2 , . . . , X

(1)
d1

} of g(1) and put

Fk(e) := log
(
Φ
(
t(e)
))∣∣

X
(1)
k

− log
(
Φ
(
o(e)

))∣∣
X

(1)
k

(e ∈ E).

We fix k = 1, 2, . . . , d1. Then we easily see that Fk : E −→ R satisfies Fk(e) = −Fk(e) for

e ∈ E and the Γ-invariance. Therefore, we apply Proposition 2.4.3 to obtain

lim
n→∞

1

n
Ξn(c)

∣∣
X

(1)
k

=
∑
e∈E0

m̃(e)Fk(ẽ) = C1(X0,R)⟨γp, Fk⟩C1(X0,R), Px-a.s.,

where ẽ stands for a lift of e to X. Let us take any z ∈ H1(X0,R) and represent it as a

closed path c0 = (e1, e2, . . . , eℓ). Then we see

C1(X0,R)⟨z, Fk⟩C1(X0,R) =
n∑

i=1

Fk(ei) = log
(
Φ
(
t(c)
))∣∣

X
(1)
k

− log
(
Φ
(
o(c)

))∣∣
X

(1)
k

= ρR(z)
∣∣
X

(1)
k

,

where c is a lift of c0 to X. By taking z = γp ∈ H1(X0,R), we conclude (2.5.2).

In closing this subsection, we state a relation between the modified harmonicity and

martingales in the nilpotent setting. We will use the following in the proof of Lemma

4.3.2 and Lemma 5.4.3.

Lemma 2.5.3 (cf. [32, Lemma 3.3]) Let {X(1)
1 , X

(1)
2 , . . . , X

(1)
d1

} be a basis of g(1). Then

a Γ-equivariant realization Φ0 : X −→ G is the modified harmonic realization if and only

if the stochastic process{
Ξn

∣∣
X

(1)
i

− nρR(γp)
∣∣
X

(1)
i

}∞
n=0

(i = 1, 2, . . . , d1),

with values in R, is an {Fn}-martingale.
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Proof. Suppose that Φ0 is modified harmonic. For n ∈ N and A ∈ Fn, we have

EPx

[
Ξn+1

∣∣
X

(1)
i

− (n+ 1)ρR(γp)
∣∣
X

(1)
i

; A
]

=
∑

c∈Ωx(X)

p(c)
{
log
(
Φ0

(
t(en+1)

))∣∣
X

(1)
i

− (n+ 1)ρR(γp)
∣∣
X

(1)
i

}
1A(c)

=
∑

c′∈Ωx,n(X)

p(c′)
∑

e∈Et(c′)

p(e)

[{
log
(
Φ0

(
t(e)
))∣∣

X
(1)
i

− ρR(γp)
∣∣
X

(1)
i

}
− nρR(γp)

∣∣
X

(1)
i

]
1A(c

′),

where EPx stands for the expectation with respect to the probability measure Px. In terms

of the modified harmonicity of Φ0, this is equal to∑
c′∈Ωx,n(X)

p(c′)
{
log
(
Φ0

(
o(en+1)

))∣∣
X

(1)
i

− nρR(γp)
∣∣
X

(1)
i

}
1A(c

′)

= EPx

[
Ξn

∣∣
X

(1)
i

− nρR(γp)
∣∣
X

(1)
i

; A
]

Thus it follows that the process
{
Ξn

∣∣
X

(1)
i

− nρR(γp)
∣∣
X

(1)
i

}∞
n=0

is an {Fn}-martingale. The

converse is obvious from the argument above.

2.6 Large deviation principles

Large deviation principles (LDP) are one of the most fundamental and important limit

theorems and well-studied topics in probability theory as well as the LLNs and the CLTs.

Before mentioning the results on LDPs on covering graphs, we start with a quick review

of LDPs by using a simple exqample. Let {ξn}∞n=1 be a sequence of R-valued i.i.d. random

variables defined on (Ω,F ,P), with mean µ and variance σ2. We set Sn = ξ1+ξ2+ · · ·+ξn
for n ∈ N. We now assume that an LLN holds for {ξn}∞n=1, that is,

P
(

lim
n→∞

1

n
Sn = µ

)
= 1.

However, LDPs concern with how exponentially fast the probability that “rare” events

such as

P
( 1
n
Sn > x

)
(x ≥ µ)

occur decays as n → ∞, though such probability tends to zero as n → ∞ by the LLN.

More precisely, the LDP finds a lower semi-continuous function I : R → [0,∞], called the

rate function, satisfying

lim
n→∞

1

n
logP

( 1
n
Sn > x

)
= −I(x) (x ≥ µ).

Note that such LDP is known as Cramér’s theorem, which is one of the most fundamental

formulations in the theory of large deviations.
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Let us go back to related results on LDPs on covering graphs. Kotani and Sunada

[42] established an LDP on a Γ-crystal lattice X = (V,E) and discussed a relation with

the pointed Gromov–Hausdorff limit of crystal lattices from a geometric perspective. See

also Kotani [39] for related topic on the LDP, and Gromov [26] and Pansu [60] for the

existence of the Gromov–Hausdorff limit in this setting. We fix a periodic realization

Φ : X −→ Γ ⊗ R (not necessarily harmonic) and consider a Γ ⊗ R-valued Markov chain

(Ωx(X),Px, {ξn = Φ(wn)}∞n=0) for x ∈ V . For λ ∈ Hom(Γ,R) ∼= Rd, we set

β(λ) := lim
n→∞

1

n
logEPx

[
exp

(
λ(ξn)

)]
.

Note that the existence of the limit in the right-hand side is always guaranteed. Moreover,

β : Hom(Γ,R) −→ R is analytic and its Hessian is positive definite. We now define a

function I : Γ⊗ R −→ R ∪ {∞} by the Fenchel–Legendre transform of β, that is,

I(ξ) := sup
λ∈Hom(Γ,R)

{
λ(ξ)− β(λ)

}
(ξ ∈ Rd).

It is not difficult to see that I is lower semi-continuous. Then we have the following LDP

for the random walk {ξn}∞n=0.

Proposition 2.6.1 (cf. Kotani–Sunada [42, Proposition 1.5]) An LDP holds for

the Γ ⊗ R-valued random walk {ξn}∞n=0 with the rate function I : Γ ⊗ R −→ R ∪ {∞}.
Namely, for any Borel measurable subset A ⊂ Γ⊗ R, we have

− inf
ξ∈A◦

I(ξ) ≤ lim inf
n→∞

1

n
logPx

( 1
n
ξn ∈ A

)
≤ lim sup

n→∞

1

n
logPx

( 1
n
ξn ∈ A

)
≤ − inf

ξ∈A
I(ξ),

where A◦ and A stands for the interior and the closure of A, respectively.

As a generalization of the above result to the nilpotent case, Tanaka [72] also estab-

lished an LDP and discussed a similar geometric relation to the case of crystal lattices.

For related results on an LDP on nilpotent groups, we refer to Baldi–Caremelino [4].

Let X = (V,E) be a Γ-nilpotent covering graph and consider a G-valued Markov chain

(Ωx(X),Px, {ξn = Φ(wn)}∞n=0) for x ∈ V , where G is a nilpotent Lie group such that Γ is

isomorphic to a cocompact lattice in G and Φ : X −→ G a Γ-equivariant realization. Let

h : G −→ G∞ be a canonical diffeomorphism. Then an LDP for the G∞-valued random

walk {τ1/nh(ξn)}∞n=0 is now stated as follows:

Proposition 2.6.2 (cf. Tanaka [72, Theorem 1.1]) An LDP holds for the G∞-valued

random walk {τ1/nh(ξn)}∞n=0 with a rate function I : G∞ −→ R ∪ {∞}. Namely, for any

Borel measurable subset A ⊂ G∞, we have

− inf
ξ∈A◦

I(ξ) ≤ lim inf
n→∞

1

n
logPx

(
τ1/nh(ξn) ∈ A

)
≤ lim sup

n→∞

1

n
logPx

(
τ1/nh(ξn) ∈ A

)
≤ − inf

ξ∈A
I(ξ).
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We emphasize that, in this case, the rate function I : G∞ −→ R is hard to write down

explicitly. Because the proof of Proposition 2.6.2 is done by using an LDP on a g(1)-

valued absolutely continuous path space and several well-known lemmas in LDP theory

(the contraction principle and transfer lemma, see e.g., Dembo–Zeitouni [16]).

Let DI := {g ∈ G∞ | I(g) < ∞} be the effective domain of the rate function I. Tanaka

[72] also gave a geometric characterization of DI in terms of the Carnot–Carathéodory

metric dCC.

Proposition 2.6.3 (cf. Tanaka [72, Theorem 1.2])

DI = BdCC
(1G) := {g ∈ G∞ | dCC(g,1G) ≤ 1}.

On the other hand, the pointed Γ-nilpotent covering graph (X, x) endowed with the

scaled graph distance εd converges to (G∞, dCC,1G) as ε ↘ 0 in the sense of pointed

Gromov–Hausdorff topology (cf. Pansu [60]).

Before closing this subsection, we briefly mention a relation between these two proposi-

tions putting an attention to the convergence above. The effective domain DI is regarded

as the set of points to which τ1/nh(ξn) is “close” for sufficiently large n with some positive

probability. We can check that

lim
n→∞

dCC(1G, τ1/nh(ξn))

d(x,wn)/n
= 1.

On the other hand, if the trajectory of the random walk on X is geodesic, then we see

d(x,wn) = n and dCC(1G, τ1/nh(ξn)) → 1 as n → ∞. Thus, we see that τ1/nh(ξn) converges

to a point in ∂BdCC
(1G). This means that the G∞-valued random walk {h(ξn)}∞n=0 tends

to infinity as n → ∞ and τ1/nh(ξn) converges to a point in ∂DI . The LDP detects such

a rare event, though the probability that the event occurs may be zero.
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Chapter 3

A measure-change formula for
non-symmetric random walks on
crystal lattices and its application

3.1 A measure-change technique

Throughout this chapter, Let Γ be a finitely generated abelian group of rank d with no

torsions and X a Γ-crystal lattice with X0 := Γ\X. Suppose that a time-homogeneous

Markov chain (Ωx(X0),Px, {wn}∞n=0) governed by a positive transition probability p :

E0 −→ (0, 1] is given, to avoid several technical difficulty.

Let Φ0 : X −→ Γ⊗ R ∼= Rd be the modified harmonic realization. For brevity, write

λ[x]Γ⊗R := Hom(Γ,R)⟨λ,x⟩Γ⊗R
(
λ ∈ Hom(Γ,R), x ∈ Γ⊗ R

)
,

dΦ0(e) := Φ0

(
t(e)
)
− Φ0

(
o(e)

)
(e ∈ E).

We take an orthonormal basis {ω1, ω2, . . . , ωd} in Hom(Γ,R)
(
⊂ (H1(X0), ⟨⟨·, ·⟩⟩p)

)
and

denote by {v1,v2, . . . ,vd} its dual basis in Γ ⊗ R. Namely, ωi[vj]Γ⊗R = δij for i, j =

1, 2, . . . , d. We note that {v1,v2, . . . ,vd} is an orthonormal basis of Γ ⊗ R with respect

to the Albanese metric g0 associated with p. We may identify λ = λ1ω1 + λ2ω2 + · · · +
λdωd ∈ Hom(Γ,R) with (λ1, λ2, . . . , λd) ∈ Rd. Furthermore, we write xi := ωi[x]Γ⊗R,

Φ0(x)i := ωi[Φ0(x)]Γ⊗R and ∂i := ∂/∂λi for i = 1, 2, . . . , d and x ∈ V .

The purpose of this section is to establish a measure-change formula of the non-

symmetric transition probability by applying a variational method given by Alexopoulos

[2]. Let us consider a function F = Fx(λ) : V0 × Hom(Γ,R) −→ R defined by

Fx(λ) :=
∑

e∈(E0)x

p(e) exp
(
Hom(Γ,R)

⟨
λ, dΦ0(ẽ)

⟩
Γ⊗R

)
, (3.1.1)

for x ∈ V0 and λ ∈ Hom(Γ,R). We easily see that F = Fx(λ) is positive on V0×Hom(Γ,R)
with Fx(0) = 1 for x ∈ V0. The following lemma plays a significant role to construct the

changed transition probability in our setting.
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Lemma 3.1.1 For every x ∈ V0, the function Fx(·) : Hom(Γ,R) −→ (0,∞) has a unique

minimizer λ∗ = λ∗(x).

Proof. For a fixed x ∈ V0, we have

∂iFx(λ) = ∂i

( ∑
e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

))

= ∂i

( ∑
e∈(E0)x

p(e) exp
( d∑

i=1

λi · ωi

[
dΦ0(ẽ)

]
Γ⊗R

))

=
∑

e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ)i

(
i = 1, 2, . . . , d, λ ∈ Hom(Γ,R)

)
.

In other words,(
∂1Fx(λ), . . . , ∂dFx(λ)

)
=

∑
e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ) (∈ Γ⊗ R)

(
λ ∈ Hom(Γ,R)

)
. (3.1.2)

Then we have

∂i∂jFx(λ) =
∑

e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ)idΦ0(ẽ)j

for λ ∈ Hom(Γ,R) and i, j = 1, 2, . . . , d, by repeating the calculation above. Therefore, it

follows that
(
∂i∂jFx(·)

)d
i,j=1

, the Hessian matrix of the function Fx(·), is positive definite.
Indeed, consider the quadratic form corresponding to the Hessian matrix. Since

d∑
i,j=1

∑
e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ)idΦ0(ẽ)jξiξj

=
∑

e∈(E0)x

p(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

){ d∑
i=1

dΦ0(ẽ)iξi

}2

≥ 0 (3.1.3)

for ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd and the transition probability p is positive, we easily see that

the Hessian matrix is non-negative definite. By multiplying both sides of (3.1.3) by m(x)

and taking the sum which runs over all vertices of X0, we have

∑
e∈E0

m̃(e) exp
(
λ
[
dΦ0(ẽ)

]
Γ⊗R

){ d∑
i=1

dΦ0(ẽ)iξi

}2

≥ 0,
(
ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd

)
.

Suppose now that the left-hand side of (3.1.3) is zero. Then we have

d∑
i=1

dΦ0(ẽ)iξi = 0 (e ∈ E0).

36



This equation implies ⟨Φ0(x), ξ⟩Rd = ⟨Φ0(y), ξ⟩Rd for all x, y ∈ V , where ⟨·, ·⟩Rd stands for

the standard inner product on Rd. Let {σ1, σ2, . . . , σd} be a set of generators of Γ ∼= Zd.

It follows from the periodicity of Φ0 that ⟨σi, ξ⟩Rd = 0 for i = 1, 2, . . . , d. Hence, we

conclude ξ = 0. Namely, we have proved the positive definiteness of the Hessian matrix.

This implies that the function Fx(·) : Hom(Γ,R) −→ (0,∞) is strictly convex for every

x ∈ V0. Moreover, it is easily observed that

lim
|λ|Rd→∞

Fx(λ) = ∞ (x ∈ X0),

by definition. Consequently, we know that there exists a unique minimizer λ∗ = λ∗(x) ∈
Hom(Γ,R) of Fx(λ) for each x ∈ V0, thereby completing the proof.

We are in a position to define a new transition probability on X0. We define a positive

function p : E0 −→ (0, 1] by

p(e) :=
p(e) exp

(
Hom(Γ,R)

⟨
λ∗
(
o(e)

)
,Φ0

(
t(ẽ)
)
− Φ0

(
o(ẽ)

)⟩
Γ⊗R

)
Fo(e)

(
λ∗(o(e))

) (e ∈ E0). (3.1.4)

We easily see that, by definition, the function p also gives a positive transition prob-

ability on X0. Thus, the transition probability p : E0 −→ (0, 1] yields an irreducible

random walk (Ωx(X0), P̂x, {w(p)
n }∞n=0) with values in X0 and so does the random walk

(Ωx(X), P̂x, {w(p)
n }∞n=0) on X. We then find the normalized invariant measure m : V0 −→

(0, 1] by applying the Perron-Frobenius theorem again. Put m̃(e) := p(e)m(o(e)) for

e ∈ E0. We also denote by p : E −→ (0, 1] and m : V −→ (0, 1] the Γ-invariant lifts of

p : E0 −→ (0, 1] and m : V0 −→ (0, 1], respectively. Let g
(p)
0 be the (p-)Albanese metric

on Γ ⊗ R associated with the transition probability p. We take an orthonormal basis

{ω(p)
1 , ω

(p)
2 , . . . , ω

(p)
d } of Hom(Γ,R)

(
⊂ (H1(X0), ⟨⟨·, ·⟩⟩p)

)
.

We define the transition operator L(p) : C∞(X) −→ C∞(X) associated with the tran-

sition probability p by

L(p)f(x) :=
∑
e∈Ex

p(e)f
(
t(e)
)

(x ∈ V ).

Recalling (3.1.2) and the definition of λ∗ = λ∗(x) yields(
∂1Fx

(
λ∗(x)

)
, . . . , ∂dFx

(
λ∗(x)

))
=

∑
e∈(E0)x

p(e) exp
(
λ∗(x)

[
dΦ0(ẽ)

]
Γ⊗R

)
dΦ0(ẽ) = 0

for every x ∈ V0. This immediately leads to

L(p)Φ0(x)− Φ0(x) =
∑
e∈Ex

p(e)dΦ0(e) = 0 (x ∈ V ). (3.1.5)

By (3.1.5), one concludes that the given p-modified standard realization Φ0 : X −→ Γ⊗R
in the sense of (2.4.2) is the harmonic realization under the new transition probability p.
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Remark 3.1.2 Equation (3.1.5) readily implies ρR(γp) = 0. Furthermore, we emphasize

that the transition probability p : E0 −→ (0, 1] coincides with the original one p : E0 −→
(0, 1] provided that ρR(γp) = 0.

Remark 3.1.3 In our setting, it is essential to assume that the given transition probabil-

ity p is positive. Because, if it were not for the positivity of p, the assertion of Lemma 4.2.1

would not hold in general. (There is a case where the function Fx(·) has no minimizers.)

3.2 Application to the proof of CLTs

In Ishiwata–Kawabi–Kotani [31], two kinds of CLTs for non-symmetric random walks on

a crystal lattice X were established. We give yet another approach to prove an FCLT for

them, by using the changed transition probability (3.1.4). We emphasize in advance that

the (p-)harmonicity (3.1.5) plays an important role in the proof of the CLTs.

We fix a reference point x∗ ∈ V such that Φ0(x∗) = 0 and put

ξ(p)n (c) := Φ0

(
w(p)

n (c)
) (

n = 0, 1, 2, . . . , c ∈ Ωx∗(X)
)
.

We define a measurable map X(n) : Ωx∗(X) −→
(
C0

(
[0,∞), (Γ⊗ R, g(p)0 )

)
, µ
)
by

X
(n)
t (c) :=

1√
n

{
ξ
(p)
[nt](c) + (nt− [nt])

(
ξ
(p)
[nt]+1(c)− ξ

(p)
[nt](c)

)}
(t ≥ 0), (3.2.1)

where C0

(
[0, 1],Γ⊗R

)
denotes the set of all continuous paths from [0,∞) to Γ⊗R with the

compact uniform topology and µ = µ(p) is the Wiener measure on C0

(
[0, 1], (Γ⊗R, g(p)0 )

)
.

We also denote by Lip0

(
[0, 1]; (Γ ⊗ R, g(p)0 )

)
the set of all Lipschitz continuous paths

w : [0, 1] −→ Γ⊗ R with w0 = 0. We set

∥w∥α-Höl := sup
0≤s≤t≤1

∥wt − ws∥g(p)0

(t− s)α
(α < 1/2)

and define

C0,α-Höl
0

(
[0,∞), (Γ⊗ R, g(p)0 )

)
:= Lip0

(
[0, 1]; (Γ⊗ R, g(p)0 )

)∥·∥α-Höl

(α < 1/2),

which is a Polish space. We write P(n) (n = 1, 2, . . . ) for the image probability measure

on C0,α-Höl
0

(
[0,∞), (Γ ⊗ R, g(p)0 )

)
induced by X(n). Then the functional CLT is stated as

follows:

Theorem 3.2.1 The sequence {X(n)}∞n=1 converges in law to a (Γ⊗R, g(p)0 )-valued stan-

dard Brownian motion (B
(p)
t )t≥0 starting from the origin in C0,α-Höl

0

(
[0,∞), (Γ⊗R, g(p)0 )

)
.

As the first step, we prove the following, which asserts the convergence of the discrete

laplacian on X under the suitable scaling.
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Lemma 3.2.2 For any f ∈ C∞
0 (Γ⊗ R), as N → ∞ and ε ↘ 0 with N2ε ↘ 0, we have∥∥∥ 1

Nε2
(I − LN

(p))Pεf − Pε

(∆(p)

2
f
)∥∥∥X

∞
−→ 0.

Here Pε : C∞(Γ⊗ R) −→ C∞(X) (0 ≤ ε ≤ 1) is a scaling operator defined by

Pεf(x) := f
(
εΦ0(x)

)
(x ∈ X)

and ∆(p) stands for the positive Laplacian −
∑d

i=1(∂
2/∂x2

i ) on Γ⊗ R associated with the

p-Albanese metric g
(p)
0 .

Proof. For i, j = 1, 2, . . . , d and N ∈ N, we define a function AN(Φ0)ij : V −→ R by

AN(Φ0)ij(x) :=
∑

c∈Ωx,N (X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)
i

(
Φ0

(
t(c)
)
− Φ0(x)

)
j

(x ∈ V ),

where p(c) := p(e1)p(e2) · · · p(eN) for c = (e1, e2, . . . , eN) ∈ Ωx,N(X). Then we have

(I − LN
(p))Pεf(x) = −ε

d∑
i=1

∂f

∂xi

(
εΦ0(x)

) ∑
c∈Ωx,N (X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)
i

− ε2

2

∑
1≤i,j≤d

∂2f

∂xi∂xj

(
εΦ0(x)

)
AN(Φ0)ij(x) +O

(
(Nε)3

)
, (3.2.2)

by applying Taylor’s expansion formula. We see that the first term of the right-hand side

of (3.2.2) vanishes due to (3.1.5). For i, j = 1, 2, . . . , d, we define a function A(Φ0)ij :

V0 −→ R by

A(Φ0)ij(x) :=
∑

e∈(E0)x

p(e)dΦ0(ẽ)idΦ0(ẽ)j (x ∈ V ).

We note that A(Φ0)ij
(
π(x)

)
= A1(Φ0)ij(x) for x ∈ V and i, j = 1, 2, . . . , d thanks to the

Γ-invariance of AN(Φ0)ij. Then, by using (3.1.5) again, we have

AN(Φ0)ij(x) =
N−1∑
k=0

Lk
(p)

(
A(Φ0)ij

)(
π(x)

)
(x ∈ V ).

The ergodic theorem for L(p) (cf. [31, Theorem 3.2]) implies

1

N

N−1∑
k=0

Lk
(p)

(
A(Φ0)ij

)(
π(x)

)
=
∑
x∈V0

m(x)A(Φ0)ij(x) +O
( 1

N

)
.

Moreover, (2.4.3) and (3.1.5) lead to∑
x∈V0

m(x)A(Φ0)ij(x) =
∑
e∈E0

m̃(e)ω
(p)
i (e)ω

(p)
j (e) = ⟨⟨ω(p)

i , ω
(p)
j ⟩⟩p = δij
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for i, j = 1, 2, . . . , d. By putting it all together, we obtain

1

Nε2
(I − LN

(p))Pεf = Pε

(∆(p)

2
f
)
+O(N2ε) +O

( 1

N

)
.

Finally, by letting N → ∞ and ε ↘ 0 with N2ε ↘ 0, we complete the proof.

Lemma 3.2.2 immediately leads to the following lemma. (See [31, Theorem 2.1 and

Lemma 4.2] for details.)

Lemma 3.2.3 (1) For any f ∈ C∞(Γ⊗ R), and 0 ≤ s ≤ t, we have

lim
n→∞

∥∥∥L[nt]−[ns]
(p) Pn−1/2f − Pn−1/2e−(t−s)∆(p)/2f

∥∥∥X
∞

= 0.

(2) We fix 0 ≤ t1 < t2 < · · · < tℓ < ∞ (ℓ ∈ N). Then, we have

(X
(n)
t1 ,X

(n)
t2 , . . . ,X

(n)
tℓ

)
(d)−→ (B

(p)
t1 , B

(p)
t2 , . . . , B

(p)
tℓ
) (n → ∞),

where (B
(p)
t )t≥0 is a (Γ⊗ R, g(p)0 )-valued standard Brownian motion with B

(p)
0 = 0.

Having obtained Lemma 3.2.3, it is sufficient to show the tightness of {P(n)}∞n=1 for

completing the proof of Theorem 3.2.1.

Lemma 3.2.4 The sequence {P(n)}∞n=1 is tight in C0,α-Höl
0

(
[0,∞), (Γ⊗ R, g(p)0 )

)
.

Proof. By virtue of the celebrated Kolmogorov’s criterion, the assertion follows from the

existence of a positive constant C independent of n such that

EP̂x∗

[∥∥X(n)
t − X(n)

s

∥∥4m
g
(p)
0

]
≤ C(t− s)2m (0 ≤ s ≤ t, m, n ∈ N). (3.2.3)

For this sake, it is sufficient to show that, for k, ℓ ∈ N ∪ {0} with k ≤ ℓ, there is a

constant C > 0 independent of n such that

EP̂x∗

[∥∥X(n)
ℓ
n

− X
(n)
k
n

∥∥4m
g
(p)
0

]
≤ C

(ℓ− k

n

)2m
(0 ≤ s ≤ t, m, n ∈ N). (3.2.4)

Indeed, suppose that (3.2.4) holds. For 0 ≤ s ≤ t, we take k, ℓ ∈ N ∪ {0} satisfying

k/n ≤ s < (k + 1)/n and ℓ/n ≤ t < (ℓ + 1)/n. Since the stochastic process X
(n)
· is given

by the linear interpolation, we have∥∥X(n)
k+1
n

− X(n)
s

∥∥
g
(p)
0

= (k − ns)
∥∥X(n)

k+1
n

− X
(n)
k
n

∥∥
g
(p)
0
,∥∥X(n)

t − X
(n)
ℓ
n

∥∥
g
(p)
0

= (nt− ℓ)
∥∥X(n)

ℓ+1
n

− X
(n)
ℓ
n

∥∥
g
(p)
0
.

40



By using (3.2.4) and the triangle inequality, we have

EP̂x∗

[∥∥X(n)
t − X(n)

s

∥∥4m
g
(p)
0

]
≤ 34m−1

{
(k + 1− ns)4m · C

( 1
n

)2m
+ C

(ℓ− k − 1

n

)2m
+ (nt− ℓ)4m · C

( 1
n

)2m}
≤ C

{(k + 1

n
− s
)2m

+
( ℓ
n
− k + 1

n

)2m
+
(
t− ℓ

n

)2m}
≤ C(t− s)2m,

which is the desired estimate (3.2.3).

We now show (3.2.4). We put

∥dΦ0∥∞ := max
e∈E0

∥dΦ0(ẽ)∥g(p)0
.

Then we have

EP̂x∗

[∥∥X(n)
ℓ
n

− X
(n)
k
n

∥∥4m
g
(p)
0

]
=
( 1√

n

)4m
EP̂x∗

[∥∥ξ(p)ℓ − ξ
(p)
k

∥∥4m
g
(p)
0

]
≤ Cn−2m max

i=1,2,...,d
max
x∈F

{ ∑
c∈Ωx,ℓ−k(X)

p(c)
(
Φ0

(
t(c)
)
− Φ0(x)

)4m
i

}
, (3.2.5)

where F stands for the fundamental domain of X containing x∗ ∈ V . In terms of c =

(e1, e2, . . . , eℓ−k) ∈ Ωx∗,ℓ−k(X), we write

(
Φ0

(
t(c)
)
− Φ0(x)

)4m
i

=
{ ℓ−k∑

j=1

(
dΦ0(ej)

)
i

}4m

.

We use Lemma 2.5.1 and the Burkholder–Davis–Gundy inequality to obtain

∑
c∈Ωx,ℓ−k(X)

p(c)
{ ℓ−k∑

j=1

(
dΦ0(ej)

)
i

}4m

≤ C4m
(4m)

∑
c∈Ωx,ℓ−k(X)

p(c)
{ ℓ−k∑

j=1

(
dΦ0(ej)

)2
i

}2m

≤ C4m
(4m)∥dΦ0∥4m∞ (ℓ− k)2m (3.2.6)

for i = 1, 2, . . . , d and x ∈ F , where C(4m) stands for the positive constant which appears

in the Burkholder–Davis–Gundy inequality with the exponent 4m. Combining (3.2.5)

with (3.2.6) immediately implies (3.2.4) and this completes the proof.

Let p(n, x, y) be the n-step transition probability defined by p(n, x, y) := Ln
(p)δy(x)

for n ∈ N and x, y ∈ V We are interested in a relation between the n-step transition

probabilities p(n, x, y) and p(n, x, y). We here give a certain asymptotic formula for

p(n, x, y) and p(n, x, y) as n → ∞.
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Theorem 3.2.5 There exist some positive constants C1 and C2 such that

C1p(n, x, y) exp
(
nMp

)
≤ p(n, x, y) ≤ C2p(n, x, y) exp

(
nMp

)
for all n ∈ N and x, y ∈ V , where

Mp :=
∑
x∈V0

m(x)
(
Hom(Γ,R)

⟨
λ∗(x), ρR(γp)

⟩
Γ⊗R − logFx

(
λ∗(x)

))
.

Proof. For n ∈ N and x, y ∈ V , we have

p(n, x, y) =
∑

(e1,e2,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1)p(e2) · · · p(en)

=
∑

(e1,e2,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1)p(e2) · · · p(en) · exp
( n∑

i=1

λ∗
(
o(ei)

)
[dΦ0(ẽi)]Γ⊗R

)

× Fo(e1)

(
λ∗(o(e1))

)−1
Fo(e2)

(
λ∗(o(e2))

)−1 · · ·Fo(en)

(
λ∗(o(en))

)−1

=
∑

(e1,e2,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1)p(en) · · · p(en)

× exp
( n∑

i=1

λ∗
(
o(ei)

)
[dΦ0(ẽi)]Γ⊗R −

n∑
i=1

logFo(ei)

(
λ∗(o(ei))

))
.

By applying Proposition 2.4.3:

1

n

n∑
i=1

f(ei) =
∑
e∈E0

m̃(e)f(e) +O
( 1
n

)
(f : E0 −→ R), (3.2.7)

we obtain

1

n

n∑
i=1

(
λ∗
(
o(ei)

)
[dΦ0(ẽi)]Γ⊗R − logFo(ei)

(
λ∗(o(ei))

))
=
∑
e∈E0

m̃(e)
(
λ∗
(
o(e)

)
[dΦ0(ẽ)]Γ⊗R − logFo(e)

(
λ∗(o(e))

))
+O

( 1
n

)
=
∑
x∈V0

m(x)
(
λ∗(x)

[ ∑
e∈(E0)x

dΦ0(ẽ)
]
Γ⊗R

− logFx

(
λ∗(x)

))
+O

( 1
n

)
=
∑
x∈V0

m(x)
(
λ∗(x)

[
ρR(γp)

]
Γ⊗R − logFx

(
λ∗(x)

))
+O

( 1
n

)
for x, y ∈ V . Here we used the (2.4.2) for the final line. Finally, we obtain

p(n, x, y) = p(n, x, y) exp
(
n
∑
x∈V0

m(x)
(
λ∗(x)

[
ρR(γp)

]
Γ⊗R − logFx

(
λ∗(x)

))
+O(1)

)
for x, y ∈ V . This completes the proof.
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Remark 3.2.6 Let us consider the case where the Γ-crystal lattice X is given by a cov-

ering graph of an ℓ-bouquet graph (ℓ ∈ N) consisting of one vertex x ∈ V0 and ℓ-loops.

Without using the ergodic theorem (3.2.7) in the proof of Theorem 3.2.5, we also obtain

p(n, x, y) =
∑

(e1,e2,...,en)∈Ωx,n(X)
o(e1)=x, t(en)=y

p(e1)p(e2) · · · p(en)

× exp
( n∑

i=1

λ∗(x)[dΦ0(ẽi)]Γ⊗R

)
· Fx

(
λ∗(x)

)−n

= p(n, x, y) exp
(
λ∗(x)

[
Φ0(y)− Φ0(x)

]
Γ⊗R

)
· Fx

(
λ∗(x)

)−n
(3.2.8)

for every n ∈ N and x, y ∈ V .

3.3 A relation with a discrete analogue of Girsanov’s

formula

In closing this chapter, we discuss a relation between our formula (3.2.8) and a discrete

analogue of Girsanov’s theorem due to Fujita [23].

Let X = (V,E) be a crystal lattice covered with a one-bouquet graph X0 = (V0, E0);

V0 = {x} and E0 = {e, e}, by the group action Γ = ⟨σ⟩ ∼= Z1. We consider a random

walk on X0 with the transition probability

p(e) = p and p(e) = 1− p (0 < p < 1).

We take a bijective linear map ρR : H1(X0,R) −→ Γ⊗ R(∼= R1) by ρR([e]) = σ. Then we

have γp = (2p−1)[e] and ρR(γp) = (2p−1)σ. Let {u} ⊂ Hom(Γ,R) =
(
H1(X0,R), ⟨⟨·, ·⟩⟩p

)
be a dual basis of {σ ⊗ 1 = σ} ⊂ Γ ⊗ R. We easily see that ⟨⟨u, u⟩⟩p = 4p(1 − p). Hence

the orthogonalization {v} ⊂ Hom(Γ,R) of {u} is given by

v =
1√

4p(1− p)
u.

To the end, we identify λv ∈ Hom(Γ,R) with λ ∈ R. We denote by {v} ⊂ Γ⊗R the dual

basis of {v}. Then we observe that the realization Φ0 : X −→ (Γ⊗ R; {v}) defined by

dΦ0(ẽ) := σ =
1√

4p(1− p)
v

is the modified standard realization of X.

We now consider a function F = Fx(λ) defined by (3.1.1), that is,

Fx(λ) = p exp
( λ√

4p(1− p)

)
+ (1− p) exp

(
− λ√

4p(1− p)

)
(λ ∈ R).
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Then the minimizer λ∗ = λ∗(x) and Fx(λ∗) are given by

λ∗ =
√

p(1− p) log
p− 1

p
, Fx(λ∗) =

√
4p(1− p),

respectively. We fix x ∈ V satisfying Φ0(x) = 0. For y ∈ V , we write Φ0(y) = k(y)v.

Then the formula (3.2.8) implies

p(n, x, y) = p(n, x, y) ·
(p− 1

p

)−k(y)/2

·
(√

4p(1− p)
)−n

(n ∈ N, y ∈ V ).

In Fujita [23, page 115], the formula above is called a discrete analogue of Girsanov’s

theorem for a non-symmetric random walk {Zn}∞n=0 on Z1 given by the sum of independent

random variables {ξi}∞i=1 with P(ξi = 1) = p and P(ξi = −1) = 1 − p for i = 1, 2, . . . .

Hence we may regard (3.2.8) as a generalization of the discrete Girsanov’s theorem to the

case of non-symmetric random walks on the ℓ-bouquet graph.
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Chapter 4

CLTs of the first kind for
non-symmetric random walks on
nilpotent covering graphs

4.1 Settings and Statements

Throughout this chapter, suppose that X is a Γ-nilpotent covering graph of a finite graph

X0, that is, Γ is a torsion free, finitely generated nilpotent group of step r. Let G be the

connected and simply connected nilpotent Lie group of step r such that Γ is isomorphic to

a cocompact lattice in G and g =
⊕r

k=1 g
(k) the corresponding Lie algebra. For notations

or properties of random walks on X, nilpotent Lie group G and its Lie algebra, see Section

2.

We now give the settings and statements of CLTs of the first kind in the present

section. At the beginning, we need to introduce a special function space in order to

discuss CLTs. For q > 1, we define

C∞,q(X × Z) :=
{
f = f(x, z) : X × Z −→ R

∣∣ f(·, z) ∈ C∞(X), ∥f∥∞,q < ∞
}
,

where ∥f∥∞,q is a norm on C∞,q(X × Z) given by

∥f∥∞,q :=
1

Cq

∑
z∈Z

∥f(·, z)∥X∞
1 + |z|q

, Cq :=
∑
z∈Z

1

1 + |z|q
< ∞.

Then we see that (C∞,q(X ×Z), ∥ · ∥∞,q) is a Banach space. We introduce the transition-

shift operator Lp : C∞,q(X × Z) −→ C∞,q(X × Z) by

Lpf(x, z) :=
∑
e∈Ex

p(e)f
(
t(e), z + 1

)
(x ∈ V, z ∈ Z) (4.1.1)

and the approximation operator Pε : C∞(G) −→ C∞,q(X × Z) by

Pεf(x, z) := f
(
τε
(
Φ0(x) ∗ exp(−zρR(γp))

))
(0 ≤ ε ≤ 1, x ∈ V, z ∈ Z). (4.1.2)

We give an important property of the family of approximation operators (Pε)0≤ε≤1.
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Lemma 4.1.1 Let q > 1. Then
((
C∞,q(X ×Z), ∥ · ∥∞,q;Pε

))
0≤ε≤1

is a family of Banach

spaces approximating to the Banach space
(
C∞(G), ∥ · ∥G∞

)
in the sense of Trotter [74]:

∥Pεf∥∞,q ≤ ∥f∥G∞ and lim
ε↘0

∥Pεf∥∞,q = ∥f∥G∞
(
f ∈ C∞(G)

)
.

Proof. The former assertion follows from

∥Pεf∥∞,q =
1

Cq

∑
z∈Z

∥f(·, z)∥∞
1 + |z|q

≤ 1

Cq

∑
z∈Z

∥f∥∞
1 + |z|q

= ∥f∥∞.

We prove the latter one. Let g0 ∈ G be an element which attains ∥f∥∞ = supg∈G |f(g)|.
We fix z ∈ Z. Then we have

∥Pεf(·, z)∥∞ ≥ |f(g0)| − inf
x∈X

∣∣∣f(g0)− f
(
τε
(
Φ0(x) ∗ exp(−zρR(γp))

))∣∣∣.
On the other hand, we have

inf
x∈X

dCC

(
g0, τε

(
Φ0(x) ∗ exp(−zρR(γp))

))
= ε inf

x∈X
dCC

(
τ1/ε(g0),Φ0(x) ∗ exp(−zρR(γp))

)
< εM

for some M = M(z) > 0. From the continuity of f , for any δ > 0, there exists δ′ > 0 such

that dCC(g0, h) < δ′ implies |f(g0)− f(h)| < δ. By choosing a sufficiently small ε > 0, we

have

dCC

(
g0, τε

(
Φ0(x∗) ∗ exp(−zρR(γp))

))
< δ′

for some x∗ ∈ X. Then we have

inf
x∈X

∣∣∣f(g0)− f
(
τε
(
Φ0(x) ∗ exp(−zρR(γp))

))∣∣∣
≤
∣∣∣f(g0)− f

(
τε
(
Φ0(x∗) ∗ exp(−zρR(γp))

))∣∣∣ < δ

and this implies limε↘0 ∥Pεf(·, z)∥∞ = ∥f∥∞ for z ∈ Z. By using the dominated conver-

gence theorem, we obtain limε↘0 ∥Pεf∥∞,r = ∥f∥∞. This completes the proof.

We extend each Z ∈ g as a left invariant vector field Z∗ on G as follows:

Z∗f(g) =
d

dε

∣∣∣
ε=0

f
(
g ∗ exp (εZ)

) (
f ∈ C∞(G), g ∈ G

)
.

We put

β(Φ0) :=
∑
e∈E0

m̃(e) log
(
Φ0

(
o(ẽ)

)−1 · Φ0

(
t(ẽ)
)
· exp(−ρR(γp))

)∣∣∣
g(2)

,

where ẽ stands for a lift of e ∈ E0 to X. It should be noted that γp = 0 implies β(Φ0) = 0g.

However, even if ρR(γp) = 0g, the quantity β(Φ0) does not vanish in general. Furthermore,
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β(Φ0) does not depend on the choice of the g(2)-component of the modified harmonic

realization Φ0 : X −→ G, though it has the ambiguity in the component corresponding

to g(2) ⊕ g(3) ⊕ · · · ⊕ g(r). See Proposition 4.2.3 for details and Chapter 6 for a concrete

example.

Then the following is a semigroup-type CLT of the first kind.

Theorem 4.1.2 For q > 4r + 1, the following hold:

(1) For 0 ≤ s ≤ t and f ∈ C∞(G), we have

lim
n→∞

∥∥∥L[nt]−[ns]
p Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥
∞,q

= 0, (4.1.3)

where (e−tA)t≥0 is the C0-semigroup with the infinitesimal generator A on C∞
0 (G) defined

by

A := −1

2

d1∑
i=1

V 2
i∗ − β(Φ0)∗, (4.1.4)

where {V1, V2, . . . , Vd1} denotes an orthonormal basis of (g(1), g0).

(2) Let µ be a Haar measure on G. Fix z ∈ Z. Then, for any sequence {xn}∞n=1 ⊂ V with

lim
n→∞

τn−1/2

(
Φ0(xn) ∗ exp

(
− zρR(γp)

))
= g ∈ G

and for any f ∈ C∞(G), we have

lim
n→∞

L[nt]
p Pn−1/2f(xn, z) = e−tAf(g) =

∫
G

Ht(h
−1 ∗ g)f(h)µ(dh) (t > 0), (4.1.5)

where Ht(g) is a fundamental solution to the heat equation with drift( ∂

∂t
+A

)
u(t, g) = 0 (t > 0, g ∈ G).

We now fix a reference point x∗ ∈ V such that Φ0(x∗) = 1G and put

ξn(c) := Φ0

(
wn(c)

) (
n ∈ N ∪ {0}, c ∈ Ωx∗(X)

)
.

We then have a G-valued random walk (Ωx∗(X),Px∗ , {ξn}∞n=0) starting from 1G. For t ≥ 0,

we define a map X (n)
t : Ωx∗(X) −→ G by

X (n)
t (c) := τn−1/2

(
ξ[nt](c) ∗ exp

(
− [nt]ρR(γp)

)) (
n ∈ N, c ∈ Ωx∗(X)

)
.

Denote by Dn the partition {tk = k/n | k = 0, 1, . . . , n} of [0, 1] for n ∈ N. We de-

fine a G-valued continuous stochastic process (Y (n)
t )0≤t≤1 by the geodesic interpolation of

{X (n)
tk

}nk=0with respect to the Carnot–Carathéodory metric dCC. It is worth noting that

(4.1.5) implies

lim
n→∞

∑
c∈Ωx∗ (X)

p(c)f
(
X (n)

t (c)
)
=

∫
G

Ht(h
−1)f(h)µ(dh)

(
f ∈ C∞(G)

)
. (4.1.6)
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Let d1 = dimR g
(1). We consider an SDE

dYt =

d1∑
i=1

Vi∗(Yt) ◦ dBi
t + β(Φ0)∗(Yt) dt, Y0 = 1G, (4.1.7)

where (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d1
t )0≤t≤1 is an Rd1-valued standard Brownian motion

with B0 = 0. Let (Yt)0≤t≤1 be the G-valued diffusion process which solves (4.1.7). In

Proposition 4.5.3 below, we prove that the infinitesimal generator of (Yt)0≤t≤1 coincides

with −A defined by (4.1.4). Let Lip1G
([0, 1];G) be the set of all Lipschitz continuous

path w : [0, 1] −→ G such that w0 = 1G. We also set, for α < 1/2,

Cα-Höl
1G

([0, 1];G) =
{
w ∈ C1G

([0, 1];G) : ∥w∥α-Höl := sup
s,t∈[0,1]

dCC(ws, wt)

|t− s|α
< ∞

}
.

We define

C0,α-Höl
1G

([0, 1];G) := Lip1G
([0, 1];G)

∥·∥α-Höl
, (4.1.8)

which is separable in the α-Hölder topology (cf. Friz–Victoir [22, Section 8]). Let P(n) be

the image measure on C0,α-Höl
1G

([0, 1];G) induced by Y (n)
· for n ∈ N.

We now in a position to present an FCLT of the first kind for the non-symmetric

random walk {wn}∞n=0 on X.

Theorem 4.1.3 We assume the centered condition (C): ρR(γp) = 0g. Then the sequence

(Y (n)
t )0≤t≤1 (n = 1, 2, . . . ) converges in law to the G-valued diffusion process (Yt)0≤t≤1 in

C0,α-Höl
1G

([0, 1];G) as n → ∞ for all α < 1/2.

Let us make comments on Theorems 4.1.2 and 4.1.3. As is emphasized in Breuillard

[10, Section 6], the situation of the non-centered case ρR(γp) ̸= 0g is quite different from

the centered case ρR(γp) = 0g and thus some technical difficulties arise to obtain CLTs.

That is why there are few papers which discuss CLTs for non-centered random walks on

nilpotent Lie groups. We obtain, in Theorem 4.1.2, a semigroup CLT for the non-centered

random walk {ξn}∞n=0 on G with a canonical dilation τn−1/2 , while Crépel–Raugi [15] and

Raugi [63] proved similar CLTs for the random walk to (4.1.6) with spatial scalings whose

orders are higher than τn−1/2 . On the other hand, in the present paper, we need to assume

the centered condition (C) to obtain an FCLT (Theorem 4.1.3) for {ξn}∞n=0 in the Hölder

topology, stronger than the uniform topology in C1G
([0, 1];G). In Section 4.5, we mention

a method to reduce the non-centered case ρR(γp) ̸= 0g to the centered case by employing

a measure-change technique based on the one discussed in Section 3.

4.2 Proof of Theorem 4.1.2

In what follows, we set

dΦ0(e) = Φ0

(
o(e)

)−1 · Φ0

(
t(e)
)

(e ∈ E),

∥dΦ0∥∞ = max
e∈E0

{∥∥ log (dΦ0(ẽ)
)∣∣

g(1)

∥∥
g(1)

+
∥∥ log (dΦ0(ẽ)

)∣∣
g(2)

∥∥1/2
g(2)

}
.
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Here, we need to care the difference between dΦ0 above and the one introduced in Section

3.1, though we use the same symbol for simplicity. The difference comes from whether

the underlying space is commutative or not. We should mention that(
Φ0(x)

−1 · Φ0

(
t(c)
))(k)

i
= O(Nk) (4.2.1)

for x ∈ V, c ∈ Ωx,N(X), i = 1, 2, . . . , dk and k = 1, 2, . . . , r. We also write

ρ = ρR(γp), ezρ = exp
(
zρR(γp)

)
(z ∈ R)

for brevity.

The following lemma is significant to prove Theorem 4.1.2.

Lemma 4.2.1 Let f ∈ C∞
0 (G) and q > 4r + 1. Then we have∥∥∥ 1

Nε2
(
I − LN

p

)
Pεf − PεAf

∥∥∥
∞,q

−→ 0

as N → ∞ and ε ↘ 0 with N2ε ↘ 0, where Lp is the transition-shift operator defined by

(4.1.1) and A is the sub-elliptic operator defined by (4.1.4).

Proof. We divide the proof into several steps.

Step 1. We first apply Taylor’s formula (cf. Alexopoulos [2, Lemma 5.3]) for the (∗)-
coordinates of the second kind to f ∈ C∞

0 (G) at τε
(
Φ0(x) ∗ e−zρ

)
∈ G. By recalling that

(G, ∗) is a stratified Lie group, we have

1

Nε2
(I − LN

p )Pεf(x, z)

= −
∑
(i,k)

εk−2

N
X

(k)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(k)
i∗

−
( ∑

(i1,k1)≥(i2,k2)

εk1+k2−2

2N
X

(k1)
i1∗ X

(k2)
i2∗ +

∑
(i2,k2)>(i1,k1)

εk1+k2−2

2N
X

(k2)
i2∗ X

(k1)
i1∗

)
× f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(k1)
i1∗

(
BN(x, z, c)

)(k2)
i2∗

−
∑

(i1,k1),(i2,k2),(i3,k3)

εk1+k2+k3−2

6N

∂3f

∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗

(θ)
∑

c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(k1)
i1∗

×
(
BN(x, z, c)

)(k2)
i2∗

(
BN(x, z, c)

)(k3)
i3∗

(x ∈ V, z ∈ Z), (4.2.2)

for some θ ∈ G with |θ(k)i∗ | ≤ εk
∣∣(BN(x, z, c)

)(k)
i∗

∣∣ for i = 1, 2, . . . , dk and k = 1, 2, . . . , r,

where the summation
∑

(i1,k1)≥(i2,k2)
runs over all (i1, k1) and (i2, k2) with k1 > k2 or

k1 = k2, i1 ≥ i2. Here we set

BN(x, z, c) := ezρ ∗ Φ0(x)
−1 ∗ Φ0

(
t(c)
)
∗ e−(z+N)ρ

(
N ∈ N, x ∈ V, z ∈ Z, c ∈ Ωx,N(X)

)
.
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We denote by Ordε(k) the terms of the right-hand side of (4.2.2) whose order of ε equals

just k. Then (4.2.2) is rewritten as

1

Nε2
(I − LN

p )Pεf(x, z) = Ordε(−1) + Ordε(0) +
∑
k≥1

Ordε(k) (x ∈ V, z ∈ Z),

where

Ordε(−1) = − 1

Nε

d1∑
i=1

X
(1)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(1)
i∗ ,

Ordε(0) = − 1

N

d2∑
i=1

X
(2)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
c∈Ωx,N (X)

p(c)
{(

BN(x, z, c)
)(2)
i∗

− 1

2

∑
1≤λ<ν≤d1

(
BN(x, z, c)

)(1)
λ∗

(
BN(x, z, c)

)(1)
ν∗ [[X

(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

}
− 1

2N

∑
1≤i,j≤d1

X
(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ0(x) ∗ e−zρ

))
×

∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(1)
i∗

(
BN(x, z, c)

)(1)
j∗

and
∑

k≥1Ordε(k) is given by the sum of the following three parts:

I1(ε,N) = −
∑
k≥3

dk∑
i=1

εk−2

N
X

(k)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(k)
i∗ ,

I2(ε,N) = −
( ∑

(i1,k1)≥(i2,k2)
k1+k2≥3

εk1+k2−2

2N
X

(k1)
i1∗ X

(k2)
i2∗ +

∑
(i2,k2)>(i1,k1)

k1+k2≥3

εk1+k2−2

2N
X

(k2)
i2∗ X

(k1)
i1∗

)

× f
(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(k1)
i1∗

(
BN(x, z, c)

)(k2)
i2∗

,

I3(ε,N) = −
∑

(i1,k1),(i2,k2),(i3,k3)

εk1+k2+k3−2

6N

∂3f

∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗

(θ)

×
∑

c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(k1)
i1∗

(
BN(x, z, c)

)(k2)
i2∗

(
BN(x, z, c)

)(k3)
i3∗

.

To complete the proof of Lemma 4.2.1, it is sufficient to show the followings:

(1) Ordε(−1) = 0.

(2) We have

Ordε(0) = −Af
(
τε
(
Φ0(x) ∗ e−zρ

))
+O

( 1

N

)
. (4.2.3)

(3) As N → ∞ and ε ↘ 0 with N2ε ↘ 0, we have

∥Ii(ε,N)∥∞,q −→ 0 (i = 1, 2, 3). (4.2.4)
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Step 2. We here show (1). We fix i = 1, 2, . . . , d1. By recalling (2.4.4) and (2.2.3), we

have inductively∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(1)
i∗

=
∑

c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e)
{
log
(
Φ0(x)

−1 · Φ0

(
t(c′)

)
· e−(N−1)ρ

)∣∣∣
X

(1)
i

+ log
(
Φ0

(
o(e)

)−1 · Φ0

(
t(e)
)
· e−ρ

)∣∣∣
X

(1)
i

}
=

∑
c′∈Ωx,N−1(X)

p(c′) log
(
Φ0(x)

−1 · Φ0

(
t(c′)

)
· e−(N−1)ρ

)∣∣∣
X

(1)
i

= 0 (x ∈ V, z ∈ Z).

Step 3. We prove the item (2). First consider the coefficient of X
(2)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

))
which is given by

− 1

N

∑
c∈Ωx,N (X)

p(c)
{(

BN(x, z, c)
)(2)
i∗

− 1

2

∑
1≤λ<ν≤d1

(
BN(x, z, c)

)(1)
λ∗

(
BN(x, z, c)

)(1)
ν∗ [[X

(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

}
= − 1

N

∑
c∈Ωx,N (X)

p(c) log
(
BN(x, z, c)

)∣∣
X

(2)
i

(x ∈ V, i = 1, 2, . . . , d2).

Let us fix i = 1, 2, . . . , d2. We then deduce from (2.4.4) and (2.2.3) that, for x ∈ V and

z ∈ Z,

− 1

N

∑
c∈Ωx,N (X)

p(c) log
(
BN(x, z, c)

)∣∣
X

(2)
i

= − 1

N

∑
c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e) log
((

ezρ ∗ Φ0(x)
−1 ∗ Φ0

(
t(c′)

)
∗ e−(z+N−1)ρ

)
∗
(
e(z+N−1)ρ ∗ Φ0

(
o(e)

)−1 ∗ Φ0

(
t(e)
)
∗ e−(z+N)ρ

))∣∣∣
X

(2)
i

= − 1

N

∑
c′∈Ωx,N−1(X)

p(c′) log
(
ezρ · Φ0(x)

−1 · Φ0(t(c
′)) · e−(z+N−1)ρ

)∣∣∣
X

(2)
i

+
∑

c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e) log
(
e(z+N−1)ρ · dΦ0(e) · e−(z+N)ρ

)∣∣∣
X

(2)
i

= − 1

N

N−1∑
k=0

∑
c∈Ωx,k(X)

p(c)
∑

e∈Et(c)

p(e) log
(
e(z+k)ρ · dΦ0(e) · e−(z+k+1)ρ

)∣∣∣
X

(2)
i

.

For g, h ∈ G, we denote by [g, h] := g · h · g−1 · h−1 the usual commutator of g and h.
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Then we have∑
e∈Et(c)

p(e) log
(
e(z+k)ρ · dΦ0(e) · e−(z+k+1)ρ

)∣∣∣
X

(2)
i

=
∑

e∈Et(c)

p(e) log
([

e(z+k)ρ, dΦ0(e)
]
· dΦ0(e) · e−ρ

)∣∣∣
X

(2)
i

=
∑

e∈Et(c)

p(e) log
([

e(z+k)ρ, dΦ0(e)
])∣∣∣

X
(2)
i

+
∑

e∈Et(c)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(2)
i

=
∑

e∈Et(c)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(2)
i

(z ∈ Z, k = 0, 1, . . . , N − 1)

by again using (2.4.4). Since the function

Mi(x) :=
∑
e∈Ex

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(2)
i

(i = 1, 2, . . . , d2, x ∈ V )

satisfies Mi(γx) = Mi(x) for γ ∈ Γ and x ∈ V due to the Γ-invariance of p and the

Γ-equivariance of Φ0, there exists a function Mi : V0 −→ R such that Mi

(
π(x)

)
= Mi(x)

for i = 1, 2, . . . , d2 and x ∈ V . Moreover, we have

LkMi

(
π(x)

)
= LkMi(x) (k ∈ N, i = 1, 2, . . . , d2, x ∈ V )

by using the Γ-invariance of p. Then the ergodic theorem (cf. [31, Theorem 3.2]) for the

transition operator L gives

− 1

N

∑
c∈Ωx,N (X)

p(c) log
(
BN(x, z, c)

)∣∣
X

(2)
i

= − 1

N

N−1∑
k=0

LkMi(x)

= − 1

N

N−1∑
k=0

LkMi

(
π(x)

)
= −

∑
x∈V0

m(x)Mi(x) +O
( 1

N

)
= −β(Φ0)

∣∣
X

(2)
i

+O
( 1

N

)
(x ∈ V, z ∈ Z). (4.2.5)

We next consider the coefficient of X
(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ0(x) ∗ e−zρ

))
which is given by

− 1

2N

∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(1)
i∗

(
BN(x, z, c)

)(1)
j∗ (x ∈ V, z ∈ Z, i, j = 1, 2, . . . , d1).
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Fix i, j = 1, 2, . . . , d1. Then (2.4.4) and (2.2.3) imply

− 1

2N

∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(1)
i∗

(
BN(x, z, c)

)(1)
j∗

= − 1

2N

∑
c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e)

×
{
log
(
BN−1(x, z, c

′)
)∣∣

X
(1)
i

+ log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

}
×
{
log
(
BN−1(x, z, c

′)
)∣∣

X
(1)
j

+ log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

}
= − 1

2N

{ ∑
c′∈Ωx,N−1(X)

p(c′) log
(
BN−1(x, z, c

′)
)∣∣

X
(1)
i

log
(
BN−1(x, z, c

′)
)∣∣

X
(1)
j

+
∑

e∈Et(c′)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

}

= − 1

2N

N−1∑
k=0

∑
c∈Ωx,N (X)

p(c)
∑

e∈Et(c)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

for x ∈ V and z ∈ Z. In the same argument as above, the function Nij : V −→ R defined

by

Nij(x) :=
∑
e∈Ex

p(e) log
(
dΦ0(e)

)∣∣
X

(1)
i

log
(
dΦ0(e)

)∣∣
X

(1)
j

(i, j = 1, 2, . . . , d1, x ∈ V )

is Γ-invariant and then there exists a functionNij : V0 −→ R such thatNij

(
π(x)

)
= Nij(x)

for x ∈ V . We also have

LkNij

(
π(x)

)
= LkNij(x) (k ∈ N, i, j = 1, 2, . . . , d2, x ∈ V )

by using the Γ-invariance of p. Hence, we obtain

− 1

2N

∑
c∈Ωx,N (X)

p(c)
(
BN(x, z, c)

)(1)
i∗

(
BN(x, z, c)

)(1)
j∗

= − 1

2N

N−1∑
k=0

LkNij(x)

= − 1

2N

N−1∑
k=0

LkNij

(
π(x)

)
= −1

2

∑
x∈V0

m(x)Nij(x) +O
( 1

N

)
= −1

2

∑
e∈E0

m̃(e) log
(
dΦ0(ẽ) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(ẽ) · e−ρ

)∣∣
X

(1)
j

+O
( 1

N

)
. (4.2.6)
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by virtue of the ergodic theorem. Recall that {V1, V2, . . . , Vd1} denotes an orthonormal

basis of (g(1), g0). We especially put X
(1)
i = Vi for i = 1, 2, . . . , d1. Let {ω1, ω2, . . . , ωd1} ⊂

Hom(g(1),R) ↪→ H1(X0,R) be the dual basis of {V1, V2, . . . , Vd1}. Namely, ωi(Vj) = δij for

i, j = 1, 2, . . . , d1. It follows from (2.4.5) that∑
e∈E0

m̃(e) log
(
dΦ0(ẽ) · e−ρ

)∣∣
Vi
log
(
dΦ0(ẽ) · e−ρ

)∣∣
Vj

=
∑
e∈E0

m̃(e) log
(
dΦ0(ẽ)

)∣∣
Vi
log
(
dΦ0(ẽ)

)∣∣
Vj

− ρR(γp)
∣∣
Vi
ρR(γp)

∣∣
Vj

=
∑
e∈E0

m̃(e)tρR(ωi)(e)
tρR(ωj)(e)− ωi(ρR(γp))ωj(ρR(γp))

=
∑
e∈E0

m̃(e)ωi(e)ωj(e)− ⟨γp, ωi⟩⟨γp, ωj⟩ = ⟨⟨ωi, ωj⟩⟩p = δij. (4.2.7)

Hence, we obtain (4.2.3) by combining (4.2.5) with (4.2.6) and (4.2.7).

Step 4. We show (3) at the last step. We first discuss the estimate of I1(ε,N). By using

(2.2.7) and (4.2.1), we have∣∣∣(Φ0(x)
−1 ∗ Φ0

(
t(c)
))(k)

i∗

∣∣∣
≤ C

∑
|K1|+|K2|≤k

|K2|>0

∣∣∣PK1
∗

(
Φ0(x)

−1
)∣∣∣∣∣∣PK2

(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣

≤ C
∑

|K1|+|K2|≤k
|K2|>0

N |K2|
∣∣∣PK1

∗

(
e−zρ ∗

(
Φ0(x) ∗ e−zρ

)−1
)∣∣∣

for i = 1, 2, . . . , dk and k = 1, 2, . . . , r. Then (2.2.2) implies that there is a continuous

function Q1 : G −→ R such that∣∣∣(Φ0(x)
−1 ∗ Φ0

(
t(c)
))(k)

i∗

∣∣∣
≤ |z|k−1Q1

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
|K1|+|K2|≤k

|K2|>0

ε−|K1|N |K2| (4.2.8)

for i = 1, 2, . . . , dk and k = 1, 2, . . . , r. Thus, (2.2.2) and (4.2.8) yields∣∣(BN(x, 0, c)
)(k)
i∗

∣∣
≤ C

∑
|L1|+|L2|=k
|L1|,|L2|≥0

∣∣∣PL1
∗

(
Φ0(x)

−1 ∗ Φ0

(
t(c)
))∣∣∣∣∣PL2

∗
(
e−Nρ

)∣∣
≤ C|z|kQ2

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑
|L1|+|L2|=k
|L1|,|L2|≥0

N |L2|
∑

|K1|+|K2|≤|L1|
|K2|>0

ε−|K1|N |K2|

= C|z|kQ2

(
τε
(
Φ0(x) ∗ e−zρ

))
F (ε,N) (4.2.9)
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for some continuous function Q2 : G −→ R, where F (ε,N) denotes the polynomial of ε

and N which satisfies εk−2N−1F (ε,N) → 0 as N → ∞, ε ↘ 0 and N2ε ↘ 0.

On the other hand, combining (4.2.9) with ρR(γp) ∈ g(1) gives

εk−2

N

∣∣(BN(x, z, c)
)(k)
i∗

∣∣
=

εk−2

N

∣∣∣([ezρ,BN(x, 0, c)
]
∗ ∗ BN(x, 0, c)

)(k)
i∗

∣∣∣
≤ C

εk−2

N

∑
|K1|+|K2|=k
|K1|,|K2|≥0

∣∣∣PK1
∗

([
ezρ,BN(x, 0, c)

]
∗

)∣∣∣∣∣∣PK2
∗
(
BN(x, 0, c)

)∣∣∣
≤ C|z|2k ε

k−2

N
Q3

(
τε
(
Φ0(x) ∗ e−zρ

))
F (ε,N)(

i = 1, 2, . . . , dk, k = 3, 4, . . . , r, x ∈ V, z ∈ Z, c ∈ Ωx,N(X)
)

(4.2.10)

for some continuous function Q3 : G −→ R. Hence, we obtain ∥I1(ε,N)∥∞,q → 0 as

N → ∞, ε ↘ 0 and N2ε ↘ 0 in C∞,q(X × Z) by using (4.2.10). This follows from

2k < 2r < q. In the same argument as above, we also obtain ∥I2(ε,N)∥∞,q → 0 as

N → ∞, ε ↘ 0 and N2ε ↘ 0 in C∞,q(X × Z)-topology since the order of |z| in I2(ε,N)

satisfies 2× 2k < 4r < q.

Finally, we study the estimate of the term I3(ε,N). We recall that f ∈ C∞
0 (G)

and supp ∂3f/(∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗ ) ⊂ supp f. Therefore, it suffices to show by induction on

k = 1, 2, . . . , r that, if εN < 1,

εk
∣∣(BN(x, z, c)

)(k)
i∗

∣∣ ≤ |z|kQ(k)
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

)
× εN (4.2.11)

for some continuous function Q(k) : G −→ R, where θ ∈ G appears in the remainder term

of (4.2.2). The cases k = 1 and k = 2 are obvious. Suppose that (4.2.11) holds for less

than k. Then we have

εk
∣∣(BN(x, z, c)

)(k)
i∗

∣∣ ≤ Cεk
∑

|K1|+|K2|≤k
|K2|>0

∣∣∣PK1
∗

(
Φ0(x)

−1
)∣∣∣∣∣∣PK2

(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣

by using (2.2.7). Since

(
Φ0(x)

−1
)(k1)
i1∗

=
(
e−zρ ∗ (τε−1θ) ∗

(
τε−1(τε(Φ0(x) ∗ e−zρ) ∗ θ)−1

))(k1)
i1∗

(k1 ≤ k − 1),

we have inductively ∣∣(Φ0(x)
−1
)(k1)
i1∗

∣∣ ≤ |z|k1Q
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

)
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for a continuous function Q : G −→ R and k1 ≤ k − 1. We thus obtain

εk
∣∣(BN(x, z, c)

)(k)
i∗

∣∣
≤ Cεk

∑
|K1|+|K2|≤k

|K2|>0

N |K2|
∣∣∣PK1

∗

(
e−zρ ∗ (τε−1θ) ∗

(
τε−1(τε(Φ0(x) ∗ e−zρ) ∗ θ)−1

))∣∣∣
≤ C|z|kQ

(
τε(Φ0(x) ∗ e−zρ) ∗ θ

) ∑
|K1|+|K2|≤k

|K2|>0

εk−|K1|+1N |K2|+1

≤ |z|kQ(k)
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

)
× εN

for some continuous function Q(k) : G −→ R. Therefore, (4.2.11) holds for k = 1, 2, . . . , r

and this implies that ∥I3(ε,N)∥∞,q → 0 as N → ∞, ε ↘ 0 and N2ε ↘ 0 in C∞,q(X ×Z)
since the order of |z| in I3(ε,N) satisfies 3k < 3r < q. This completes the proof.

We now give the proof of Theorem 4.1.2 by using this lemma. We note that the

infinitesimal operator A in Lemma 4.2.1 enjoys the following property.

Lemma 4.2.2 (cf. Robinson [64, page 304]) The range of λ−A is dense in C∞(G)

for some λ > 0. Namely, (λ−A)
(
C∞

0 (G)
)
is dense in C∞(G).

Proof of Theorem 4.1.2. (1) We follow the argument in Kotani [38, Theorem 4]. Let

N = N(n) be the integer satisfying n1/5 ≤ N < n1/5+1 and kN and rN be the quotient and

the remainder of ([nt]− [ns])/N(n), respectively. Note that rN < N . We put εN := n−1/2

and hN := Nε2N . Then we have N = N(n) → ∞,

r2NεN < N2εN ≤ (1 + n1/5)2 · n−1/2 → 0,

and hN ≤ (1 + n1/5) · n−1 → 0 as n → ∞. We also see that

rNε
2
N < Nε2N ≤ (1 + n1/5) · n−1 → 0 (n → ∞).

Hence, we have

kNhN =
[nt]− [ns]− rN

N
·Nε2N =

(
[nt]− [ns]− rN

)
ε2N → t− s (n → ∞).

Since C∞
0 (G) ⊂ Dom(A) ⊂ C∞(G) and C∞

0 (G) is dense in C∞(G), the operator

A is densely defined in C∞(G). We use this fact and Lemma 4.2.2 to apply Trotter’s

approximation theorem (cf. Trotter [74] and Kurtz [47]). We obtain, for f ∈ C∞
0 (G),

lim
n→∞

∥∥∥LNkN
p Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥
∞,q

= 0. (4.2.12)

Then Lemma 4.2.1 implies

lim
n→∞

∥∥∥ 1

rNε2N

(
I − LrN

p

)
Pn−1/2f − Pn−1/2Af

∥∥∥
∞,q

= 0 (4.2.13)
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for all f ∈ C∞
0 (G). We thus have∥∥∥L[nt]−[ns]

p Pn−1/2f − Pn−1/2e−(t−s)Af
∥∥∥
∞,q

≤
∥∥∥(I − LrN

p

)
Pn−1/2f

∥∥∥
∞,q

+
∥∥∥LNkN

p Pn−1/2f − Pn−1/2e−(t−s)Af
∥∥∥
∞,q

. (4.2.14)

On the other hand, we have∥∥∥(I − LrN
p

)
Pn−1/2f

∥∥∥
∞,q

≤ rNε
2
N

∥∥∥ 1

rNε2N

(
I − LrN

p

)
Pn−1/2f − Pn−1/2Af

∥∥∥
∞,q

+ rNε
2
N

∥∥Pn−1/2Af
∥∥
∞,q

≤ rNε
2
N

∥∥∥ 1

rNε2N

(
I − LrN

p

)
Pn−1/2f − Pn−1/2Af

∥∥∥
∞,q

+ rNε
2
N

∥∥Af
∥∥G
∞. (4.2.15)

We obtain (4.1.3) for f ∈ C∞
0 (G) by combining (4.2.13), (4.2.14) and (4.2.15) with

rNε
2
N → 0 (n → ∞). For f ∈ C∞(G), we also obtain the convergence (4.1.3) by fol-

lowing the same argument as [31, Theorem 2.1].

(2) For t > 0 and z ∈ Z, we have∣∣L[nt]
p Pn−1/2f(xn, z)− e−tAf(g)

∣∣
≤
∣∣L[nt]

p Pn−1/2f(xn, z)− Pn−1/2e−tAf(xn, z)
∣∣+ ∣∣Pn−1/2e−tAf(xn, z)− e−tAf(g)

∣∣
≤ (1 + |z|q)

∥∥∥L[nt]
p Pn−1/2f − Pn−1/2e−tAf

∥∥∥
∞,q

+
∣∣∣e−tAf

(
τn−1/2

(
Φ0(xn) ∗ exp(−zρR(γp))

))
− e−tAf(g)

∣∣∣.
We thus obtain (4.1.5) by (4.1.3) and the continuity of the function e−tAf : G −→ R.
This completes the proof of Theorem 4.1.2.

To the end, we give several properties of β(Φ0).

Proposition 4.2.3 (1) If the random walk on X is m-symmetric, then β(Φ0) = 0g.

(2) Let Φ0, Φ̂0 : X −→ G be two modified harmonic realizations. Then

β(Φ0) = β(Φ̂0)−
[
ρR(γp), log

(
Φ0(x)

−1 · Φ̂0(x)
)]∣∣

g(2)
(x ∈ V ).

In particular, if either

• log Φ0(x∗)
∣∣
g(1)

= log Φ̂0(x∗)
∣∣
g(1)

for some reference point x∗ ∈ V , or

• ρR(γp) = 0g

holds, then we have β(Φ0) = β(Φ̂0).

Proof. Assertion (1) is easily obtained as follows:

β(Φ0) =
1

2

∑
e∈E0

{
m̃(e) log

(
dΦ0(ẽ)

)∣∣
g(2)

+ m̃(e) log
(
dΦ0(ẽ)

)∣∣
g(2)

}
=

1

2

∑
e∈E0

(
m̃(e)− m̃(e)

)
log
(
dΦ0(ẽ)

)∣∣
g(2)

= 0g.
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Next we show Assertion (2). We set Ψ(x) := Φ0(x)
−1 · Φ̂0(x) for x ∈ V. We note that the

map Ψ : X −→ G is Γ-invariant. Since the g(1)-components of Φ0 and Φ̂0 are uniquely

determined up to g(1)-translation, there exists a constant vector C ∈ g(1) such that

log
(
Ψ(x)

)∣∣
g(1)

= C for x ∈ V. Define a function Fi : V −→ R by Fi(x) := log
(
Ψ(x)

)∣∣
X

(2)
i

for i = 1, 2, . . . , d2 and x ∈ V . Then we see that the function Fi is Γ-invariant. Hence,

there is a function F̂i : V0 −→ R satisfying F̂i

(
π(x)

)
= Fi(x) for x ∈ V . Then we obtain

β(Φ0) =
∑
e∈E0

m̃(e) log
(
Ψ
(
o(ẽ)

)
·
(
dΦ̂0(ẽ) · e−ρ

)
· eρ ·Ψ

(
t(ẽ)
)−1 · e−ρ

)∣∣∣
g(2)

= β(Φ̂0)−
∑
e∈E0

m̃(e)
{
log
(
Ψ
(
t(ẽ)
))∣∣∣

g(2)
− log

(
Ψ
(
o(ẽ)

))∣∣∣
g(2)

}
− [ρR(γp), C]

∣∣
g(2)

= β(Φ̂0)−
d2∑
i=1

(
C1(X0,R)⟨γp, dF̂i⟩C1(X0,R)

)
X

(2)
i − [ρR(γp), C]

∣∣
g(2)

= β(Φ̂0)−
d2∑
i=1

(
C0(X0,R)⟨∂(γp), F̂i⟩C0(X0,R)

)
X

(2)
i − [ρR(γp), C]

∣∣
g(2)

= β(Φ̂0)− [ρR(γp), C]
∣∣
g(2)

,

where we used (2.2.2) for the second line and γp ∈ H1(X0,R) for the fourth line.

4.3 Proof of Theorem 4.1.3

We now assume the centered condition (C): ρR(γp) = 0g, throughout this subsection. For

k = 1, 2, . . . , r, we denote by (G(k), ·) and (G(k), ∗) the connected and simply connected

nilpotent Lie group of step k and the corresponding limit group whose Lie algebras are(
g(1)⊕g(2)⊕· · ·⊕g(k), [·, ·]

)
and

(
g(1)⊕g(2)⊕· · ·⊕g(k), [[·, ·]]

)
, respectively. For the piecewise

smooth stochastic process (Y(n)
t )0≤t≤1 = (Y(n),1

t ,Y(n),2
t , . . . ,Y(n),r

t )0≤t≤1 defined in Section

2, we define its truncated process by

Y(n; k)
t =

(
Y (n),1

t ,Y(n),2
t , . . . ,Y (n),k

t

)
∈ G(k) (0 ≤ t ≤ 1, k = 1, 2, . . . , r)

in the (·)-coordinate system. To complete the proof of Theorem 4.1.3, it is sufficient to

show the tightness of {P(n)}∞n=1 (Lemma 4.3.1) and the convergence of the finite dimen-

sional distribution of {Y(n)
· }∞n=1 (Lemma 4.3.4).

In the former part of this subsection, we aim to show the following.

Lemma 4.3.1 Under (C), the family {P(n)}∞n=1 is tight in C0,α-Höl
1G

([0, 1];G), where α is

an arbitrary real number less than 1/2.

As the first step of the proof of Lemma 4.3.1, we prepare the following lemma.

58



Lemma 4.3.2 Let m,n be positive integers. Then there exists a constant C > 0 which is

independent of n (however, it may depend on m) such that

EPx∗

[
dCC(Y(n; 2)

s ,Y(n; 2)
t )4m

]
≤ C(t− s)2m (0 ≤ s ≤ t ≤ 1). (4.3.1)

Proof. The proof is partially based on Bayer–Friz [6, Proposition 4.3]. We split the proof

into several steps.

Step 1. At the beginning, we show

EPx∗

[
dCC(Y(n; 2)

tk
,Y (n; 2)

tℓ
)4m
]
≤ C

(ℓ− k

n

)2m (
n,m ∈ N, tk, tℓ ∈ Dn (k ≤ ℓ)

)
(4.3.2)

for some C > 0 independent of n (depending on m). By recalling the equivalence of two

homogeneous norms ∥ · ∥CC and ∥ · ∥hom (cf. Proposition 2.3.3), we readily see that (4.3.2)

is equivalent to the existence of positive constants C(1) and C(2) independent of n such

that

EPx∗

[∥∥ log ((Y (n)
tk

)−1 · Y(n)
tℓ

)∣∣
g(1)

∥∥4m
g(1)

]
≤ C(1)

(ℓ− k

n

)2m
, (4.3.3)

EPx∗

[∥∥ log ((Y (n)
tk

)−1 · Y(n)
tℓ

)∣∣
g(2)

∥∥2m
g(2)

]
≤ C(2)

(ℓ− k

n

)2m
. (4.3.4)

Step 2. We now show (4.3.3). We see

EPx∗

[∥∥ log ((Y(n)
tk

)−1 · Y (n)
tℓ

)∣∣
g(1)

∥∥4m
g(1)

]
=
( 1√

n

)4m
EPx∗

[( d1∑
i=1

log (ξ−1
k · ξℓ)

∣∣2
X

(1)
i

)2m]
≤
( 1√

n

)4m
· d2m1 max

i=1,2,...,d1
max
x∈F

{ ∑
c∈Ωx,ℓ−k(X)

p(c) log
(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣4m

X
(1)
i

}
, (4.3.5)

where F stands for the fundamental domain in X containing the reference point x∗ ∈ V .

For i = 1, 2, . . . , d1, x ∈ F , N ∈ N and c = (e1, e2, . . . , eN) ∈ Ωx,N(X), we put

M(i,x)
N (c) = M(i,x)

N (Φ0; c) := log
(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣

X
(1)
i

=
N∑
j=1

log
(
dΦ0(ej)

)∣∣
X

(1)
i
.

By Lemma 2.5.3, {M(i,x)
N }∞N=1 is an R-valued martingale for every i = 1, 2, . . . , d1 and

x ∈ F . Therefore, we apply the Burkholder–Davis–Gundy inequality with the exponent

4m to obtain∑
c∈Ωx,N (X)

p(c)
(
M(i,x)

N (c)
)4m

=
∑

c∈Ωx,N (X)

p(c)
( N∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(1)
i

)4m
≤ C4m

(4m)

∑
c∈Ωx,N (X)

p(c)
( N∑

j=1

log
(
dΦ0(ej)

)∣∣2
X

(1)
i

)2m
≤ C4m

(4m)∥dΦ0∥4m∞ N2m (4.3.6)
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for i = 1, 2, . . . , d1, x ∈ F and N ∈ N, where C(4m) stands for the positive constant which

appears in the Burkholder–Davis–Gundy inequality with the exponent 4m. In particular,

by putting N = ℓ− k, (4.3.6) leads to∑
c∈Ωx,ℓ−k(X)

p(c) log
(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣4m

X
(1)
i

≤ C4m
(4m)∥dΦ0∥4m∞ (ℓ− k)2m. (4.3.7)

Thus, we obtain

EPx∗

[∥∥ log ((Y(n)
tk

)−1 · Y(n)
tℓ

)∣∣
g(1)

∥∥4m
g(1)

]
≤ d2m1 C4m

(4m)∥dΦ0∥4m∞ ·
(ℓ− k

n

)2m
= C(1)

(ℓ− k

n

)2m
by combining (4.3.5) with (4.3.7), which is the desired estimate (4.3.3).

Step 3. Next we prove (4.3.4). In the similar way to (4.3.5), we also have

EPx∗

[∥∥ log ((Y (n)
tk

)−1 · Y (n)
tℓ

)∣∣
g(2)

∥∥2m
g(2)

]
≤
( 1
n

)2m
· d2m2 max

i=1,2,...,d2
max
x∈F

{ ∑
c∈Ωx,ℓ−k(X)

p(c) log
(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣2m

X
(2)
i

}
. (4.3.8)

An elementary inequality (a1 + a2 + · · ·+ aK)
2m ≤ K2m−1(a2m1 + a2m2 · · ·+ a2mK ) yields

log
(
Φ0(x)

−1 · Φ0

(
t(c)
))∣∣∣2m

X
(2)
i

= log
(
Φ0

(
o(e1)

)−1 · Φ0

(
t(e1)

)
· · · ·Φ0

(
o(eℓ−k)

)−1 · Φ0

(
t(eℓ−k)

))∣∣∣2m
X

(2)
i

=
( ℓ−k∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(2)
i

− 1

2

∑
1≤j1<j2≤ℓ−k

∑
1≤λ<ν≤d1

[[X
(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

×
{
log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

− log
(
dΦ0(ej1)

)∣∣
X

(1)
ν

log
(
dΦ0(ej2)

)∣∣
X

(1)
λ

})2m
≤ 32m−1

{( ℓ−k∑
j=1

log
(
dΦ0(ej)

)∣∣
X

(2)
i

)2m
+ L max

1≤λ<ν≤d1

( ∑
1≤j1<j2≤ℓ−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

)2m
+ L max

1≤λ<ν≤d1

( ∑
1≤j1<j2≤ℓ−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
ν

log
(
dΦ0(ej2)

)∣∣
X

(1)
λ

)2m}
, (4.3.9)

where we put

L :=
1

2
max

i=1,2,...,d2
max

1≤λ<ν≤d1

∣∣[[X(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

∣∣.
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We fix i = 1, 2, . . . , d2. Then the Jensen inequality gives

( ℓ−k∑
j=1

log
(
dΦ0(ej)

)∣∣
X

(2)
i

)2m
= (ℓ− k)2m

( ℓ−k∑
j=1

1

ℓ− k
log
(
dΦ0(ej)

)∣∣
X

(2)
i

)2m
≤ (ℓ− k)2m

ℓ−k∑
j=1

1

ℓ− k
log
(
dΦ0(ej)

)∣∣2m
X

(2)
i

≤ (ℓ− k)2m∥dΦ0∥4m∞ . (4.3.10)

For 1 ≤ λ < ν ≤ d1, x ∈ F , N ∈ N and c = (e1, e2, . . . , eN) ∈ Ωx,N(X), we put

M̃(λ,ν,x)
N (c) = M̃(λ,ν,x)

N (Φ0; c) :=
∑

1≤j1<j2≤N

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

=
N∑

j2=2

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

( j2−1∑
j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)
.

We clearly observe that {M̃(λ,ν,x)
N }∞N=1 is an R-valued martingale for every 1 ≤ λ < ν ≤ d

and x ∈ F due to Lemma 2.5.3. Hence, we apply the Burkholder–Davis–Gundy inequality

with the exponent 2m to obtain∑
c∈Ωx,N (X)

p(c)
(
M̃(λ,ν,x)

N (c)
)2m

≤ C2m
(2m)

∑
c∈Ωx,N (X)

p(c)
{ N∑

j2=2

log
(
dΦ0(ej2)

)∣∣2
X

(1)
ν

( j2−1∑
j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)2}m

≤ C2m
(2m)

∑
c∈Ωx,N (X)

p(c)Nm

N∑
j2=2

1

N − 1
log
(
dΦ0(ej2)

)∣∣2m
X

(1)
ν

( j2−1∑
j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)2m
≤ C2m

(2m)N
m

N∑
j2=2

1

N − 1

{ ∑
c∈Ωx,N (X)

p(c) log
(
dΦ0(ej2)

)∣∣4m
X

(1)
ν

}1/2

×
{ ∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)4m}1/2

≤ C2m
(2m)∥dΦ0∥2m∞ Nm

N∑
j2=2

1

N − 1

{ ∑
c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)4m}1/2

, (4.3.11)

where we used Jensen’s inequality for the third line and Schwarz’ inequality for the fourth

line. Then we have

∑
c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)4m
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≤ C4m
(4m)

∑
c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣2
X

(1)
λ

)2m
= C4m

(4m)(j2 − 1)2m
∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

1

j2 − 1
log
(
dΦ0(ej1)

)∣∣2
X

(1)
λ

)2m
≤ C4m

(4m)j
2m
2

∑
c∈Ωx,N (X)

p(c)

j2−1∑
j1=1

1

j2 − 1
log
(
dΦ0(ej1)

)∣∣4m
X

(1)
λ

≤ C4m
(4m)∥dΦ0∥4m∞ j2m2 (4.3.12)

by applying the Burkholder–Davis–Gundy inequality with the exponent 4m. It follows

from (4.3.11) and (4.3.12) that∑
c∈Ωx,N (X)

p(c)
(
M̃(λ,ν,x)

N (c)
)2m

≤ C2m
(2m)∥dΦ0∥2m∞ Nm

N∑
j2=2

1

N − 1

(
C4m
(4m)∥dΦ0∥4m∞ j2m2

)1/2
≤ C2m

(2m)C2m
(4m)∥dΦ0∥4m∞ Nm

N∑
j2=2

1

N − 1
·Nm = C2m

(2m)C2m
(4m)∥dΦ0∥4m∞ N2m. (4.3.13)

We now put N = ℓ− k. Then (4.3.13) implies∑
c∈Ωx,ℓ−k(X)

p(c)
{( ∑

1≤j1<j2≤ℓ−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

)2m
+
( ∑

1≤j1<j2≤ℓ−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
ν

log
(
dΦ0(ej2)

)∣∣
X

(1)
λ

)2m}
≤ 2C2m

(2m)C2m
(4m)∥dΦ0∥4m∞ (ℓ− k)2m (1 ≤ λ < ν ≤ d1). (4.3.14)

By combining (4.3.8) with (4.3.9), (4.3.10) and (4.3.14), we obtain

EPx∗

[∥∥ log ((Y(n)
tk

)−1 · Y(n)
tℓ

)∣∣
g(2)

∥∥2m
g(2)

]
≤
( 1
n

)2m
d2m2 32m−1∥dΦ0∥4m∞

{
1 + 2LC2m

(2m)C2m
(4m)

}
(ℓ− k)2m = C(2)

(ℓ− k

n

)2m
.

This is the desired estimate (4.3.4), and thus we have shown (4.3.2).

Step 4. We finally prove (4.3.1). Suppose that tk ≤ s ≤ tk+1 and tℓ ≤ t ≤ tℓ+1 for

some 1 ≤ k ≤ ℓ ≤ n. Since the stochastic process Y(n)
· is given by the dCC-geodesic

interpolation, we have

dCC(Y(n; 2)
s ,Y(n; 2)

tk+1
) = (k − ns)dCC(Y (n; 2)

tk
,Y (n; 2)

tk+1
),

dCC(Y(n; 2)
tℓ

,Y(n; 2)
t ) = (nt− ℓ)dCC(Y(n; 2)

tℓ
,Y(n; 2)

tℓ+1
).
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By using (4.3.2) and the triangle inequality, we have

EPx∗

[
dCC(Y (n; 2)

s ,Y(n; 2)
t )4m

]
≤ 34m−1

{
(k + 1− ns)4m · C

( 1
n

)2m
+ C

(ℓ− k − 1

n

)2m
+ (nt− ℓ)4m · C

( 1
n

)2m}
≤ C

{
(tk+1 − s)2m + (tℓ − tk+1)

2m + (t− tℓ)
2m
}
≤ C(t− s)2m,

which is the desired estimate (4.3.1) and we have proved Lemma 4.3.2.

In what follows, we write

dY(n)∗
s,t := (Y(n)

s )−1 ∗ Y (n)
t (n ∈ N, 0 ≤ s ≤ t ≤ 1)

for simplicity. By using Lemma 4.3.2, we obtain the following.

Lemma 4.3.3 For m,n ∈ N, k = 1, 2, . . . , r and α < 2m−1
4m

, there exist an F∞-measurable

set Ω
(n)
k ⊂ Ωx∗(X), a non-negative random variable K(n)

k ∈ L4m(Ωx∗(X) → R; Px∗) such

that Px∗(Ω
(n)
k ) = 1 and

dCC

(
Y (n; k)

s (c),Y(n; k)
t (c)

)
≤ K(n)

k (c)(t− s)α (c ∈ Ω
(n)
k , 0 ≤ s ≤ t ≤ 1). (4.3.15)

Proof. We partially follow Lyons’ original proof (cf. [54, Theorem 2.2.1]) for the extension

theorem in rough path theory. We show (4.3.15) by induction on the step number k =

1, 2, . . . , r.

Step 1. In the cases k = 1, 2, we have already obtained (4.3.15) in Lemma 4.3.2. Indeed,

(4.3.15) for k = 1, 2 are readily obtained by a simple application of the Kolmogorov–

Chentsov criterion with the bound

∥K(n)
k ∥L4m(Px∗ ) ≤

5C

(1− 2−θ)(1− 2α−θ)
(n,m ∈ N, k = 1, 2), (4.3.16)

where θ = (2m − 1)/4m and C is a constant independent of n, which appears in the

right-hand side of (4.3.1). See e.g., Stroock [67, Theorem 4.3.2] for details.

Step 2. Suppose that (4.3.15) holds up to step k. Then, for n ∈ N, there are F∞-

measurable sets {Ω̂(n)
j }kj=1 and non-negative random variables {K̂(n)

j }kj=1 such that Px∗(Ω̂
(n)
j ) =

1 for j = 1, 2, . . . , k and∥∥(dY(n)∗
s,t (c)

)(j)∥∥
Rdj ≤ K̂(n)

j (c)(t− s)jα

(j = 1, 2, . . . , k, c ∈ Ω̂
(n)
j , 0 ≤ s ≤ t ≤ 1) (4.3.17)

with K̂(n)
j ∈ L4m/j(Ωx∗(X) → R; Px∗) for m ∈ N and j = 1, 2, . . . , k.
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We fix 0 ≤ s ≤ t ≤ 1 and n ∈ N. Set Ω̂(n)
k+1 =

∩k
j=1 Ω̂

(n)
j . We denote by ∆ the partition

{s = t0 < t1 < · · · < tN = t} of the time interval [s, t] independent of n ∈ N. We define

two G(k+1)-valued random variables Z(n)
s,t and Z(∆)

(n)
s,t by

(
Z(n)

s,t

)(j)
:=

{(
dY(n)∗

s,t

)(j)
, (j = 1, 2, . . . , k),

0 (j = k + 1),

Z(∆)
(n)
s,t := Z(n)

t0,t1 ∗ Z
(n)
t1,t2 ∗ · · · ∗ Z

(n)
tN−1,tN

,

respectively. For i = 1, 2, . . . , dk+1, (2.2.2) and (4.3.15) imply

∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗ −
(
Z(∆ \ {tN−1})(n)s,t (c)

)(k+1)

i∗

∣∣∣
=
∣∣∣(Z(n)

tN−2,tN−1
(c) ∗ Z(n)

tN−1,tN
(c)
)(k+1)

i∗ −
(
Z(n)

tN−2,tN
(c)
)(k+1)

i∗

∣∣∣
=

∣∣∣∣∣ ∑
|K1|+|K2|=k+1
|K1|,|K2|≥0

CK1,K2PK1
∗
(
Z(n)

tN−2,tN−1
(c)
)
PK2

∗
(
Z(n)

tN−1,tN
(c)
)∣∣∣∣∣

≤ C
∑

|K1|+|K2|=k+1
|K1|,|K2|≥0

∣∣∣PK1
∗
(
dY(n)∗

tN−2,tN−1
(c)
)∣∣∣∣∣∣PK2

∗
(
dY(n)∗

tN−1,tN
(c)
)∣∣∣

≤ K̂(n)
k+1(c)(tN − tN−2)

(k+1)α ≤ K̂(n)
k+1(c)

( 2

N − 1
(t− s)

)(k+1)α

(c ∈ Ω̂
(n)
k+1),

where the random variable K̂(n)
k+1 : Ωx∗(X) −→ R is given by

K̂(n)
k+1(c) := C

∑
|K1|+|K2|=k+1
|K1|,|K2|≥0

Q(n,K1)(c)Q(n,K2)(c),

Q(n,K)(c) := K̂(n)
k1

(c)K̂(n)
k2

(c) · · · K̂(n)
kℓ

(c)
(
K =

(
(i1, k1), (i2, k2), . . . , (iℓ, kℓ)

))
.

Note that K̂(n)
k+1 is non-negative and it has the following integrability:

EPx∗
[
(K̂(n)

k+1)
4m/(k+1)

]
≤ C

∑
k1,...,kℓ>0

k1+k2+···+kℓ=k+1

EPx∗

[(
K̂(n)

k1
K̂(n)

k2
· · · K̂(n)

kℓ

)4m/(k+1)
]

≤ C
∑

k1,...,kℓ>0
k1+k2+···+kℓ=k+1

ℓ∏
λ=1

EPx∗

[(
K̂(n)

kλ

)4m/kλ
]kλ/(k+1)

< ∞,

where we used the generalized Hölder inequality for the second line. By removing points
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in ∆ successively until the partition ∆ coincides with {s, t}, we have∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤
∣∣∣(Z(∆ \ {tN−1})(n)s,t (c)

)(k+1)

i∗

∣∣∣+ K̂(n)
k+1(c)

( 2

N − 1
(t− s)

)(k+1)α

≤
∣∣∣(Z({s, t})(n)s,t (c)

)(k+1)

i∗

∣∣∣+ N−2∑
ℓ=1

K̂(n)
k+1(c)

( 2

N − ℓ

)(k+1)α

(t− s)(k+1)α

≤
∣∣∣(Z(n)

s,t (c)
)(k+1)

i∗

∣∣∣+ K̂(n)
k+1(c)2

(k+1)αζ
(
(k + 1)α

)
(t− s)(k+1)α

≤ K̂(n)
k+1(c)(t− s)(k+1)α (i = 1, 2, . . . , dk+1, c ∈ Ω̂

(n)
k+1), (4.3.18)

where ζ(z) denotes the Riemann zeta function ζ(z) :=
∑∞

n=1(1/n
z) for z ∈ R.

We will show that the family {Z(∆)
(n)
s,t } satisfies the Cauchy convergence principle.

Let δ > 0 and take two partitions ∆ = {s = t0 < t1 · · · < tN = t} and ∆′ of [s, t]

independent of n ∈ N satisfying |∆|, |∆′| < δ. We set ∆̂ := ∆ ∪∆′ and write

∆̂ℓ = ∆̂ ∩ [tℓ, tℓ+1] = {tℓ = sℓ0 < sℓ1 < · · · < sℓLℓ
= tℓ+1} (ℓ = 0, 1, . . . , N − 1).

By using (4.3.18), we have∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
=
∣∣∣(Z(n)

t0,t1(c) ∗ · · · ∗ Z
(n)
tN−1,tN

(c)
)(k+1)

i∗
−
(
Z(∆̂0)

(n)
t0,t1(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN

(c)
)(k+1)

i∗

∣∣∣
=
∣∣∣(Z(n)

t0,t1(c)
)(k+1)

i∗
+
(
Z(n)

t1,t2(c) ∗ · · · ∗ Z
(n)
tN−1,tN

(c)
)(k+1)

i∗

−
(
Z(∆̂0)

(n)
t0,t1(c)

)(k+1)

i∗
−
(
Z(∆̂1)

(n)
t1,t2(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN

(c)
)(k+1)

i∗

∣∣∣
≤ K̂(n)

k+1(c)(t1 − t0)
(k+1)α +

∣∣∣(Z(n)
t1,t2(c) ∗ · · · ∗ Z

(n)
tN−1,tN

(c)
)(k+1)

i∗

−
(
Z(∆̂0)

(n)
t1,t2(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN

(c)
)(k+1)

i∗

∣∣∣ (i = 1, 2, . . . , dk+1, c ∈ Ω̂
(n)
k+1).

Repeating this kind of estimate and recalling (k + 1)α > 1 yield∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤

N−1∑
ℓ=0

K̂(n)
k+1(c)(tℓ+1 − tℓ)

(k+1)α

≤ K̂(n)
k+1(c)

(
max
∆

(tℓ+1 − tℓ)
(k+1)α−1

)N−1∑
ℓ=0

(tℓ+1 − tℓ)

≤ K̂(n)
k+1(c)(t− s)× δ(k+1)α−1 (i = 1, 2, . . . , dk+1, c ∈ Ω̂

(n)
k+1). (4.3.19)
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We thus obtain∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆′)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤
∣∣∣(Z(∆)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣+ ∣∣∣(Z(∆̂)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆′)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤ 2K̂(n)

k+1(c)(t− s)× δ(k+1)α−1 −→ 0 (i = 1, 2, . . . , dk+1, c ∈ Ω̂
(n)
k+1)

as δ ↘ 0 uniformly in 0 ≤ s ≤ t ≤ 1 by (4.3.19). Therefore, noting the estimate (4.3.18),

there exists a random variable

Z(n)

s,t (c) :=

 lim
|∆|↘0

Z(∆)
(n)
s,t (c) (c ∈ Ω̂

(n)
k+1),

1G (c ∈ Ωx∗(X) \ Ω̂(n)
k+1),

(0 ≤ s ≤ t ≤ 1)

satisfying ∥∥(Z(n)

s,t (c)
)(k+1)∥∥

Rdk+1
≤ K̂(n)

k+1(c)(t− s)(k+1)α (c ∈ Ω̂
(n)
k+1).

Our final goal is to show

Z(n)

s,t (c) = Y(n; k+1)
s (c) ∗ Y (n; k+1)

t (c) (0 ≤ s ≤ t ≤ 1, c ∈ Ω̂
(n)
k+1).

However, it suffices to check that(
Z(n)

s,t (c)
)(k+1)

=
(
dY(n)∗

s,t (c)
)(k+1)

(0 ≤ s ≤ t ≤ 1, c ∈ Ω̂
(n)
k+1) (4.3.20)

by the definition of Z(n)

s,t . We fix i = 1, 2, . . . , dk+1 and c ∈ Ω̂
(n)
k+1. Put

Ψi
s,t(c) :=

(
dY (n)∗

s,t (c)
)(k+1)

i∗ −
(
Z(n)

s,t (c)
)(k+1)

i∗
(0 ≤ s ≤ t ≤ 1).

Then we easily see that Ψi
s,t(c) is additive in the sense that

Ψi
s,t(c) = Ψi

s,u(c) + Ψi
u,t(c) (0 ≤ s ≤ u ≤ t ≤ 1). (4.3.21)

Since the piecewise smooth stochastic process (Y(n)
t )0≤t≤1 is defined by the dCC- geodesic

interpolation of {X (n)
tk

}nk=0, we know∥∥(dY(n)∗
s,t (c)

)(k+1)∥∥
Rdk+1

≤ K̃(n)
k+1(c)(t− s)(k+1)α (c ∈ Ω̃

(n)
k+1)

for some set Ω̃
(n)
k+1 with Px∗(Ω̃

(n)
k+1) = 1 and random variable K̃(n)

k+1 : Ωx∗(X) −→ R. Then

we have∣∣∣Ψi
s,t(c)

∣∣∣ ≤ (K̃(n)
k+1(c) + K̂(n)

k+1(c)
)
(t− s)(k+1)α (0 ≤ s ≤ t ≤ 1, c ∈ Ω̃

(n)
k+1 ∩ Ω̂

(n)
k+1).

We may write Ω̂
(n)
k+1 instead of Ω̃

(n)
k+1∩ Ω̂

(n)
k+1 by abuse of notation, because its probability is

equal to one. For any small ε > 0, there is a sufficiently large N ∈ N such that 1/N < ε.
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We obtain, as ε ↘ 0,∣∣∣Ψi
0,t(c)

∣∣∣ = ∣∣∣Ψi
0,1/N(c) + Ψi

1/N,2/N(c) + · · ·+Ψi
[Nt]/N,t(c)

∣∣∣
≤
(
K̃(n)

k+1(c) + K̂(n)
k+1(c)

)
ε(k+1)α−1

{ 1

N
+

1

N
+ · · ·+ 1

N︸ ︷︷ ︸
[Nt]-times

+
(
t− [Nt]

N

)}

=
(
K̃(n)

k+1(c) + K̂(n)
k+1(c)

)
ε(k+1)α−1t −→ 0 (0 ≤ t ≤ 1, c ∈ Ω̂

(n)
k+1)

by (4.3.21) and (k+1)α−1 > 0. This implies that Ψi
0,t(c) = 0 for 0 ≤ t ≤ 1 and c ∈ Ω̂

(n)
k+1.

Therefore, it follows from (4.3.20) that

Ψi
s,t(c) = Ψi

0,t(c)−Ψi
0,s(c) = 0 (0 ≤ s ≤ t ≤ 1, c ∈ Ω̂

(n)
k+1),

which means (4.3.19). Consequently, there exist a F∞-measurable set Ω
(n)
k+1 ⊂ Ωx∗(X)

with probability one and a non-negative random variable K(n)
k+1 ∈ L4m(Ωx∗(X) → R; Px∗)

satisfying

dCC

(
Y(n; k+1)

s (c),Y(n; k+1)
t (c)

)
≤ K(n)

k+1(c)(t− s)α (0 ≤ s ≤ t ≤ 1, c ∈ Ω
(n)
k+1).

This completes the proof of Lemma 4.3.3.

Proof of Lemma 4.3.1. For m,n ∈ N and α̂ < 2m−1
4m

, it follows from (4.3.15) that

EPx∗

[
dCC

(
Y(n; r)

s ,Y(n; r)
t

)4m] ≤ EPx∗
[(
K(n)

r

)4m]
(t− s)4mα̂

for 0 ≤ s ≤ t ≤ 1. We thus have, by (4.3.16),

EPx∗

[
dCC

(
Y(n; r)

s ,Y(n; r)
t

)4m] ≤ C(t− s)4mα̂ (0 ≤ s ≤ t ≤ 1).

for a positive constant C > 0 independent of n ∈ N. By applying the Kolmogorov tight-

ness criterion (cf. Friz–Hairer [19, Section 3.1]), we have shown that the family {P(n)}∞n=1

is tight in C0,α-Höl
1G

([0, 1];G) for any α < 4mα̂−1
4m

< 1
2
− 1

2m
. Since m ∈ N is arbitrary, we

conclude that {P(n)}∞n=1 is tight in C0,α-Höl
1G

([0, 1];G) for any α < 1/2.

We conclude Theorem 4.1.3 by showing the following convergence of the finite dimen-

sional distribution.

Lemma 4.3.4 Let ℓ ∈ N. For fixed 0 ≤ s1 < s2 < · · · < sℓ ≤ 1, we have

(Y (n)
s1

,Y (n)
s2

, . . . ,Y(n)
sℓ

)
(d)−→ (Ys1 , Ys2 , . . . , Ysℓ) (n → ∞).

Proof. We only prove the convergence for ℓ = 2. General cases (ℓ ≥ 3) can be also proved

by repeating the same argument. Put s = s1 and t = s2. Then, by applying Theorem

4.1.2, we obtain (X (n)
s ,X (n)

t )
(d)−→ (Ys, Yt) as n → ∞ in the same way as [31, Lemma 4.2].
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On the other hand, Lemma 4.3.3 tells us that there exists a non-negative random variable

K(n)
r ∈ L4m(Ωx∗(X) → R; Px∗) such that

dCC

(
Y (n)

s (c),Y(n)
t (c)

)
≤ K(n)

r (c)(t− s)α Px∗-a.s. (0 ≤ s ≤ t ≤ 1).

Now suppose that tk ≤ t ≤ tk+1 for some k = 0, 1, . . . , n− 1. For all ε > 0 and sufficiently

large m ∈ N, by using Chebyshev’s inequality, we have

Px∗

(
dCC

(
X (n)

t ,Y (n)
t

)
> ε
)

≤ 1

ε4m
EPx∗

[
dCC

(
X (n)

t ,Y(n)
t

)4m]
≤ 1

ε4m
EPx∗

[
dCC

(
Y (n)

tk
,Y (n)

tk+1

)4m]
≤ 1

ε4m
EPx∗

[
(K(n)

r )4m(tk+1 − tk)
4mα
]
=

1

n2m−1ε4m
EPx∗

[
(K(n)

r )4m
]
−→ 0 (n → ∞).

Thus, Slutzky’s theorem (cf. Klenke [37, Theorem 13.8]) allows us to obtain the desired

convergence (Y(n)
s ,Y(n)

t )
(d)−→ (Ys, Yt) as n → ∞. This completes the proof.

4.4 A comment on CLTs of the first kind in the non-

centered case

As was already mentioned, the centered condition (C) is crucial to establish the FCLT

(Theorem 4.1.3). We present a method to reduce the non-centered case ρR(γp) ̸= 0g to the

centered case as a generalization of the measure-change technique in the case of crystal

lattices discussed in Section 3.

We consider a positive transition probability p : E −→ (0, 1] to avoid several technical

difficulties. Then the random walk on X associated with p is automatically irreducible.

Let Φ0 : X −→ G be the (p-)modified harmonic realization. We define a function F =

Fx(λ) : V0 × Hom(g(1),R) −→ R by

Fx(λ) :=
∑

e∈(E0)x

p(e) exp
(
Hom(g(1),R)

⟨
λ, log

(
dΦ0(ẽ)

)∣∣
g(1)

⟩
g(1)

)
(4.4.1)

for x ∈ V0 and λ ∈ Hom(g(1),R). Since the lemma below is obtained by following the

argument in Lemma 3.1.1, we omit the proof.

Lemma 4.4.1 For every x ∈ V0, the function Fx(·) : Hom(g(1),R) −→ (0,∞) has a

unique minimizer λ∗ = λ∗(x) ∈ Hom(g(1),R).

We now define a positive function p : E0 −→ (0, 1] by

p(e) :=
exp

(
Hom(g(1),R)

⟨
λ∗
(
o(e)

)
, log

(
dΦ0(ẽ)

)∣∣
g(1)

⟩
g(1)

)
Fo(e)

(
λ∗
(
o(e)

)) p(e) (e ∈ E0). (4.4.2)
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It is straightforward to check that the function p also gives a positive transition probability

on X0 and it yields an irreducible Markov chain (Ωx(X), P̂x, {w(p)
n }∞n=0) with values in X.

We then find a unique positive normalized invariant measure m : V0 −→ (0, 1] by applying

the Perron-Frobenius theorem again. We set m̃(e) := p(e)m
(
o(e)

)
for e ∈ E0. We also

denote by p : E −→ (0, 1] and m : V −→ (0, 1] the Γ-invariant lifts of p : E0 −→ (0, 1]

and m : V0 −→ (0, 1] to X, respectively. The Albanese metric on g(1) associated with

the transition probability p is denoted by g
(p)
0 . We write {V (p)

1 , V
(p)
2 , . . . , V

(p)
d1

} for an

orthonormal basis of (g(1), g
(p)
0 ).

Let L(p) : C∞(X) −→ C∞(X) be the transition operator associated with the transition

probability p. By virtue of Lemma 4.4.1, we have∑
e∈(E0)x

p(e) exp
(
Hom(g(1),R)

⟨
λ∗, log

(
dΦ0(ẽ)

)∣∣
g(1)

⟩
g(1)

)
log
(
dΦ0(ẽ)

)∣∣
g(1)

= 0g (x ∈ V0).

Hence, we conclude

(L(p) − I)( logΦ0

∣∣
g(1)

)(x) =
∑
e∈Ex

p(e) log
(
dΦ0(e)

)∣∣
g(1)

= 0g (x ∈ V ). (4.4.3)

This means that the (p-)modified harmonic realization Φ0 : X −→ G in the sense of

(2.4.4) is regarded as the (p-)harmonic realization and ρR(γp) = 0g.

We fix a reference point x∗ ∈ V such that Φ0(x∗) = 1G and put

ξ(p)n (c) := Φ0

(
w(p)

n (c)
) (

n ∈ N ∪ {0}, c ∈ Ωx∗(X)
)
.

This yields a G-valued random walk (Ωx∗(X), P̂x∗ , {ξ
(p)
n }∞n=0). We define

Y (n;p)
tk

(c) := τn−1/2

(
ξ
(p)
ntk

(c)
)
= τn−1/2

(
Φ0(w

(p)
k (c))

)
for k = 0, 1, . . . , n, tk ∈ Dn and c ∈ Ωx∗(X). We consider a G-valued stochastic process

(Y (n; p)
t )0≤t≤1 defined by the dCC-geodesic interpolation of {Y(n; p)

tk
}nk=0. Let (Ỹt)0≤t≤1 be

the G-valued diffusion process which solves the SDE

dỸt =

d1∑
i=1

V
(p)
i∗ (Ỹt) ◦ dBi

t + β(p)(Φ0)∗(Ỹt) dt, Ỹ0 = 1G,

where

β(p)(Φ0) :=
∑
e∈E0

m̃(e) log
(
Φ0

(
o(ẽ)

)−1 · Φ0

(
t(ẽ)
))∣∣∣

g(2)
.

The following two theorems are CLTs for non-symmetric random walks associated with

the changed transition probability p. We remark that the proofs of these theorems below

are done by combining the ones of Theorems 4.1.2 and 4.1.3 with the argument in Theorem

3.2.1 and Lemma 3.2.3.
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Theorem 4.4.2 Let Pε : C∞(G) −→ C∞(X) be the approximation operator defined by

Pεf(x) := f
(
τε
(
Φ0(x)

))
for 0 ≤ ε ≤ 1 and x ∈ V . Then we have, for 0 ≤ s ≤ t and

f ∈ C∞(G),

lim
n→∞

∥∥∥L[nt]−[ns]
(p) Pn−1/2f − Pn−1/2e−(t−s)A(p)f

∥∥∥X
∞

= 0, (4.4.4)

where (e−tA(p))t≥0 is the C0-semigroup with the infinitesimal generator A(p) on C∞
0 (G)

defined by

A(p) := −1

2

d1∑
i=1

(V
(p)
i∗ )2 − β(p)(Φ0)∗. (4.4.5)

Theorem 4.4.3 The sequence (Y(n; p)
t )0≤t≤1 (n = 1, 2, 3, . . . ) converges in law to the G-

valued diffusion process (Ỹt)0≤t≤1 in C0,α-Höl
1G

([0, 1];G) as n → ∞ for all α < 1/2.

We emphasize that the transition probability p coincides with the given one p under the

centered condition (C). Therefore, Theorem 4.4.2 and 4.4.3 are regarded as extensions of

Theorems 4.1.2 (under the centered condition (C)) and 4.1.3 to the non-centered case.

We might prove Theorem 4.1.3 without the centered condition (C) via Theorem 4.4.3.

We will discuss this problem in the future.

4.5 An explicit representation of the limiting diffu-

sions and a relation with rough path theory

Let us consider an SDE on RN

dξt =
d∑

i=1

Ui(ξt) ◦ dBi
t + U0(ξt) dt, ξ0 = x0 ∈ RN , (4.5.1)

where U0, U1, . . . , Ud are C∞-vector fields on Rd and (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d
t )0≤t≤1 is

a d-dimensional standard Brownian motion. The symbol ◦ denotes the usual Stratonovich

type stochastic integral. As is well-known, a number of authors have studied explicit rep-

resentations of the unique solution to (4.5.1) as a functional of Itô/Stratonovich iterated

integrals under some assumptions on vector fields U0, U1, . . . , Ud. In particular, Kunita

[46] has obtained the explicit formula by using the CBH formula in the case where the Lie

algebra generated by U0, U1, . . . , Ud is nilpotent or solvable. Castell [13] gave a universal

representation formula, which contains the above results in the nilpotent case and extends

the study of Ben Arous [7] to more general diffusions.

We now recall the result in [13] when the Lie algebra generated by U0, U1, . . . , Ud is

nilpotent of step r. We first introduce several notations of multi-indices. Set I(k) =

{0, 1, . . . , d}k and let I = (i1, i2, . . . , ik) ∈ I(k) be a multi-index of length |I| = k.

For vector fields U0, U1, . . . , Ud on Rd and I = (i1, i2, . . . , ik) ∈ I(k), we denote by
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U I the vector field of the form U I = [Ui1 , [Ui2 , · · · , [Uik−1
, Uik ] · · · ]]. For a multi-index

I = (i1, i2, . . . , ik) ∈ I(k), we define the Stratonovich iterated integral BI
t by

BI
t :=

∫
∆(k)[0,t]

◦dBi1
t1 ◦ dB

i2
t2 · · · ◦ dB

ik
tk
,

where ∆(k)[0, t] := {(t1, t2, . . . , tk) ∈ [0, t]k | 0 < t1 < t2 < · · · < tk < t} for 0 ≤ t ≤ 1

and B0
t = t for convention. Next we introduce notations of the permutations. Denote

by Sk be the symmetric group of degree k. For a permutation σ ∈ Sk, we write e(σ)

for the cardinality of the set {i ∈ {1, 2, . . . , k − 1} |σ(i) > σ(i + 1)}, which we call

the number of inversions of σ. For I = (i1, i2, . . . , ik) ∈ I(k) and σ ∈ Sk, we put

Iσ := (iσ(1), iσ(2), . . . , iσ(k)) ∈ I(k).

Proposition 4.5.1 (cf. [13]) Let U0, U1, . . . , Ud be bounded C∞-vector fields on RN such

that the Lie algebra generated by U0, U1, . . . , Ud is nilpotent of step r. We consider the

solution (ξt)0≤t≤1 of (4.5.1). Then we have

ξt = exp
( r∑

k=1

∑
I∈I(k)

cItU
I
)
(x0) (0 ≤ t ≤ 1) a.s.,

where

cIt :=
∑

σ∈S|I|

(−1)e(σ)

|I|2
(
|I| − 1

e(σ)

)B
Iσ−1

t .

Here we give several concrete computations of cItU
I .

• If I = (i) ∈ I(1), we see cIt = Bi
t for 0 ≤ t ≤ 1 and i = 0, 1, . . . , d. Therefore, we have

∑
I∈I(1)

cItU
I =

d∑
i=0

Bi
tUi = tU0 +

d∑
i=1

Bi
tUi.

• If I = (i, j) ∈ I(2) with i ̸= j, we also see

cIt =


1

4

∫ t

0

∫ u

0

(◦dBi
s ◦ dBj

u − ◦dBj
s ◦ dBi

u) (i < j),

−1

4

∫ t

0

∫ u

0

(◦dBi
s ◦ dBj

u − ◦dBj
s ◦ dBi

u) (i > j).

Since [Ui, Uj] = −[Uj, Ui] holds for i ̸= j, we have∑
I∈I(2)

cItU
I =

∑
0≤i<j≤d

1

2

∫ t

0

∫ u

0

(◦dBi
s ◦ dBj

u − ◦dBj
s ◦ dBi

u)[Ui, Uj]

=
∑

0≤i<j≤d

1

2

∫ t

0

(Bi
sdB

j
s −Bj

sdB
i
s)[Ui, Uj].
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The stochastic integral

1

2

∫ t

0

(Bi
sdB

j
s −Bj

sdB
i
s) (0 ≤ t ≤ 1, 1 ≤ i < j ≤ d)

indicates the well-known Lévy’s stochastic area enclosed by the Brownian curve {(Bi
s, B

j
s) ∈

R2 | 0 ≤ s ≤ t} and its chord.

We now provide an explicit representation of (Yt)0≤t≤1, the solution to the SDE (4.1.7).

As mentioned in Section 2.1, since G is identified with Rd (d = d1+d2+ · · ·+dr), we may

apply Proposition 4.5.1 by replacing U0, U1, . . . , Ud by V0, V1, . . . , Vd1 , where V0 = β(Φ0)∗.

Then we have

Theorem 4.5.2 The limiting diffusion process (Yt)0≤t≤1 is explicitly represented as

Yt = exp
(
tβ(Φ0)∗ +

d1∑
i=1

Bi
tVi∗

+
∑

0≤i<j≤d1

1

2

∫ t

0

(Bi
sdB

j
s −Bj

sdB
i
s)[[Vi∗, Vj∗]] +

r∑
k=3

∑
I∈I(k)

cItV
I
∗

)
(1G), (4.5.2)

where V I
∗ = [[Vi1∗, [[Vi2∗, · · · , [[Vik−1∗, Vik∗]] · · · ]]]] for I = (i1, i2, . . . , ik) ∈ I(k).

We should note that some of [[Vi∗, Vj∗]] (0 ≤ i < j ≤ d1) in (4.5.2) may vanish because

{[[Vi∗, Vj∗]]}1≤i<j≤d is not always linearly independent.

In closing this subsection, we prove that the infinitesimal generator of (Yt)0≤t≤1 coin-

cides with −A defined by (4.1.4).

Proposition 4.5.3 The C0-semigroup (e−tA)0≤t≤1 coincides with the C0-semigroup (Tt)0≤t≤1

on C∞(G) defined by Ttf(g) = E[f(Y g
t )] for g ∈ G, where (Y g

t )0≤t≤1 is a solution to the

stochastic differential equation

dY g
t =

d1∑
i=1

Vi∗(Y
g
t ) ◦ dBi

t + β(Φ0)∗(Y
g
t ) dt, Y g

0 = g ∈ G. (4.5.3)

Proof. By recalling Lemma 4.2.2, the linear operator A satisfies the maximal dissipa-

tivity, that is, λ−A is surjective for some λ > 0. Therefore, the Lumer–Fillips theorem

implies that (e−tA)0≤t≤1 is the unique Feller semigroup on C∞(G) whose infinitesimal gen-

erator extends
(
− A, C∞

0 (G)
)
. By applying Itô’s formula to (4.5.3), we easily see that

the generator of (Yt)0≤t≤1 coincides with −A on C∞
0 (G). Therefore, it suffices to show

that the semigroup (Tt)0≤t≤1 enjoys the Feller property, that is, Tt

(
C∞(G)

)
⊂ C∞(G) for

0 ≤ t ≤ 1.

Suppose f ∈ C∞(G). For any ε > 0, we choose a sufficiently large R > 0 such that

|f(g)| < ε for g ∈ BR(1G)
c, where BR(1G) := {g ∈ G | dCC(1G, g) < R}. Then, for

g ∈ B2R(1G)
c, we have

|Ttf(g)| ≤ E
[
|f(Y g

t )| : dCC(g, Y
g
t ) < R

]
+ E

[
|f(Y g

t )| : dCC(g, Y
g
t ) ≥ R

]
≤ ε+ ∥f∥G∞P

(
dCC(g, Y

g
t ) ≥ R

)
.
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By combining Proposition 2.3.3 and the Chebyshev inequality with Theorem 4.5.2,

P
(
dCC(g, Y

g
t ) ≥ R

)
= P

(
dCC(1G, Yt) ≥ R

)
≤ P

(
C∥Yt∥Hom ≥ R

)
≤ C

R2
E
[( r∑

k=1

∥∥∥ ∑
I∈I(k)

cItV
I
∗

∥∥∥1/k
g(k)

)2]
.

Now we recall the following fact (cf. Friz–Riedel [20, Lemma 2]): For a multi-index I =

(i1, i2, . . . , ik) ∈ I(k), there exists a constant C depending only on k such that

E
[( ∫

∆(k)[0,t]

◦dBi1
t1 ◦ dB

i2
t2 · · · ◦ dB

ik
tk

)2]
≤ Ctk (0 ≤ t ≤ 1).

In view of this bound, we obtain

P
(
dCC(g, Y

g
t ) ≥ R

)
≤ C

R2
t.

Taking a sufficiently large R > 0 such that C∥f∥G∞tR−2 < ε, we conclude |Ttf(g)| < 2ε

for g ∈ B2R(1G)
c. This implies that Tt

(
C∞(G)

)
⊂ C∞(G) for 0 ≤ t ≤ 1.

In the end of this section, we discuss the free case and give a relation between The-

orem 4.5.2 and rough path theory. Consider the step-r non-commutative tensor algebra

T (r)(Rd) = R⊕
(⊕r

k=1(Rd)⊗k
)
. The tensor product on T (r)(Rd) is defined by

(g0, g1, . . . , gr)⊗r (h0, h1, . . . , hr) =
(
g0h0, g0h1 + g1h0, . . . ,

r∑
k=0

gk ⊗ hr−k

)
.

An element g = (g0, g1, . . . , gr) ∈ T (r)(Rd) is occasionally written as g = g0+ g1+ · · ·+ gr.

We define two subsets of T (r)(Rd) by

T
(r)
1 (Rd) := {g ∈ T (r)(Rd) | g0 = 1}, T

(r)
0 (Rd) := {A ∈ T (r)(Rd) |A0 = 0},

respectively. It is easy to see that T
(r)
1 (Rd) is a Lie group under the tensor product ⊗r.

In fact, 1 = (1, 0, 0, . . . , 0) is the unit element of T
(r)
1 (Rd) and the inverse element of

g ∈ T
(r)
1 (Rd) is given by g−1 =

∑r
k=1(−1)k(g − 1)⊗rk. The Lie bracket on T

(r)
0 (Rd) is

defined by [A,B] = A⊗r B − B ⊗r A for A,B ∈ T
(r)
0 (Rd). Note that T

(r)
0 (Rd) is the Lie

algebra of the Lie group T
(r)
1 (Rd), that is, T

(r)
0 (Rd) is the tangent space of T

(r)
1 (Rd) at 1.

The diffeomorphism exp : T
(r)
0 (Rd) −→ T

(r)
1 (Rd) is defined by

exp(A) := 1 +
r∑

k=1

1

k!
A⊗rk

(
A ∈ T

(r)
0 (Rd)

)
.

Let {e1, e2, . . . , ed} be the standard basis of Rd. We introduce a discrete subgroup

g(r)(Zd) ⊂ T
(r)
0 (Rd) by the set of Z-linear combinations of e1, e2, . . . , ed together with

[ei1 , [ei2 , · · · , [eik−1
, eik ] · · · ]] for i1, i2, . . . , ik = 1, 2, . . . , d and k = 2, 3, . . . , r.
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We now set Γ = G(r)(Zd) := exp
(
g(r)(Zd)

)
. We also define g(r)(Rd) and G(r)(Rd) anal-

ogously. Then we see that
(
G(r)(Rd),⊗r

)
is the nilpotent Lie group in which Γ is included

as its cocompact lattice and the corresponding limit group coincides with
(
G(r)(Rd),⊗r

)
itself. We call

(
G(r)(Rd),⊗r

)
the free nilpotent Lie group of step r and

(
g(r)(Rd), [·, ·]

)
the

free nilpotent Lie algebra of step r. Let g(1) = Rd and g(k) = [Rd, [Rd, · · · , [Rd,Rd] · · · ]]
(k-times) for k = 2, 3, . . . , r. Then we see that the Lie algebra g(r)(Rd) is decomposed into

g(1)⊕g(2)⊕· · ·⊕g(r). The free nilpotent Lie group G(r)(Rd) is highly related to rough path

theory, as is seen below (cf. Friz–Victoir [22]). Let (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d
t )0≤t≤1 be

a d-dimensional standard Brownian motion. We give the following two remarks.

(1) Consider the case r = 2. Then a T
(2)
1 (Rd)-valued path (Bt)0≤t≤1 defined by

Bt := exp
( d∑

i=1

Bi
tei +

∑
1≤i<j≤d

(1
2

∫ t

0

Bi
s ◦ dBj

s −Bj
s ◦ dBi

s

)
ei ⊗ ej

)

= 1 +
d∑

i=1

Bi
tei +

d∑
i,j=1

(∫ t

0

∫ s

0

◦dBi
u ◦ dBj

s

)
ei ⊗ ej (0 ≤ t ≤ 1)

is regarded as a G(2)(Rd)-valued path with probability one. We call it Stratonovich en-

hanced Brownian motion or standard Brownian rough path, which is a canonical lift of a

sample path of the d-dimensional Brownian motion. We usually identify standard Brow-

nian rough path (Bt)0≤t≤1 with its increment (Bs,t) := (B−1
s ⊗2 Bt)0≤s≤t≤1.

(2) Consider the case r ≥ 3. We also see that the T
(r)
1 (Rd)-valued path (Bt)0≤t≤1 defined

by

Bt := 1 +
r∑

k=1

∑
i1,i2,...,ik∈{1,2,...,d}

(∫
∆(k)[0,t]

◦dBi1
t1 ◦ dB

i2
t2 · · · ◦ dB

ik
tk

)
ei1 ⊗ ei2 ⊗ · · · ⊗ eik

for 0 ≤ t ≤ 1, is regarded as a G(r)(Rd)-valued path with probability one, analogously

in (1). Note that this path (Bt)0≤t≤1 is nothing but the Lyons extension (or lift) of

Stratonovich enhanced Brownian motion introduced in (1) to G(r)(Rd).

Let Γ = G(r)(Zd) and X be a Γ-nilpotent covering graph. Then we see that X is

realized into the free nilpotent Lie group G = G(r)(Rd) through the modified harmonic

realization Φ0 : X −→ G, because Γ is a cocompact lattice in G. Then Theorem 4.5.2

reads in terms of rough path theory. Precisely speaking, the G(r)(Rd)-valued diffusion

process (Yt)0≤t≤1 which solves (4.1.7) is represented as the Lyons extension of the so-

called distorted Brownian rough path of order r.

Corollary 4.5.4 Let {V1, V2, . . . , Vd} be an orthonormal basis of g(1) with respect to the

Albanese metric g0. We write

β(Φ0) =
∑

1≤i<j≤d

β(Φ0)
ij[Vi, Vj] ∈ g(2),
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where we note that {[Vi, Vj] : 1 ≤ i < j ≤ d} ⊂ g(2) forms a basis of g(2). Let β(Φ0) =(
β(Φ0)

ij
)d
i,j=1

be an anti-symmetric matrix defined by

β(Φ0)
ij :=


β(Φ0)

ij (1 ≤ i < j ≤ d),

−β(Φ0)
ij (1 ≤ j < i ≤ d),

0 (i = j).

Then the G(r)(Rd)-valued diffusion process (Yt)0≤t≤1 coincides with the Lyons extension

of the distorted Brownian rough path

Bt = 1 +B
1

t +B
2

t ∈ G(2)(Rd) (0 ≤ s ≤ t ≤ 1)

of order r, where

B
1

t :=
d∑

i=1

Bi
tVi ∈ Rd, B

2

t :=

∫ t

0

∫ s

0

◦dBu ⊗ ◦dBs + tβ(Φ0) ∈ Rd ⊗ Rd.

4.6 FCLTs in the case of non-harmonic realizations

As was discussed, the modified harmonicity of the Γ-equivariant realization Φ0 : X −→
G plays a crucial role to conclude the invariance principle (Theorem 4.1.3). Then one

may wonder if the same invariance principle as Theorem 4.1.3 holds or not when we

consider a general Γ-equivariant realization Φ : X −→ G. In this final section, we give

an affirmative answer to this problem by employing the notion of so-called “corrector”,

which is frequently seen in the study of invariance principles on random environments

(see e.g., Kumagai [45]).

Let us give a rough overview of the proof in the case of a Γ-crystal lattice X. For

simplicity, we consider the centered case, that is, ρR(γp) = 0. Let Φ0 : X −→ Γ ⊗ R be

the harmonic realization and Φ : X −→ Γ ⊗ R a Γ-periodic realization. We define the

corrector of Φ by

Cor(x) := Φ(x)− Φ0(x) (x ∈ V ),

which measures the difference between Φ(x) and Φ0(x). Note that the set {Cor(x) | x ∈ V }
is finite. Because, by the periodicity of Φ and Φ0, we have Cor(γx) = Cor(x) for γ ∈ Γ

and x ∈ V . Thus, we may write {Cor(x) |x ∈ V } = {Cor(x) |x ∈ F}, where F stand for

a fundamental domain of X. In particular, there exists a positive constant C > 0 such

that maxx∈F |Cor(x)|Γ⊗R ≤ C. According to Ishiwata–Kawabi–Kotani [31, Theorem 2.2],

we have already known( 1√
n
Φ0(w[nt])

)
0≤t≤1

=⇒ (Bt)0≤t≤1 in law

as n → ∞, where {wn}∞n=0 is a non-symmetric random walk on X and (Bt)0≤t≤1 is a

d-dimensional standard Brownian motion on Γ⊗ R with respect to the Albanese metric.
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On the other hand, we observe∣∣∣ 1√
n
Φ(w[nt])−

1√
n
Φ0(w[nt])

∣∣∣ = ∣∣∣ 1√
n
Cor(w[nt])

∣∣∣ ≤ C√
n
−→ 0 (n → ∞)

for all 0 ≤ t ≤ 1. In fact, we are able to show that {n−1/2Φ(w[nt]) : 0 ≤ t ≤ 1} also

converges in law to (Bt)0≤t≤1 as n → ∞.

In what follows, we try to prove this assertion rigorously in the case of a Γ-nilpotent

covering graphX. However, we need to notice that the situation quite differs from the case

of crystal lattices due to the non-commutativity of Γ. We assume the centered condition

(C). Let Φ0 : X −→ G be a modified (g(1)-)harmonic realization and Φ : X −→ G a

(not necessarily modified harmonic) realization. We define the (g(1)-)corrector Corg(1) =

Corg(1)(Φ) : X −→ g(1) by

Corg(1)(x) := log
(
Φ(x)

)∣∣
g(1)

− log
(
Φ0(x)

)∣∣
g(1)

(x ∈ V ).

This corrector measures the difference between only the g(1)-components of the har-

monic realization and the non-harmonic one. As in the case of crystal lattices, the set

{Corg(1)(x) |x ∈ V } is finite thanks to Corg(1)(γx) = Corg(1)(x) for γ ∈ Γ and x ∈ V .

We may thus write {Cor(x) | x ∈ V } = {Cor(x) |x ∈ F}, where F stand for a funda-

mental domain of X. The FCLT (Theorem 4.1.3) asserts that the family of stochastic

processes {Y(n)
· }∞n=1 introduced in Section 4.1 converges in law to the G-valued diffu-

sion process (Yt)0≤t≤1 which solves (4.1.7) in C0,α-Höl
1G

([0, 1];G) as n → ∞ for α < 1/2.

Since β(Φ0) ∈ g(2), the drift of the limiting infinitesimal generator A of (Yt)0≤t≤1, does

not depend on the choice of g(2)-components of Φ0(x) (x ∈ V ) by Proposition 4.2.3, we

may put Φ0(x)
(i) = Φ(x)(i) for x ∈ V and i = 2, 3, . . . , r without loss of generality. Let

(Y (n)

t )0≤t≤1 (n ∈ N) be the G-valued stochastic processes defined by just replacing Φ0 by

Φ in the definition of (Y(n)
t )0≤t≤1. We now show that the same pathwise Hölder estimate

as Lemma 4.3.3 also holds for the stochastic process (Y(n)

t )0≤t≤1 (n ∈ N).

Lemma 4.6.1 For m,n ∈ N and α < 2m−1
4m

, there exist an F∞-measurable set Ω
(n)

r ⊂
Ωx∗(X) and a non-negative random variable K(n)

r ∈ L4m
(
Ωx∗(X) → R;Px∗

)
such that

dCC

(
Y(n)

s (c),Y (n)

t (c)
)
≤ K(n)

r (c)(t− s)α (c ∈ Ω
(n)

r , 0 ≤ s < t ≤ 1). (4.6.1)

Proof. Fix n ∈ N and 1 ≤ k ≤ ℓ ≤ n. By triangular inequality, we have

dCC(Y
(n)

k/n,Y
(n)

ℓ/n) ≤ dCC(Y
(n)

k/n,Y
(n)
k/n) + dCC(Y(n)

k/n,Y
(n)
ℓ/n) + dCC(Y(n)

ℓ/n,Y
(n)

ℓ/n).

We set Z(n)
t := (Y(n)

t )−1 ∗ Y(n)

t for 0 ≤ t ≤ 1 and n ∈ N. By definition, we see that

log
(
Z(n)

k/n)|g(1) =
1√
n
Corg(1)(wk) (n ∈ N, k = 0, 1, . . . , n)
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and there is a constant C > 0 such that
∥∥ log (Z(n)

k/n)|g(1)
∥∥
g(1)

≤ Cn−1/2 for n ∈ N and

k = 0, 1, 2, . . . , n. Moreover, it follows from the choice of the components of Φ0(x) (x ∈ V )

that
∥∥ log (Z(n)

k/n)|g(i)
∥∥
g(i)

≤ Cn−i/2 for n ∈ N and k = 0, 1, 2, . . . , n. By Proposition 2.3.3,

we have

dCC(Y
(n)

k/n,Y
(n)
k/n) ≤ C

∥∥Z(n)
k/n

∥∥
Hom

= C
r∑

i=1

∥∥ log (Z(n)
k/n)|g(i)

∥∥1/i
g(i)

≤ C√
n

(4.6.2)

for n ∈ N and k = 0, 1, 2, . . . , n. Then Lemma 4.3.3 and (4.6.2) imply the existences

of an F∞-measurable set Ω
(n)

r ⊂ Ωx∗(X) and a non-negative random variable K(n)

r ∈
L4m

(
Ωx∗(X) → R;Px∗

)
such that Px∗(Ω

(n)

r ) = 1 and

dCC

(
Y (n)

k/n(c),Y
(n)

ℓ/n(c)
)
≤ C√

n
+K(n)

r (c)
(ℓ− k

n

)α
+

C√
n

≤ K(n)

r (c)
(ℓ− k

n

)α
(c ∈ Ω

(n)

r , 0 ≤ k ≤ ℓ ≤ n). (4.6.3)

For 0 ≤ s < t ≤ 1, we take 0 ≤ k ≤ ℓ ≤ n so that k/n ≤ s < (k + 1)n and ℓ/n ≤
t < (ℓ + 1)/n. Since the stochastic process (Y(n)

t )0≤t≤1 is also give by the dCC-geodesic

interpolation, we have

dCC

(
Y(n)

s ,Y(n)

(k+1)/n

)
= (k − ns)dCC

(
Y(n)

k/n,Y
(n)

(k+1)/n

)
,

dCC

(
Y(n)

ℓ/n,Y
(n)

t

)
= (nt− ℓ)dCC

(
Y (n)

ℓ/n,Y
(n)

(ℓ+1)/n

)
.

Then, by the triangular inequality and (4.6.3), we obtain

dCC

(
Y(n)

s (c),Y(n)

t (c)
)

≤ dCC

(
Y(n)

s (c),Y (n)

(k+1)/n(c)
)
+ dCC

(
Y(n)

(k+1)/n(c),Y
(n)

ℓ/n(c)
)
+ dCC

(
Y(n)

ℓ/n(c),Y
(n)

t (c)
)

≤ (k − ns)K(n)

r (c)
( 1
n

)α
+K(n)

r (c)
(ℓ− k − 1

n

)α
+ (nt− ℓ)K(n)

r (c)
( 1
n

)α
≤ K(n)

r (c)
{(k + 1

n
− s
)α

+
(ℓ− k − 1

n

)α
+
(
t− ℓ

n

)α}
≤ K(n)

r (c)(t− s)α (c ∈ Ω
(n)

r ).

This completes the proof.

This Lemma leads to the following invariance principle for the family of stochastic

processes (Y(n)

t )0≤t≤1.

Theorem 4.6.2 The sequence (Y(n)

t )0≤t≤1 (n = 1, 2, . . . ) converges in law to the G-valued

diffusion process (Yt)0≤t≤1 in C0,α-Höl
1G

([0, 1];G) as n → ∞.

Proof. We split the proof into two steps.
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Step 1. We show that the sequence (Y (n)

t )0≤t≤1 (n = 1, 2, . . . ) converges in law to (Yt)0≤t≤1

in C1G
([0, 1];G) as n → ∞. For 0 ≤ t ≤ 1, we take an integer 0 ≤ k ≤ n so that

k/n ≤ t < (k + 1)/n. Then, by the triangular inequality, (4.3.15), (4.6.1) and (4.6.2), we

have, Px∗-almost surely,

dCC(Y (n)
t ,Y (n)

t )

≤ dCC(Y (n)
k/n,Y

(n)
t ) + dCC(Y(n)

k/n,Y
(n)

k/n) + dCC(Y
(n)

k/n,Y
(n)

t )

≤ K(n)
r

(
t− k

n

)α
+

C√
n
+K(n)

r

(
t− k

n

)α
≤
{
K(n)

r +K(n)

r + C
}( 1√

n

)α (
m ∈ N, α <

2m− 1

4m

)
. (4.6.4)

Let ρ be a metric on C1G
([0, 1];G) defined by

ρ(w(1), w(2)) := max
0≤t≤1

dCC(w
(1)
t , w

(2)
t )

(
w(1), w(2) ∈ C1G

([0, 1];G)
)
.

We denote by 1 ∈ C1G
([0, 1];G) the identity map. By applying the Chebyshev inequality

and (4.6.4), we have, for ε > 0 and m ∈ N,

Px∗

(
ρ(Y(n),Y(n)

) > ε
)

≤
(2
ε

)4m
EPx∗

[
ρ(Y(n),Y(n)

)4m
]

≤
(2
ε

)4m
EPx∗

[
max
0≤t≤1

dCC(Y(n)
t ,Y(n)

t )4m
]

≤ 34m−1
(2
ε

)4m( 1√
n

)4mα{
EPx∗

[
(K(n)

r )4m
]
+ EPx∗

[
(K(n)

r )4m
]
+ EPx∗

[
C4m

]}
→ 0 (n → ∞).

Then, Slutzky’s theorem leads to obtain the convergence in law of {Y (n)

· }∞n=1 to the diffu-

sion process (Yt)0≤t≤1 in C1G
([0, 1];G) as n → ∞.

Step 2. The previous step immediately implies the convergence of the finite-dimensional

distribution of (Y(n)

t )0≤t≤1. On the other hand, we show that the sequence of image

probability measures {P(n)
:= Px∗ ◦ (Y(n)

· )−1}∞n=1 is tight in C0,α-Höl
1G

([0, 1];G), by noting

Lemma 4.6.1 and by following the same argument as the proof of Lemma 4.3.1. Therefore,

we conclude the desired convergence in law, by combining these two. This completes the

proof.
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Chapter 5

CLTs of the second kind for
non-symmetric random walks on
nilpotent covering graphs

5.1 Settings and statements

As with the previous chapter, suppose that X is a Γ-nilpotent covering graph of a finite

graph X0, where Γ is a torsion free, finitely generated nilpotent group of step r. Let

G = GΓ be the connected and simply connected nilpotent Lie group of step r such that

Γ is isomorphic to a cocompact lattice in G, and g =
⊕r

k=1 g
(k) the corresponding Lie

algebra.

Let us give the settings and statements of CLTs of the second kind in the present

section. For the given transition probability p, we introduce a family of Γ-invariant

transition probabilities (pε)0≤ε≤1 on X by

pε(e) := p0(e) + εq(e) (e ∈ E), (5.1.1)

where

p0(e) :=
1

2

(
p(e) +

m
(
t(e)
)

m
(
o(e)

)p(e)), q(e) :=
1

2

(
p(e)−

m
(
t(e)
)

m
(
o(e)

)p(e)).
We note that the family (pε)0≤ε≤1 is given by the linear interpolation between the transi-

tion probability p = p1 and the m-symmetric probability p0. Moreover, the homological

direction γpε equals εγp for every 0 ≤ ε ≤ 1 (cf. [42, Proposition 2.3]).

Let L(ε) be the transition operator associated with pε for 0 ≤ ε ≤ 1. We also denote

by g
(ε)
0 the Albanese metric on g(1) associated with pε. We write G(ε) for the nilpotent Lie

group of step r whose Lie algebra is g = (g(1), g
(ε)
0 )⊕ g(2) ⊕ · · · ⊕ g(r). Let Φ

(ε)
0 : X −→ G

be the (pε-)modified harmonic realization for 0 ≤ ε ≤ 1.

Here we assume
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(A1): For every 0 ≤ ε ≤ 1, it holds that∑
x∈F

m(x) log
(
Φ

(ε)
0 (x)−1 · Φ(0)

0 (x)
)∣∣

g(1)
= 0, (5.1.2)

where F denotes a fundamental domain of X.

Since the modified harmonic realizations (Φ
(ε)
0 )0≤ε≤1 are uniquely determined up to g(1)-

translation, it is always possible to take (Φ
(ε)
0 )0≤ε≤1 satisfying (A1).

We define an approximation operator Pε : C∞(G(0)) −→ C∞(X) by

Pεf(x) := f
(
τεΦ

(ε)
0 (x)

)
(0 ≤ ε ≤ 1, x ∈ V ).

We take an orthonormal basis {V1, V2, . . . , Vd1} of (g(1), g
(0)
0 ). Then the semigroup CLT of

the second kind is stated as follows:

Theorem 5.1.1 (1) For 0 ≤ s ≤ t and f ∈ C∞(G(0)), we have

lim
n→∞

∥∥∥L[nt]−[ns]

(n−1/2)
Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥X
∞

= 0, (5.1.3)

where (e−tA)t≥0 is the C0-semigroup whose infinitesimal generator A is given by

A = −1

2

d1∑
i=1

V 2
i∗ − ρR(γp)∗. (5.1.4)

(2) Let µ be a Haar measure on G(0). Then, for any f ∈ C∞(G(0)) and for any sequence

{xn}∞n=1 ⊂ V satisfying limn→∞ τn−1/2

(
Φ

(n−1/2)
0 (xn)

)
=: g ∈ G(0), we have

lim
n→∞

L
[nt]

(n−1/2)
Pn−1/2f(xn) = e−tAf(g) :=

∫
G(0)

Ht(h
−1 ∗ g)f(h)µ(dh) (t ≥ 0), (5.1.5)

where Ht(g) is a fundamental solution to the heat equation( ∂

∂t
+A

)
u(t, g) = 0 (t > 0, g ∈ G(0)).

We now fix a reference point x∗ ∈ V such that Φ
(0)
0 (x∗) = 1G and put

ξ(ε)n (c) := Φ
(ε)
0

(
wn(c)

) (
0 ≤ ε ≤ 1, n = 0, 1, 2, . . . , c ∈ Ωx∗(X)

)
.

Note that (A1) does not imply that Φ
(ε)
0 (x∗) = 1G for 0 < ε ≤ 1 in general. We then

obtain a G-valued random walk (Ωx∗(X),P(ε)
x∗ , {ξ

(ε)
n }∞n=0) associated with the transition

probability pε. For t ≥ 0, n = 1, 2, . . . and 0 ≤ ε ≤ 1, let X (ε,n)
t be a map from Ωx∗(X) to

G given by

X (ε,n)
t (c) := τn−1/2

(
ξ
(ε)
[nt](c)

) (
c ∈ Ωx∗(X)

)
.
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We write Dn for the partition {tk = k/n | k = 0, 1, 2, . . . , n} of the time interval [0, 1] for

n ∈ N. We define

Y (ε,n)
tk

(c) := τn−1/2

(
ξ
(ε)
ntk

(c)
)
= τn−1/2

(
Φ

(ε)
0 (wk(c))

) (
tk ∈ Dn, c ∈ Ωx∗(X)

)
and consider a G-valued continuous stochastic process (Y(ε,n)

t )0≤t≤1 defined by the dCC-

geodesic interpolation of {Y(ε,n)
tk

}nk=0. Let d1 = dimR g
(1). We consider a stochastic differ-

ential equation

dŶt =

d1∑
i=1

V
(0)
i∗ (Ŷt) ◦ dBi

t + ρR(γp)∗(Ŷt) dt, Ŷ0 = 1G, (5.1.6)

where (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d1
t )0≤t≤1 is a standard Brownian motion with values in

Rd1 starting from B0 = 0. We know that the infinitesimal generator of (5.1.6) coincides

with −A defined by (5.1.4) (see Proposition 4.5.3). Let (Ŷt)0≤t≤1 be the G-valued diffusion

process which is the solution to (5.1.6). We write

Cα-Höl([0, 1];G(0)) =
{
w ∈ C([0, 1];G(0)) : ∥w∥α-Höl < ∞

}
(α < 1/2)

for the set of all α-Hölder continuous paths on G(0), where

∥w∥α-Höl := sup
0≤s<t≤1

dCC(ws, wt)

|t− s|α
+ dCC(1G, w0)

(
w ∈ Cα-Höl([0, 1];G(0))

)
.

Now we define

C0,α-Höl([0, 1];G(0)) := Lip([0, 1];G(0))
∥·∥α-Höl

, (5.1.7)

which is a Polish space (cf. Friz–Victoir [22, Section 8]). Let P(ε,n) be the probability

measure on C0,α-Höl([0, 1];G(0)) induced by the stochastic process Y(ε,n)
· for 0 ≤ ε ≤ 1 and

n ∈ N.
To present the second result, we need to put an additional assumption.

(A2): There exists a positive constant C such that, for k = 2, 3, . . . , r,

sup
0≤ε≤1

max
x∈F

∥∥ log (Φ(ε)
0 (x)−1 · Φ(0)

0 (x)
)∣∣

g(k)

∥∥
g(k)

≤ C, (5.1.8)

where ∥ · ∥g(k) denotes a Euclidean norm on g(k) ∼= Rdk for k = 2, 3, . . . , r.

Intuitively speaking, the situations that the distance between Φ
(ε)
0 and Φ

(0)
0 tends to be

too big as ε ↘ 0 are removed under (A2). By setting

log
(
Φ

(ε)
0 (x)

)∣∣
g(k)

= log
(
Φ

(0)
0 (x)

)∣∣
g(k)

(x ∈ F , k = 2, 3, . . . , r)

for Φ
(ε)
0 : X −→ G with (5.1.2), the family (Φ

(ε)
0 )0≤ε≤1 satisfies (A2). This means that it

is always possible to take a family (Φ
(ε)
0 )0≤ε≤1 satisfying (A2) as well as (A1).

Then the following theorem is the functional CLT of the second kind for the family of

non-symmetric random walks {ξ(ε)n }∞n=0.
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Theorem 5.1.2 We assume (A1) and (A2). Then the sequence (Y(n−1/2,n)
t )0≤t≤1 con-

verges in law to the diffusion process (Ŷt)0≤t≤1 in C0,α-Höl([0, 1];G(0)) as n → ∞ for all

α < 1/2.

In Theorem 4.1.3, we captured a G-valued diffusion process and its infinitesimal gener-

ator is the homogenized sub-Laplacian associated with the Albanese metric g0 = g
(1)
0 with

a non-trivial drift β(Φ0) ∈ g(2). In particular, even in the centered case ρR(γp) = 0g, the

non-trivial drift β(Φ0) remains in general. On the other hand, in this case, the limiting

diffusion (Ŷt)0≤t≤1 is generated by the homogenized sub-Laplacian on G(0) associated with

the Albanese metric g
(0)
0 under ρR(γp) = 0g. See the end of this chapter.

5.2 A one-parameter family of modified harmonic re-

alizations (Φ
(ε)
0 )0≤ε≤1

Let (pε)0≤ε≤1 be the family of transition probabilities defined by (5.1.1). We easily see

p1 = p and pε(e) > 0 for e ∈ E if 0 ≤ ε < 1, by definition. We also observe that the

invariant measure of the random walk associated with pε coincides with m for 0 ≤ ε ≤ 1.

Moreover, p0 and q are m-symmetric and m-anti-symmetric, respectively. Note that

γpε = εγp for all 0 ≤ ε ≤ 1.

For every 0 ≤ ε ≤ 1, we take the modified harmonic realization Φ
(ε)
0 : X −→ G

associated with the transition probability pε. Namely, Φ
(ε)
0 is the Γ-equivariant realization

of X satisfying∑
e∈Ex

pε(e) log
(
Φ

(ε)
0

(
o(e)

)−1 · Φ(ε)
0

(
t(e)
)∣∣∣

g(1)
= ερR(γp) (x ∈ V ). (5.2.1)

We put

dΦ
(ε)
0 (e) = Φ

(ε)
0

(
o(e)

)−1 · Φ(ε)
0

(
t(e)
)

(0 ≤ ε ≤ 1, e ∈ E),

The aim of this subsection is to study the quantity

β(ε)(Φ
(ε)
0 ) :=

∑
e∈E0

m̃ε(e) log
(
dΦ

(ε)
0 (ẽ)

)∣∣
g(2)

∈ g(2) (0 ≤ ε ≤ 1),

where we put m̃ε(e) = pε(e)m
(
o(e)

)
for e ∈ E0. Note that, if the transition probability

p0 is m-symmetric, then β(0)(Φ
(0)
0 ) = 0g. Loosely speaking, this quantity will appear as a

coefficient of the second order term of the Taylor expansion of (I − LN
(ε))Pεf in ε, which

we have to deal in the proof of Lemma 5.3.1. In particular, we are interested in the short

time behavior of β(ε)(Φ
(ε)
0 ) as ε ↘ 0 for later use. Intuitively there seems to be little hope

of knowing such behavior, because of the luck of any information about g(2)-components

of the realizations Φ
(ε)
0 for every 0 ≤ ε ≤ 1. However, the following proposition asserts

that β(ε)(Φ
(ε)
0 ) in fact approaches β(0)(Φ

(0)
0 ) = 0g as ε ↘ 0 by imposing only (A1).
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Proposition 5.2.1 Under (A1), we have

lim
ε↘0

β(ε)(Φ
(ε)
0 ) = β(0)(Φ

(0)
0 ) = 0g.

Fix a fundamental domain F of X. Set Ψ(ε)(x) = Φ
(ε)
0 (x)−1 · Φ(0)

0 (x) for 0 ≤ ε ≤ 1

and x ∈ V . Note that the map Ψ(ε) : V −→ G is Γ-invariant. The following lemma is

essential to prove Proposition 5.2.1.

Lemma 5.2.2 Under (A1), we have

lim
ε↘0

∥∥ log (Ψ(ε)(x)
)∣∣

g(1)

∥∥
g(1)

= 0 (x ∈ F). (5.2.2)

In particular, there exists a constant C such that∥∥ log (Ψ(ε)(x)
)∣∣

g(1)

∥∥
g(1)

≤ C (0 ≤ ε ≤ 1, x ∈ F).

Proof. We set ℓ2(F) := {f : F −→ C} and equip it with the inner product and the

corresponding norm defined by

⟨f, g⟩ℓ2(F) :=
∑
x∈F

f(x)g(x), ∥f∥ℓ2(F) :=
(∑

x∈F

|f(x)|2
)1/2 (

f, g ∈ ℓ2(F)
)
,

respectively. Since the invariant measure m|F : F −→ (0, 1] is positive on the finite set

F , there are positive constants c and C such that

c
(∑

x∈F

m(x)|f(x)|2
)1/2

≤ ∥f∥ℓ2(F) ≤ C
(∑

x∈F

m(x)|f(x)|2
)1/2 (

f ∈ ℓ2(F)
)
. (5.2.3)

It is easy to see that ℓ2(F) is decomposed as ℓ2(F) = ⟨ϕ0⟩ ⊕ ℓ1(F) by virtue of the

Perron–Frobenius theorem, where ϕ0 = |F|−1/2 is the normalized right eigenfunction

corresponding to the maximal eigenvalue α0 = 1 of L. We define

ℓ21(F) :=
{
f ∈ ℓ2(F) : |F|1/2⟨f,m⟩ℓ2(F) = 0

}
.

Note that ℓ21(F) is preserved by L and the transition operator L(ε) maps ℓ21(F) to itself for

all 0 ≤ ε ≤ 1. Moreover, we should emphasize that the inverse operator of (I−L(ε))|ℓ21(F) :

ℓ21(F) −→ ℓ21(F) does exists since L(ε) has a simple eigenvalue α0(ε) = 1 for 0 ≤ ε ≤ 1.

Let Q : ℓ2(F) −→ ℓ2(F) be the operator defined by

Qf(x) :=
∑
e∈Ex

q(e)f
(
t(e)
) (

f ∈ ℓ2(F), x ∈ F
)
.

Then we verify that the transition operator L(ε) has the decomposition of the form L(ε) =

L(0) + εQ for every 0 ≤ ε ≤ 1. In order to show (5.2.2), it suffices to show

lim
ε↘0

∥∥ log (Ψ(ε)(·)
)∣∣

X
(1)
i

∥∥
ℓ2(F)

= 0 (i = 1, 2, . . . , d1) (5.2.4)
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by noting (5.2.3). We remark that log
(
Ψ(ε)(·)

)∣∣
X

(1)
i

∈ ℓ21(F) for i = 1, 2, . . . , d1 thanks to

(5.1.2). In the following, we fix i = 1, 2, . . . , d1. The modified harmonicity of Φ
(ε)
0 gives

(I − L(ε))
(
log
(
Ψ(ε)(x)

)∣∣
X

(1)
i

)
= ε
[
Q
(
logΦ

(0)
0 (x)

∣∣
X

(1)
i

)
− ρR(γp)

∣∣
X

(1)
i

]
for 0 ≤ ε ≤ 1 and x ∈ F . This identity implies∥∥ log (Ψ(ε)(·)

)∣∣
X

(1)
i

∥∥
ℓ2(F)

≤ ε
∥∥(I − L(ε))

∣∣−1

ℓ21(X0)

∥∥ · ∥∥Q( logΦ(0)
0 (·)

∣∣
X

(1)
i

)
− ρR(γp)

∣∣
X

(1)
i

∥∥
ℓ2(F)

≤ ε
∥∥(I − L(ε))

∣∣−1

ℓ21(X0)

∥∥ · {∥∥ logΦ(0)
0 (·)

∣∣
X

(1)
i

∥∥
ℓ2(F)

+
∥∥ρR(γp)∥∥g(1)}, (5.2.5)

where we used ∥Q∥ ≤ 1 for the final line. By combining (5.2.5) with the identity

(I − L(ε))
∣∣−1

ℓ21(F)
= (I − L(0))

∣∣−1

ℓ21(F)

[
I − εQ

∣∣
ℓ21(F)

(I − L(0))
∣∣−1

ℓ21(F)

]
,

we obtain∥∥ log (Ψ(ε)(·)
)∣∣

X
(1)
i

∥∥
ℓ2(F)

≤ ε
∥∥(I − L(0))

∣∣−1

ℓ21(F)

∥∥ · (1− ε
∥∥Q∣∣

ℓ21(F)
(I − L(0))

∣∣−1

ℓ21(F)

∥∥)−1

×
{∥∥ logΦ(0)

0 (·)
∣∣
X

(1)
i

∥∥
ℓ2(F)

+
∥∥ρR(γp)∥∥g(1)}.

Here we can choose a sufficiently small constant ε0 > 0 such that

sup
0≤ε≤ε0

(
1− ε

∥∥Q∣∣
ℓ21(F)

(I − L(0))
∣∣−1

ℓ21(F)

∥∥)−1

≤ 2.

Then we have∥∥ log (Ψ(ε)(·)
)∣∣

X
(1)
i

∥∥
ℓ2(F)

≤ 2ε
∥∥(I − L(0))

∣∣−1

ℓ21(F)

∥∥{∥∥ logΦ(0)
0 (·)

∣∣
X

(1)
i

∥∥
ℓ2(F)

+
∥∥ρR(γp)∥∥g(1)}

for sufficiently small ε > 0 and this implies (5.2.4).

Proof of Proposition 5.2.1. By recalling (5.1.1) and that p0 is m-symmetric, we have

β(ε)(Φ
(ε)
0 ) =

∑
e∈E0

{1
2

(
m̃0(e)− m̃0(e)

)
log
(
dΦ

(ε)
0 (ẽ)

)∣∣
g(2)

+ εm
(
o(e)

)
q(e) log

(
dΦ

(ε)
0 (ẽ)

)∣∣
g(2)

}
= ε

∑
e∈E0

m
(
o(e)

)
q(e) log

(
dΦ

(ε)
0 (ẽ)

)∣∣
g(2)

.

Then the identity

dΦ
(ε)
0 (e) = Ψ(ε)

(
o(e)

)
· dΦ(0)

0 (e) ·Ψ(ε)
(
t(e)
)−1

(0 ≤ ε ≤ 1, e ∈ E),
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and (2.2.2) yield

β(ε)(Φ
(ε)
0 ) = ε

∑
e∈E0

m
(
o(e)

)
q(e)

{
log
(
Ψ(ε)

(
o(ẽ)

))∣∣
g(2)

− log
(
Ψ(ε)

(
t(ẽ)
))∣∣

g(2)

}
+ ε

∑
e∈E0

m
(
o(e)

)
q(e) log

(
dΦ

(0)
0 (ẽ)

)∣∣
X

(2)
i

− ε

2

∑
e∈E0

m
(
o(e)

)
q(e)

{
I(ε)
1 (ẽ) + I(ε)

2 (ẽ) + I(ε)
3 (ẽ)

}
, (5.2.6)

where
I(ε)
1 (ẽ) = I(ε;λ,ν)

1 (ẽ) =
[
log
(
Ψ(ε)(o(ẽ))

)∣∣
g(1)

, log
(
dΦ

(0)
0 (ẽ)

)∣∣
g(1)

]
,

I(ε)
2 (ẽ) = I(ε;λ,ν)

2 (ẽ) =
[
log
(
Ψ(ε)(o(ẽ))

)∣∣
g(1)

, log
(
Ψ(ε)(t(ẽ))−1

)∣∣
g(1)

]
,

I(ε)
3 (ẽ) = I(ε;λ,ν)

3 (ẽ) =
[
log
(
dΦ

(0)
0 (ẽ)

)∣∣
g(1)

, log
(
Ψ(ε)(t(ẽ))−1

)∣∣
g(1)

]
.

Let {X(2)
1 , X

(2)
2 , . . . , X

(2)
d2

} be a basis of g(2). For i = 1, 2, . . . , d2, we define a function

F
(ε)
i : V −→ R by F

(ε)
i (x) := log

(
Ψ(ε)(x)

)∣∣
X

(2)
i

for 0 ≤ ε ≤ 1 and x ∈ V . Then we see

that the function F
(ε)
i is Γ-invariant. Hence, there exists a function F̂ (ε) : V0 −→ R such

that F̂
(ε)
i

(
π(x)

)
= F

(ε)
i (x) for 0 ≤ ε ≤ 1 and x ∈ V . Then, by noting ∂(γpε) = 0, we have

ε
∑
e∈E0

m
(
o(e)

)
q(e)

{
log
(
Ψ(ε)

(
o(ẽ)

))∣∣
g(2)

− log
(
Ψ(ε)

(
t(ẽ)
))∣∣

g(2)

}
=
∑
e∈E0

(
m̃ε(e)− m̃0(e)

){
log
(
Ψ(ε)

(
o(ẽ)

))∣∣
g(2)

− log
(
Ψ(ε)

(
t(ẽ)
))∣∣

g(2)

}
= −C1(X0,R)

⟨
γpε , dF̂

(ε)
i

⟩
C1(X0,R)

+
1

2

∑
e∈E0

(
m̃0(e)− m̃0(e)

)
dF̂

(ε)
i (e)

= −C0(X0,R)
⟨
∂(γpε), F̂

(ε)
i

⟩
C0(X0,R)

= 0.

By applying Lemma 5.2.2 and the elementary inequality ∥[Z1, Z2]
∥∥
g(2)

≤ C∥Z1∥g(1)∥Z2∥g(1)
for Z1, Z2 ∈ g(1) and some C > 0, we find a sufficiently large C > 0 satisfying

sup
0≤ε≤1

∥∥I(ε)
k (ẽ)

∥∥
g(2)

≤ C

for k = 1, 2, 3. Summing up the all arguments above and letting ε ↘ 0 in both sides of

(5.2.6), we obtain the desired convergence. This completes the proof.

We denoteH1
(ε)(X0) the set of all modified harmonic 1-forms onX0. We equipH1

(ε)(X0)

with the inner product

⟨⟨ω1, ω2⟩⟩pε :=
∑
e∈E0

m̃ε(e)ω1(e)ω2(e)− ε2⟨γp, ω1⟩⟨γp, ω2⟩
(
ω1, ω2 ∈ H1

(ε)(X0)
)
.
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We may identify H1(X0,R) with H1
(ε)(X0) for every 0 ≤ ε ≤ 1 by applying the discrete

Hodge–Kodaira theorem. It should be noted that the identification map depends on

the parameter ε and H1
(1)(X0) = H1(X0). Moreover, we also identify Hom(g(1),R) with

Im(tρR) ⊂ H1(X0,R). Therefore, Hom(g(1),R) may be regarded as a subspace of each

H1
(ε)(X0). For an element ω ∈ Hom(g(1),R), we denote tρR(ω) ∈ H1(X0,R) ∼= H1

(ε)(X0) by

ω(ε). Let g
(ε)
0 be the Albanese metric on g(1) induced by the dual inner product of ⟨⟨·, ·⟩⟩(ε)

for 0 ≤ ε ≤ 1.

5.3 Proof of Theorem 5.1.1

We prove Theorem 5.1.1 in this subsection. A key claim to obtain the main theorem is

the following Lemma.

Lemma 5.3.1 For any f ∈ C∞
0 (G(0)), as N → ∞ and ε ↘ 0 with N2ε ↘ 0, we have∥∥∥ 1

Nε2
(I − LN

(ε))Pεf − PεAf
∥∥∥X
∞

−→ 0,

where A is the sub-elliptic operator on C∞
0 (G(0)) defined by (5.1.4).

Proof. We apply Taylor’s expansion formula (cf. Alexopoulos [2, Lemma 5.3]) for the

(∗)-coordinates of the second kind to f ∈ C∞
0 (G(0)) at τε

(
Φ

(ε)
0 (x)

)
∈ G(0). Then, recalling

that (G(0), ∗) is a stratified Lie group, we have

1

Nε2
(I − LN

(ε))Pεf(x)

= −
∑
(i,k)

εk−2

N
X

(k)
i∗ f

(
τε
(
Φ

(ε)
0 (x)

)) ∑
c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k)

i∗

−
( ∑

(i1,k1)≥(i2,k2)

εk1+k2−2

2N
X

(k1)
i1∗ X

(k2)
i2∗ +

∑
(i2,k2)>(i1,k1)

εk1+k2−2

2N
X

(k2)
i2∗ X

(k1)
i1∗
))

f
(
τε
(
Φ

(ε)
0 (x)

))
×

∑
c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k1)

i1∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k2)

i2∗

−
∑

(i1,k1),(i2,k2),(i3,k3)

εk1+k2+k3−2

6N

∂3f

∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗

(θ)

×
∑

c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k1)

i1∗

×
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k2)

i2∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k3)

i3∗
(5.3.1)

for x ∈ V and some θ ∈ G(0) satisfying

|θ(k)i∗ | ≤
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k)

i∗
(i = 1, 2, . . . , dk, k = 1, 2, . . . r),
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where the summation
∑

(i1,k1)≥(i2,k2)
runs over all (i1, k1) and (i2, k2) with k1 > k2 or

k1 = k2 and i1 ≥ i2. We denote by Ordε(k) the terms of the right-hand side of (5.3.1)

whose order of ε equals just k. Then, (5.3.1) is rewritten as

1

Nε2
(I − LN

(ε))Pεf(x) = Ordε(−1) + Ordε(0) +
∑
k≥1

Ordε(k) (x ∈ V ),

where

Ordε(−1) = − 1

Nε

d1∑
i=1

X
(1)
i∗ f

(
τε
(
Φ

(ε)
0 (x)

)) ∑
c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

i∗

and

Ordε(0) = − 1

N

d2∑
i=1

X
(2)
i∗ f

(
τε
(
Φ

(ε)
0 (x)

)) ∑
c∈Ωx,N (X)

pε(c)
{(

Φ
(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(2)

i∗

− 1

2

∑
1≤λ<ν≤d1

[[X
(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

×
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

λ∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

ν∗

}
− 1

2N

∑
1≤i,j≤d1

X
(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ

(ε)
0 (x)

))
×

∑
c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

i∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

j∗
.

Step 1. We first estimate Ordε(−1). By recalling (2.2.3) and (5.2.1), we have inductively

∑
c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

i∗

=
∑

c′∈Ωx,N−1(X)

pε(c
′)
∑

e∈Et(c′)

pε(e)
(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c′)

)
· Φ(ε)

0

(
t(c′)

)−1 · Φ(ε)
0

(
t(e)
))(1)

i

=
∑

c′∈Ωx,N−1(X)

pε(c
′) log

(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c′)

))∣∣∣
X

(1)
i

+ ερR(γp)
∣∣
X

(1)
i

= NερR(γp)
∣∣
X

(1)
i

(x ∈ V, i = 1, 2, . . . , d1). (5.3.2)

Step 2. Next we estimate Ordε(0). Let us consider the coefficient of X
(2)
i∗ f

(
τε
(
Φ

(ε)
0 (x)

))
.
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It follows from (5.2.1) and (2.2.3) that

1

N

∑
c∈Ωx,N (X)

pε(c)
{(

Φ
(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(2)

i∗

− 1

2

∑
1≤λ<ν≤d1

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

λ∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

ν∗
[[X

(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

}
=

1

N

∑
c∈Ωx,N (X)

pε(c) log
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))∣∣∣

X
(2)
i

=
1

N

N−1∑
k=0

∑
c′∈Ωx,k(X)

pε(c
′)
∑

e∈Et(c′)

pε(e) log
(
dΦ

(ε)
0 (e)

)∣∣
X

(2)
i

(x ∈ V ). (5.3.3)

Since the function

M
(ε)
i (x) :=

∑
e∈Ex

pε(e) log
(
dΦ

(ε)
0 (e)

)∣∣
X

(2)
i

(0 ≤ ε ≤ 1, i = 1, 2, . . . , d2, x ∈ V )

satisfies M
(ε)
i (γx) = M

(ε)
i (x) for γ ∈ Γ and x ∈ V due to the Γ-invariance of p and the

Γ-equivariance of Φ0, there exists a function M(ε)
i : V0 −→ R such that M(ε)

i

(
π(x)

)
=

M
(ε)
i (x) for 0 ≤ ε ≤ 1, i = 1, 2, . . . , d2 and x ∈ V . Moreover, we have

Lk
(ε)M

(ε)
i

(
π(x)

)
= Lk

(ε)Mi(x) (k ∈ N, 0 ≤ ε ≤ 1, i = 1, 2, . . . , d2, x ∈ V )

by the Γ-invariance of p. We then find a sufficiently small ε0 > 0 such that

1

N

∑
c∈Ωx,N (X)

pε(c)
{(

Φ
(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(2)

i∗

− 1

2

∑
1≤λ<ν≤d1

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

λ∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

ν∗
[[X

(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

}
=

1

N

N−1∑
k=0

Lk
(ε)M

(ε)
i (x)

=
1

N

N−1∑
k=0

Lk
(ε)M

(ε)
i

(
π(x)

)
=
∑
x∈V0

m(x)M(ε)
i (x) +Oε0

( 1

N

)
= β(ε)(Φ

(ε)
0 )
∣∣
X

(2)
i

+Oε0

( 1

N

)
(0 ≤ ε ≤ ε0, i = 1, 2, . . . , d2)

by applying the ergodic theorem (cf. [31, Theorem 3.4]) for the transition operator

L(ε). Combining this calculation with Proposition 5.2.1 implies that the coefficient of

X
(2)
i∗ f

(
τε
(
Φ

(ε)
0 (x)

))
vanishes as N → ∞ and ε ↘ 0 with N2ε ↘ 0.
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We also consider the coefficient of X
(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ

(ε)
0 (x)

))
. We have

1

2N

∑
c∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

i∗

(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(1)

j∗

=
1

2N

{ ∑
c′∈Ωx,N−1(X)

pε(c
′)
(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c′)

))(1)
i

(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c′)

))(1)
j

+
∑

e∈Et(c′)

pε(e) log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
i

log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
j

+ 2(N − 1)ρR(γpε)
∣∣
X

(1)
i
ρR(γpε)

∣∣
X

(1)
j

}
=

1

2N

N−1∑
k=0

∑
c′∈Ωx,k(X)

pε(c
′)
∑

e∈Et(c′)

pε(e) log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
i

log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
j

+
1

2
(N − 1)ε2ρR(γp)

∣∣
X

(1)
i
ρR(γp)

∣∣
X

(1)
j

=
1

2N

N−1∑
k=0

Lk
(ε)N

(ε)
ij (x) +

1

2
(N − 1)ε2ρR(γp)

∣∣
X

(1)
i
ρR(γp)

∣∣
X

(1)
j

(x ∈ V ) (5.3.4)

by using (5.2.1) and (2.2.4), where the function N
(ε)
ij : V −→ R is defined by

N
(ε)
ij (x) :=

∑
e∈Ex

pε(e) log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
i

log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
j
.

for 0 ≤ ε ≤ 1, i, j = 1, 2, . . . , d1 and x ∈ V . In the same argument as above, N
(ε)
ij is

Γ-invariant and there exists a function N (ε)
ij : V0 −→ R such that N (ε)

ij

(
π(x)

)
= N

(ε)
ij (x)

for x ∈ V . We also have

Lk
(ε)N

(ε)
ij

(
π(x)

)
= Lk

(ε)N
(ε)
ij (x) (k ∈ N, 0 ≤ ε ≤ 1, i, j = 1, 2, . . . , d2, x ∈ V )

by the Γ-invariance of p. Thus, we choose a sufficiently small ε′0 > 0 such that

1

2N

N−1∑
k=0

Lk
(ε)N

(ε)
ij (x) =

1

2N

N−1∑
k=0

Lk
(ε)N

(ε)
ij

(
π(x)

)
=

1

2

∑
x∈V0

m(x)
(
N (Φ

(ε)
0 )ij

)
(x) +Oε′0

( 1

N

)
=

1

2

∑
e∈E0

m̃ε(e) log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
i

log
(
dΦ

(ε)
0 (e)

)∣∣
X

(1)
j

+Oε′0

( 1

N

)
(0 ≤ ε ≤ ε′0, i, j = 1, 2, . . . , d1) (5.3.5)

by the ergodic theorem. Recall that {V1, V2, . . . , Vd1} denotes the orthonormal basis in

(g(1), g
(0)
0 ). In particular, put X

(1)
i = Vi for i = 1, 2, . . . , d1 and let {ω1, ω2, . . . , ωd1} be the
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dual basis of {V1, V2, . . . , Vd1}. Then we have

1

2

∑
e∈E0

m̃ε(e) log
(
dΦ

(ε)
0 (ẽ)

)∣∣
Vi
log
(
dΦ

(ε)
0 (ẽ)

)∣∣
Vj

=
1

2

(∑
e∈E0

m̃ε(e)ω
(ε)
i (e)ω

(ε)
j (e)− ⟨γpε , ωi⟩⟨γpε , ωj⟩

)
+

1

2
ε2⟨γp, ωi⟩⟨γp, ωj⟩

=
1

2
⟨⟨ω(ε)

i , ω
(ε)
j ⟩⟩(ε) +

1

2
ε2ρR(γp)

∣∣
Vi
ρR(γp)

∣∣
Vj

(i, j = 1, 2, . . . , d1). (5.3.6)

The coefficient of X
(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ

(ε)
0 (x)

))
equals

−
(1
2
⟨⟨ω(ε)

i , ω
(ε)
j ⟩⟩(ε) +

1

2
Nε2ρR(γp)

∣∣
Vi
ρR(γp)

∣∣
Vj

)
+Oε′0

( 1

N

)
(i, j = 1, 2, . . . , d1) (5.3.7)

by combining (5.3.4) with (5.3.5) and (5.3.6). Therefore, (5.3.7) and the continuity of

⟨⟨·, ·⟩⟩(ε) as ε ↘ 0 (cf. [31, Lemma 5.2]) imply

Ordε(0) −→ −1

2

d1∑
i=1

V 2
i∗f
(
τε
(
Φ

(ε)
0 (x)

))
(5.3.8)

as N → ∞ and ε ↘ 0 with N2ε ↘ 0.

We finally discuss the estimate of
∑

k≥1Ordε(k). At the beginning, we show that the

coefficient of X
(k)
i∗ f

(
τε
(
Φ

(ε)
0 (x)

))
vanishes as N → ∞ and ε ↘ 0 with N2ε ↘ 0. Thanks

to ∣∣∣(Φ(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))(k)

i

∣∣∣ ≤ CNk (0 ≤ ε ≤ 1, x ∈ V ),

(5.2.1) and (2.2.7), we have

εk−2

N

∑
x∈Ωx,N (X)

pε(c)
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k)

i∗

=
εk−2

N

∑
x∈Ωx,N (X)

pε(c)
{(

Φ
(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))(k)

i

+
∑

|K1|+|K2|≤k−1
|K2|>0

CK1,K2PK1
∗

(
Φ

(ε)
0 (x)−1

)
PK2

(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))}

≤ CM
(k)
i

(
τε
(
Φ

(ε)
0 (x)

))(
εk−2Nk−1 +

∑
|K1|≤k−2

εk−1−|K1| +
∑

|K1|+|K2|≤k−1
|K2|≥2

εk−2−|K1|N |K2|−1
)

for i = 1, 2, . . . , dk and some continuous function M
(k)
i : G −→ R. This converges to

zero as N → ∞ and ε ↘ 0 with N2ε ↘ 0. We also observe that the coefficient of

X
(k1)
i1∗ X

(k2)
i2∗ f

(
τε
(
Φ

(ε)
0 (x)

))
converges to zero as N → ∞ and ε ↘ 0 with N2ε ↘ 0 by

following the same argument as above.
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We also consider the coefficient of (∂3f/∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗ )(θ). Since f is compactly

supported, it is sufficient to show by induction on k = 1, 2, . . . , r that, if εN < 1, then

εk
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k)

i∗
≤ M

(k)
i

(
τε
(
Φ

(ε)
0 (x) ∗ θ

))
× εN (5.3.9)

for i = 1, 2, . . . , dk and some continuous function M
(k)
i : G −→ R. The cases k = 1 and

k = 2 are clear. Suppose that (5.3.9) holds for less than k. We have

εk
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k)

i∗
= εk

{(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))(k)

i
+

∑
|K1|+|K2|≤k−1

|K2|>0

CK1,K2

× PK1
∗

(
Φ

(ε)
0 (x)−1

)
PK2

(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))}

.

by using (2.2.2) and (2.2.7). Then we see that(
Φ

(ε)
0 (x)−1

)(k1)
i1∗

=
(
θ ∗
(
Φ

(ε)
0 (x) ∗ θ

)−1
)(k1)
i1∗

= θ
(k1)
i1∗ +

((
Φ

(ε)
0 (x) ∗ θ

)−1
)(k1)
i1∗

+
∑

|L1|+|L2|=k1
|L1|,|L2|>0

CL1,L2PL1
∗ (θ)PL2

∗

((
Φ

(ε)
0 (x) ∗ θ

)−1
)
.

Thus, we have inductively ∣∣∣(Φ(ε)
0 (x)−1

)(k1)
i1∗

∣∣∣ ≤ M
(
Φ

(ε)
0 (x) ∗ θ

)
for a continuous function M : G −→ R and k1 ≤ k − 1. We then conclude

εk
(
Φ

(ε)
0 (x)−1 ∗ Φ(ε)

0

(
t(c)
))(k)

i∗

≤ C
(
εkNk +

∑
|K1|+|K2|≤k−1

|K2|>0

M
(
τε
(
Φ

(ε)
0 (x) ∗ θ

))
εk−|K1|N |K2|

)

≤ M
(k)
i

(
τε
(
Φ

(ε)
0 (x) ∗ θ

))
× εN.

for some continuous function M
(k)
i : G −→ R. These estimates implies that

∑
k≥1Ordε(k)

converges to zero as N → ∞ and ε ↘ 0 with N2ε ↘ 0.

Consequently, we obtain∥∥∥ 1

Nε2
(
I − LN

(ε)

)
Pεf(x)− PεAf(x)

∥∥∥X
∞

−→ 0

as N → ∞ and ε ↘ 0 with N2ε ↘ 0 by combining (5.3.1) with (5.3.2) and (5.3.8). This

completes the proof.
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Proof of Theorem 5.1.1. We basically follow the argument by Kotani [38, Theorem 4].

Let N = N(n) be the integer satisfying n1/5 ≤ N < n1/5 + 1 and let kN and rN be the

quotient and the remainder of ([nt] − [ns])/N(n), respectively. We put εN := n−1/2 and

hN := Nε2N . Then we have kNhN =
(
[nt]− [ns]− rN

)
ε2N → t− s (n → ∞).

Since C∞
0 (G(0)) ⊂ Dom(A) ⊂ C∞(G(0)) and C∞

0 (G(0)) is dense in C∞(G(0)), the linear

operator A is densely defined in C∞(G(0)). Furthermore, (λ −A)
(
C∞

0 (G(0))
)
is dense in

C∞(G(0)) for some λ > 0 (cf. Robinson [64, p.304]). Hence, by combining Lemma 5.3.1

and Trotter’s approximation theorem (cf. [74]), we obtain

lim
n→∞

∥∥∥LNkN
(n−1/2)

Pn−1/2f − Pn−1/2e−(t−s)Af
∥∥∥X
∞

= 0
(
f ∈ C∞

0 (G(0))
)
. (5.3.10)

On the other hand, Lemma 5.3.1 implies

lim
n→∞

∥∥∥ 1

rNε2N

(
I − LrN

(n−1/2)

)
Pn−1/2f − Pn−1/2Af

∥∥∥X
∞

= 0
(
f ∈ C∞

0 (G(0))
)
. (5.3.11)

Here we have∥∥∥L[nt]−[ns]

(n−1/2)
Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥X
∞

≤
∥∥∥(I − LrN

(n−1/2)

)
Pn−1/2f

∥∥∥X
∞
+
∥∥∥LNkN

(n−1/2)
Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥X
∞
. (5.3.12)

It follows from ∥Pn−1/2∥ ≤ 1 that∥∥∥(I − LrN
(n−1/2)

)
Pn−1/2f

∥∥∥X
∞

≤ rNε
2
N

∥∥∥ 1

rNε2N

(
I − LrN

(n−1/2)

)
Pn−1/2f − Pn−1/2Af

∥∥∥X
∞
+ rNε

2
N

∥∥Pn−1/2Af
∥∥X
∞

≤ rNε
2
N

∥∥∥ 1

rNε2N

(
I − LrN

(n−1/2)

)
Pn−1/2f − Pn−1/2Af

∥∥∥X
∞
+ rNε

2
N

∥∥Af
∥∥G
∞. (5.3.13)

Then, we obtain (5.1.3) for f ∈ C∞
0 (G(0)) by combining (5.3.10), (5.3.11), (5.3.12) and

(5.3.13) with rNε
2
N → 0 (n → ∞). For f ∈ C∞(G(0)), we also obtain (5.1.3) by following

the same argument as [31, Theorem 2.1]. we complete the proof of Theorem 5.1.1.

5.4 Proof of Theorem 5.1.2

In what follows, we assume (A2) as well as (A1). Put

∥dΦ(ε)
0 ∥∞ = max

e∈E0

max
k=1,2,...,r

∥∥ log (dΦ(ε)
0 (ẽ)

)∣∣
g(k)

∥∥1/k
g(k)

(0 ≤ ε ≤ 1).

We describe a relation between ∥dΦ(ε)
0 ∥∞ and ∥dΦ(0)

0 ∥∞ for every 0 ≤ ε ≤ 1. Thanks to

the identity

dΦ
(ε)
0 (e) = Ψ(ε)

(
o(e)

)
· dΦ(0)

0 (e) ·Ψ(ε)
(
t(e)
)−1

(0 ≤ ε ≤ 1, e ∈ E),

[31, Lemma 5.3 (3)] and (A2), we obtain the following:
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Lemma 5.4.1 Under (A2), there exists a positive constant C such that

sup
0≤ε≤1

∥dΦ(ε)
0 ∥∞ ≤ C∥dΦ(0)

0 ∥∞.

We denote by (G
(k)
(0), ·) and (G

(k)
(0), ∗) the connected and simply connected nilpotent Lie

group of step k and the corresponding limit group whose Lie algebras are(
(g(1), g

(0)
0 )⊕ g(2) ⊕ · · · ⊕ g(k), [·, ·]

)
,
(
(g(1), g

(0)
0 )⊕ g(2) ⊕ · · · ⊕ g(k), [[·, ·]]

)
,

respectively. For the piecewise smooth stochastic process (Y(ε,n)
t )0≤t≤1, we define its trun-

cated process by

Y(ε,n; k)
t =

(
Y(ε,n),1

t ,Y (ε,n),2
t , . . . ,Y(ε,n),k

t

)
∈ G

(k)
(0) (k = 1, 2, . . . , r)

in the (·)-coordinate system. We may put

sup
0≤ε≤1

{
∥dΦ(ε)

0 ∥∞ + ∥ρR(γp)∥g(1)
}
≤ C∥dΦ(0)

0 ∥∞ + ∥ρR(γp)∥g(1) =: M,

by recalling Lemma 5.4.1.

As is well-known in probability theory, it suffices to show the tightness of {P(n−1/2,n)}∞n=1

and the convergence of the finite dimensional distribution of {Y(n−1/2,n)
· }∞n=1 to obtain The-

orem 5.1.2. In the former part of this section, we aim to show the following.

Lemma 5.4.2 {P(n−1/2,n)}∞n=1 is tight in C0,α-Höl([0, 1];G(0)), where α < 1/2.

As the first step of the proof of Lemma 5.4.2, we prepare the following lemma.

Lemma 5.4.3 Let m,n be positive integers. Then there exists a constant C > 0 inde-

pendent of n (however, it may depend on m) such that

EP(n−1/2)
x∗

[
dCC(Y(n−1/2,n; 2)

s ,Y(n−1/2,n; 2)
t )4m

]
≤ C(t− s)2m (0 ≤ s ≤ t ≤ 1). (5.4.1)

Proof. Our argument is partially based on Bayer–Friz [6, Proposition 4.3]. We split the

proof into several steps.

Step 1. First we show

EP(n−1/2)
x∗

[
dCC

(
Y(n−1/2,n; 2)

tk
,Y(n−1/2,n; 2)

tℓ

)4m] ≤ C
(ℓ− k

n

)2m
(
n,m ∈ N, tk, tℓ ∈ Dn (k ≤ ℓ)

)
(5.4.2)

for some C > 0 which is independent of n (depending on m). By noting the equivalence

of two homogeneous norms ∥ · ∥CC and ∥ · ∥Hom (cf. [32, Proposition 3.1]), we know that
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(5.4.2) is equivalent to the existence of positive constants C(1) and C(2) independent of n

such that

EP(n−1/2)
x∗

[∥∥ log ((Y (n−1/2,n)
tk

)−1 · Y(n−1/2,n)
tℓ

)∣∣
g(1)

∥∥4m
g(1)

]
≤ C(1)

(ℓ− k

n

)2m
, (5.4.3)

EP(n−1/2)
x∗

[∥∥ log ((Y (n−1/2,n)
tk

)−1 · Y(n−1/2,n)
tℓ

)∣∣
g(2)

∥∥2m
g(2)

]
≤ C(2)

(ℓ− k

n

)2m
. (5.4.4)

Step 2. We here prove (5.4.3). We have

EP(ε)
x∗

[∥∥ log ((Y (ε,n)
tk

)−1 · Y(ε,n)
tℓ

)∣∣
g(1)

∥∥4m
g(1)

]
=
( 1√

n

)4m
EP(ε)

x∗

[( d1∑
i=1

log
(
(ξ

(ε)
k )−1 · ξ(ε)ℓ

)∣∣2
X

(1)
i

)2m]
≤
( 1√

n

)4m
· d2m1 max

i=1,2,...,d1
max
x∈F

{ ∑
c∈Ωx,ℓ−k(X)

pε(c)

× log
(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))∣∣∣4m

X
(1)
i

}
(0 ≤ ε ≤ 1), (5.4.5)

where F stands for the fundamental domain in X containing the reference point x∗ ∈ V .

For i = 1, 2, . . . , d1, x ∈ F , N ∈ N, 0 ≤ ε ≤ 1 and c = (e1, e2, . . . , eN) ∈ Ωx∗,N(X), put

J (ε)
i (j) := log

(
dΦ

(ε)
0 (ej)

)∣∣
X

(1)
i

− ερR(γp)
∣∣
X

(1)
i

and

N (i,x)
N (Φ

(ε)
0 ; c) := log

(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))∣∣∣

X
(1)
i

−NρR(γpε)
∣∣
X

(1)
i

=
N∑
j=1

J (ε)
i (j).

We note that

|J (ε)
i (j)| ≤ ∥dΦ(ε)

0 ∥∞ + ∥ρR(γp)∥g(1) ≤ M (0 ≤ ε ≤ 1, i = 1, 2, . . . , d1, j = 1, 2, . . . , N).

Then we know that {N (i,x)
N }∞N=1 is a martingale for every i = 1, 2, . . . , d1 and x ∈ F

(see Lemma 2.5.3). Hence, we apply the Burkholder–Davis–Gundy inequality with the

exponent 4m. By the elementary inequality (a+ b)4m ≤ 24m−1(a4m + b4m) for m ∈ N, we
have∑

c∈Ωx,N (X)

pε(c) log
(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))∣∣∣4m

X
(1)
i

≤ 24m−1
∑

c∈Ωx,N (X)

pε(c)
{(

N (i,x)
N (c)

)4m
+
(
NερR(γp)

∣∣
X

(1)
i

)4m}

≤ 24m−1C4m
(4m)

∑
c∈Ωx,N (X)

pε(c)
{ N∑

j=1

J (ε)
i (j)2

}2m

+ 24m−1ε4mN4m
∥∥ρR(γp)∥∥4mg(1)

≤ 24mC4m
(4m)M

2mN2m + 24m−1M4mε4mN4m

(x ∈ F , i = 1, 2, . . . , d1, 0 ≤ ε ≤ 1, N ∈ N). (5.4.6)
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In particular, (5.4.6) implies∑
c∈Ωx,ℓ−k(X)

pn−1/2(c) log
(
Φ

(n−1/2)
0 (x)−1 · Φ(n−1/2)

0

(
t(c)
))∣∣∣4m

X
(1)
i

≤
{
24mC4m

(4m)M
2m + 24m−1M4m

}
(ℓ− k)2m (5.4.7)

by putting ε = n−1/2 and N = ℓ − k, where we should note that (ℓ − k)/n < 1 since

1 ≤ k ≤ ℓ ≤ n. We then obtain

EP(n−1/2)
x∗

[∥∥ log ((Ỹ(n−1/2,n)
tk

)−1 · Ỹ (n−1/2,n)
tℓ

)∣∣
g(1)

∥∥4m
g(1)

]
≤ d2m1

{
24mC4m

(4m)M
2m + 24m−1M4m

}(ℓ− k

n

)2m
=: C(1)

(ℓ− k

n

)2m
by combining (5.4.5) with (5.4.7), which leads to (5.4.3).

Step 3. We show (5.4.4) at this step. We also see

EP(ε)
x∗

[∥∥ log ((Y (ε,n)
tk

)−1 · Y(ε,n)
tℓ

)∣∣
g(2)

∥∥2m
g(2)

]
≤
( 1
n

)2m
· d2m2 max

i=1,2,...,d2
max
x∈F

{ ∑
c∈Ωx,ℓ−k(X)

pε(c)

× log
(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))∣∣∣2m

X
(2)
i

}
(0 ≤ ε ≤ 1). (5.4.8)

in the similar way to (5.4.5). Then it follows from (2.2.2) that

log
(
Φ

(ε)
0 (x)−1 · Φ(ε)

0

(
t(c)
))∣∣∣2m

X
(2)
i

= log
(
Φ

(ε)
0

(
o(e1)

)−1 · Φ(ε)
0

(
t(e1)

)
· · · · · Φ(ε)

0

(
o(eℓ−k)

)−1 · Φ(ε)
0

(
t(eℓ−k)

))∣∣∣2m
X

(2)
i

=
( ℓ−k∑

j=1

log
(
dΦ

(ε)
0 (ej)

)∣∣
X

(2)
i

− 1

2

∑
1≤j1<j2≤ℓ−k

∑
1≤λ<ν≤d1

[[X
(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

×
{
log
(
dΦ

(ε)
0 (ej1)

)∣∣
X

(1)
λ

log
(
dΦ

(ε)
0 (ej2)

)∣∣
X

(1)
ν

− log
(
dΦ

(ε)
0 (ej1)

)∣∣
X

(1)
ν

log
(
dΦ

(ε)
0 (ej2)

)∣∣
X

(1)
λ

})2m
≤ 32m−1

{( ℓ−k∑
j=1

log
(
dΦ

(ε)
0 (ej)

)∣∣
X

(2)
i

)2m
+ L max

1≤λ<ν≤d1

( ∑
1≤j1<j2≤ℓ−k

log
(
dΦ

(ε)
0 (ej1)

)∣∣
X

(1)
λ

log
(
dΦ

(ε)
0 (ej2)

)∣∣
X

(1)
ν

)2m
+ L max

1≤λ<ν≤d1

( ∑
1≤j1<j2≤ℓ−k

log
(
dΦ

(ε)
0 (ej1)

)∣∣
X

(1)
ν

log
(
dΦ

(ε)
0 (ej2)

)∣∣
X

(1)
λ

)2m}
, (5.4.9)
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where we put

L :=
1

2
max

i=1,2,...,d2
max

1≤λ<ν≤d1

∣∣∣[[X(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

∣∣∣.
We fix i = 1, 2, . . . , d2. Then we have

( ℓ−k∑
j=1

log
(
dΦ

(ε)
0 (ej)

)∣∣
X

(2)
i

)2m
= (ℓ− k)2m

( ℓ−k∑
j=1

1

ℓ− k
log
(
dΦ

(ε)
0 (ej)

)∣∣
X

(2)
i

)2m
≤ (ℓ− k)2m

ℓ−k∑
j=1

1

ℓ− k
log
(
dΦ

(ε)
0 (ej)

)∣∣2m
X

(2)
i

≤ ∥dΦ(ε)
0 ∥4m∞ (ℓ− k)2m ≤ M4m(ℓ− k)2m. (5.4.10)

by applying the Jensen inequality. For 1 ≤ λ < ν ≤ d1, x ∈ F , 0 ≤ ε ≤ 1, N ∈ N and

c = (e1, e2, . . . , eN) ∈ Ωx,N(X), we set

Ñ (λ,ν,x)
N (Φ

(ε)
0 ; c) :=

∑
1≤j1<j2≤N

J (ε)
λ (j1)J (ε)

ν (j2) =
N∑

j2=2

J (ε)
ν (j2)

j2−1∑
j1=1

J (ε)
λ (j1).

Then we also see that {Ñ (λ,ν,x)
N }∞N=1 is an R-valued martingale for every 1 ≤ λ < ν ≤ d

and x ∈ F . By applying the Burkholder–Davis–Gundy inequality with the exponent 2m,

we have ∑
c∈Ωx,N (X)

pε(c)
(
Ñ (λ,ν,x)

N (c)
)2m

≤ C2m
(2m)

∑
c∈Ωx,N (X)

pε(c)
{ N∑

j2=2

J (ε)
ν (j2)

2 ×
( j2−1∑

j1=1

J (ε)
λ (j1)

)2}m

≤ C2m
(2m)

∑
c∈Ωx,N (X)

pε(c)(N − 1)m
N∑

j2=2

1

N − 1
J (ε)

ν (j2)
2m
( j2−1∑

j1=1

J (ε)
λ (j1)

)2m
≤ C2m

(2m)N
m

N∑
j2=2

1

N − 1

( ∑
c∈Ωx,N (X)

pε(c)J (ε)
ν (j2)

4m
)1/2

×
{ ∑

c∈Ωx,N (X)

pε(c)
( j2−1∑

j1=1

J (ε)
λ (j1)

)4m}1/2

≤ C2m
(2m)M

2mNm

N∑
j2=2

1

N − 1

{ ∑
c∈Ωx,N (X)

pε(c)
( j2−1∑

j1=1

J (ε)
λ (j1)

)4m}1/2

, (5.4.11)

where we used Jensen’s inequality for the third line and Schwarz’ inequality for the final

line. Then the again use of the Burkholder–Davis–Gundy inequality with the exponent
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4m gives ∑
c∈Ωx,N (X)

pε(c)
( j2−1∑

j1=1

J (ε)
λ (j1)

)4m
≤ C4m

(4m)

∑
c∈Ωx,N (X)

pε(c)
( j2−1∑

j1=1

J (ε)
λ (j1)

2
)2m

= C4m
(4m)(j2 − 1)2m

∑
c∈Ωx,N (X)

pε(c)
( j2−1∑

j1=1

1

j2 − 1
J (ε)

λ (j1)
2
)2m

≤ C4m
(4m)j

2m
2

∑
c∈Ωx,N (X)

pε(c)

j2−1∑
j1=1

1

j2 − 1
J (ε)

λ (j1)
4m ≤ C4m

(4m)M
4mj2m2 . (5.4.12)

It follows from (5.4.11) and (5.4.12) that∑
c∈Ωx,N (X)

pε(c)
(
Ñ (λ,ν,x)

N (c)
)2m ≤ C2m

(2m)M
2mNm

N∑
j2=2

1

N − 1
(C4m

(4m)M
4mj2m2 )1/2

≤ C2m
(2m)C2m

(4m)M
4mN2m. (5.4.13)

Hence, (5.4.13) implies∑
c∈Ωx,N (X)

pε(c)
( ∑

1≤j1<j2≤N

log
(
dΦ

(ε)
0 (ej1)

)∣∣
X

(1)
λ

log
(
dΦ

(ε)
0 (ej2)

)∣∣
X

(1)
ν

)2m
≤ 42m−1

∑
c∈Ωx,N (X)

pε(c)
{(

Ñ (λ,ν,x)
N (c)

)2m
+
(
ε2ρR(γp)|X(1)

λ
ρR(γp)|X(1)

ν
· N(N − 1)

2

)2m
+
(
ερR(γp)|X(1)

ν

∑
1≤j1<j2≤N

J (ε)
λ (j1)

)2m
+
(
ερR(γp)|X(1)

λ

∑
1≤j1<j2≤N

J (ε)
ν (j2)

)2m}
≤ 42m−1

{
C2m
(2m)C2m

(4m)M
4mN2m + 2−2mM4mε4mN4m

+ 2M2mε2mN2m max
1≤i≤d1

∑
c∈Ωx,N (X)

pε(c)
( N∑

j=1

J (ε)
i (j)

)2m}
≤ 42m−1

{
C2m
(2m)C2m

(4m)M
4mN2m + 2−2mM4mε4mN4m

+ 2M2mε2mN2m
(
22mC2m

(2m)M
mNm + 22m−1M2mε2mN2m

)}
, (5.4.14)

where we used (5.4.6) for the final line.

We now put ε = n−1/2 and N = ℓ− k. Then we have, for 1 ≤ λ < ν ≤ d1,∑
c∈Ωx,ℓ−k(X)

pε(c)
( ∑

1≤j1<j2≤ℓ−k

log
(
dΦ

(ε)
0 (ej1)

)∣∣
X

(1)
λ

log
(
dΦ

(ε)
0 (ej2)

)∣∣
X

(1)
ν

)2m
≤ 42m−1M4m

(
C2m
(2m)C4m

(2m) + 2−2m + 22m+1C2m
(2m)M

−m + 22m
)
(ℓ− k)2m (5.4.15)
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due to (5.4.14) and (ℓ− k)/n < 1. We obtain

EP(n−1/2)
x∗

[∥∥ log ((Ỹ (n−1/2,n)
tk

)−1 · Ỹ(n−1/2,n)
tℓ

)∣∣
g(2)

∥∥2m
g(2)

]
≤ C(2)

(ℓ− k

n

)2m
.

by combining (5.4.8) with (5.4.9), (5.4.10) and (5.4.15), where

C(2) := d2m2 32m−1
{
M4m + 2L · 42m−1M4m

(
C2m
(2m)C4m

(2m) + 2−2m + 22m+1C2m
(2m)M

−m + 22m
)}

.

This means (5.4.4) and we thus obtain (5.4.2).

Step 4. We show (5.4.1) at the last step. Suppose that tk ≤ s ≤ tk+1 and tℓ ≤ t ≤ tℓ+1

for some 1 ≤ k ≤ ℓ ≤ n. Then we have

dCC(Y(n−1/2,n; 2)
s ,Y(n−1/2,n; 2)

tk+1
) = (k − ns)dCC(Y (n−1/2,n; 2)

tk
,Y(n−1/2,n; 2)

tk+1
),

dCC(Y(n−1/2,n; 2)
tℓ

,Y(n−1/2,n; 2)
t ) = (nt− ℓ)dCC(Y(n−1/2,n; 2)

tℓ
,Y(n−1/2,n; 2)

tℓ+1
)

by noting that the piecewise smooth stochastic process Y(n−1/2,n)
· is given by the dCC-

geodesic interpolation. Hence, (5.4.2) and the triangle inequality yield

EP(n−1/2)
x∗

[
dCC(Y(n−1/2,n; 2)

s ,Y(n−1/2,n; 2)
t )4m

]
≤ 34m−1

{
(k + 1− ns)4m · C

( 1
n

)2m
+ C

(ℓ− k − 1

n

)2m
+ (nt− ℓ)4m · C

( 1
n

)2m}
≤ C

{
(tk+1 − s)2m + (tℓ − tk+1)

2m + (t− tℓ)
2m
}
≤ C(t− s)2m.

This completes the proof of Lemma 5.4.3.

In what follows, we write

dY(ε,n)∗
s,t := (Y (ε,n)

s )−1 ∗ Y (ε,n)
t (0 ≤ ε ≤ 1, n ∈ N, 0 ≤ s ≤ t ≤ 1)

for brevity. We now show the following lemma by using Lemma 5.4.3.

Lemma 5.4.4 For m,n ∈ N, k = 1, 2, . . . , r and α < 2m−1
4m

, there exist an F∞-measurable

set Ω
(n)
k ⊂ Ωx∗(X), a non-negative random variable K(n)

k ∈ L4m(Ωx∗(X) → R; P(n−1/2)
x∗ )

such that P(n−1/2)
x∗ (Ω

(n)
k ) = 1 and

dCC

(
Y(n−1/2,n; k)

s (c),Y(n−1/2,n; k)
t (c)

)
≤ K(n)

k (c)(t− s)α (c ∈ Ω
(n)
k , 0 ≤ s ≤ t ≤ 1). (5.4.16)

Proof. As in the proof of Lemma 4.3.3, we partially apply Lyons’ original proof (cf. [54,

Theorem 2.2.1]) for the extension theorem in rough path theory to the proof. We prove

(4.3.15) by induction on the step number k = 1, 2, . . . , r.
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Step 1. In the cases k = 1, 2, we have already obtained (5.4.16) in Lemma 5.4.3. In fact,

(5.4.16) for k = 1, 2 are obtained by a simple application of the Kolmogorov–Chentsov

criterion with the bound

∥K(n)
k ∥

L4m(P(n−1/2)
x∗ )

≤ 5C

(1− 2−θ)(1− 2α−θ)
(n,m ∈ N, k = 1, 2), (5.4.17)

where θ = (2m − 1)/4m and C is a constant independent of n which appears in the

right-hand side of (5.4.1).

Step 2. We now fix n ∈ N. Assume that (5.4.16) holds up to step k. We note that this

assumption is equivalent to the existences of measurable sets {Ω̂(n)
j }kj=1 and non-negative

random variables {K̂(n)
j }kj=1 such that P(n−1/2)

x∗ (Ω̂
(n)
j ) = 1 and∥∥(dY (n−1/2,n)∗

s,t (c)
)(j)∥∥

Rdj ≤ K̂(n)
j (c)(t− s)jα (c ∈ Ω̂

(n)
j , 0 ≤ s ≤ t ≤ 1) (5.4.18)

with K̂(n)
j ∈ L4m/j(Ωx∗(X) → R; P(n−1/2)

x∗ ) for n,m ∈ N and j = 1, 2, . . . , k.

We fix 0 ≤ s ≤ t ≤ 1, n ∈ N and write Ω̂
(n)
k+1 =

∩k
j=1 Ω̂

(n)
j . We denote by ∆ the

partition {s = t0 < t1 < · · · < tN = t} of the time interval [s, t] independent of n ∈ N.
We now define two G

(k+1)
(0) -valued random variables Z(n)

s,t and Z(∆)
(n)
s,t by

(
Z(n)

s,t

)(j)
:=

{(
dY(n−1/2,n)∗

s,t

)(j)
, (j = 1, 2, . . . , k),

0 (j = k + 1),

Z(∆)
(n)
s,t := Z(n)

t0,t1 ∗ Z
(n)
t1,t2 ∗ · · · ∗ Z

(n)
tN−1,tN

,

respectively. For i = 1, 2, . . . , dk+1, (2.2.2) and (5.4.18) implies∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗ −
(
Z(∆ \ {tN−1})(n)s,t (c)

)(k+1)

i∗

∣∣∣
=
∣∣∣(Z(n)

tN−2,tN−1
(c) ∗ Z(n)

tN−1,tN
(c)
)(k+1)

i∗ −
(
Z(n)

tN−2,tN
(c)
)(k+1)

i∗

∣∣∣
=

∣∣∣∣∣ ∑
|K1|+|K2|=k+1
|K1|,|K2|>0

CK1,K2PK1
∗
(
Z(n)

tN−2,tN−1
(c)
)
PK2

∗
(
Z(n)

tN−1,tN
(c)
)∣∣∣∣∣

≤ C
∑

|K1|+|K2|=k+1
|K1|,|K2|>0

∣∣∣PK1
∗
(
dY(n−1/2,n)∗

tN−2,tN−1
(c)
)∣∣∣∣∣∣PK2

∗
(
dY(n−1/2,n)∗

tN−1,tN
(c)
)∣∣∣

≤ K̂(n)
k+1(c)(tN − tN−2)

(k+1)α ≤ K̂(n)
k+1(c)

( 2

N − 1
(t− s)

)(k+1)α

(c ∈ Ω̂
(n)
k+1),

where the random variable K̂(n)
k+1 : Ωx∗(X) −→ R is given by

K̂(n)
k+1(c) := C

∑
|K1|+|K2|=k+1
|K1|,|K2|>0

Q(n,K1)(c)Q(n,K2)(c),

Q(n,K)(c) := K̂(n)
k1

(c) · · · · · K̂(n)
kℓ

(c)
(
K =

(
(i1, k1), (i2, k2), . . . , (iℓ, kℓ)

))
.
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We emphasize that K̂(n)
k+1 is non-negative and has the following integrability:

EP(n−1/2)
x∗

[
(K̂(n)

k+1)
4m/(k+1)

]
≤ C

∑
k1,...,kℓ>0

k1+···+kℓ=k+1

EP(n−1/2)
x∗

[(
K̂(n)

k1
· · · · · K̂(n)

kℓ

)4m/(k+1)
]

≤ C
∑

k1,...,kℓ>0
k1+···+kℓ=k+1

ℓ∏
λ=1

EP(n−1/2)
x∗

[(
K̂(n)

kλ

)4m/kλ
]kλ/(k+1)

< ∞,

where we used the generalized Hölder inequality for the second line. We then have∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤
∣∣∣(Z(∆ \ {tN−1})(n)s,t (c)

)(k+1)

i∗

∣∣∣+ K̂(n)
k+1(c)

( 2

N − 1
(t− s)

)(k+1)α

≤
∣∣∣(Z({s, t})(n)s,t (c)

)(k+1)

i∗

∣∣∣+ N−2∑
ℓ=1

K̂(n)
k+1(c)

( 2

N − ℓ

)(k+1)α

(t− s)(k+1)α

≤
∣∣∣(Z(n)

s,t (c)
)(k+1)

i∗

∣∣∣+ K̂(n)
k+1(c)2

(k+1)αζ
(
(k + 1)α

)
(t− s)(k+1)α

≤ K̂(n)
k+1(c)(t− s)(k+1)α (i = 1, 2, . . . , dk+1, c ∈ Ω̂

(n)
k+1) (5.4.19)

by successively removing points until the partition ∆ coincides with {s, t}, where ζ(z)

denotes the Riemann zeta function ζ(z) :=
∑∞

n=1(1/n
z) for z ∈ R.

We now show that the family {Z(∆)
(n)
s,t } satisfies the Cauchy convergence principle.

Let δ > 0 and we take two partitions ∆ = {s = t0 < t1 · · · < tN = t} and ∆′ of [s, t]

independent of n ∈ N satisfying |∆|, |∆′| < δ. We set ∆̂ := ∆ ∪∆′ and write

∆̂ℓ = ∆̂ ∩ [tℓ, tℓ+1] = {tℓ = sℓ0 < sℓ1 < · · · < sℓLℓ
= tℓ+1} (ℓ = 0, 1, . . . , N − 1).

Then (2.2.2) and (5.4.19) give∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
=
∣∣∣(Z(n)

t0,t1(c) ∗ · · · ∗ Z
(n)
tN−1,tN

(c)
)(k+1)

i∗
−
(
Z(∆̂0)

(n)
t0,t1(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN

(c)
)(k+1)

i∗

∣∣∣
=
∣∣∣(Z(n)

t0,t1(c)
)(k+1)

i∗
+
(
Z(n)

t1,t2(c) ∗ · · · ∗ Z
(n)
tN−1,tN

(c)
)(k+1)

i∗

−
(
Z(∆̂0)

(n)
t0,t1(c)

)(k+1)

i∗
−
(
Z(∆̂1)

(n)
t1,t2(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN

(c)
)(k+1)

i∗

∣∣∣
≤ K̂(n)

k+1(c)(t1 − t0)
(k+1)α +

∣∣∣(Z(n)
t1,t2(c) ∗ · · · ∗ Z

(n)
tN−1,tN

(c)
)(k+1)

i∗

−
(
Z(∆̂0)

(n)
t1,t2(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN

(c)
)(k+1)

i∗

∣∣∣ (i = 1, 2, . . . , dk+1, c ∈ Ω̂
(n)
k+1).

100



By repeating this kind of estimate and noting (k + 1)α > 1, we obtain∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤

N−1∑
ℓ=0

K̂(n)
k+1(c)(tℓ+1 − tℓ)

(k+1)α

≤ K̂(n)
k+1(c)

(
max
∆

(tℓ+1 − tℓ)
(k+1)α−1

)N−1∑
ℓ=0

(tℓ+1 − tℓ)

≤ K̂(n)
k+1(c)(t− s)× δ(k+1)α−1 (i = 1, 2, . . . , dk+1, c ∈ Ω̂

(n)
k+1). (5.4.20)

Thus, (5.4.20) leads to∣∣∣(Z(∆)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆′)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤
∣∣∣(Z(∆)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣+ ∣∣∣(Z(∆̂)
(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̃)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣
≤ 2K̂(n)

k+1(c)(t− s)× δ(k+1)α−1 −→ 0 (i = 1, 2, . . . , dk+1, c ∈ Ω̂
(n)
k+1)

as δ ↘ 0 uniformly in 0 ≤ s ≤ t ≤ 1. Therefore, there exists, for 0 ≤ s ≤ t ≤ 1,

Z(n)

s,t (c) :=

 lim
|∆|↘0

Z(∆)
(n)
s,t (c) (c ∈ Ω̂

(n)
k+1),

1G (c ∈ Ωx∗(X) \ Ω̂(n)
k+1).

satisfying ∥∥(Z(n)

s,t (c)
)(k+1)∥∥

Rdk+1
≤ K̂(n)

k+1(c)(t− s)(k+1)α (c ∈ Ω̂
(n)
k+1),

due to (5.4.19). We will show

Z(n)

s,t (c) = Y (n−1/2,n; k+1)
s (c)−1 ∗ Y (n−1/2,n; k+1)

t (c) (0 ≤ s ≤ t ≤ 1, c ∈ Ω̂
(n)
k+1)

as the last step. For this, it is sufficient to check that(
Z(n)

s,t (c)
)(k+1)

=
(
dY(n−1/2,n)∗

s,t (c)
)(k+1)

(0 ≤ s ≤ t ≤ 1, c ∈ Ω̂
(n)
k+1) (5.4.21)

by the definition of Z(n)

s,t . We fix i = 1, 2, . . . , dk+1 and c ∈ Ω̂
(n)
k+1. Put

Ψi
s,t(c) :=

(
dY(n−1/2,n)∗

s,t (c)
)(k+1)

i∗ −
(
Z(n)

s,t (c)
)(k+1)

i∗
(0 ≤ s ≤ t ≤ 1).

Then we easily see that Ψi
s,t(c) is additive in the sense that

Ψi
s,t(c) = Ψi

s,u(c) + Ψi
u,t(c) (0 ≤ s ≤ u ≤ t ≤ 1). (5.4.22)

Since the piecewise smooth stochastic process (Y (n−1/2,n)
t )0≤t≤1 is given by the dCC-geodesic

interpolation of {X (n−1/2,n)
tk

}nk=0, we have∥∥(dY(n−1/2,n)∗
s,t (c)

)(k+1)∥∥
Rdk+1

≤ K̃(n)
k+1(c)(t− s)(k+1)α (c ∈ Ω̃

(n)
k+1)
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for some set Ω̃
(n)
k+1 with P(n−1/2)

x∗ (Ω̃
(n)
k+1) = 1 and random variable K̃(n)

k+1 : Ωx∗(X) −→ R.
Thus, we have∣∣Ψi

s,t(c)
∣∣ ≤ (K̃(n)

k+1(c) + K̂(n)
k+1(c)

)
(t− s)(k+1)α (0 ≤ s ≤ t ≤ 1, c ∈ Ω̃

(n)
k+1 ∩ Ω̂

(n)
k+1).

We may write Ω̂
(n)
k+1 instead of Ω̃

(n)
k+1 ∩ Ω̂

(n)
k+1 by abuse of notation. Because its probability

equals one. For any small ε > 0, there is a sufficiently large N ∈ N such that 1/N < ε.

We then obtain as ε ↘ 0,∣∣∣Ψi
0,t(c)

∣∣∣ = ∣∣∣Ψi
0,1/N(c) + Ψi

1/N,2/N(c) + · · ·+Ψi
[Nt]/N,t(c)

∣∣∣
≤
(
K̃(n)

k+1(c) + K̂(n)
k+1(c)

)
ε(k+1)α−1

{ 1

N
+ · · ·+ 1

N︸ ︷︷ ︸
[Nt]-times

+
(
t− [Nt]

N

)}

=
(
K̃(n)

k+1(c) + K̂(n)
k+1(c)

)
ε(k+1)α−1t −→ 0 (0 ≤ t ≤ 1, c ∈ Ω̂

(n)
k+1)

by (5.4.22) and (k+1)α−1 > 0. This implies that Ψi
0,t(c) = 0 for 0 ≤ t ≤ 1 and c ∈ Ω̂

(n)
k+1.

Hence, it follows from (5.4.22) that

Ψi
s,t(c) = Ψi

0,t(c)−Ψi
0,s(c) = 0 (0 ≤ s ≤ t ≤ 1, c ∈ Ω̂

(n)
k+1),

which leads to (5.4.21). Consequently, we know that there are a measurable set Ω
(n)
k+1 ⊂

Ωx∗(X) with probability one and a non-negative random variable K(n)
k+1 ∈ L4m(Ωx∗(X) →

R; P(n−1/2)
x∗ ) satisfying

dCC

(
Y(n−1/2,n; k+1)

s (c),Y(n−1/2,n; k+1)
t (c)

)
≤ K(n)

k+1(c)(t− s)α (c ∈ Ω
(n)
k+1, 0 ≤ s ≤ t ≤ 1).

This completes the proof of Lemma 5.4.4.

Proof of Lemma 5.4.2. For m,n ∈ N and α̂ < 2m−1
4m

, it follows from (4.3.15) that

EP(n−1/2)
x∗

[
dCC

(
Y(n−1/2,n; r)

s ,Y(n−1/2,n; r)
t

)4m] ≤ EP(n−1/2)
x∗

[(
K(n)

r

)4m]
(t− s)4mα̂

for 0 ≤ s ≤ t ≤ 1. We thus have, by (5.4.17),

EP(n−1/2)
x∗

[
dCC

(
Y(n−1/2,n; r)

s ,Y(n−1/2,n; r)
t

)4m] ≤ C(t− s)4mα̂ (0 ≤ s ≤ t ≤ 1).

for a positive constant C > 0 independent of n ∈ N. Furthermore, thanks to (A-2) and

Φ
(0)
0 (x∗) = 1G, there is a sufficiently large constant C > 0 such that

sup
n∈N

∥∥ log (Φ(n−1/2)
0 (x∗)

)∣∣
g(k)

∥∥
g(k)

≤ C (k = 1, 2, . . . , r).

Thanks to the Kolmogorov tightness criterion, we know that the family {P(n−1/2,n)}∞n=1 is

tight in C0,α-Höl([0, 1];G(0)) for α < 4mα̂−1
4m

< 1
2
− 1

2m
. By letting m → ∞, we complete the

proof.

By using Lemma 5.4.4, we easily obtain the convergence of finite dimensional distri-

bution of (Y (n−1/2,n))0≤t≤1.
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Lemma 5.4.5 Let ℓ ∈ N. For fixed 0 ≤ s1 < s2 < · · · < sℓ ≤ 1, we have

(Y(n−1/2,n)
s1

,Y(n−1/2,n)
s2

, . . . ,Y (n−1/2,n)
sℓ

)
(d)−→ (Ys1 , Ys2 , . . . , Ysℓ)

as n → ∞.

Proof. We only show that case of ℓ = 2. General cases (ℓ ≥ 3) can be also proved

by repeating the same argument. For simplicity, we put s = s1, t = s2. We obtain

(X (n−1/2,n)
s ,X (n−1/2,n)

t )
(d)−→ (Ys, Yt) as n → ∞ in the same way as [31, Lemma 5.5].

On the other hand, there exists a non-negative random variable K(n)
r ∈ L4m(Ωx∗(X) →

R; P(n−1/2)
x∗ ) satisfying

dCC

(
Y(n−1/2,n)

s (c),Y (n−1/2,n)
t (c)

)
≤ K(n)

r (c)(t− s)α P(n−1/2)
x∗ -a.s. (0 ≤ s ≤ t ≤ 1)

by Lemma 5.4.4. Suppose tk ≤ t ≤ tk+1 for some k = 0, 1, . . . , n − 1. Then we have, for

all ε > 0 and sufficiently large m ∈ N,

P(n−1/2)
x∗

(
dCC

(
X (n−1/2,n)

t ,Y(n−1/2,n)
t

)
> ε
)

≤ 1

ε4m
EP(n−1/2)

x∗

[
dCC

(
X (n−1/2,n)

t ,Y(n−1/2,n)
t

)4m]
≤ 1

ε4m
EP(n−1/2)

x∗

[
dCC

(
Y (n−1/2,n)

tk
,Y (n−1/2,n)

tk+1

)4m]
≤ 1

ε4m
EP(n−1/2)

x∗

[
(K(n)

r )4m(tk+1 − tk)
4mα
]
=

1

n2m−1ε4m
EP(n−1/2)

x∗
[
(K(n)

r )4m
]
−→ 0

as n → ∞, where we used Chebyshev’s inequality for the second line and (5.4.17) for

the final line. Hence, Slutzky’s theorem (cf. Klenke [37, Theorem 13.8]) tells us that the

desired convergence

(Y(n−1/2,n)
s ,Y(n−1/2,n)

t )
(d)−→ (Ys, Yt)

holds as n → ∞. This completes the proof.

We complete the proof of Theorem 5.1.2, by combining Lemma 5.4.2 and Lemma 5.4.5.

As in Theorem 4.6.2, we can also extend Theorem 5.1.2 to non-harmonic cases. Let

(Φ
(ε)
0 )0≤ε≤1 be the family of modified harmonic realizations associated with (pε)0≤ε≤1 and

we take a family of realizations (Φ(ε))0≤ε≤1, which is not necessary to be that of harmonic

ones. In particular, we may put Φ
(0)
0 (x∗) = Φ(0)(x∗) = 1G for some reference point x∗ ∈ V

and Φ
(ε)
0 (x)(i) = Φ(ε)(x)(i) for x ∈ V, 0 ≤ ε ≤ 1 and i = 2, 3, . . . , r without loss of

generality. Define Cor
(ε)

g(1)
: X −→ g(1) by

Cor
(ε)

g(1)
(x) := log

(
Φ(ε)(x)

)∣∣
g(1)

− log
(
Φ

(ε)
0 (x)

)∣∣
g(1)

(x ∈ V, 0 ≤ ε ≤ 1).

Instead of (A1) and (A2), we impose the following assumptions on (Φ(ε))0≤ε≤1.
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(A1)′: For every 0 ≤ ε ≤ 1, it holds that∑
x∈F

m(x) log
(
Φ(ε)(x)−1 · Φ(0)(x)

)∣∣
g(1)

= 0, (5.4.23)

where F denotes a fundamental domain of X.

(A2)′: There exists a positive constant C such that, for k = 2, 3, . . . , r,

sup
0≤ε≤1

max
x∈F

∥∥ log (Φ(ε)(x)−1 · Φ(0)(x)
)∣∣

g(k)

∥∥
g(k)

≤ C, (5.4.24)

where ∥ · ∥g(k) denotes a Euclidean norm on g(k) ∼= Rdk for k = 2, 3, . . . , r.

We note that, thanks to (A1)′, we have∑
x∈F

m(x)Cor
(ε)

g(1)
(x) =

∑
x∈F

m(x)Cor
(0)

g(1)
(x) (0 ≤ ε ≤ 1). (5.4.25)

In particular, there exists a positive constant M > 0 independent of ε ∈ [0, 1] such that

maxx∈F ∥Cor(ε)
g(1)

(x)∥g(1) ≤ M for 0 ≤ ε ≤ 1.

Remark 5.4.6 We show that (A1)′ and (A2)′ imply that the family (Φ
ε)
0 )0≤ε≤1 satisfies

(A1) and (A2), respectively. Indeed, by combining (5.4.25) and (A1)′, we see that∑
x∈F

m(x) log
(
Φ

(ε)
0 (x)−1 · Φ(0)

0 (x)
)∣∣

g(1)

=
∑
x∈F

m(x)Cor
(ε)

g(1)
(x)−

∑
x∈F

m(x)Cor
(0)

g(1)
(x) +

∑
x∈F

m(x) log
(
Φ(ε)(x)−1 · Φ(0)(x)

)∣∣
g(1)

= 0 (0 ≤ ε ≤ 1),

which means that that the family (Φ
(ε)
0 )0≤ε≤1 enjoys the assumption (A1). Furthermore,

by using (A2)′ and Φ
(ε)
0 (x)(i) = Φ(ε)(x)(i) for x ∈ V, 0 ≤ ε ≤ 1 and i = 2, 3, . . . , r, we have

sup
0≤ε≤1

max
x∈F

∥∥ log (Φ(ε)
0 (x)−1 · Φ(0)

0 (x)
)∣∣

g(k)

∥∥
g(k)

≤ C

for some C > 0, which implies that the family (Φ
(ε)
0 )0≤ε≤1 satisfies the assumption (A2).

Let (Y (ε,n)

t )0≤t≤1 (0 ≤ ε ≤ 1, n ∈ N) be the G(0)-valued stochastic processes defined by

just replacing Φ
(ε)
0 by Φ(ε) in the definition of (Y(ε,n)

t )0≤t≤1. Recall that (Ŷt)0≤t≤1 is the

G-valued diffusion process which is the solution to the SDE (5.1.6).

Then we can show the following FCLT of the second kind as in the same way as

Theorem 4.6.2.

Theorem 5.4.7 The sequence (Y(n−1/2,n)

t )0≤t≤1 (n = 1, 2, . . . ) converges in law to the G-

valued diffusion process (Ŷt)0≤t≤1 in C0,α-Höl
1G

([0, 1];G(0)) as n → ∞.
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We have captured in Chapters 4 and 5 two kinds of limiting infinitesimal generators

and limiting diffusions by applying the scheme to “delete” the diverging drift (Scheme 1)

and the scheme to “weaken” it (Scheme 2). Before closing this chapter, we summarize

them, as well as the case of crystal lattices obtained in Ishiwata–Kawabi–Kotani [31].

First we summarize the case of a Γ-crystal lattice X. We denote by {ω1, ω2, . . . , ωd} an

orthonormal basis of Hom(Γ,R) and put xi = ωi[x]Γ⊗R for i = 1, 2, . . . , d and x ∈ Γ⊗ R.
For simplicity, we write ∆g0 :=

∑d
i=1(∂

2/∂x2
i ) for the homogenized Laplacian on Γ ⊗ R

with respect to the Albanese metric g0. For x ∈ Γ⊗R, we put ⟨x,∇⟩g0 :=
∑d

i=1 xi(∂/∂xi).

Recall that (g
(ε)
0 = g0(ε))0≤ε≤1 stand for the family of Albanese metrics associated with

a family of transition probability (pε)0≤ε≤1. We note that g0(1) = g0. Then the limiting

infinitesimal generators on X are summarized as follows:

symmetric (γp = 0)
non-symmetric (γp ̸= 0)

centered (ρR(γp) = 0) non-centered (ρR(γp) ̸= 0)

∆g0/2
Scheme 1 ∆g0(1)/2 ∆g0(1)/2
Scheme 2 ∆g0(0)/2 ∆g0(0)/2 + ⟨ρR(γp),∇⟩g0(0)

Table 5.1: Limiting infinitesimal generators in the case of a crystal lattice X

Let (B
(g0)
t )0≤t≤1 be a standard Brownian motion on (Γ⊗R, g0). Then the limiting diffusions

are also summarized as follows:

symmetric (γp = 0)
non-symmetric (γp ̸= 0)

centered (ρR(γp) = 0) non-centered (ρR(γp) ̸= 0)

(B
(g0)
t )0≤t≤1

Scheme 1 (B
(g0(1))
t )0≤t≤1 (B

(g0(1))
t )0≤t≤1

Scheme 2 (B
(g0(0))
t )0≤t≤1 (B

(g0(0))
t + tρR(γp))0≤t≤1

Table 5.2: Limiting diffusion processes in the case of a crystal lattice X

Next we summarize the case of a Γ-nilpotent covering graph X. Let {V1, V2, . . . , Vd1}
be an orthonormal basis of (g(1), g0) and write ∆g0 :=

∑d1
i=1 V

2
i for the homogenized sub-

Laplacian on G = GΓ. Then the limiting infinitesimal generators on X are summarized

as follows:

symmetric (γp = 0)
non-symmetric (γp ̸= 0)

centered (ρR(γp) = 0g) non-centered (ρR(γp) ̸= 0g)

∆g0/2
Scheme 1 ∆g0(1)/2 + β(Φ0)∗ ∆g0(1)/2 + β(Φ0)∗
Scheme 2 ∆g0(0)/2 ∆g0(0)/2 + ρR(γp)∗

Table 5.3: Limiting infinitesimal generators in the case of a nilpotent covering graph X
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We emphasize that, in the centered case, the limiting generator of Scheme 2 is noting

but the sub-Laplacian on G, while the drift β(Φ0) arising the non-symmetry of the ran-

dom walk on X still remains in the one of Scheme 1. As for the corresponding limiting

diffusions, we write down them only in the non-centered case.

• Scheme 1: We put V0 = β(Φ0)∗. Then,

Yt = exp
(
tβ(Φ0)∗ +

d1∑
i=1

Bi
tVi∗ +

∑
0≤i<j≤d1

1

2

∫ t

0

(Bi
sdB

j
s −Bj

sdB
i
s)[[Vi∗, Vj∗]] + · · ·

)
(1G),

where (B1
t , B

2
t , . . . , B

d1
t )0≤t≤1 is a standard Brownian motion on (g(1), g

(1)
0 ) ∼= (Rd1 , g

(1)
0 ).

• Scheme 2: We put V0 = ρR(γp)∗. Then,

Ŷt = exp
(
tρR(γp)∗ +

d1∑
i=1

Bi
tVi∗ +

∑
0≤i<j≤d1

1

2

∫ t

0

(Bi
sdB

j
s −Bj

sdB
i
s)[[Vi∗, Vj∗]] + · · ·

)
(1G),

where (B1
t , B

2
t , . . . , B

d1
t )0≤t≤1 is a standard Brownian motion on (g(1), g

(0)
0 ) ∼= (Rd1 , g

(0)
0 ).

When we see Table 5.3 again, one may wonder if a G-valued diffusion process whose

drift term belongs to g(1) ⊕ g(2) can be captured or not through our schemes. To our best

knowledge, there seems to be no results which capture such a limiting diffusion process in

any nilpotent frameworks. As a further problem, we suggest a hybrid scheme of our two

ones and discuss a CLT corresponding to it in order to capture such a limiting diffusion.

For q > 1, we define the transition-shift operator L̂p,ε : C∞,q(X ×Z) −→ C∞,q(X ×Z)
associated with pε by

L̂p,εf(x, z) :=
∑
e∈Ex

pε(e)f
(
t(e), z + 1

)
(x ∈ X, z ∈ Z).

Let us fix b ∈ g(2) and define, for 0 ≤ ε ≤ 1, the scaling operator P̂ε : C∞(G) −→
C∞,q(X × Z) by

P̂εf(x, z) := f
(
τε
(
Φ

(ε)
0 (x) ∗ exp(zb)

))
(x ∈ X, z ∈ Z).

This new scheme is based on our two schemes. Namely, it provides an effect which not

only weakens the diverging drift term by introducing the family (pε)0≤ε≤1 but creates an

arbitrary g(2)-drift b ∈ g(2) in the limiting infinitesimal generator. We still assume (A1)

and (A2). Then, thanks to b ∈ g(2), we might prove the followings as in the proof of

Theorems 4.1.2 and 5.1.1.

Conjecture 5.4.8 For q > 4r + 1, 0 ≤ s ≤ t and f ∈ C∞(G), we have

lim
n→∞

∥∥∥L̂[nt]−[ns]

p,n−1/2 P̂n−1/2f − P̂n−1/2e−(t−s)Af
∥∥∥
∞,q

= 0,
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where (e−tA)t≥0 is the C0-semigroup with the infinitesimal generator A on C∞
0 (G) defined

by

A := −1

2

d1∑
i=1

V 2
i∗ − (ρR(γp)∗ + b∗)︸ ︷︷ ︸

∈g(1)⊕g(2)

,

where {V1, V2, . . . , Vd1} denotes an orthonormal basis of (g(1), g0).

Conjecture 5.4.9 Let (Ỹ(ε,n)
t )0≤t≤1 be the G-valued stochastic process given by the dCC-

geodesic interpolation of

Ỹ(ε,n)
k/n (c) := τn−1/2

(
Φ

(ε)
0 (wk(c)) ∗ exp(k2b)

) (
k = 0, 1, . . . , n, c ∈ Ωx∗(X)

)
for n ∈ N and 0 ≤ ε ≤ 1. Then the sequence {Ỹ(n−1/2,n)}∞n=1 converges in law to the

G-valued diffusion process Y in C0,α-Höl([0, 1];G(0)) which solves the SDE

dYt =

d1∑
i=1

Vi∗(Yt) ◦ dBi
t + ρR(γp)∗(Yt) dt− b(Yt) dt, Y0 = 1G.
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Chapter 6

Examples

6.1 The 3D Heisenberg group

It goes without saying that the most typical but non-trivial example of nilpotent Lie

groups of step 2 is the 3-dimensional Heisenberg group defined by

G = H3(R) :=

{1 x z
0 1 y
0 0 1

 ∣∣∣∣∣x, y, z ∈ R

}
= (R3, ⋆),

where the product ⋆ on R3 is given by

(x, y, z) ⋆ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

This Lie group naturally appears in a lot of parts of mathematics including Fourier anal-

ysis, geometry, topology and so on. First of all, we give a quick review of the basics

of G = H3(R). Let Γ = H3(Z) be the 3-dimensional discrete Heisenberg group. Then,

G = H3(R) is the corresponding connected and simply connected nilpotent Lie group of

step 2 such that Γ is isomorphic to a cocompact lattice in G. Furthermore, the corre-

sponding Lie algebra g is given by

g =

{0 x z
0 0 y
0 0 0

 ∣∣∣∣∣x, y, z ∈ R

}
.

Let {X1, X2, X3} be the standard basis of g, that is,

X1 :=

0 1 0
0 0 0
0 0 0

 , X2 :=

0 0 0
0 0 1
0 0 0

 , X3 :=

0 0 1
0 0 0
0 0 0

 .

We then see that the Lie algebra g is decomposed as g = g(1) ⊕ g(2), where g(1) :=

spanR{X1, X2} and g(2) := spanR{X3}, due to the algebraic relations [X1, X2] = X3 and

[X1, X3] = [X2, X3] = 0g under the matrix bracket [X, Y ] := XY − Y X for X, Y ∈ g.
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6.2 The 3D Heisenberg triangular lattice

Let Γ be generated by γ1 = (1, 0, 0), γ2 = (0, 1, 0) and γ3 = (−1, 1, 0). We consider the

Cayley graph X = (V,E) of Γ with the generating set S := {γ1, γ2, γ3, γ−1
1 , γ−1

2 , γ−1
3 }.

Namely, V = Z3 and E = {(g, h) ∈ V × V |h · g−1 ∈ S} (see Figure 6.1). If e ∈ E is

represented as (g, h) for some g, h ∈ V , then its inverse edge e is equal to (h, g). Moreover,

the left action Γ on the Cayley graph X is given by

γ1g = (x+ 1, y, z + y), γ2g = (x, y + 1, z), γ3g = (x− 1, y + 1, z − y),

γ−1
1 g = (x− 1, y, z − y), γ−1

2 g = (x, y − 1, z), γ−1
3 g = (x+ 1, y − 1, z + y − 1),

for g = (x, y, z) ∈ G. In view of the algebraic relation γ3 ⋆ γ1 = γ2, we may call this

Cayley graph X a 3-dimensional Heisenberg triangular lattice. The quotient graph of

X by the action Γ is the 3-bouquet graph X0 = (V0, E0), where V0 = {x} and E0 =

{e1, e2, e3} ∪ {e1, e2, e3} (see Figure 6.2).

z
y

x

O

1

Figure 6.1: A part of the 3-dimensional Heisenberg triangular lattice

Now we define a non-symmetric random walk on X. We introduce a transition prob-

ability p : E −→ (0, 1] on X by setting

p
(
(g, γ1g)

)
:= ξ, p

(
(g, γ2g)

)
:= η′, p

(
(g, γ3g)

)
:= ζ,

p
(
(g, γ−1

1 g)
)
:= ξ′, p

(
(g, γ−1

2 g)
)
:= η, p

(
(g, γ−1

3 g)
)
:= ζ ′,

where ξ, ξ′, η, η′, ζ, ζ ′ > 0, ξ + ξ′ + η + η′ + ζ + ζ ′ = 1 and

ξ − ξ′ = η − η′ = ζ − ζ ′ =: ε ≥ 0. (6.2.1)

In what follows, we write

ξ̂ := ξ + ξ′, ξ̌ := ξ − ξ′, η̂ := η + η′, η̌ := η − η′, ζ̂ := ζ + ζ ′, ζ̌ := ζ − ζ ′
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for brevity. The invariant measure on V0 = {x} is given by m(x) = 1. The quantity ε

in (6.2.1) indicates the intensity of the non-symmetry of this random walk and it is clear

that the random walk is m-symmetric if and only if ε = 0.

The first homology group of X0 is given by H1(X0,R) = {[e1], [e2], [e3]}. Since X0 is

a bouquet graph, the difference operator d : C0(X0,R) −→ C1(X0,R) is the zero-map.

Then we have H1(X0,R) ∼=
(
H1(X0), ⟨⟨·, ·⟩⟩p

)
= C1(X0,R). Moreover, we obtain

γp =
∑
e∈E0

p(e)[e] = ε
(
[e1]− [e2] + [e3]

)
∈ H1(X0,R) (6.2.2)

by definition. The canonical surjective linear map ρR : H1(X0,R) −→ g(1) is given by

ρR([e1]) = X1, ρR([e2]) = X2, ρR([e3]) = X2 −X1.

Then we easily see that ρR(γp) = 0g. We introduce a basis {u1, u2} in Hom(g(1),R) by

π
x

e2

e1

e3

X0 = (V0, E0)

y x

z

(x, y, z)

ẽ2

γ2

ẽ1

γ1

ẽ3

γ3

X = (V,E)

Figure 6.2: The quotient X0 = (V0, E0) = Γ\X and the nearest neighbor vertices of
(x, y, z)

u1(X) = x, u2(X) = y
(
X = xX1 + yX2 ∈ g(1), x, y ∈ Z

)
.

It should be noted that {u1, u2} is the dual basis of {X1, X2} in g(1). We write {ω1, ω2, ω3} ⊂(
H1(X0,R), ⟨⟨·, ·⟩⟩p

)
for the dual basis of {[e1], [e2], [e3]} ⊂ H1(X0,R). By direct computa-

tion, we obtain

⟨⟨ω1, ω1⟩⟩p = ξ̂ − ξ̌2 = ξ̂ − ε2, ⟨⟨ω1, ω2⟩⟩p = ξ̌η̌ = ε2,

⟨⟨ω2, ω2⟩⟩p = η̂ − η̌2 = η̂ − ε2, ⟨⟨ω2, ω3⟩⟩p = η̌ζ̌ = ε2, (6.2.3)

⟨⟨ω3, ω3⟩⟩p = ζ̂ − ζ̌2 = ζ̂ − ε2, ⟨⟨ω1, ω3⟩⟩p = −ξ̌ζ̌ = −ε2.
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We know that u1 = tρR(u1) = ω1 − ω3, u2 = tρR(u2) = ω2 + ω3 form a Z-basis in

Hom(g(1),R) by noting that Hom(g(1),R) is regarded as a 2-dimensional subspace of

H1(X0,R) through the injective map tρR. It follows from (6.2.3) that

⟨⟨u1, u1⟩⟩p = ξ̂ + ζ̂ , ⟨⟨u1, u2⟩⟩p = −ζ̂ , ⟨⟨u2, u2⟩⟩p = η̂ + ζ̂ . (6.2.4)

Then the volume of the Albanese torus is computed as

vol(AlbΓ)−1 :=
√
det
(
⟨⟨ui, uj⟩⟩p

)2
i,j=1

= (ξ̂η̂ + η̂ζ̂ + ζ̂ ξ̂)1/2.

Moreover, the Albanese metric g0 on g(1) is given by the following:

⟨X1, X1⟩g0 =
η̂ + ζ̂

ξ̂η̂ + η̂ζ̂ + ζ̂ ξ̂
= (η̂ + ζ̂)vol(AlbΓ)2,

⟨X1, X2⟩g0 =
ζ̂

ξ̂η̂ + η̂ζ̂ + ζ̂ ξ̂
= ζ̂vol(AlbΓ)2,

⟨X2, X2⟩g0 =
ξ̂ + ζ̂

ξ̂η̂ + η̂ζ̂ + ζ̂ ξ̂
= (ξ̂ + ζ̂)vol(AlbΓ)2.

We are now in a position to determine the modified standard realization Φ0 : X −→ G.

Let ẽi (i = 1, 2, 3) be a lift of ei ∈ E0 to X and put Φ0

(
o(ẽi)

)
= 1G = (0, 0, 0). Then we

easily see that the realization satisfying

Φ0

(
t(ẽ1)

)
= γ1, Φ0

(
t(ẽ2)

)
= γ2, Φ0

(
t(ẽ3)

)
= γ3

is the modified harmonic realization. Let {v1, v2} be the Gram–Schmidt orthonormaliza-

tion of {u1, u2}, and {V1, V2} be the dual basis of {v1, v2} in g(1). We put V3 := [V1, V2] =

V1V2 − V2V1. We then have

v1 = (ξ̂ + ζ̂)−1/2u1, v2 = (ξ̂ + ζ̂)1/2vol(AlbΓ)
( ζ̂

ξ̂ + ζ̂
u1 + u2

)
by (6.2.4) and hence we obtain

V1 = (ξ̂ + ζ̂)1/2X1 − ζ̂(ξ̂ + ζ̂)−1/2X2,

V2 = (ξ̂ + ζ̂)−1/2vol(AlbΓ)−1X2,

V3 = vol(AlbΓ)−1X3.

Finally, β(Φ0) ∈ g(2) and the infinitesimal generator A in Theorem 4.1.2 are calculated as

β(Φ0) =
ε

2
vol(AlbΓ)V3, A = −1

2
(V 2

1 + V 2
2 )−

ε

2
vol(AlbΓ)V3,

respectively.
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6.3 The 3D Heisenberg dice lattice

As another example of nilpotent covering graphs, we introduce the 3-dimensional Heisen-

berg dice lattice. This graph is defined by a covering graph of a finite graph consisting

of three vertices with a covering transformation group Γ = H3(Z) (see Figure 6.3). We

emphasize that it is regarded as an extension of the dice graph discussed in [58] to the

nilpotent case.

1

Figure 6.3: A part of 3-dimensional Heisenberg dice lattice and the projection of it on the
xy-plane

Suppose that Γ = H3(Z) is generated by two elements γ1 = (1, 0, 0) and γ2 = (0, 1, 0).

We also set two elements g1 := (1/3, 1/3, 1/3), g2 := (−1/3,−1/3,−1/3) in G = H3(R).
We put

V1 :=
{
g = γε1

i1
⋆ · · · ⋆ γεℓ

iℓ
⋆ 1G

∣∣ ik ∈ {1, 2}, εk = ±1 (1 ≤ k ≤ ℓ), ℓ ∈ N ∪ {0}
}
,

V2 :=
{
g = γε1

i1
⋆ · · · ⋆ γεℓ

iℓ
⋆ g1

∣∣ ik ∈ {1, 2}, εk = ±1 (1 ≤ k ≤ ℓ), ℓ ∈ N ∪ {0}
}
,

V3 :=
{
g = γε1

i1
⋆ · · · ⋆ γεℓ

iℓ
⋆ g2

∣∣ ik ∈ {1, 2}, εk = ±1 (1 ≤ k ≤ ℓ), ℓ ∈ N ∪ {0}
}
.

We consider a H3(Z)-nilpotent covering graph X = (V,E) defined by V = V1 ⊔ V2 ⊔ V3

and E = E1 ⊔ E2, where

E1 :=
{
(g, h) ∈ V1 × V2 | g−1 ⋆ h = g1, γ

−1
1 ⋆ g1, γ

−1
2 ⋆ g1

}
,

E2 :=
{
(g, h) ∈ V1 × V3 | g−1 ⋆ h = g2, γ1 ⋆ g2, γ2 ⋆ g2

}
.

We note that X is invariant under the actions γ1 and γ2. Its quotient graph X0 =

(V0, E0) = Γ\X is given by V0 = {x,y, z} and E0 = {ei, ei | 1 ≤ i ≤ 6} (cf. Figure 6.4).
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From now on we define a non-symmetric random walk on X. We define the transition

probability p : E −→ (0, 1] by

p
(
(g, g ⋆ g1)

)
= ξ, p

(
(g, g ⋆ γ−1

1 ⋆ g1)
)
= η, p

(
(g, g ⋆ γ−1

2 ⋆ g1)
)
= ζ,

p
(
(g, g ⋆ g2)

)
= ζ, p

(
(g, g ⋆ γ1 ⋆ g2)

)
= η, p

(
(g, g ⋆ γ2 ⋆ g2)

)
= ξ,

p
(
(g, g ⋆ g1)

)
= γ, p

(
(g, g ⋆ γ−1

1 ⋆ g1)
)
= β, p

(
(g, g ⋆ γ−1

2 ⋆ g1)
)
= α,

p
(
(g, g ⋆ g2)

)
= α, p

(
(g, g ⋆ γ1 ⋆ g2)

)
= β, p

(
(g, g ⋆ γ2 ⋆ g2)

)
= γ,

for every g ∈ V1, where ξ, η, ζ, α, β, γ > 0, 2(ξ+η+ζ) = 1 and α+β+γ = 1. The invariant

measure m : V0 = {x,y, z} −→ (0, 1] is given by m(x) = 1/2 and m(y) = m(z) = 1/4.

Note that this random walk is (m-)symmetric if and only if α = 2ζ, β = 2η and γ = 2ξ.

The first homology group H1(X0,R) is spanned by the four 1-cycles

[c1] := [e1 ∗ e2], [c2] := [e1 ∗ e3], [c3] := [e4 ∗ e5], [c4] := [e4 ∗ e6].

Then the homological direction is calculated as

γp =
β − 2η

4
[c1] +

α− 2ζ

4
[c2] +

β − 2η

4
[c3] +

γ − 2ξ

4
[c4].

The canonical surjective linear map ρR : H1(X0,R) −→ g(1) is given by

ρR([c1]) = X1, ρR([c2]) = X2, ρR([c3]) = −X1, ρR([c4]) = −X2.

Then we obtain

ρR(γp) =
(α− γ)− 2(ζ − ξ)

4
X2. (6.3.1)

x

yz

e1

e2

e3

e4

e5

e6

1

Figure 6.4: The quotient X0 = (V0, E0) of the 3D-Heisenberg dice graph X = (V,E)

Let {u1, u2} ⊂ Hom(g(1),R) be the dual basis of {X1, X2} ⊂ g(1). We also denote by

{ω1, ω2, ω3, ω4} ⊂
(
H1(X0,R), ⟨⟨·, ·⟩⟩p

)
the dual basis of {[c1], [c2], [c3], [c4]} ⊂ H1(X0,R).
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Namely, ωi([cj]) = δij for 1 ≤ i, j ≤ 4. Then the modified harmonicity (2.4.1) yields

ω1(e1) = β − β − 2η

4
, ω1(e2) = −(1− β)− β − 2η

4
, ω1(e3) = β − β − 2η

4
,

ω1(e4) = −β − 2η

4
, ω1(e5) = −β − 2η

4
, ω1(e6) = −β − 2η

4
,

ω2(e1) = α− α− 2ζ

4
, ω2(e2) = α− α− 2ζ

4
, ω2(e3) = −(1− α)− α− 2ζ

4
,

ω2(e4) = −α− 2ζ

4
, ω2(e5) = −α− 2ζ

4
, ω2(e6) = −α− 2ζ

4
,

ω3(e1) = −β − 2η

4
, ω3(e2) = −β − 2η

4
, ω3(e3) = −β − 2η

4
,

ω3(e4) = β − β − 2η

4
, ω3(e5) = −(1− β)− β − 2η

4
, ω3(e6) = β − β − 2η

4
,

ω4(e1) = −γ − 2ξ

4
, ω4(e2) = −γ − 2ξ

4
, ω4(e3) = −γ − 2ξ

4
,

ω4(e4) = γ − γ − 2ξ

4
, ω4(e5) = γ − γ − 2ξ

4
, ω4(e6) = −(1− γ)− γ − 2ξ

4
.

By direct computation, we have

⟨⟨ω1, ω1⟩⟩p =
β + 2η

4
− (β + 2η)2

8
, ⟨⟨ω1, ω2⟩⟩p = −(α + 2ζ)(β + 2η)

8
,

⟨⟨ω1, ω3⟩⟩p = −(β − 2η)2

8
, ⟨⟨ω1, ω4⟩⟩p = −(β − 2η)(γ − 2ξ)

8
,

⟨⟨ω2, ω2⟩⟩p =
α + 2ζ

4
− (α+ 2ζ)2

8
, ⟨⟨ω2, ω3⟩⟩p = −(α− 2ζ)(β − 2η)

8
, (6.3.2)

⟨⟨ω2, ω4⟩⟩p = −(α− 2ζ)(γ − 2ξ)

8
, ⟨⟨ω3, ω3⟩⟩p =

β + 2η

4
− (β + 2η)2

8
,

⟨⟨ω3, ω4⟩⟩p = −(β + 2η)(γ + 2ξ)

8
, ⟨⟨ω4, ω4⟩⟩p =

γ + 2ξ

4
− (γ + 2ξ)2

8
.

Since the linear space Hom(g(1),R) can be seen as a 2-dimensional subspace of H1(X0,R)
through the injection tρR, we see that u1 =

tρR(u1) = ω1−ω3 and u2 =
tρR(u2) = ω2−ω4

form a Z-basis in Hom(g(1),R). We then obtain

⟨⟨u1, u1⟩⟩p =
β + 2η − 4βη

2
, ⟨⟨u1, u2⟩⟩p = −β + 2η − 4βη

4
,

⟨⟨u2, u2⟩⟩p =
(β + 2η)(2− β − 2η) + 4αγ + 16ξζ

8
.

by (6.3.2). Thus the volume of the Albanese torus is computed as

vol(AlbΓ)−1 =
1

4

√
(β + 2η − 4βη)

{
(β + 2η)− (β2 + 4η2) + 4αγ + 16ξζ

}
.

Furthermore, the Albanese metric g0 on g(1) is given by

⟨X1, X1⟩g0 =
(β + 2η)(2− β − 2η) + 4αγ + 16ξζ

8
vol(AlbΓ),
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⟨X1, X2⟩g0 =
β + 2η − 4βη

4
vol(AlbΓ), ⟨X2, X2⟩g0 =

β + 2η − 4βη

2
vol(AlbΓ).

We now determine the modified standard realization Φ0 : X −→ G = H3(R). Let

ẽi (i = 1, 2, 3, 4, 5, 6) be a lift of ei ∈ E0 to X and put Φ0

(
o(ẽi)

)
= 1G. Then it follows

from (2.4.4) and (6.3.1) that the Γ-equivariant realization Φ0 : X −→ G satisfying

Φ0

(
t(ẽ1)

)
=
(
β,

(3α + γ) + 2(ζ − ξ)

4
, κ1

)
,

Φ0

(
t(ẽ2)

)
=
(
β − 1,

(3α+ γ) + 2(ζ − ξ)

4
, κ1 −

(3α+ γ) + 2(ζ − ξ)

4

)
,

Φ0

(
t(ẽ3)

)
=
(
β,

(3α + γ) + 2(ζ − ξ)

4
− 1, κ1

)
,

Φ0

(
t(ẽ4)

)
=
(
− β,

−(α + 3γ) + 2(ζ − ξ)

4
,−κ2

)
,

Φ0

(
t(ẽ5)

)
=
(
1− β,

−(α + 3γ) + 2(ζ − ξ)

4
,−κ2 +

−(α+ 3γ) + 2(ζ − ξ)

4

)
,

Φ0

(
t(ẽ6)

)
=
(
− β,

−(α + 3γ) + 2(ζ − ξ)

4
+ 1,−κ2

)
is the modified harmonic realization, where κ1, κ2 is two real parameters which indicates

the ambiguity of the realization corresponding to g(2). Let {v1, v2} be the Gram–Schmidt

orthonormalization of the basis {u1, u2}, that is,

v1 = ⟨⟨u1, u1⟩⟩−1/2
p u1, v2 = ⟨⟨u1, u1⟩⟩1/2p vol(AlbΓ)

(
u2 −

⟨⟨u1, u2⟩⟩p
⟨⟨u1, u1⟩⟩p

u1

)
,

and {V1, V2} ⊂ g(1) its dual basis. We write V3 := [V1, V2] = V1V2 − V2V1. Then we obtain

v1 =
(β + 2η − 4βη

2

)−1/2

u1, v2 =
(β + 2η − 4βη

2

)1/2
vol(AlbΓ)

(
u2 +

1

2
u1

)
by (6.3.2). Moreover, we have

V1 =
(β + 2η − 4βη

2

)1/2
X1 −

1

2

(β + 2η − 4βη

2

)1/2
X2,

V2 =
(β + 2η − 4βη

2

)−1/2

vol(AlbΓ)−1X2,

V3 = vol(AlbΓ)−1X3.

Finally, we see that β(Φ0) ∈ g(2) and the infinitesimal generator A are calculated as

β(Φ0) =
6∑

i=1

(
m̃(ei)− m̃(ei)

)
log
(
dΦ0(ẽi) · exp

(
− ρR(γp)

))∣∣∣
g(2)

=
β − 2η

8
vol(AlbΓ)V3,

A = −1

2
(V 2

1 + V 2
2 )−

β − 2η

8
vol(AlbΓ)V3.
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We should observe that the coefficient of β(Φ0) does not include the parameters κ1 and

κ2, though the realization Φ0 has the ambiguity of g(2)-components.

Finally, we find the transition probability p : E −→ (0, 1] defined by (4.4.2), when

ξ =
1

12
, η =

1

6
, ζ =

1

4
, α =

1

6
, β =

1

3
, γ =

1

2
.

Then we have

γp = − 1

12
[c2] +

1

12
[c4], ρR(γp) = −1

6
X2, vol(AlbΓ) =

9
√
10

5
.

Now consider the function F = Fx(λ) : V0 × Hom(g(1),R) −→ (0,∞) defined by

(4.4.1). It is useful to write each log
(
dΦ0(ẽi)

) ∣∣
g(1)

(i = 1, 2, 3, 4, 5, 6) in terms of the

Albanese basis {V1, V2}, that is,

log
(
dΦ0(ẽ1)

)∣∣
g(1)

=

√
2

2
V1 +

3
√
5

5
V2, log

(
dΦ0(ẽ2)

)∣∣
g(1)

= −
√
2V1,

log
(
dΦ0(ẽ3)

)∣∣
g(1)

=

√
2

2
V1 −

3
√
5

5
V2, log

(
dΦ0(ẽ4)

)∣∣
g(1)

= −
√
2

2
V1 −

3
√
5

5
V2,

log
(
dΦ0(ẽ5)

)∣∣
g(1)

=
√
2V1, log

(
dΦ0(ẽ6)

)∣∣
g(1)

= −
√
2

2
V1 +

3
√
5

5
V2.

We write λ = λ1v1 + λ2v2 ∈ Hom(g(1),R). Then one has

Fx(λ) =
1

12
exp

(√2

2
λ1 +

3
√
5

5
λ2

)
+

1

6
exp

(
−
√
2λ1

)
+

1

4
exp

(√2

2
λ1 −

3
√
5

5
λ2

)
+

1

4
exp

(
−

√
2

2
λ1 −

3
√
5

5
λ2

)
+

1

6
exp

(√
2λ1

)
+

1

12
exp

(
−

√
2

2
λ1 +

3
√
5

5
λ2

)
,

Fy(λ) =
1

2
exp

(
−

√
2

2
λ1 −

3
√
5

5
λ2

)
+

1

3
exp

(√
2λ1

)
+

1

6
exp

(
−

√
2

2
λ1 +

3
√
5

5
λ2

)
,

Fz(λ) =
1

6
exp

(√2

2
λ1 +

3
√
5

5
λ2

)
+

1

3
exp

(
−

√
2λ1

)
+

1

2
exp

(√2

2
λ1 −

3
√
5

5
λ2

)
.

To find minimizers of the functions Fx(·), Fy(·) and Fz(·), we solve the following equations{
(∂/∂λ1)Fx(λ1, λ2) = 0,

(∂/∂λ2)Fx(λ1, λ2) = 0,

{
(∂/∂λ1)Fy(λ1, λ2) = 0,

(∂/∂λ2)Fy(λ1, λ2) = 0,

{
(∂/∂λ1)Fz(λ1, λ2) = 0,

(∂/∂λ2)Fz(λ1, λ2) = 0.

Then we obtain

λ∗(x) =
(
0,

√
5

6
log 3

)
,

λ∗(y) =
(
−

√
2

3
log

2
√
3

3
,

√
5

6
log 3

)
, λ∗(z) =

(√2

3
log

2
√
3

3
,

√
5

6
log 3

)
.

Hence we find

Fx

(
λ∗(x)

)
=

√
3 + 1

3
, Fy

(
λ∗(y)

)
= Fz

(
λ∗(z)

)
= 3 · 6−2/3
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and the transition probability p : E0 −→ (0, 1] is given by

p(e1) =
3−

√
3

8
, p(e2) =

√
3− 1

4
, p(e3) =

3−
√
3

8
,

p(e4) =
3−

√
3

8
, p(e5) =

√
3− 1

4
, p(e6) =

3−
√
3

8
,

p(e1) = p(e2) = p(e3) = p(e4) = p(e5) = p(e6) =
1

3
.

Furthermore, we also obtain m(x) = 1/2, m(y) = m(z) = 1/4. Therefore, the homological

direction γp is computed as

γp =
6∑

i=1

(
m̃(ei)− m̃(ei)

)
ei =

5− 3
√
3

48

(
2[c1]− [c2] + 2[c3]− [c4]

)
.

This implies

ρR(γp) =
5− 3

√
3

48

{
2X1 −X2 + 2× (−X1)− (−X2)

}
= 0g.
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Séminaire de Probabilités XIV, LNM 784, Springer, Berlin, 1980, pp.282–304.

[47] T. G. Kurtz: Extensions of Trotter’s semigroup approximation theorems, J. Funct.

Anal. 3 (1969), pp. 354–375.

[48] G. Lawler, V. Limic: Ramdom Walk: A Modern Introduction, Cambridge Studies

in Advanced Mathematics 123, 2010.

[49] Y. Le Jan: Markov loops, free field and Eulerian networks, J. Math. Soc. Japan 67

(2015), pp. 1671–1680.

[50] Y. Le Jan: Markov paths, loops and fields, LNM 2026, Springer Heidelberg, 2011.

[51] A. Lejay and T. Lyons: On the importance of the Lévy area for studying the limits
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