THE NUMBER OF SIMPLE MODULES IN A BLOCK WITH KLEIN FOUR HYPERFOCAL SUBGROUP

Fuminori Tasaka

Abstract

A 2-block of a finite group having a Klein four hyperfocal subgroup has the same number of irreducible Brauer characters as the corresponding 2-block of the normalizer of the hyperfocal subgroup.

1. Introduction

Let p be a prime and k an algebraically closed field of characteristic p. Let G be a finite group. Denote by $G_{p^{\prime}}$ the set of p-regular elements of G. Denote by C_{n} the cyclic group of order n. Let b be a (p-)block (idempotent) of $k G$. Denote by $l(b)$ the number of isomorphism classes of simple $k G b$-modules. Let $\left(P, b_{P}\right)$ be a maximal b-Brauer pair and let $\left(S, b_{S}\right)$ be the unique b Brauer pair contained in $\left(P, b_{P}\right)$ for $S \leq P$. Denote by b_{S}^{H} the block of H associated with b_{S} where the group H is such that $C_{G}(S) \leq H \leq N_{G}(S)$, see [11, V, section 3]. Let Q be the hyperfocal subgroup of b with respect to $\left(P, b_{P}\right)$, that is, $Q=\left\langle\left[S, N_{G}\left(S, b_{S}\right)_{p^{\prime}}\right] \mid S \leq P\right\rangle=\left\langle\left[S, N_{G}\left(S, b_{S}\right)_{p^{\prime}}\right]\right| S \leq$ $P,\left(S, b_{S}\right)$ is maximal or essential \rangle, see [12].

Rouquier raised a question on a derived equivalence between b and $b_{Q}^{N_{G}(Q)}$ (see [13, A.2] for a precise statement). In this context, Watanabe showed that if b has a cyclic hyperfocal subgroup Q, then $l(b)=l\left(b_{Q}^{N_{G}(Q)}\right)([16$, Theorem 1(i)]). In this article, we show the following:

Theorem 1.1. If b has a hyperfocal subgroup Q isomorphic to $C_{2} \times C_{2}$, then $l(b)=l\left(b_{Q}^{N_{G}(Q)}\right)$.

Above Rouquier's problem is verified affirmatively in some concrete cases, see for example [7]. Its character version, that is, existance of a perfect isometry between the corresponding blocks, is proved in some situations, see [8], [15].

2. LOWER DEFECT GROUP OF A BLOCK

In this section, we collect needed facts concerning lower defect groups of a block. For basic facts on lower defect groups of a block as stated in the

[^0]next two paragraphs, see for example [5, V section 10], [11, V section 11] and [16, section 4].

Let I be the k-subspace of $Z(k G)$ with a basis $\left\{\hat{C} \mid C \in \mathrm{Cl}\left(G_{p^{\prime}}\right)\right\}$ where $\mathrm{Cl}\left(G_{p^{\prime}}\right)$ is the set of p-regular conjugacy classes of G and $\hat{C}=\sum_{x \in C} x$. Then denoting by $\operatorname{Bl}(G)$ the set of blocks of $G, I=\oplus_{a \in \operatorname{Bl}(G)} I a$ and there exists a "block partition" $\mathrm{Cl}\left(G_{p^{\prime}}\right)=\cup_{a \in \mathrm{Bl}(G)} X(a)$ (disjoint union) of $\mathrm{Cl}\left(G_{p^{\prime}}\right)$ so that $\{\hat{C} a \mid C \in X(a)\}$ is a k-basis of $I a$.

For a p-subgroup S of G, set $m(b, S)=\mid\{C \in X(b) \mid C$ has a defect group $S\} \mid$. (We call S a lower defect group of b if $m(b, S) \neq 0$.) The multiplicity of p^{n} in elementary divisors of the Cartan matrix of b is equal to $\sum_{S} m(b, S)$ where S ranges over a set of G-conjugacy classes of p-subgroups of G of order p^{n}, and $m(b, S)=\sum_{e} m\left(e^{N_{G}(S, e)}, S\right)$ where e ranges over a set of $N_{G}(S)$-conjugacy classes of blocks of $C_{G}(S)$ such that (S, e) is a b-Brauer pair. In particular, choosing a set \mathcal{T} of subgroups of P such that $\left\{\left(T, b_{T}\right) \mid T \in \mathcal{T}\right\}$ is a set of representatives of G-conjugacy classes of not maximal b-Brauer pairs, we have $l(b)=\sum_{S \in \mathcal{T} \cup\{P\}} m\left(b_{S}^{N_{G}\left(b_{S}, S\right)}, S\right)$. Here, we may take \mathcal{T} so that $\left(T, b_{T}\right)$ is extremal in $\left(P, b_{P}\right)\left(\left[1\right.\right.$, Corollary 4.5 , Remark 4.9]), that is, $N_{P}(T)$ is a defect group of $b_{T}^{N_{G}\left(T, b_{T}\right)}$. Since $m\left(b_{P}^{N_{G}\left(P, b_{P}\right)}, P\right)=m(b, P)=1$, for $l(b)$ it suffices to know $m\left(b_{T}^{N_{G}\left(b_{T}, T\right)}, T\right)$ for $T \in \mathcal{T}$.

Below let $T \in \mathcal{T}$ and denote $P^{\prime}=N_{P}(T)$.
Lemma 2.1. If $b_{T}^{N_{G}\left(T, b_{T}\right)}$ is nilpotent, then $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=0$.
Proof. Since $l\left(b_{T}^{N_{G}\left(T, b_{T}\right)}\right)=1=m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, P^{\prime}\right)$, we have $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=0$.

For a normal p-subgroup Z of G, denote by μ_{Z} the canonical epimorphism $k G \rightarrow k[G / Z]$. When $\left|G: C_{G}(Z)\right|$ is a p-power, we see $m(b, S)=$ $m\left(\mu_{Z}(b), S / Z\right)$ by [11, Theorem V.8.11, Lemma V.8.9].
Lemma 2.2. If $T \cap Q=1$, then $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=m\left(\mu_{T}\left(b_{T}^{N_{G}\left(T, b_{T}\right)}\right), 1\right)$.
Proof. For $x \in N_{G}\left(T, b_{T}\right)_{p^{\prime}}$, we have $[T,\langle x\rangle]=T \cap Q=1$ and so $x \in$ $C_{N_{G}\left(T, b_{T}\right)}(T)$. Hence $\left|N_{G}\left(T, b_{T}\right): C_{N_{G}\left(T, b_{T}\right)}(T)\right|$ is a p-power.

The following is proved in the proof of [16, Theorem 4], in which hyperfocal subalgebra of the block is used. Note that $m(b, 1)$ is equal to the multiplicity of 1 in the set of elementary divisors of the Cartan matrix of b.

Theorem 2.3. If no simple $k G b$-module is relatively Q-projective, then any Cartan integer of b is divisible by p and so $m(b, 1)=0$.

From this we have:

Lemma 2.4. If Q is abelian, $Q<P$ and $|Q| \leq|Z(P)|$, then any Cartan integer of b is divisible by p and so $m(b, 1)=0$.
Proof. Assume there exists a simple $k G b$-module M having a vertex V such that $V \leq Q$. Then there exists a self-centralizing b-Brauer pair (V, e) by [10, Corollary 3.7] (see [14, Section 41]). There exists $g \in G$ such that $(V, e)^{g} \leq$ $\left(P, b_{P}\right)$. Then $C_{P}\left(V^{g}\right) \leq V^{g}<P$. If $V^{g} \leq Z(P)$, then $P=C_{P}\left(V^{g}\right) \leq V^{g}<$ P^{g}, a contradiction. If $V^{g} \not \leq Z(P)$, then $Z(P)<V^{g} Z(P) \leq C_{P}\left(V^{g}\right) \leq$ $V^{g} \leq Q^{g}$, a contradiction. Hence, by Theorem 2.3, the assertion follows.

3. Hyperfocal subgroup of a block

In this section, we collect needed facts concerning hyperfocal subgroup of a block.

Lemma 3.1. Let K be such that $T C_{G}(T) \unlhd K \unlhd N_{G}\left(T, b_{T}\right)$. Then the hyperfocal subgroup Q^{\prime} of b_{T}^{K} with respect to $\left(P^{\prime} \cap K, b_{P^{\prime} \cap K}\right)$ is contained in Q.
Proof. See the proof of [16, Lemma 6].
Lemma 3.2. If Z is a normal p-subgroup of G such that $\left|G: C_{G}(Z)\right|$ is a p-power, then $\mu_{Z}(b)$ has a hyperfocal subgroup $Q Z / Z$.
Proof. We use ${ }^{-}$for μ_{Z}. Let S be such that $Z \unlhd S \leq P$. Denote by $\hat{C}_{G}(S)$ the inverse image in G of $C_{\bar{G}}(\bar{S})$. Then we see that b_{S} is covered by a unique block $\hat{b_{S}}$ of $\hat{C}_{G}(S), \overline{\hat{b_{S}}}$ is a block of $C_{\bar{G}}(\bar{S}),\left(\bar{P}, \overline{\hat{b_{P}}}\right)$ is a maximal \bar{b}-Brauer pair, $\left(\bar{S}, \overline{\hat{b_{S}}}\right) \leq\left(\bar{P}, \overline{\hat{b_{P}}}\right)$, and $\hat{N}_{G}\left(S, \underline{b_{S}}\right)=N_{G}\left(S, b_{S}\right) \hat{C}_{G}(S)$ where $\hat{N}_{G}\left(S, b_{S}\right)$ is the inverse image in G of $N_{\bar{G}}\left(\bar{S}, \widehat{b_{S}}\right)$, see the proof of [16, Lemma 8] for details.

Let $Q_{\bar{b}}$ be the hyperfocal subgroup of \bar{b} with respect to $\left(\bar{P}, \overline{b_{P}}\right)$. Then $Q_{\bar{b}}=\left\langle\left[\bar{S}, N_{\bar{G}}\left(\bar{S}, \overline{b_{S}}\right)_{p^{\prime}}\right] \mid \bar{S} \leq \bar{P}\right\rangle=\left\langle\overline{\left[S, N_{G}\left(S, b_{S}\right)_{p^{\prime}}\right]} \mid Z \leq S \leq P\right\rangle$. On the other hand, $Q=\left\langle\left[S, N_{G}\left(S, b_{S}\right)_{p^{\prime}}\right]\right| S \leq P,\left(S, b_{S}\right)$ is maximal or essential $\rangle=$ $\left\langle\left[S, N_{G}\left(S, b_{S}\right)_{p^{\prime}}\right] \mid Z \leq S \leq P\right\rangle$ since $Z \unlhd G$, see [16, Lemma 2]. Hence, $Q_{\bar{b}}=\bar{Q}$.

The canonical epimorphism $\pi: N_{G}\left(P, b_{P}\right) / C_{G}(P) \rightarrow N_{G}\left(P, b_{P}\right) / P C_{G}(P)$ splits since $p \backslash\left|N_{G}\left(P, b_{P}\right) / P C_{G}(P)\right|$. Let $\sigma: N_{G}\left(P, b_{P}\right) / P C_{G}(P) \rightarrow N_{G}\left(P, b_{P}\right)$ $/ C_{G}(P)$ be a monomorphism such that $\pi \sigma=I d_{N_{G}\left(P, b_{P}\right) / P C_{G}(P)}$. Let $E(b)=$ $\sigma\left(N_{G}\left(P, b_{P}\right) / P C_{G}(P)\right)$ and $\hat{E}(b)$ be the inverse image of $E(b)$ in $N_{G}\left(P, b_{P}\right)$. Note that σ and $E(b)$ are determined up to conjugation. We may view $E(b) \leq \operatorname{Aut}(P)$.

Let $C=C_{G}(Q)$, and note $N_{G}\left(P, b_{P}\right) \leq N_{G}\left(Q, b_{Q}\right)$.
Lemma 3.3. $\hat{E}(b) \cap C=C_{G}(P)$ and $E(b) \leq \operatorname{Aut}(Q)$.

Proof. See the proof of [16, Lemma 3].
Lemma 3.4. If $E(b) \neq 1$ and $E(b)$ acts regularly on $Q-\{1\}$, then $P=$ $Q \rtimes C_{P}(E(b))$.

Proof. See the proof of [16, Lemma 4(i)].
Let $\mathcal{F}_{\left(P, b_{P}\right)}(G, b)$ be the Brauer category of b whose objects are b-Brauer pairs contained in $\left(P, b_{P}\right)$.
Lemma 3.5. If $Q \unlhd G$ and G / C is abelian, then there is no essential b-Brauer pair and so $N_{G}\left(P, b_{P}\right)$ controls fusion of $\mathcal{F}_{\left(P, b_{P}\right)}(G, b)$.
Proof. See the proof of [16, Theorem 3].
Let $N=N_{G}\left(Q, b_{Q}\right)$ and $c=b_{Q}^{N_{G}\left(Q, b_{Q}\right)}$.
As is well-known, $\uparrow_{N}^{N_{G}(Q)}$ gives a Morita equivalence between $k N c$ and $k N_{G}(Q) b_{Q}^{N_{G}(Q)}$, so $l(c)=l\left(b_{Q}^{N_{G}(Q)}\right)([11$, Theorem V.5.10]). Hence, we will show $l(b)=l(c)$.

The Brauer pair $\left(P, b_{P}\right)$ of G can be viewed as a Brauer pair of N and is a maximal c-Brauer pair.
Theorem 3.6. ([16, Theorem 2]) If Q is abelian, then $\mathcal{F}_{\left(P, b_{P}\right)}(G, b) \simeq$ $\mathcal{F}_{\left(P, b_{P}\right)}(N, c)$. In particular, c has a hyperfocal subgroup Q.
Lemma 3.7. If Q is abelian, then $Q=\left\langle\left[Q, N_{p^{\prime}}\right]\right\rangle$. In particular, C_{2} cannot be a hyperfocal subgroup of a block.
Proof. Clearly, $Q \geq\left\langle\left[Q, N_{p^{\prime}}\right]\right\rangle$. We also have $Q \leq\left\langle\left[Q, N_{p^{\prime}}\right]\right\rangle$. In fact, for $S \leq P$ and $x \in N_{G}\left(S, b_{S}\right)_{p^{\prime}}=\left(N_{N}\left(S, b_{S}\right) C_{G}(S)\right)_{p^{\prime}},[S,\langle x\rangle]=[[S,\langle x\rangle],\langle x\rangle] \leq$ [$Q, N_{p^{\prime}}$] using [6, Theorem 5.3.6].

4. Proof of the main result

Below, we assume $p=2$ and $Q \simeq C_{2} \times C_{2}$. Note $\operatorname{Aut}(Q) \simeq G L(2,2) \simeq S_{3}$.
A block is nilpotent if and only if its hyperfocal subgroup is trivial. Hence, from Lemma 2.1, Lemma 3.1 and Lemma 3.7, if $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right) \neq 0$, then Q is a hyperfocal subgroup of $b_{T}^{N_{G}\left(T, b_{T}\right)}$ with respect to $\left(P^{\prime}, b_{P^{\prime}}\right)$.

Let $F=N / C$. We may view $F \leq \operatorname{Aut}(Q)$.
Since b_{Q} is nilpotent ([12, Proposition 4.2]) and c is not nilpotent, F is not a p-group by [4, Theorem 2] and so

$$
F \simeq C_{3}(\text { Case }(\mathrm{i})) \text { or } F \simeq S_{3}(\text { Case(ii) })
$$

(Principal 2-blocks of A_{4} and S_{4} give Case(i) and Case(ii) respectively.) Then there exists a unique subgroup H such that $C \triangleleft H \unlhd N$, and $H / C \simeq C_{3}$. The subgroup H is P-invariant since C and N are so. Let $U=C_{P}(Q)$. Note
that Case(i) means $H=N, Q \leq Z(P)$ and $U=P$, and Case(ii) means $H<N, Q \not \leq Z(P)$ and $U<P$.

Let $f=b_{Q}^{H}$. Then f and b_{Q} have a defect group $P \cap H=P \cap C=U$. Since $l(f)=3, f$ is not nilpotent and so has a hyperfocal subgroup Q.
Lemma 4.1. $l(c)= \begin{cases}3 & (\text { Case }(i)) \\ 2 & (\text { Case }(i i)) .\end{cases}$
Proof. Case(ii): Since $|N: H|=2$ and $l(f)=3$, there exists an N invariant simple $k H f$-module. The other two simple $k H f$-modules are permuted by conjugation by N, and the assertion follows.

For a maximal f-Brauer pair $\left(U, b_{U}\right), E(f)$ is such that $\operatorname{Aut}(U) \geq N_{H}\left(U, b_{U}\right) / C_{H}(U)=$ $U C_{H}(U) / C_{H}(U) \rtimes E(f)$, and $\hat{E}(f)$ is the inverse image of $E(f)$ in $N_{H}\left(U, b_{U}\right)$.
Lemma 4.2. $E(f) \simeq C_{3}$.
Proof. By the Frattini argument, we have $H=N_{H}\left(U, b_{U}\right) C$ and so $H=$ $\hat{E}(f) C$. Then $E(f)=\hat{E}(f) / C_{H}(U)=\hat{E}(f) / \hat{E}(f) \cap C \simeq \hat{E}(f) C / C=$ $H / C \simeq C_{3}$ using Lemma 3.3 for f.

Since $\left(U, b_{U}\right) \unlhd\left(P, b_{P}\right), P$ normalizes $\left(U, b_{U}\right)$ and so $N_{H}\left(U, b_{U}\right)$. The conjugation action of P on $N_{H}\left(U, b_{U}\right)$ induces the action of P on $N_{H}\left(U, b_{U}\right) / C_{H}(U)$. By the uniqueness of the p-complement up to conjugation, for $u \in P$ there exists $w \in U$ such that $E(f)^{u}=E(f)^{w}$.

Let $R=C_{U}(E(f))$. Note that $\left(R, b_{R}\right)$ is extremal in $\left(P, b_{P}\right)$ by Lemma 4.3(ii) below, and so we will assume $R \in \mathcal{T}$.

Lemma 4.3. (i) $U=Q \times R$. (ii) $R \triangleleft P$.
Proof. (i) We can apply Lemma 3.4 for f and U.
(ii) For $u \in P$, there exists $w \in U$ so that $R^{u}=C_{U^{u}}\left(E(f)^{u}\right)=C_{U^{w}}\left(E(f)^{w}\right)=$ $R^{w}=R$.

Note that R does not depend on the choice of $E(f)$ since $R \triangleleft U$.
Proposition 4.4. Let $T \leq R$.
(i) If $T=R$, then $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)= \begin{cases}2 & (\operatorname{Case}(i)) \\ 1 & (\operatorname{Case}(i i)) \text {. }\end{cases}$
(ii) If $T<R$, then $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=0$.

Proof. The pair $\left(U, b_{U}\right)$ can be viewed as a $b_{R}^{N_{G}\left(R, b_{R}\right)}$-Brauer pair, and we have $\hat{E}(f) \leq N_{N_{G}\left(R, b_{R}\right)}\left(U, b_{U}\right)$ and $\hat{E}(f) \not \leq C_{N_{G}\left(R, b_{R}\right)}(U)$. Hence, $b_{R}^{N_{G}\left(R, b_{R}\right)}$ is not nilpotent, and for the statement we may assume $b_{T}^{N_{G}\left(T, b_{T}\right)}$ has a hyperfocal subgroup Q. Then $\mu_{T}\left(b_{T}^{N_{G}\left(T, b_{T}\right)}\right)$ is a block with a defect group P^{\prime} / T and a hyperfocal subgroup $Q T / T \simeq Q$, see Lemma 3.2.

Let $m=m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=m\left(\mu_{T}\left(b_{T}^{N_{G}\left(T, b_{T}\right)}\right), 1\right)$, see Lemma 2.2.
(i) An elementary divisor of the Cartan matrix of a block with dihedral defect group $D_{2^{n}}(n \geq 2)$ is 2^{n} or 1 ([3, Proposition 4G]). In Case(i), $P / R \simeq$ Q, and since a block having Klein four as a defect group and as a hyperfocal subgroup has three irreducible Brauer characters ([2, Proposition 7D]), we have $m=2$. In Case(ii), $P / R \simeq D_{8}$, and since a block having D_{8} as a defect group and having Klein four as a hyperfocal subgroup has two irreducible Brauer characters ([3, Theorem 2]), we have $m=1$.
(ii) We have $C_{P^{\prime}}(Q)=Q \times\left(P^{\prime} \cap R\right)$ and $P^{\prime} \cap R>T$. Then $C_{P^{\prime}}(Q) / T=$ $Q T / T \times\left(P^{\prime} \cap R\right) / T$, and $Q T / T$ and $\left(P^{\prime} \cap R\right) / T$ are non-trivial normal subgroup of P^{\prime} / T. We have $P^{\prime} / T>Q T / T$ and $\left|Z\left(P^{\prime} / T\right)\right| \geq 4=|Q T / T|$, and so $m=0$ by Lemma 2.4.

Lemma 4.5. $l(b)=m(b, P)+m(b, R)=m\left(b_{P}^{N_{G}\left(P, b_{P}\right)}, P\right)+m\left(b_{R}^{N_{G}\left(R, b_{R}\right)}, R\right)$ when $Q \unlhd G$.

Proof. From Lemma 4.1 and Proposition 4.4(i), we have $l(b)=m\left(b_{P}^{N_{G}\left(P, b_{P}\right)}, P\right)+$ $m\left(b_{R}^{N_{G}\left(R, b_{R}\right)}, R\right)$ and so $l(b)=m(b, P)+m(b, R)$.

Lemma 4.6. If $T \cap Q=Q$, then $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=0$.
Proof. Let $G^{\prime}=N_{G}\left(T, b_{T}\right)$ and $b^{\prime}=b_{T}^{G^{\prime}}$. We may assume b^{\prime} has a hyperfocal subgroup Q. Then we have a normal subgroup R^{\prime} of P^{\prime} for b^{\prime} as R for b. Since $G^{\prime}=N_{N}\left(T, b_{T}\right) C_{G}(T) \leq N$, we have $l\left(b^{\prime}\right)=m\left(b^{\prime}, P^{\prime}\right)+m\left(b^{\prime}, R^{\prime}\right)$ by Lemma 4.5 for b^{\prime}, and so $m\left(b^{\prime}, T\right)=0$. Note T and R^{\prime} are not G^{\prime} conjugate since $Q \leq T$ and $Q \not \leq R^{\prime}$.
Lemma 4.7. If $T \cap Q \simeq C_{2}$, then $b_{T}^{N_{G}\left(T, b_{T}\right)}$ is nilpotent and so $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right)=0$.
Proof. Let $Q_{1}=T \cap Q$. Since $N_{G}\left(T, b_{T}\right) \cap N \leq N_{G}\left(Q_{1}, b_{Q_{1}}\right)=C_{G}\left(Q_{1}\right)$, we have $N_{G}\left(T, b_{T}\right)=N_{N}\left(T, b_{T}\right) C_{G}(T) \leq C_{G}\left(Q_{1}\right)$ and Q_{1} is a central p subgroup of $N_{G}\left(T, b_{T}\right)$. If $b_{T}^{N_{G}\left(T, b_{T}\right)}$ is not nilpotent, then $\mu_{Q_{1}}\left(b_{T}^{N_{G}\left(T, b_{T}\right)}\right)$ would have a hyperfocal subgroup isomorphic to C_{2}.

Proposition 4.8. If $m\left(e^{N_{G}(S, e)}, S\right) \neq 0$ for a b-Brauer pair (S, e), then (S, e) is G-conjugate to $\left(P, b_{P}\right)$ or $\left(R, b_{R}\right)$.

Proof. By Proposition 4.4 it suffices to show that if $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right) \neq 0$, then $T \leq R$. The condition $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right) \neq 0$ implies that $b_{T}^{N_{G}\left(T, b_{T}\right)}$ has a hyperfocal subgroup Q and that $T \cap Q=1$ by Lemma 4.6 and Lemma 4.7.

Firstly, assume $N_{G}\left(T, b_{T}\right)=G$. Then $T \triangleleft G . Q T$ is a direct product, since Q normalizes T, T normalizes Q and $T \cap Q=1$. In particular $T<U$ and
so $\hat{E}(f)$ acts on T through $\hat{E}(f) / C_{H}(U)=E(f) \simeq C_{3}$. Then $[T, \hat{E}(f)] \leq$ $\left[T, N_{G}\left(T, b_{T}\right)_{p^{\prime}}\right] \leq T \cap Q=1$. Hence $T \leq R$.

Next, assume $N_{G}\left(T, b_{T}\right)<G$. We will show by the induction on $|G|$.
When $|G|$ is sufficiently small, then $Q \unlhd G$ and the assertion holds by Lemma 4.5.

Let $G^{\prime}=N_{G}\left(T, b_{T}\right)$ and $b^{\prime}=b_{T}^{G^{\prime}}$. Let $\left(T^{\prime}, b_{T^{\prime}}^{\prime}\right)$ be the b^{\prime}-Brauer pair contained in $\left(P^{\prime}, b_{P^{\prime}}\right)$ for $T^{\prime} \leq P^{\prime}$. Note $\left(T, b_{T}^{\prime}\right)=\left(T, b_{T}\right)$.

Let $N^{\prime}=N_{G^{\prime}}\left(Q, b_{Q}^{\prime}\right)$ and $C^{\prime}=C_{G^{\prime}}(Q)$. Then there exists unique H^{\prime} such that $C^{\prime} \triangleleft H^{\prime} \unlhd N^{\prime}$, which satisfies $H^{\prime} / C^{\prime} \simeq C_{3}$. Let $f^{\prime}=b_{Q}^{H^{\prime}}$ and $U^{\prime}=C_{P^{\prime}}(Q)$. For a maximal f^{\prime}-Brauer pair $\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right), E\left(f^{\prime}\right)$ is such that $\operatorname{Aut}\left(U^{\prime}\right) \geq N_{H^{\prime}}\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right) / C_{H^{\prime}}\left(U^{\prime}\right)=U^{\prime} C_{H^{\prime}}\left(U^{\prime}\right) / C_{H^{\prime}}\left(U^{\prime}\right) \rtimes E\left(f^{\prime}\right)$. Then $E\left(f^{\prime}\right) \simeq C_{3}$ by Lemma 4.2 for b^{\prime}, and let $R^{\prime}=C_{U^{\prime}}\left(E\left(f^{\prime}\right)\right)$. Then $U^{\prime}=Q \times R^{\prime}$ by Lemma 4.3 for b^{\prime}. Note that R^{\prime} does not depend on the choice of $E\left(f^{\prime}\right)$.

We can consider the statement of this proposition for b^{\prime}. Since $G^{\prime}<G$, by the induction hypothesis, if $m\left(e^{\prime N_{G^{\prime}}\left(S^{\prime}, e^{\prime}\right)}, S^{\prime}\right) \neq 0$ for a b^{\prime}-Brauer pair $\left(S^{\prime}, e^{\prime}\right)$, then $\left(S^{\prime}, e^{\prime}\right)$ is G^{\prime}-conjugate to $\left(P^{\prime}, b_{P^{\prime}}\right)$ or $\left(R^{\prime}, b_{R^{\prime}}^{\prime}\right)$. Since the condition $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right) \neq 0$ can be viewed as a condition $m\left(b_{T}^{\prime N_{G^{\prime}}\left(T, b_{T}^{\prime}\right)}, T\right) \neq 0$ of $b^{\prime}-$ Brauer pair, the assumption $m\left(b_{T}^{N_{G}\left(T, b_{T}\right)}, T\right) \neq 0$ and $T<P^{\prime}$ implies $\left(T, b_{T}^{\prime}\right)$ is G^{\prime}-conjugate to ($R^{\prime}, b_{R^{\prime}}^{\prime}$) and so $T=R^{\prime}$.

Then we see $\left(U^{\prime}, b_{U^{\prime}}\right)=\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right)$ and $H^{\prime}=N_{H^{\prime}}\left(U^{\prime}\right)$. Hence we have $N_{H^{\prime}}\left(U, b_{U}\right) \leq N_{H^{\prime}}\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right)$. On the other hand, since $N_{H}\left(U, b_{U}\right)$ controls fusion of $\mathcal{F}_{\left(U, b_{U}\right)}(H, f)$ by Lemma 3.5 for f and $C_{H}\left(U^{\prime}\right)=C_{H^{\prime}}\left(U^{\prime}\right)$, we have $N_{H^{\prime}}\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right) \leq N_{H^{\prime}}\left(U, b_{U}\right) C_{H^{\prime}}\left(U^{\prime}\right)$. Therefore we have $N_{H^{\prime}}\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right)=$ $N_{H^{\prime}}\left(U, b_{U}\right) C_{H^{\prime}}\left(U^{\prime}\right)$.

The quotient group $N_{H^{\prime}}\left(U, b_{U}\right) / C_{H^{\prime}}(U)$ is a subgroup of $N_{H}\left(U, b_{U}\right) / C_{H}(U)$ and acts on U^{\prime} through $N_{H^{\prime}}\left(U, b_{U}\right) / N_{H^{\prime}}\left(U, b_{U}\right) \cap C_{H^{\prime}}\left(U^{\prime}\right) \simeq N_{H^{\prime}}\left(U, b_{U}\right) C_{H^{\prime}}\left(U^{\prime}\right) / C_{H^{\prime}}\left(U^{\prime}\right)=$ $N_{H^{\prime}}\left(U^{\prime}, b_{U^{\prime}}^{\prime}\right) / C_{H^{\prime}}\left(U^{\prime}\right)$. Then we can take $E(f)$ and $E\left(f^{\prime}\right)$ so that $E(f) \leq$ $N_{H^{\prime}}\left(U, b_{U}\right) / C_{H^{\prime}}(U)$ and $E(f)$ acts on U^{\prime} as $E\left(f^{\prime}\right)$.

Then we have $T=R^{\prime}=C_{U^{\prime}}\left(E\left(f^{\prime}\right)\right)=C_{U}(E(f)) \cap U^{\prime} \leq R$.
From Proposition 4.8 and Proposition 4.4(i), we have
Theorem 4.9. $l(b)=m(b, P)+m(b, R)=m\left(b_{P}^{N_{G}\left(P, b_{P}\right)}, P\right)+m\left(b_{R}^{N_{G}\left(R, b_{R}\right)}, R\right)$

$$
= \begin{cases}3 & (\text { Case }(i)) \\ 2 & (\operatorname{Case}(i i)) .\end{cases}
$$

Then Theorem 1.1 follows from Theorem 4.9.

Acknowledgements The author thanks Atumi Watanabe for her helpful comments.

Remark After a presence of our results at The Mathematical Society of Japan Autumn Meeting 2017 (September 13th), the article [9] by Hu and Zhou which treats more general situation appears.

References

[1] J. Alperin and M. Broué, Local methods in block theory, Ann. of Math. (2) 110 (1979), no. 1, 143-157.
[2] R. Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489-521.
[3] R. Brauer, On 2-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII, 367-393, Academic Press, London, 1974.
[4] M. Cabanes, Extensions of p-groups and construction of characters, Comm. Algebra 15 (1987), no. 6, 1297-1311.
[5] W. Feit, The Representation Theory of Finite Groups, North-Holland, New York, 1982.
[6] D. Gorenstein, Finite groups, Second edition, Chelsea Publishing Co., New York, 1980.
[7] M. Holloway, S. Koshitani and N. Kunugi, Blocks with nonabelian defect groups which have cyclic subgroups of index p, Arch. Math. (Basel) 94 (2010), no. 2, 101-116.
[8] H. Horimoto and A. Watanabe, On a perfect isometry between principal p-blocks of finite groups with cyclic p-hyperfocal subgroups, arXiv:1611.02486, 2016.
[9] X. Hu and Y. Zhou, 2-blocks with hyperfocal subgroup $C_{2^{n}} \times C_{2^{n}}$, arXiv:1709.05983, 2017.
[10] R. Knörr, On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979), no. 3, 487-499.
[11] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, Boston, 1989.
[12] L. Puig, The hyperfocal subalgebra of a block, Invent. Math. 141 (2000), no. 2, 365397.
[13] R. Rouquier, Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (Charlottesville, VA, 1998), 101-146, de Gruyter, Berlin, 2001.
[14] J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Univ. Press, New York, 1995.
[15] A. Watanabe, On p-power extensions of cyclic defect blocks of finite groups, preprint, 2012.
[16] A. Watanabe, The number of irreducible Brauer characters in a p-block of a finite group with cyclic hyperfocal subgroup, J. Algebra 416 (2014), 167-183.

Fuminori Tasaka
National Institute of Technology
Tsuruoka College
104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan
e-mail address: tasaka@tsuruoka-nct.ac.jp
(Received September24, 2017)
(Accepted November 6, 2018)

[^0]: Mathematics Subject Classification. Primary 20C20; Secondry 20C05.
 Key words and phrases. group theory, modular representation, hyperfocal subgroup.

