THE NUMBER OF SIMPLE MODULES IN A BLOCK WITH KLEIN FOUR HYPERFOCAL SUBGROUP

Fuminori Tasaka

ABSTRACT. A 2-block of a finite group having a Klein four hyperfocal subgroup has the same number of irreducible Brauer characters as the corresponding 2-block of the normalizer of the hyperfocal subgroup.

1. INTRODUCTION

Let p be a prime and k an algebraically closed field of characteristic p. Let G be a finite group. Denote by $G_{p'}$ the set of p-regular elements of G. Denote by C_n the cyclic group of order n. Let b be a (p-)block (idempotent) of kG. Denote by l(b) the number of isomorphism classes of simple kGb-modules. Let (P, b_P) be a maximal b-Brauer pair and let (S, b_S) be the unique b-Brauer pair contained in (P, b_P) for $S \leq P$. Denote by b_S^H the block of H associated with b_S where the group H is such that $C_G(S) \leq H \leq N_G(S)$, see [11, V, section 3]. Let Q be the hyperfocal subgroup of b with respect to (P, b_P) , that is, $Q = \langle [S, N_G(S, b_S)_{p'}] | S \leq P \rangle = \langle [S, N_G(S, b_S)_{p'}] | S \leq P$, (S, b_S) is maximal or essential, see [12].

Rouquier raised a question on a derived equivalence between b and $b_Q^{N_G(Q)}$ (see [13, A.2] for a precise statement). In this context, Watanabe showed that if b has a cyclic hyperfocal subgroup Q, then $l(b) = l(b_Q^{N_G(Q)})$ ([16, Theorem 1(i)]). In this article, we show the following:

Theorem 1.1. If b has a hyperfocal subgroup Q isomorphic to $C_2 \times C_2$, then $l(b) = l(b_Q^{N_G(Q)})$.

Above Rouquier's problem is verified affirmatively in some concrete cases, see for example [7]. Its character version, that is, existance of a perfect isometry between the corresponding blocks, is proved in some situations, see [8], [15].

2. Lower defect group of a block

In this section, we collect needed facts concerning lower defect groups of a block. For basic facts on lower defect groups of a block as stated in the

Mathematics Subject Classification. Primary 20C20; Secondry 20C05.

Key words and phrases. group theory, modular representation, hyperfocal subgroup.

next two paragraphs, see for example [5, V section 10], [11, V section 11] and [16, section 4].

Let I be the k-subspace of Z(kG) with a basis $\{\hat{C} \mid C \in \operatorname{Cl}(G_{p'})\}$ where $\operatorname{Cl}(G_{p'})$ is the set of p-regular conjugacy classes of G and $\hat{C} = \sum_{x \in C} x$. Then denoting by $\operatorname{Bl}(G)$ the set of blocks of G, $I = \bigoplus_{a \in \operatorname{Bl}(G)} Ia$ and there exists a "block partition" $\operatorname{Cl}(G_{p'}) = \bigcup_{a \in \operatorname{Bl}(G)} X(a)$ (disjoint union) of $\operatorname{Cl}(G_{p'})$ so that $\{\hat{C}a \mid C \in X(a)\}$ is a k-basis of Ia.

For a *p*-subgroup *S* of *G*, set $m(b, S) = |\{C \in X(b) | C \text{ has a defect group } S\}|$. (We call *S* a lower defect group of *b* if $m(b, S) \neq 0$.) The multiplicity of p^n in elementary divisors of the Cartan matrix of *b* is equal to $\sum_S m(b, S)$ where *S* ranges over a set of *G*-conjugacy classes of *p*-subgroups of *G* of order p^n , and $m(b, S) = \sum_e m(e^{N_G(S,e)}, S)$ where *e* ranges over a set of $N_G(S)$ -conjugacy classes of blocks of $C_G(S)$ such that (S, e) is a *b*-Brauer pair. In particular, choosing a set \mathcal{T} of subgroups of *P* such that $\{(T, b_T) | T \in \mathcal{T}\}$ is a set of representatives of *G*-conjugacy classes of not maximal *b*-Brauer pairs, we have $l(b) = \sum_{S \in \mathcal{T} \cup \{P\}} m(b_S^{N_G(b_S,S)}, S)$. Here, we may take \mathcal{T} so that (T, b_T) is extremal in (P, b_P) ([1, Corollary 4.5, Remark 4.9]), that is, $N_P(T)$ is a defect group of $b_T^{N_G(b_T,T)}$. Since $m(b_P^{N_G(P,b_P)}, P) = m(b, P) = 1$, for l(b) it suffices to know $m(b_T^{N_G(b_T,T)}, T)$ for $T \in \mathcal{T}$.

Below let $T \in \mathcal{T}$ and denote $P' = N_P(T)$.

Lemma 2.1. If $b_T^{N_G(T,b_T)}$ is nilpotent, then $m(b_T^{N_G(T,b_T)}, T) = 0$.

Proof. Since $l(b_T^{N_G(T,b_T)}) = 1 = m(b_T^{N_G(T,b_T)}, P')$, we have $m(b_T^{N_G(T,b_T)}, T) = 0$.

For a normal *p*-subgroup Z of G, denote by μ_Z the canonical epimorphism $kG \to k[G/Z]$. When $|G : C_G(Z)|$ is a *p*-power, we see $m(b, S) = m(\mu_Z(b), S/Z)$ by [11, Theorem V.8.11, Lemma V.8.9].

Lemma 2.2. If $T \cap Q = 1$, then $m(b_T^{N_G(T,b_T)}, T) = m(\mu_T(b_T^{N_G(T,b_T)}), 1)$.

Proof. For $x \in N_G(T, b_T)_{p'}$, we have $[T, \langle x \rangle] = T \cap Q = 1$ and so $x \in C_{N_G(T, b_T)}(T)$. Hence $|N_G(T, b_T) : C_{N_G(T, b_T)}(T)|$ is a *p*-power. \Box

The following is proved in the proof of [16, Theorem 4], in which hyperfocal subalgebra of the block is used. Note that m(b, 1) is equal to the multiplicity of 1 in the set of elementary divisors of the Cartan matrix of b.

Theorem 2.3. If no simple kGb-module is relatively Q-projective, then any Cartan integer of b is divisible by p and so m(b, 1) = 0.

From this we have:

Lemma 2.4. If Q is abelian, Q < P and $|Q| \le |Z(P)|$, then any Cartan integer of b is divisible by p and so m(b, 1) = 0.

Proof. Assume there exists a simple kGb-module M having a vertex V such that $V \leq Q$. Then there exists a self-centralizing b-Brauer pair (V, e) by [10, Corollary 3.7] (see [14, Section 41]). There exists $g \in G$ such that $(V, e)^g \leq (P, b_P)$. Then $C_P(V^g) \leq V^g < P$. If $V^g \leq Z(P)$, then $P = C_P(V^g) \leq V^g < P^g$, a contradiction. If $V^g \not\leq Z(P)$, then $Z(P) < V^g Z(P) \leq C_P(V^g) \leq V^g \leq Q^g$, a contradiction. Hence, by Theorem 2.3, the assertion follows. \Box

3. Hyperfocal subgroup of a block

In this section, we collect needed facts concerning hyperfocal subgroup of a block.

Lemma 3.1. Let K be such that $TC_G(T) \leq K \leq N_G(T, b_T)$. Then the hyperfocal subgroup Q' of b_T^K with respect to $(P' \cap K, b_{P' \cap K})$ is contained in Q.

Proof. See the proof of [16, Lemma 6]. \Box

Lemma 3.2. If Z is a normal p-subgroup of G such that $|G : C_G(Z)|$ is a p-power, then $\mu_Z(b)$ has a hyperfocal subgroup QZ/Z.

Proof. We use $\bar{}$ for μ_Z . Let S be such that $Z \leq S \leq P$. Denote by $\hat{C}_G(S)$ the inverse image in G of $C_{\overline{G}}(\overline{S})$. Then we see that b_S is covered by a unique block \hat{b}_S of $\hat{C}_G(S)$, $\overline{\hat{b}_S}$ is a block of $C_{\overline{G}}(\overline{S})$, $(\overline{P}, \overline{\hat{b}_P})$ is a maximal \overline{b} -Brauer pair, $(\overline{S}, \overline{\hat{b}_S}) \leq (\overline{P}, \overline{\hat{b}_P})$, and $\hat{N}_G(S, b_S) = N_G(S, b_S)\hat{C}_G(S)$ where $\hat{N}_G(S, b_S)$ is the inverse image in G of $N_{\overline{G}}(\overline{S}, \overline{\hat{b}_S})$, see the proof of [16, Lemma 8] for details.

Let $Q_{\overline{b}}$ be the hyperfocal subgroup of \overline{b} with respect to $(\overline{P}, \overline{b_P})$. Then $Q_{\overline{b}} = \langle [\overline{S}, N_{\overline{G}}(\overline{S}, \overline{b_S})_{p'}] | \overline{S} \leq \overline{P} \rangle = \langle \overline{[S, N_G(S, b_S)_{p'}]} | Z \leq S \leq P \rangle$. On the other hand, $Q = \langle [S, N_G(S, b_S)_{p'}] | S \leq P$, (S, b_S) is maximal or essential $\rangle = \langle [S, N_G(S, b_S)_{p'}] | Z \leq S \leq P \rangle$ since $Z \leq G$, see [16, Lemma 2]. Hence, $Q_{\overline{b}} = \overline{Q}$. \Box

The canonical epimorphism $\pi : N_G(P, b_P)/C_G(P) \to N_G(P, b_P)/PC_G(P)$ splits since $p \not| |N_G(P, b_P)/PC_G(P)|$. Let $\sigma : N_G(P, b_P)/PC_G(P) \to N_G(P, b_P)/C_G(P)$ be a monomorphism such that $\pi \sigma = Id_{N_G(P, b_P)/PC_G(P)}$. Let $E(b) = \sigma(N_G(P, b_P)/PC_G(P))$ and $\hat{E}(b)$ be the inverse image of E(b) in $N_G(P, b_P)$. Note that σ and E(b) are determined up to conjugation. We may view $E(b) \leq \operatorname{Aut}(P)$.

Let $C = C_G(Q)$, and note $N_G(P, b_P) \leq N_G(Q, b_Q)$.

Lemma 3.3. $\hat{E}(b) \cap C = C_G(P)$ and $E(b) \leq \operatorname{Aut}(Q)$.

Proof. See the proof of [16, Lemma 3]. \Box

Lemma 3.4. If $E(b) \neq 1$ and E(b) acts regularly on $Q - \{1\}$, then P = $Q \rtimes C_P(E(b)).$

Proof. See the proof of [16, Lemma 4(i)]. \Box

Let $\mathcal{F}_{(P,b_P)}(G,b)$ be the Brauer category of b whose objects are b-Brauer pairs contained in (P, b_P) .

Lemma 3.5. If $Q \leq G$ and G/C is abelian, then there is no essential b-Brauer pair and so $N_G(P, b_P)$ controls fusion of $\mathcal{F}_{(P, b_P)}(G, b)$.

Proof. See the proof of [16, Theorem 3]. \Box

Let $N = N_G(Q, b_Q)$ and $c = b_Q^{N_G(Q, b_Q)}$. As is well-known, $\uparrow_N^{N_G(Q)}$ gives a Morita equivalence between kNc and $kN_G(Q)b_Q^{N_G(Q)}$, so $l(c) = l(b_Q^{N_G(Q)})$ ([11, Theorem V.5.10]). Hence, we will show l(b) = l(c).

The Brauer pair (P, b_P) of G can be viewed as a Brauer pair of N and is a maximal *c*-Brauer pair.

Theorem 3.6. ([16, Theorem 2]) If Q is abelian, then $\mathcal{F}_{(P,b_P)}(G,b) \simeq$ $\mathcal{F}_{(P,b_P)}(N,c)$. In particular, c has a hyperfocal subgroup Q.

Lemma 3.7. If Q is abelian, then $Q = \langle [Q, N_{p'}] \rangle$. In particular, C_2 cannot be a hyperfocal subgroup of a block.

Proof. Clearly, $Q \ge \langle [Q, N_{p'}] \rangle$. We also have $Q \le \langle [Q, N_{p'}] \rangle$. In fact, for $S \leq P$ and $x \in N_G(S, b_S)_{p'} = (N_N(S, b_S)C_G(S))_{p'}, [S, \langle x \rangle] = [[S, \langle x \rangle], \langle x \rangle] \leq C_G(S)$ $[Q, N_{p'}]$ using [6, Theorem 5.3.6]. \Box

4. Proof of the main result

Below, we assume p = 2 and $Q \simeq C_2 \times C_2$. Note $\operatorname{Aut}(Q) \simeq GL(2,2) \simeq S_3$. A block is nilpotent if and only if its hyperfocal subgroup is trivial. Hence, from Lemma 2.1, Lemma 3.1 and Lemma 3.7, if $m(\tilde{b}_T^{N_G(\hat{T}, b_T)}, T) \neq 0$, then Q is a hyperfocal subgroup of $b_T^{N_G(T,b_T)}$ with respect to $(P', b_{P'})$.

Let F = N/C. We may view $F \leq \operatorname{Aut}(Q)$.

Since b_Q is nilpotent ([12, Proposition 4.2]) and c is not nilpotent, F is not a p-group by [4, Theorem 2] and so

 $F \simeq C_3$ (Case(i)) or $F \simeq S_3$ (Case(ii)).

(Principal 2-blocks of A_4 and S_4 give Case(i) and Case(ii) respectively.) Then there exists a unique subgroup H such that $C \triangleleft H \trianglelefteq N$, and $H/C \simeq C_3$. The subgroup H is P-invariant since C and N are so. Let $U = C_P(Q)$. Note

162

that Case(i) means H = N, $Q \leq Z(P)$ and U = P, and Case(ii) means H < N, $Q \leq Z(P)$ and U < P.

Let $f = b_Q^H$. Then f and b_Q have a defect group $P \cap H = P \cap C = U$. Since l(f) = 3, f is not nilpotent and so has a hyperfocal subgroup Q.

Lemma 4.1. $l(c) = \begin{cases} 3 & (Case(i)) \\ 2 & (Case(ii)). \end{cases}$

Proof. Case(ii): Since |N : H| = 2 and l(f) = 3, there exists an *N*-invariant simple kHf-module. The other two simple kHf-modules are permuted by conjugation by N, and the assertion follows. \Box

For a maximal f-Brauer pair (U, b_U) , E(f) is such that $\operatorname{Aut}(U) \ge N_H(U, b_U)/C_H(U) = UC_H(U)/C_H(U) \rtimes E(f)$, and $\hat{E}(f)$ is the inverse image of E(f) in $N_H(U, b_U)$.

Lemma 4.2. $E(f) \simeq C_3$.

Proof. By the Frattini argument, we have $H = N_H(U, b_U)C$ and so $H = \hat{E}(f)C$. Then $E(f) = \hat{E}(f)/C_H(U) = \hat{E}(f)/\hat{E}(f) \cap C \simeq \hat{E}(f)C/C = H/C \simeq C_3$ using Lemma 3.3 for f. \Box

Since $(U, b_U) \leq (P, b_P)$, P normalizes (U, b_U) and so $N_H(U, b_U)$. The conjugation action of P on $N_H(U, b_U)$ induces the action of P on $N_H(U, b_U)/C_H(U)$. By the uniqueness of the p-complement up to conjugation, for $u \in P$ there exists $w \in U$ such that $E(f)^u = E(f)^w$.

Let $R = C_U(E(f))$. Note that (R, b_R) is extremal in (P, b_P) by Lemma 4.3(ii) below, and so we will assume $R \in \mathcal{T}$.

Lemma 4.3. (i) $U = Q \times R$. (ii) $R \triangleleft P$.

Proof. (i) We can apply Lemma 3.4 for f and U.

(ii) For $u \in P$, there exists $w \in U$ so that $R^u = C_{U^u}(E(f)^u) = C_{U^w}(E(f)^w) = R^w = R$. \Box

Note that R does not depend on the choice of E(f) since $R \triangleleft U$.

Proposition 4.4. Let $T \leq R$. (i) If T = R, then $m(b_T^{N_G(T,b_T)}, T) = \begin{cases} 2 & (Case(i)) \\ 1 & (Case(ii)). \end{cases}$ (ii) If T < R, then $m(b_T^{N_G(T,b_T)}, T) = 0$.

Proof. The pair (U, b_U) can be viewed as a $b_R^{N_G(R,b_R)}$ -Brauer pair, and we have $\hat{E}(f) \leq N_{N_G(R,b_R)}(U, b_U)$ and $\hat{E}(f) \not\leq C_{N_G(R,b_R)}(U)$. Hence, $b_R^{N_G(R,b_R)}$ is not nilpotent, and for the statement we may assume $b_T^{N_G(T,b_T)}$ has a hyperfocal subgroup Q. Then $\mu_T(b_T^{N_G(T,b_T)})$ is a block with a defect group P'/T and a hyperfocal subgroup $QT/T \simeq Q$, see Lemma 3.2.

F. TASAKA

Let $m = m(b_T^{N_G(T,b_T)}, T) = m(\mu_T(b_T^{N_G(T,b_T)}), 1)$, see Lemma 2.2.

(i) An elementary divisor of the Cartan matrix of a block with dihedral defect group D_{2^n} $(n \ge 2)$ is 2^n or 1 ([3, Proposition 4G]). In Case(i), $P/R \simeq Q$, and since a block having Klein four as a defect group and as a hyperfocal subgroup has three irreducible Brauer characters ([2, Proposition 7D]), we have m = 2. In Case(ii), $P/R \simeq D_8$, and since a block having D_8 as a defect group and having Klein four as a hyperfocal subgroup has two irreducible Brauer characters ([3, Theorem 2]), we have m = 1.

(ii) We have $C_{P'}(Q) = Q \times (P' \cap R)$ and $P' \cap R > T$. Then $C_{P'}(Q)/T = QT/T \times (P' \cap R)/T$, and QT/T and $(P' \cap R)/T$ are non-trivial normal subgroup of P'/T. We have P'/T > QT/T and $|Z(P'/T)| \ge 4 = |QT/T|$, and so m = 0 by Lemma 2.4. \Box

Lemma 4.5. $l(b) = m(b, P) + m(b, R) = m(b_P^{N_G(P, b_P)}, P) + m(b_R^{N_G(R, b_R)}, R)$ when $Q \trianglelefteq G$.

Proof. From Lemma 4.1 and Proposition 4.4(i), we have $l(b) = m(b_P^{N_G(P,b_P)}, P) + m(b_R^{N_G(R,b_R)}, R)$ and so l(b) = m(b, P) + m(b, R). \Box

Lemma 4.6. If $T \cap Q = Q$, then $m(b_T^{N_G(T,b_T)}, T) = 0$.

Proof. Let $G' = N_G(T, b_T)$ and $b' = b_T^{G'}$. We may assume b' has a hyperfocal subgroup Q. Then we have a normal subgroup R' of P' for b' as R for b. Since $G' = N_N(T, b_T)C_G(T) \leq N$, we have l(b') = m(b', P') + m(b', R') by Lemma 4.5 for b', and so m(b', T) = 0. Note T and R' are not G'-conjugate since $Q \leq T$ and $Q \leq R'$. \Box

Lemma 4.7. If $T \cap Q \simeq C_2$, then $b_T^{N_G(T,b_T)}$ is nilpotent and so $m(b_T^{N_G(T,b_T)}, T) = 0$.

Proof. Let $Q_1 = T \cap Q$. Since $N_G(T, b_T) \cap N \leq N_G(Q_1, b_{Q_1}) = C_G(Q_1)$, we have $N_G(T, b_T) = N_N(T, b_T)C_G(T) \leq C_G(Q_1)$ and Q_1 is a central *p*subgroup of $N_G(T, b_T)$. If $b_T^{N_G(T, b_T)}$ is not nilpotent, then $\mu_{Q_1}(b_T^{N_G(T, b_T)})$ would have a hyperfocal subgroup isomorphic to C_2 . \Box

Proposition 4.8. If $m(e^{N_G(S,e)}, S) \neq 0$ for a b-Brauer pair (S,e), then (S,e) is G-conjugate to (P,b_P) or (R,b_R) .

Proof. By Proposition 4.4 it suffices to show that if $m(b_T^{N_G(T,b_T)}, T) \neq 0$, then $T \leq R$. The condition $m(b_T^{N_G(T,b_T)}, T) \neq 0$ implies that $b_T^{N_G(T,b_T)}$ has a hyperfocal subgroup Q and that $T \cap Q = 1$ by Lemma 4.6 and Lemma 4.7.

Firstly, assume $N_G(T, b_T) = G$. Then $T \triangleleft G$. QT is a direct product, since Q normalizes T, T normalizes Q and $T \cap Q = 1$. In particular T < U and

164

so $\hat{E}(f)$ acts on T through $\hat{E}(f)/C_H(U) = E(f) \simeq C_3$. Then $[T, \hat{E}(f)] \leq [T, N_G(T, b_T)_{p'}] \leq T \cap Q = 1$. Hence $T \leq R$.

Next, assume $N_G(T, b_T) < G$. We will show by the induction on |G|.

When |G| is sufficiently small, then $Q \leq G$ and the assertion holds by Lemma 4.5.

Let $G' = N_G(T, b_T)$ and $b' = b_T^{G'}$. Let $(T', b'_{T'})$ be the b'-Brauer pair contained in $(P', b_{P'})$ for $T' \leq P'$. Note $(T, b'_T) = (T, b_T)$.

Let $N' = N_{G'}(Q, b'_Q)$ and $C' = C_{G'}(Q)$. Then there exists unique H'such that $C' \triangleleft H' \trianglelefteq N'$, which satisfies $H'/C' \simeq C_3$. Let $f' = b'_Q^{H'}$ and $U' = C_{P'}(Q)$. For a maximal f'-Brauer pair $(U', b'_{U'})$, E(f') is such that $\operatorname{Aut}(U') \ge N_{H'}(U', b'_{U'})/C_{H'}(U') = U'C_{H'}(U')/C_{H'}(U') \rtimes E(f')$. Then $E(f') \simeq C_3$ by Lemma 4.2 for b', and let $R' = C_{U'}(E(f'))$. Then $U' = Q \times R'$ by Lemma 4.3 for b'. Note that R' does not depend on the choice of E(f').

We can consider the statement of this proposition for b'. Since G' < G, by the induction hypothesis, if $m(e'^{N_{G'}(S',e')}, S') \neq 0$ for a b'-Brauer pair (S',e'), then (S',e') is G'-conjugate to $(P',b_{P'})$ or $(R',b'_{R'})$. Since the condition $m(b_T^{N_G(T,b_T)},T) \neq 0$ can be viewed as a condition $m(b'_T^{N_{G'}(T,b'_T)},T) \neq 0$ of b'-Brauer pair, the assumption $m(b_T^{N_G(T,b_T)},T) \neq 0$ and T < P' implies (T,b'_T) is G'-conjugate to $(R',b'_{R'})$ and so T = R'.

Then we see $(U', b_{U'}) = (U', b'_{U'})$ and $H' = N_{H'}(U')$. Hence we have $N_{H'}(U, b_U) \leq N_{H'}(U', b'_{U'})$. On the other hand, since $N_H(U, b_U)$ controls fusion of $\mathcal{F}_{(U,b_U)}(H, f)$ by Lemma 3.5 for f and $C_H(U') = C_{H'}(U')$, we have $N_{H'}(U', b'_{U'}) \leq N_{H'}(U, b_U)C_{H'}(U')$. Therefore we have $N_{H'}(U', b'_{U'}) = N_{H'}(U, b_U)C_{H'}(U')$.

The quotient group $N_{H'}(U, b_U)/C_{H'}(U)$ is a subgroup of $N_H(U, b_U)/C_H(U)$ and acts on U' through $N_{H'}(U, b_U)/N_{H'}(U, b_U)\cap C_{H'}(U') \simeq N_{H'}(U, b_U)C_{H'}(U')/C_{H'}(U') = N_{H'}(U', b'_{U'})/C_{H'}(U')$. Then we can take E(f) and E(f') so that $E(f) \leq N_{H'}(U, b_U)/C_{H'}(U)$ and E(f) acts on U' as E(f'). Then we have $T = R' = C_{U'}(E(f')) = C_U(E(f)) \cap U' \leq R$. \Box

From Proposition 4.8 and Proposition 4.4(i), we have

Theorem 4.9.
$$l(b) = m(b, P) + m(b, R) = m(b_P^{N_G(P,b_P)}, P) + m(b_R^{N_G(R,b_R)}, R)$$

=
$$\begin{cases} 3 & (Case(i)) \\ 2 & (Case(ii)). \end{cases}$$

Then Theorem 1.1 follows from Theorem 4.9.

Acknowledgements The author thanks Atumi Watanabe for her helpful comments.

F. TASAKA

Remark After a presence of our results at The Mathematical Society of Japan Autumn Meeting 2017 (September 13th), the article [9] by Hu and Zhou which treats more general situation appears.

References

- J. Alperin and M. Broué, *Local methods in block theory*, Ann. of Math. (2) **110** (1979), no. 1, 143–157.
- R. Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489–521.
- [3] R. Brauer, On 2-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII, 367–393, Academic Press, London, 1974.
- [4] M. Cabanes, Extensions of p-groups and construction of characters, Comm. Algebra 15 (1987), no. 6, 1297–1311.
- [5] W. Feit, The Representation Theory of Finite Groups, North-Holland, New York, 1982.
- [6] D. Gorenstein, Finite groups, Second edition, Chelsea Publishing Co., New York, 1980.
- [7] M. Holloway, S. Koshitani and N. Kunugi, Blocks with nonabelian defect groups which have cyclic subgroups of index p, Arch. Math. (Basel) 94 (2010), no. 2, 101–116.
- [8] H. Horimoto and A. Watanabe, On a perfect isometry between principal p-blocks of finite groups with cyclic p-hyperfocal subgroups, arXiv:1611.02486, 2016.
- [9] X. Hu and Y. Zhou, 2-blocks with hyperfocal subgroup $C_{2^n} \times C_{2^n}$, arXiv:1709.05983, 2017.
- [10] R. Knörr, On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979), no. 3, 487–499.
- [11] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, Boston, 1989.
- [12] L. Puig, The hyperfocal subalgebra of a block, Invent. Math. 141 (2000), no. 2, 365– 397.
- [13] R. Rouquier, Block theory via stable and Rickard equivalences, Modular representation theory of finite groups (Charlottesville, VA, 1998), 101–146, de Gruyter, Berlin, 2001.
- [14] J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Univ. Press, New York, 1995.
- [15] A. Watanabe, On p-power extensions of cyclic defect blocks of finite groups, preprint, 2012.
- [16] A. Watanabe, The number of irreducible Brauer characters in a p-block of a finite group with cyclic hyperfocal subgroup, J. Algebra 416 (2014), 167–183.

FUMINORI TASAKA NATIONAL INSTITUTE OF TECHNOLOGY TSURUOKA COLLEGE 104 SAWADA, INOOKA, TSURUOKA, YAMAGATA 997-8511, JAPAN *e-mail address*: tasaka@tsuruoka-nct.ac.jp

> (Received September24, 2017) (Accepted November 6, 2018)