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THE NUMBER OF SIMPLE MODULES IN A BLOCK
WITH KLEIN FOUR HYPERFOCAL SUBGROUP

FUMINORI TASAKA

ABSTRACT. A 2-block of a finite group having a Klein four hyperfocal
subgroup has the same number of irreducible Brauer characters as the
corresponding 2-block of the normalizer of the hyperfocal subgroup.

1. INTRODUCTION

Let p be a prime and k an algebraically closed field of characteristic p. Let
G be a finite group. Denote by G,y the set of p-regular elements of G. Denote
by C,, the cyclic group of order n. Let b be a (p-)block (idempotent) of kG.
Denote by 1(b) the number of isomorphism classes of simple kGb-modules.
Let (P,bp) be a maximal b-Brauer pair and let (S,bg) be the unique b-
Brauer pair contained in (P,bp) for S < P. Denote by b the block of H
associated with bg where the group H is such that Cg(S) < H < Ng(S),
see [11, V, section 3]. Let @ be the hyperfocal subgroup of b with respect
to (P7 bP)a that is, @ = <[Sa NG(Sa bS)p’] ‘ S < P> = <[Sa NG(S7 bS)P'] | S <
P, (S,bg)is maximal or essential), see [12].

Rouquier raised a question on a derived equivalence between b and bgG(Q)
(see [13, A.2] for a precise statement). In this context, Watanabe showed

that if b has a cyclic hyperfocal subgroup @, then I(b) = l(bgG(Q)) ([16,
Theorem 1(i)]). In this article, we show the following:

Theorem 1.1. Ifb has a hyperfocal subgroup Q) isomorphic to Cy x Cy, then
1(b) = (b @)
Q .

Above Rouquier’s problem is verified affirmatively in some concrete cases,
see for example [7]. Its character version, that is, existance of a perfect
isometry between the corresponding blocks, is proved in some situations,
see [8], [15].

2. LOWER DEFECT GROUP OF A BLOCK

In this section, we collect needed facts concerning lower defect groups of
a block. For basic facts on lower defect groups of a block as stated in the
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next two paragraphs, see for example [5, V section 10], [11, V section 11]
and [16, section 4].

Let I be the k-subspace of Z(kG) with a basis {C'|C€Cl(G,)} where
Cl(Gy) is the set of p-regular conjugacy classes of G and C = Y zec T
Then denoting by BI(G) the set of blocks of G, I = @4epi(e)la and there
exists a “block partition” Cl(Gy) = Uaeni(e) X (@) (disjoint union) of Cl(Gyy)
so that {Ca|CeX(a)} is a k-basis of Ia.

For a p-subgroup S of G, set m(b, S) = |[{C € X (b) | C has a defect group S}|.
(We call S alower defect group of b if m(b, S) # 0.) The multiplicity of p™ in
elementary divisors of the Cartan matrix of b is equal to ) ¢ m(b, S) where S
ranges over a set of G-conjugacy classes of p-subgroups of G of order p”, and
m(b,S) = 3, m(eNe(5€)S) where e ranges over a set of Ng(S)-conjugacy
classes of blocks of C(S) such that (S, e) is a b-Brauer pair. In particular,
choosing a set T of subgroups of P such that {(T,br)|T € T} is a set of
representatives of G-conjugacy classes of not maximal b-Brauer pairs, we
have 1(0) = > geru(py m(bgc(bs’s), S). Here, we may take T so that (7' br)
is extremal in (P,bp) ([1, Corollary 4.5, Remark 4.9]), that is, Np(T) is a
defect group of bh¢ ") Since m(bN¢ ") P) = m(b, P) = 1, for I(b) it
suffices to know m(bgc(bT’T), T)forTeT.

Below let T' € T and denote P’ = Np(T).

Lemma 2.1. If bgG(T’bT) 1s nilpotent, then m(bQJYG(T’bT),T) =0.

Proof. Since l(bgG(T’bT)) =1= m(b?G(T’bT), P’), we have m(bZJYG(T’bT),T) =0.
O

For a normal p-subgroup Z of GG, denote by uyz the canonical epimor-
phism kG — k[G/Z]. When |G : Cg(Z)]| is a p-power, we see m(b,S) =
m(pz(b),S/Z) by [11, Theorem V.8.11, Lemma V.8.9].
Lemma 2.2. IfTNQ =1, then m(b?G(T’bT),T) = m(uT(bgc(T’bT)), 1).
Proof. For x € Ng(T,br),y, we have [T,(z)] = T NQ =1 and so = €
CNg(1,br)(T). Hence |[Ng(T,br) : Crng(1,p,)(T)] is a p-power. 0

The following is proved in the proof of [16, Theorem 4], in which hy-
perfocal subalgebra of the block is used. Note that m(b, 1) is equal to the
multiplicity of 1 in the set of elementary divisors of the Cartan matrix of b.

Theorem 2.3. If no simple kGb-module is relatively Q-projective, then any
Cartan integer of b is divisible by p and so m(b,1) = 0.

From this we have:
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Lemma 2.4. If Q is abelian, Q < P and |Q| < |Z(P)|, then any Cartan
integer of b is divisible by p and so m(b,1) = 0.

Proof. Assume there exists a simple kGb-module M having a vertex V such
that V' < @. Then there exists a self-centralizing b-Brauer pair (V, e) by [10,
Corollary 3.7] (see [14, Section 41]). There exists g € G such that (V,e)? <
(P,bp). Then Cp(V9) < VI < P. If VI < Z(P), then P=Cp(VI) < VI <
P9 a contradiction. If V9 £ Z(P), then Z(P) < V9Z(P) < Cp(V9) <
V9 < @9, a contradiction. Hence, by Theorem 2.3, the assertion follows. [

3. HYPERFOCAL SUBGROUP OF A BLOCK

In this section, we collect needed facts concerning hyperfocal subgroup of
a block.

Lemma 3.1. Let K be such that TCq(T) < K < Ng(T,br). Then the hy-
perfocal subgroup Q' of b¥ with respect to (P'NK,bpnk) is contained in Q.

Proof. See the proof of [16, Lemma 6]. [J

Lemma 3.2. If Z is a normal p-subgroup of G such that |G : Cq(Z)] is a
p-power, then uz(b) has a hyperfocal subgroup QZ/Z.

Proof. We use ~ for yuz. Let S be such that Z <18 < P. Denote by Cq(S)

the inverse image in G of C(S). Then we see that bg is covered by a unique
block bg of C(S), by is a block of Cx(9), (P, bp) is a maximal b-Brauer
pair, (S,bs) < (P,bp), and Ng(S,bs) = Na(S,bs)Ca(S) where Ng(S, bs)

is the inverse image in G of Ng(S, bs), see the proof of [16, Lemma 8] for
details. ~ o
Let Q7 be the hyperfocal subgroup of b with respect to (P,bp). Then

Q; = ([5, Ng(5,b5)y] |5 < P) = ([5, Na(S,bs)y]|Z < S < P). On the
other hand, Q = ([S, Ng(S,bs)y]| S < P, (S,bg)is maximal or essential) =
([S,Ng(S,bs)p]| Z < S < P) since Z 4G, see [16, Lemma 2|. Hence,
Q;=Q. O

The canonical epimorphism 7 : Ng(P,bp)/Cq(P) — Na(P,bp)/PCq(P)
splits since p [ |[Ng(P,bp)/PCq(P)|. Let o : Na(P,bp)/PCq(P) — Ng(P,bp)
/Cc(P) be a monomorphism such that 7o = Idn,(ppp)/Pos(p)- Let E(b) =
o(Ng(P,bp)/PCq(P)) and E(b) be the inverse image of E(b) in Ng(P,bp).
Note that o and E(b) are determined up to conjugation. We may view
E(b) < Aut(P).

Let C = Cg(Q), and note Ng(P,bp) < Ng(Q,bg).

Lemma 3.3. E(b)NC = Cg(P) and E(b) < Aut(Q).
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Proof. See the proof of [16, Lemma 3]. O

Lemma 3.4. If E(b) #1 and E(b) acts reqularly on Q — {1}, then P =
Q A Cp (E(b))
Proof. See the proof of [16, Lemma 4(i)]. O

Let F(pp,)(G,b) be the Brauer category of b whose objects are b-Brauer
pairs contained in (P, bp).

Lemma 3.5. If Q <G and G/C is abelian, then there is no essential
b-Brauer pair and so Ng(P,bp) controls fusion of Fpp,)(G,b).

Proof. See the proof of [16, Theorem 3]. [

Let N = Na(Q,bg) and ¢ = by @),

As is well-known, T%G(Q) gives a Morita equivalence between kNc¢ and
k‘Ng(Q)bgG(Q), so l(c) = l(bgG(Q)) ([11, Theorem V.5.10]). Hence, we will
show 1(b) = I(c).

The Brauer pair (P,bp) of G can be viewed as a Brauer pair of N and is
a maximal c-Brauer pair.

Theorem 3.6. ([16, Theorem 2]) If Q is abelian, then F(py,)(G,b) =~
Fppp) (N, ¢). In particular, ¢ has a hyperfocal subgroup Q.

Lemma 3.7. If Q is abelian, then Q = ([Q, Ny]). In particular, Co cannot
be a hyperfocal subgroup of a block.

Proof. Clearly, @ > ([Q, Ny]). We also have Q < ([Q, Ny]). In fact, for
S < Pandz € Ng(S,bs)y = (Nn(S,bs)Ca(S5))y, [, (z)] = [[S, ()], (z)] <
[Q, Npy| using [6, Theorem 5.3.6]. OJ

4. PROOF OF THE MAIN RESULT

Below, we assume p = 2 and Q) ~ Cy x Cy. Note Aut(Q) ~ GL(2,2) ~ Ss.
A block is nilpotent if and only if its hyperfocal subgroup is trivial. Hence,

from Lemma 2.1, Lemma 3.1 and Lemma 3.7, if m(bJJYG(T’bT),T) # 0, then

Q is a hyperfocal subgroup of bgG(TbT) with respect to (P, bp/).

Let F = N/C. We may view F < Aut(Q).
Since bg is nilpotent ([12, Proposition 4.2]) and ¢ is not nilpotent, F is
not a p-group by [4, Theorem 2| and so
F ~ (3 (Case(i)) or F ~ S3 (Case(ii)).
(Principal 2-blocks of A4 and Sy give Case(i) and Case(ii) respectively.)
Then there exists a unique subgroup H such that C<H <N, and H/C ~ Cs.
The subgroup H is P-invariant since C' and N are so. Let U = Cp(Q). Note
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that Case(i) means H = N, Q < Z(P) and U = P, and Case(ii) means
H<N,Q«LZ(P)and U < P.

Let f = bg. Then f and by have a defect group PN H = PNC =U.
Since I(f) = 3, f is not nilpotent and so has a hyperfocal subgroup Q.

3 (Case(i))
2 (Case(it)).

Proof. Case(ii): Since [N : H| = 2 and I(f) = 3, there exists an N-
invariant simple kH f-module. The other two simple kH f-modules are per-
muted by conjugation by N, and the assertion follows. [

Lemma 4.1. [(c) = {

For a maximal f-Brauer pair (U, by), E(f) is such that Aut(U) > Ny (U,by)/Cu(U) =

UCH(U)/Cr(U)XE(f), and E(f) is the inverse image of E(f) in Ny (U, by).
Lemma 4.2. E(f)~Cs.

nd so H =

Proof. By the Frattini argument, we have H = Ny (U, a
E(f)C/C =

U,b
B(NC. Then B(f) = E(J)/Cu(U) = E()/E(/)nC
H/C ~ (35 using Lemma 3.3 for f. OJ

Since (U, b)) <(P, bp), P normalizes (U, byy) and so Ny (U, by). The conju-
gation action of P on Ny (U, by) induces the action of P on Ny (U, by)/Cr(U).
By the uniqueness of the p-complement up to conjugation, for u € P there
exists w € U such that E(f)" = E(f)".

Let R = Cy(E(f)). Note that (R,bp) is extremal in (P,bp) by Lemma
4.3(ii) below, and so we will assume R € T.

Lemma 4.3. (i) U =Q x R. (ii)) R< P.

Proof. (i) We can apply Lemma 3.4 for f and U.
(ii) For u € P, there exists w € U so that R* = Cyu (E(f)“) = Cpw (E(f)w) =
RY=R. O

Note that R does not depend on the choice of E(f) since R < U.
Proposition 4.4. Let T < R.
(i) If T = R, then m(bYeTP) 1) = {

v)C

2 (Case(i))
1 (Case(ii)).
(ii) If T < R, then m(Ye ™) 1) = 0.

Proof. The pair (U, by) can be viewed as a bNG(R br)

have E(f) < Nyg(rpr) (U, bu) and E(f) £ CNg(rbr)(U). Hence, by
Ng (Tbr)

-Brauer pair, and we
Ng(Rbr)
is not nilpotent, and for the statement we may assume by, has a hy-

perfocal subgroup . Then ur (bNG(T bT)) is a block with a defect group

P'/T and a hyperfocal subgroup QT /T ~ @Q, see Lemma 3.2.
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Let m = m(bﬁG(T’bT),T) = m(,uT(bgc(T’bT)), 1), see Lemma 2.2.

(i) An elementary divisor of the Cartan matrix of a block with dihedral
defect group Dan (n > 2) is 2" or 1 ([3, Proposition 4G]). In Case(i), P/R ~
@, and since a block having Klein four as a defect group and as a hyperfocal
subgroup has three irreducible Brauer characters ([2, Proposition 7D]), we
have m = 2. In Case(ii), P/R ~ Dg, and since a block having Dg as a defect
group and having Klein four as a hyperfocal subgroup has two irreducible
Brauer characters ([3, Theorem 2]), we have m = 1.

(ii) We have Cp/(Q) = Q x (P’NR) and PPN R > T. Then Cp/(Q)/T =
QT/T x (PN R)/T, and QT/T and (P’ N R)/T are non-trivial normal
subgroup of P’'/T. We have P'/T > QT/T and |Z(P'/T)| > 4 = |QT/T|,
and so m = 0 by Lemma 2.4. J

Lemma 4.5. 1(b) = m(b, P)+m(b, R) = m(bp "), P)+-m(bpo " R)
when Q <G.

Proof. From Lemma 4.1 and Proposition 4.4(i), we have I(b) = m(bgG(RbP)’ Pt
m(bgG(R’bR)v R) and so I(b) = m(b, P) + m(b, R). O

Lemma 4.6. IfTNQ = Q, then m(bﬁG(T’bT),T) =0.

Proof. Let G' = Ng(T,br) and b = b$. We may assume b’ has a
hyperfocal subgroup ). Then we have a normal subgroup R’ of P’ for b’ as R
for b. Since G’ = Ny (T,b7)Cq(T) < N, we have (b)) = m(V, P")+m(V', R)
by Lemma 4.5 for &', and so m(b',T) = 0. Note T and R’ are not G'-
conjugate since Q < T and Q £ R'. O

Lemma 4.7. If TNQ ~ C5, then bﬁG(T’bT) is nilpotent and so m(bgc(T’bT), T)=0.

Proof. Let Q1 =T NQ. Since Ng(T,b7) "N < Ng(Q1,bg,) = Ca(Q1),
we have Ng(T,br) = Nn(T,b1)Ca(T) < Cq(Q1) and @ is a central p-

subgroup of Ng(T,br). If b?G(T’bT) is not nilpotent, then /J,Ql(bgG(TvbT))

would have a hyperfocal subgroup isomorphic to Cs. [J

Proposition 4.8. If m(eNe(5€) S) £ 0 for a b-Brauer pair (S,e), then
(S,e) is G-conjugate to (P, bp) or (R,bR).

Proof. By Proposition 4.4 it suffices to show that if m(bNG Tbr) T) # 0,
then T' < R. The condition m(b?G(T’bT), T) # 0 implies that bgG(T o) has a
hyperfocal subgroup @ and that TN @ =1 by Lemma 4.6 and Lemma 4.7.

Firstly, assume Ng(T,br) = G. Then T<G. QT is a direct product, since
Q@ normalizes T', T normalizes () and T'N @ = 1. In particular 7" < U and
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so E(f) acts on T through E(f)/Cy(U) = E(f) ~ Cs. Then [T, E(f)] <
[T, Nq(T,br)y] <TNQ=1. Hence T < R.

Next, assume Ng(T,br) < G. We will show by the induction on |G|.

When |G| is sufficiently small, then @ < G and the assertion holds by
Lemma 4.5.

Let G' = Ng(T,br) and ¥ = b Let (T",b),) be the b'-Brauer pair
contained in (P’,bpr) for 7" < P’. Note (T, b%.) = (T, br).

Let N' = Ng(Q,bg) and C' = Ce(Q). Then there exists unique H'’

such that ¢ << H' < N’, which satisfies H'/C’ ~ C3. Let f' = b’g/ and
U' = Cp/(Q). For a maximal f’-Brauer pair (U’,b},), E(f’) is such that
Aut(U/) > NH/(U/,b/U/)/CH/(U/) = U/CH/(U/)/CH/(U/) X E(f/) Then
E(f") ~ C3 by Lemma 4.2 for b', and let R’ = Cy (E(f’)). Then U’ = QxR
by Lemma 4.3 for ¥'. Note that R’ does not depend on the choice of E(f).

We can consider the statement of this proposition for . Since G’ < G, by
the induction hypothesis, if m(e’NG’(SI’e/), S") # 0 for a b/-Brauer pair (5, ¢'),
then (5',¢) is G'-conjugate to (P’,bps) or (R',bl). Since the condition
m(b?G(T’bT),T) # 0 can be viewed as a condition m(b’ijG/ (T’b/T),T) # 0 of b'-
Brauer pair, the assumption m(bgG(T’bT), T) # 0 and T' < P’ implies (T, b)
is G'-conjugate to (R',0%,) and so T = R'.

Then we see (U',byr) = (U',by,) and H' = Ng/(U’). Hence we have
Np(U,by) < Np(U',by,). On the other hand, since Ny (U, by) controls
fusion of Fyp,)(H, f) by Lemma 3.5 for f and Cy(U’) = Cg/(U’), we
have Ny (U’,by) < N (U, by )Crr(U'). Therefore we have Ny (U', by, ) =
Np(U, by )Crr (U).

The quotient group Ny (U, by )/Cr(U) is a subgroup of Ny (U, by)/Cr(U)

and acts on U’ through Ny (U, by) /Ny (U, by )NCyg:(U') =~ Ny (U, by )Cpr (U") /Cyr (U') =

Ny (U, 0y;)/Cr(U'). Then we can take E(f) and E(f') so that E(f) <
Ny(U,by)/Cr/(U) and E(f) acts on U’ as E(f’).
Then we have T'= R' = Cyv (E(f')) = Cy(E(f)) NU' < R. O

From Proposition 4.8 and Proposition 4.4(i), we have
Theorem 4.9. 1(b) = m(b, P)+m(b, R) = m(by¢ ") Py pm(bNeFom) | R)
| 3 (Case(i))
| 2 (Case(ii)).
Then Theorem 1.1 follows from Theorem 4.9.

Acknowledgements The author thanks Atumi Watanabe for her helpful
comments.
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Remark After a presence of our results at The Mathematical Society of
Japan Autumn Meeting 2017 (September 13th), the article [9] by Hu and
Zhou which treats more general situation appears.
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