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Abstract: 1 

 2 
Analysis of 1,180 diarrheal stool samples in Zanzibar detected 247 Vibrio cholerae O1, 3 

Ogawa strains in 2009. Phenotypic traits and PCR based detection of rstR, rtxC and tcpA 4 

alleles showed them as El Tor biotype. Genetic analysis of ctxB of these strains revealed as 5 

classical type and production of classical CTB was confirmed by Western blotting. These 6 

strains produced higher amount of CT than the prototype El Tor and formed separate 7 

cluster by PFGE analysis. 8 

Word count: 75 9 
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Introduction 1 

Cholera infection still continues to be a substantial health burden in developing 2 

countries, due to lack of proper hygiene and sanitation infrastructure, especially in Africa and 3 

Asia. There was no published report of cholera in Africa for more than a century until the 4 

disease struck western regions in 1970. It quickly spread and became endemic across much 5 

of the continent, killing hundreds of people each year. Since 2000, the incidence of cholera 6 

has increased steadily, from 2010 to 2011 and the number of deaths increased by 3.5%. 7 

Cholera statistics released recently by the WHO have shown an 85% increase in the number 8 

of reported cholera cases in 2011 compared to the previous year (37). Recent cholera 9 

outbreaks in Cameroon, Haiti and Zimbabwe (20, 28, 31) provide an indication of alarmingly 10 

increasing propensity of cholera making it one of the major diseases in the global public 11 

health scenario.  12 

Cholera is caused by the Gram-negative bacterium Vibrio cholerae. V. cholerae 13 

strains are classified into over 200 serogroups. The O1 serogroup is further classified into 14 

two biotypes, namely, classical and El Tor. Seven times since 1817, cholera has spread into 15 

the world in the form of pandemics. There is firm evidence that the fifth and sixth pandemics 16 

of cholera were caused by the classical biotype while the most extensive and ongoing seventh 17 

pandemic which started in 1961 is caused by the El Tor biotype (15). The report of new 18 

variant strains of V. cholerae, which had the characteristic of both El Tor and Classical 19 

biotypes, first appeared in 2002 (24) and then in 2004 (2), Studies from Asia and Africa 20 

revealed the emergence and dissemination of classical ctxB in El Tor biotype strains 21 

replacing the seventh pandemic El Tor prototype strains in most of the cholera endemic areas 22 

(1, 6, 23, 25, 29, 30, 32, 33). 23 
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Zanzibar, an archipelago, consists of two major islands, Unguja (also named 1 

Zanzibar) and Pemba. They are situated in the Indian Ocean about 40–60 km off the eastern 2 

coast of mainland Tanzania having population of about 1.1 million. During 2008, an 3 

increased number of cases occurred in the United Republic of Tanzania, with 7700 cases 4 

reported compared with 2911 in the previous year (WHO 2009). Cholera’s new global 5 

incursion in Haiti after its absence of almost 100 years (4) and the rapidly growing genetic 6 

diversity among toxigenic V. cholerae strains with epidemic potential provided the impetus 7 

for molecular characterization of strains collected in Zanzibar in 2009. We put a special 8 

emphasis on CT genotypes along with the CTX prophages of the V. cholerae strains isolated 9 

from Zanzibar to understand whether the emerging El Tor variant has disseminated in this 10 

isolated region.  11 

This study is part a surveillance program of Mass oral cholera vaccination in high-12 

risk populations in Zanzibar supported by the International Vaccine Institute, Korea, the 13 

WHO and the Zanzibari Ministry of Health and Social Welfare. Stool samples were collected 14 

from patients with acute watery diarrhea cases during March to November, 2009 at four 15 

health care centers in Unguja (Chumbuni, Akbar, Kundi and Mnazi Moja Hospital), five 16 

centers from Pemba (Shamiani, Kengeja, Mwambe, Mtambili and Mkoani), and from a 17 

number of temporary cholera camps set up by the government in response to suspected 18 

outbreaks. Among the 1,180 samples collected from patients with acute diarrhea, 268 19 

samples were positive for V. cholerae. Serotyping results with polyvalent O1, mono-specific 20 

Ogawa and Inaba antisera (Difco, USA) and monoclonal O139 antiserum (developed at 21 

NICED) established that 247 of the total V. cholerae isolates belonged to Ogawa serotype 22 

and the remaining 21 isolates were non-O1 non-O139. Month wise isolation profile showed 23 
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that there was a sudden increase in the isolation of V. cholerae O1 in July and September. 1 

We restricted our study with the O1 strains only in this study. All strains tested were resistant 2 

to polymyxin B and positive for Voges-Proskauer test suggesting that they were 3 

phenotypically El Tor. 4 

Analysis of biotype specific ctxB: The ctxB gene of the V. cholerae O1 strains, 5 

which encodes the cholera enterotoxin B subunit were examined by the biotype specific 6 

primers as described elsewhere (21). Results from Mismatch amplification mutation assay 7 

(MAMA) PCR showed that all the strains (Fig 1) had classical ctxB allele in their CTX 8 

prophage. Reports of the emergence of novel variants of V. cholerae O1 El Tor strains with 9 

an additionally mutated CTB (6, 13, 22) prompted us to further characterize the ctxB allele of 10 

50 representative strains which yielded positive amplicons for classical ctxB gene in MAMA-11 

PCR. As described in our last report (22), we used Double mismatch amplification mutation 12 

assay (DMAMA) for this study. Our DMAMA results together with DNA sequence analysis 13 

data also reconfirmed our initial MAMA PCR results. The deduced amino acid sequences of 14 

the strains were found to be identical to the classical CTB (GenBank accession number 15 

JQ683131-36), with a histidine at position 39 and a threonine at position 68. N16961 and 16 

O395 were used as El Tor and classical reference strains in all cases.  17 

Studies of other biotype specific markers: Further genetic characterization based on earlier 18 

studies (7, 8, 9, 15, 17, 27, 32) with primers specific for genes encoding RS1 element 19 

antirepressor rstC, transcriptional repressor rstR, toxin co-regulated pilus subunit A, and 20 

repeat in toxin C subunit (rstC, rstR, tcpA and rtxC respectively) was employed to reconfirm 21 

the biotype of the Zanzibar isolates. Table 1 summarizes our polymerase chain reaction 22 

(PCR) results which genetically characterize all of the 247 O1 isolates as of El Tor biotype. 23 
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Further PCR analysis with primers from different genetic segments of the CTX prophage and 1 

its downstream region confirmed the presence of intact an RS1 element upstream of the CTX 2 

prophage. All of the tested strains were found positive for the toxin like cryptic element (tlc). 3 

All of the primers used in this study have been enlisted in Table 2. Nucleotide sequences of 4 

the rstR gene from representative strain have been deposited in to GenBank under the 5 

accession numbers JX312666-70.  6 

Analysis of the ctxA promoter region: Sequence analysis of the ctxA promoter 7 

region of representative V. cholerae O1 strains from Zanzibar revealed the presence of three 8 

tandem TTTTGAT heptanucleotide repeat. These repeat regions play an important role for 9 

binding the transcriptional activators ToxR (16, 19) and ToxT (3, 38). The analysis of the 10 

ctxA promoter region of V. cholerae O1 isolates from Kolkata showed 4 repeat units (Fig 2). 11 

The nucleotide sequence of the ctxA promoter region of five Zanibar isolates have been 12 

deposited into the GenBank under the accession numbers JX144324-328. 13 

Chromosomal localization of CTX prophage along with its organization: All 14 

tested strains from Zanzibar yielded an amplicon of 766-bp in a Polymerase chain reaction 15 

(PCR) using CII-F and CII-R primers (Fig 3A). CII-F and CII-R primers flank the predicted 16 

CTX prophage integration site in the small chromosome of V. cholerae. (18). Presence of 17 

766 bp amplicon indicated that the small chromosome of the Zanzibar strains was devoid of 18 

any CTX prophage in the specific position. The primers would have failed to amplify a DNA 19 

segment of around 7.8 kb under the provided PCR conditions if there had been a single copy 20 

of CTX prophage in this region, as with the case of O395. Nucleotide sequence of 766 bp 21 

region from 5 Zanzibar isolates have been deposited to the GenBank under the accession 22 

numbers JX255488-92. Analysis of this sequencing data revealed that there are neither any 23 
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remnants of CTX prophage nor any indication of mobility in this site. Furthermore, it also 1 

showed the precise location of CTX prophage insertion in the small chromosome of classical 2 

reference strain O395. Those strains, which lack CTX prophage in their small chromosomes 3 

(e.g. 2010EL-1786, M66-2 and IEC224), shared 99-100% sequence identity in this specific 4 

region with the Kolkata strains. The primer rstC1 and rtxA1 yielded ~ 9 kb amplicon (using 5 

XT 20 PCR system, Bangalore Genei, Bangalore, India) DNA fragment (Fig 3B) and 6 

suggested that V. cholerae O1 isolates from Zanzibar probably had single copy of CTX 7 

prophage. Fig 3C showed a schematic diagram of the copy number of CTX prophages with 8 

probable combination of rstR and ctxB alleles in the Zanzibar strains. 9 

Measurement of CT production by Beads ELISA and confirmation of 10 

production of classical CT by the Zanzibar strains: The amount of CT produced was 11 

measured as described previously (12, 36) during the growth of the representative strains 12 

from Zanzibar in AKI medium and compared with prototype El Tor and classical strains. It 13 

was found that all the El Tor variant stains from Zanzibar produced significantly higher 14 

amounts of CT in vitro than most strains of prototype El Tor (using Mann-Whitney U test 15 

method P<0.001) (Fig 4A). Most of the El Tor strains produced <100 ng/ml/OD600 while all 16 

the classical strains produced >900 ng/ml/OD600. Western blot study using CTB specific 17 

monoclonal antibody also showed that the Zanzibar isolates produced classical CTB (Fig 4B). 18 

Molecular typing by Pulsed-field gel electrophoresis (PFGE): PFGE analysis of sixteen 19 

representative strains from Zanzibar along with several reference strains from other parts of 20 

the world showed that the Zanzibar strains formed a homogeneous banding pattern (except 21 

one strain) and this pattern is different from Indian and other African strains isolated in 22 

recent times (Fig 5). Dendogram analysis using Bionumeric software (Applied Maths, 23 
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Belgium) showed that the Zanzibar strains formed a separate cluster indicating its different 1 

lineage (Fig 5).  2 

Cholera is mainly endemic in low-income countries in Africa, Asia, Central and 3 

South America. In recent years, it has become endemic in an increasing number of 4 

geographical areas. In Zanzibar, a cholera outbreak with 411 cases and 51 deaths was 5 

reported for the first time in 1978 from a fishermen village (34). Before the recent study, we 6 

had very limited knowledge about the molecular epidemiology of V. cholerae isolated from 7 

these regions although recurrent outbreaks have been documented since 1978. To our 8 

knowledge, this is the first report elucidating the molecular characterization of cholera 9 

epidemiology from the archipelago. A growing number of published articles indicates that 10 

the V. cholerae O1 El Tor variant strains have replaced the seventh pandemic El Tor biotype 11 

strains in many parts around Africa and Asia. Siddique et al reported from a clinical study 12 

that large numbers of patients were admitted with more severe dehydration in Bakerganj and 13 

Mathbaria, hospitals in southern Bangladesh and all the V. cholerae O1 El Tor strains 14 

isolated from these patients produced classical CT (35). Two recently published reports (12, 15 

36) also motivated us to speculate that a significant difference between the amounts of CT 16 

produced by these two biotype strains may reflect severity of clinical manifestation. 17 

The selection of El Tor variant strain seems to be an evolutionary optimization of the 18 

El Tor biotype and could represent a new, more virulent form of the El Tor biotype. It would 19 

be interesting to know the lineages of the Zanzibar strains as the specific change in ctxB of El 20 

Tor strains was first observed in Kolkata during 1990 (30). These new V. cholerae O1 El Tor 21 

variant strains not only replaced the V. cholerae O1 El Tor prototype strains, but also turned 22 

out to be genetically stable and spread rapidly even to remote islands in the east African 23 
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continent as evidenced from this study. Moreover, the severity of the disease appears to be 1 

intensifying, and recent cholera outbreaks in various places, including Zimbabwe and Haiti, 2 

have followed protracted period (14, 28). An active holistic surveillance system should be in 3 

place in order to track the dissemination mode of the V. cholerae O1 El Tor variant strains in 4 

the population using latest molecular diagnostic assays, as these strains possess all the 5 

potentialities and foundation for a new pandemic. Moreover, a recent study by Reyburn et al 6 

(31) provided evidence from the temporal patterns of cholera cases reported between 2002 7 

and 2008 in Zanzibar that rainfall and temperature, among various climate and ocean 8 

environmental factors are the key drivers of cholera outbreaks. Such predictive models may 9 

help public health authorities to prepare medical equipment, mobilize staff and stock / 10 

distribute mass oral cholera vaccination. 11 

 12 

 13 
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 1 

Table 1: Genetic characterization of the V. cholerae O1 strains isolated from Zanzibar.  2 

Tested Strain Bacteriology Target genes and PCR results  

 Serogroup Serotype Biotype ctxB rstR tcpA rstC rtxC tlc 

V. cholerae Zanzibar O1 Ogawa El Tor C* E* E* + + + 

N16961 O1 Inaba El Tor E* E* E* + + + 

O395 O1 Ogawa Classical C* C* C* - - + 

C*: Classical type, E*: El Tor type 3 

Table 2: Primer sequences, amplicons size and annealing conditions used in PCR assays 4 

Primer Primer Sequence 5'-3' 
Amplicon 
size(bp) Anneling(°C) Reference 

       rtxA1 
 

GCGATTCTCAAAGAGATGC ~24001 54 (27) 
ctxB 

common(F)   ACTATCTTCAGCATATGCACATGG   (21 
Re-elt CCTGGTACTTCTACTTGAAACA  55  
Rv-cla CCTGGTACTTCTACTTGAAACG 191   
ctxB-F3 GTTTTACTATCTTCAGCATATGCGA  56 (22) 
ctxB-F4 GTTTTACTATCTTCAGCATATGCGC  60  
ctxB (F) GGTTGCTTCTCATCATCGAACCAC 460  (26) 
ctxB (R) GATACACATAATAGAATTAAGGAT  55  

rstRclass(F) CTTCTCATCAGCAAAGCCTCCATC 474 50 (5) 
rstRET(F) GCACCATGATTTAAGATGCTC 501   
rstA3R TCGAGTTGTAATTCATCAAGAGTG    
CIIF CTCACGCTGAACAGCAAGTC 766 55 (18) 
CIIR TTGCTTGAATCGAAAGGACA    
tlcF GATTGTGCG TCTTGCATTTAGG 2011 55 (18) 
tlcR GTGAATAAATCAGGTGTAATGTCG    

cep R TTTAGCCTTACGAATTAAGCC ~30472   
RstC1 AAC AGC TAC GGG CTT ATT C 245 55 (27) 
RstC2 TGAGTTGCGGATTTAGGC    
zotF(S) CGAGCTACCGCTACAAGGTGCTA  470 55 This study 

ctxAR(S) CGTGCCTAACAAATCCCGTCTGAG    
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Legends to Figures: 1 

Figure 1: MAMA-PCR to detect the type of ctxB allele in representative Vibrio cholerae 2 

O1 strains isolated from Zanzibar, Africa, using primers (Fw-con/Rv-cla) for classical 3 

ctxB allele (Fig 1, upper panel) and Fw-con/Rv-elt for El Tor type ctxB allele (Fig 1, 4 

lower panel).. Lane 1: MCM 32, Lane 2: MCM 133, Lane 3: MCM 134, Lane 4: MCM 5 

146, Lane 5: MCM 168, Lane 6: T1 Lane 7: MCF 084 Lane 8: MCF 001 Lane 9: WF 01 6 

Lane 10: 210200, Lane 11: Classical control: 0395, Lane 12: El Tor control: N16961. 7 

Figure 2: Comparative nucleotide sequence analysis of the promoter region the ctxAB 8 

operon (PctxAB ) of Zanzibar isolate MCM 133 and Kolkata isolate CRC 220. The 9 

nucleotide sequences of PctxAB of O395 (classical control strain) and N16961 (El Tor 10 

control strain) were obtained from GenBank. Identical residues are indicated with dots. 11 

Each solid bar indicates the missing TTTTGAT heptads .The black arrow line represents 12 

the ATG start codon of ctxA gene. The Zanzibar isolate lacks a single heptad repeat in 13 

comparison with the Kolkata isolate. 14 

Figure 3: PCR results implicating the chromosomal organization of CTX Φ of Vibrio 15 

cholerae O1 Ogawa isolates from Zanzibar. (A) Agarose gel electrophoresis showing the 16 

results of rstC1/rtxA1 PCR. Left M: lambda-Hind III ladder, Lane 1: MCM 133, Lane 2: 17 

MCM 168, Lane 3: KM 282, Lane 4: T1, Lane 5: WM 012: Right M: 1 kb DNA ladder. 18 

 (B). PCR results with primers CII F and CII R showing the absence of CTX prophage in 19 

chromosome II of Zanzibar isolates. The two black bars indicate the location of the two 20 

primers as shown in the figure. Extreme left include 100 bp ladder, 1: MCM 32, Lane 2: 21 

MCM 133, Lane 3: MCM 134, Lane 4: MCM 146, Lane 5: MCM 168, Lane 6: T1 Lane 22 

7: MCF 084 Lane 8: MCF 001. El Tor control strain N16961 and classical control strain 23 

O395 were used as positive and negative controls, respectively.  24 

(C) Predicted molecular organization of the CTX prophage of V. cholera Zanzibar 25 

isolates with probable combination of rstR and ctxB in their large chromosome. The solid 26 

and dotted bars indicate the location of the two primers. 27 

 28 

Figure 4: (A) Amounts of cholera toxin production by Zanzibar variants, prototype El 29 

Tor strains and by classical strain. Error bars denote the standard error in taking each data 30 

in triplicate. (B) Western immunoblotting results of the culture supernatant of 31 
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representative Zanzibar O1 isolates. 100 ng each of the purified classical CT (lane 1) and 1 

El Tor CT (lane 2) were used as positive controls for immunoblotting with the 2 

monoclonal antibody against classical and El Tor CTB, respectively. Lane 3: CF04, Lane 3 

4: MCF147, Lane 5: MCF100, Lane 6: MCM79, Lane 7: media (negative control). 4 

Numbers at left are molecular masses in kilodaltons. 5 

 6 

Figure 5: PFGE patterns of the NotI digested V. cholerae strains from Zanzibar strains 7 

Dendogram analysis using Bionumeric software (Applied Maths, Sint-Martens-Latem, 8 

Belgium) shows three distinct clusters among the Zanzibar isolates tested. Sixteen 9 

representative strains were used for the study.  10 
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