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THE NUMBER OF SIMPLE MODULES IN A BLOCK

WITH KLEIN FOUR HYPERFOCAL SUBGROUP

Fuminori Tasaka

Abstract. A 2-block of a finite group having a Klein four hyperfocal
subgroup has the same number of irreducible Brauer characters as the
corresponding 2-block of the normalizer of the hyperfocal subgroup.

1. Introduction

Let p be a prime and k an algebraically closed field of characteristic p. Let
G be a finite group. Denote byGp′ the set of p-regular elements of G. Denote
by Cn the cyclic group of order n. Let b be a (p-)block (idempotent) of kG.
Denote by l(b) the number of isomorphism classes of simple kGb-modules.
Let (P, bP ) be a maximal b-Brauer pair and let (S, bS) be the unique b-
Brauer pair contained in (P, bP ) for S ≤ P . Denote by bHS the block of H
associated with bS where the group H is such that CG(S) ≤ H ≤ NG(S),
see [11, V, section 3]. Let Q be the hyperfocal subgroup of b with respect
to (P, bP ), that is, Q = ⟨ [S,NG(S, bS)p′ ] |S ≤ P ⟩ = ⟨ [S,NG(S, bS)p′ ] |S ≤
P, (S, bS) is maximal or essential⟩, see [12].

Rouquier raised a question on a derived equivalence between b and b
NG(Q)
Q

(see [13, A.2] for a precise statement). In this context, Watanabe showed

that if b has a cyclic hyperfocal subgroup Q, then l(b) = l(b
NG(Q)
Q ) ([16,

Theorem 1(i)]). In this article, we show the following:

Theorem 1.1. If b has a hyperfocal subgroup Q isomorphic to C2×C2, then

l(b) = l(b
NG(Q)
Q ).

Above Rouquier’s problem is verified affirmatively in some concrete cases,
see for example [7]. Its character version, that is, existance of a perfect
isometry between the corresponding blocks, is proved in some situations,
see [8], [15].

2. Lower defect group of a block

In this section, we collect needed facts concerning lower defect groups of
a block. For basic facts on lower defect groups of a block as stated in the
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next two paragraphs, see for example [5, V section 10], [11, V section 11]
and [16, section 4].

Let I be the k-subspace of Z(kG) with a basis {Ĉ |C∈Cl(Gp′)} where

Cl(Gp′) is the set of p-regular conjugacy classes of G and Ĉ =
∑

x∈C x.
Then denoting by Bl(G) the set of blocks of G, I = ⊕a∈Bl(G)Ia and there
exists a “block partition” Cl(Gp′) = ∪a∈Bl(G)X(a) (disjoint union) of Cl(Gp′)

so that {Ĉa |C∈X(a)} is a k-basis of Ia.
For a p-subgroup S ofG, setm(b, S) = |{C ∈ X(b) |C has a defect groupS}|.

(We call S a lower defect group of b if m(b, S) ̸= 0.) The multiplicity of pn in
elementary divisors of the Cartan matrix of b is equal to

∑
S m(b, S) where S

ranges over a set of G-conjugacy classes of p-subgroups of G of order pn, and
m(b, S) =

∑
em(eNG(S,e), S) where e ranges over a set of NG(S)-conjugacy

classes of blocks of CG(S) such that (S, e) is a b-Brauer pair. In particular,
choosing a set T of subgroups of P such that {(T, bT ) |T ∈ T } is a set of
representatives of G-conjugacy classes of not maximal b-Brauer pairs, we

have l(b) =
∑

S∈T ∪{P}m(b
NG(bS ,S)
S , S). Here, we may take T so that (T, bT )

is extremal in (P, bP ) ([1, Corollary 4.5, Remark 4.9]), that is, NP (T ) is a

defect group of b
NG(T,bT )
T . Since m(b

NG(P,bP )
P , P ) = m(b, P ) = 1, for l(b) it

suffices to know m(b
NG(bT ,T )
T , T ) for T ∈ T .

Below let T ∈ T and denote P ′ = NP (T ).

Lemma 2.1. If b
NG(T,bT )
T is nilpotent, then m(b

NG(T,bT )
T , T ) = 0.

Proof. Since l
(
b
NG(T,bT )
T

)
= 1 = m(b

NG(T,bT )
T , P ′), we havem(b

NG(T,bT )
T , T ) = 0.

□

For a normal p-subgroup Z of G, denote by µZ the canonical epimor-
phism kG → k[G/Z]. When |G : CG(Z)| is a p-power, we see m(b, S) =
m(µZ(b), S/Z) by [11, Theorem V.8.11, Lemma V.8.9].

Lemma 2.2. If T ∩Q = 1, then m(b
NG(T,bT )
T , T ) = m(µT (b

NG(T,bT )
T ), 1).

Proof. For x ∈ NG(T, bT )p′ , we have [T, ⟨x⟩] = T ∩ Q = 1 and so x ∈
CNG(T,bT )(T ). Hence |NG(T, bT ) : CNG(T,bT )(T )| is a p-power. □

The following is proved in the proof of [16, Theorem 4], in which hy-
perfocal subalgebra of the block is used. Note that m(b, 1) is equal to the
multiplicity of 1 in the set of elementary divisors of the Cartan matrix of b.

Theorem 2.3. If no simple kGb-module is relatively Q-projective, then any
Cartan integer of b is divisible by p and so m(b, 1) = 0.

From this we have:
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Lemma 2.4. If Q is abelian, Q < P and |Q| ≤ |Z(P )|, then any Cartan
integer of b is divisible by p and so m(b, 1) = 0.

Proof. Assume there exists a simple kGb-moduleM having a vertex V such
that V ≤ Q. Then there exists a self-centralizing b-Brauer pair (V, e) by [10,
Corollary 3.7] (see [14, Section 41]). There exists g ∈ G such that (V, e)g ≤
(P, bP ). Then CP (V

g) ≤ V g < P . If V g ≤ Z(P ), then P = CP (V
g) ≤ V g <

P g, a contradiction. If V g ̸≤ Z(P ), then Z(P ) < V g Z(P ) ≤ CP (V
g) ≤

V g ≤ Qg, a contradiction. Hence, by Theorem 2.3, the assertion follows. □

3. Hyperfocal subgroup of a block

In this section, we collect needed facts concerning hyperfocal subgroup of
a block.

Lemma 3.1. Let K be such that TCG(T )�K �NG(T, bT ). Then the hy-
perfocal subgroup Q′ of bKT with respect to (P ′∩K, bP ′∩K) is contained in Q.

Proof. See the proof of [16, Lemma 6]. □

Lemma 3.2. If Z is a normal p-subgroup of G such that |G : CG(Z)| is a
p-power, then µZ(b) has a hyperfocal subgroup QZ/Z.

Proof. We use for µZ . Let S be such that Z�S ≤ P . Denote by ĈG(S)
the inverse image in G of CG(S). Then we see that bS is covered by a unique

block b̂S of ĈG(S), b̂S is a block of CG(S), (P , b̂P ) is a maximal b-Brauer

pair, (S, b̂S) ≤ (P , b̂P ), and N̂G(S, bS) = NG(S, bS)ĈG(S) where N̂G(S, bS)

is the inverse image in G of NG(S, b̂S), see the proof of [16, Lemma 8] for
details.

Let Qb be the hyperfocal subgroup of b with respect to (P , b̂P ). Then

Qb = ⟨ [S,NG(S, b̂S)p′ ] |S ≤ P ⟩ = ⟨ [S,NG(S, bS)p′ ] |Z ≤ S ≤ P ⟩. On the
other hand, Q = ⟨ [S,NG(S, bS)p′ ] |S ≤ P, (S, bS) is maximal or essential⟩ =
⟨ [S,NG(S, bS)p′ ] |Z ≤ S ≤ P ⟩ since Z � G, see [16, Lemma 2]. Hence,

Qb = Q. □
The canonical epimorphism π : NG(P, bP )/CG(P ) → NG(P, bP )/PCG(P )

splits since p ̸ | |NG(P, bP )/PCG(P )|. Let σ : NG(P, bP )/PCG(P ) → NG(P, bP )
/CG(P ) be a monomorphism such that πσ = IdNG(P,bP )/PCG(P ). Let E(b) =

σ
(
NG(P, bP )/PCG(P )

)
and Ê(b) be the inverse image of E(b) in NG(P, bP ).

Note that σ and E(b) are determined up to conjugation. We may view
E(b) ≤ Aut(P ).

Let C = CG(Q), and note NG(P, bP ) ≤ NG(Q, bQ).

Lemma 3.3. Ê(b) ∩ C = CG(P ) and E(b) ≤ Aut(Q).
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Proof. See the proof of [16, Lemma 3]. □
Lemma 3.4. If E(b) ̸= 1 and E(b) acts regularly on Q − {1}, then P =
Q⋊ CP

(
E(b)

)
.

Proof. See the proof of [16, Lemma 4(i)]. □

Let F(P,bP )(G, b) be the Brauer category of b whose objects are b-Brauer
pairs contained in (P, bP ).

Lemma 3.5. If Q � G and G/C is abelian, then there is no essential
b-Brauer pair and so NG(P, bP ) controls fusion of F(P,bP )(G, b).

Proof. See the proof of [16, Theorem 3]. □

Let N = NG(Q, bQ) and c = b
NG(Q,bQ)
Q .

As is well-known, ↑NG(Q)
N gives a Morita equivalence between kNc and

kNG(Q)b
NG(Q)
Q , so l(c) = l(b

NG(Q)
Q ) ([11, Theorem V.5.10]). Hence, we will

show l(b) = l(c).
The Brauer pair (P, bP ) of G can be viewed as a Brauer pair of N and is

a maximal c-Brauer pair.

Theorem 3.6. ([16, Theorem 2]) If Q is abelian, then F(P,bP )(G, b) ≃
F(P,bP )(N, c). In particular, c has a hyperfocal subgroup Q.

Lemma 3.7. If Q is abelian, then Q = ⟨[Q,Np′ ]⟩. In particular, C2 cannot
be a hyperfocal subgroup of a block.

Proof. Clearly, Q ≥ ⟨[Q,Np′ ]⟩. We also have Q ≤ ⟨[Q,Np′ ]⟩. In fact, for

S ≤ P and x ∈ NG(S, bS)p′ = (NN (S, bS)CG(S))p′ , [S, ⟨x⟩] =
[
[S, ⟨x⟩], ⟨x⟩

]
≤

[Q,Np′ ] using [6, Theorem 5.3.6]. □

4. Proof of the main result

Below, we assume p = 2 and Q ≃ C2×C2. Note Aut(Q) ≃ GL(2, 2) ≃ S3.
A block is nilpotent if and only if its hyperfocal subgroup is trivial. Hence,

from Lemma 2.1, Lemma 3.1 and Lemma 3.7, if m(b
NG(T,bT )
T , T ) ̸= 0, then

Q is a hyperfocal subgroup of b
NG(T,bT )
T with respect to (P ′, bP ′).

Let F = N/C. We may view F ≤ Aut(Q).
Since bQ is nilpotent ([12, Proposition 4.2]) and c is not nilpotent, F is

not a p-group by [4, Theorem 2] and so

F ≃ C3 (Case(i)) or F ≃ S3 (Case(ii)).

(Principal 2-blocks of A4 and S4 give Case(i) and Case(ii) respectively.)
Then there exists a unique subgroupH such that C�H�N , andH/C ≃ C3.
The subgroup H is P -invariant since C and N are so. Let U = CP (Q). Note



A BLOCK WITH KLEIN FOUR HYPERFOCAL SUBGROUP 163

that Case(i) means H = N , Q ≤ Z(P ) and U = P , and Case(ii) means
H < N , Q ̸≤ Z(P ) and U < P .

Let f = bHQ . Then f and bQ have a defect group P ∩ H = P ∩ C = U .

Since l(f) = 3, f is not nilpotent and so has a hyperfocal subgroup Q.

Lemma 4.1. l(c) =

{
3 (Case(i))
2 (Case(ii)).

Proof. Case(ii): Since |N : H| = 2 and l(f) = 3, there exists an N -
invariant simple kHf -module. The other two simple kHf -modules are per-
muted by conjugation by N , and the assertion follows. □

For a maximal f -Brauer pair (U, bU ), E(f) is such that Aut(U) ≥ NH(U, bU )/CH(U) =

UCH(U)/CH(U)⋊E(f), and Ê(f) is the inverse image of E(f) inNH(U, bU ).

Lemma 4.2. E(f) ≃ C3.

Proof. By the Frattini argument, we have H = NH(U, bU )C and so H =

Ê(f)C. Then E(f) = Ê(f)/CH(U) = Ê(f)/Ê(f) ∩ C ≃ Ê(f)C/C =
H/C ≃ C3 using Lemma 3.3 for f . □

Since (U, bU )�(P, bP ), P normalizes (U, bU ) and soNH(U, bU ). The conju-
gation action of P onNH(U, bU ) induces the action of P onNH(U, bU )/CH(U).
By the uniqueness of the p-complement up to conjugation, for u ∈ P there
exists w ∈ U such that E(f)u = E(f)w.

Let R = CU

(
E(f)

)
. Note that (R, bR) is extremal in (P, bP ) by Lemma

4.3(ii) below, and so we will assume R ∈ T .

Lemma 4.3. (i) U = Q×R. (ii) R� P .

Proof. (i) We can apply Lemma 3.4 for f and U .
(ii) For u ∈ P , there exists w ∈ U so thatRu = CUu

(
E(f)u

)
= CUw

(
E(f)w

)
=

Rw = R. □
Note that R does not depend on the choice of E(f) since R� U .

Proposition 4.4. Let T ≤ R.

(i) If T = R, then m(b
NG(T,bT )
T , T ) =

{
2 (Case(i))
1 (Case(ii)).

(ii) If T < R, then m(b
NG(T,bT )
T , T ) = 0.

Proof. The pair (U, bU ) can be viewed as a b
NG(R,bR)
R -Brauer pair, and we

have Ê(f) ≤ NNG(R,bR)(U, bU ) and Ê(f) ̸≤ CNG(R,bR)(U). Hence, b
NG(R,bR)
R

is not nilpotent, and for the statement we may assume b
NG(T,bT )
T has a hy-

perfocal subgroup Q. Then µT

(
b
NG(T,bT )
T

)
is a block with a defect group

P ′/T and a hyperfocal subgroup QT/T ≃ Q, see Lemma 3.2.
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Let m = m(b
NG(T,bT )
T , T ) = m(µT

(
b
NG(T,bT )
T

)
, 1), see Lemma 2.2.

(i) An elementary divisor of the Cartan matrix of a block with dihedral
defect group D2n (n ≥ 2) is 2n or 1 ([3, Proposition 4G]). In Case(i), P/R ≃
Q, and since a block having Klein four as a defect group and as a hyperfocal
subgroup has three irreducible Brauer characters ([2, Proposition 7D]), we
have m = 2. In Case(ii), P/R ≃ D8, and since a block having D8 as a defect
group and having Klein four as a hyperfocal subgroup has two irreducible
Brauer characters ([3, Theorem 2]), we have m = 1.

(ii) We have CP ′(Q) = Q× (P ′ ∩R) and P ′ ∩R > T . Then CP ′(Q)/T =
QT/T × (P ′ ∩ R)/T , and QT/T and (P ′ ∩ R)/T are non-trivial normal
subgroup of P ′/T . We have P ′/T > QT/T and |Z(P ′/T )| ≥ 4 = |QT/T |,
and so m = 0 by Lemma 2.4. □

Lemma 4.5. l(b) = m(b, P )+m(b,R) = m(b
NG(P,bP )
P , P )+m(b

NG(R,bR)
R , R)

when Q�G.

Proof. From Lemma 4.1 and Proposition 4.4(i), we have l(b) = m(b
NG(P,bP )
P , P )+

m(b
NG(R,bR)
R , R) and so l(b) = m(b, P ) +m(b,R). □

Lemma 4.6. If T ∩Q = Q, then m(b
NG(T,bT )
T , T ) = 0.

Proof. Let G′ = NG(T, bT ) and b′ = bG
′

T . We may assume b′ has a
hyperfocal subgroup Q. Then we have a normal subgroup R′ of P ′ for b′ as R
for b. Since G′ = NN (T, bT )CG(T ) ≤ N , we have l(b′) = m(b′, P ′)+m(b′, R′)
by Lemma 4.5 for b′, and so m(b′, T ) = 0. Note T and R′ are not G′-
conjugate since Q ≤ T and Q ̸≤ R′. □

Lemma 4.7. If T∩Q ≃ C2, then b
NG(T,bT )
T is nilpotent and so m(b

NG(T,bT )
T , T ) = 0.

Proof. Let Q1 = T ∩ Q. Since NG(T, bT ) ∩ N ≤ NG(Q1, bQ1) = CG(Q1),
we have NG(T, bT ) = NN (T, bT )CG(T ) ≤ CG(Q1) and Q1 is a central p-

subgroup of NG(T, bT ). If b
NG(T,bT )
T is not nilpotent, then µQ1(b

NG(T,bT )
T )

would have a hyperfocal subgroup isomorphic to C2. □

Proposition 4.8. If m(eNG(S,e), S) ̸= 0 for a b-Brauer pair (S, e), then
(S, e) is G-conjugate to (P, bP ) or (R, bR).

Proof. By Proposition 4.4 it suffices to show that if m(b
NG(T,bT )
T , T ) ̸= 0,

then T ≤ R. The condition m(b
NG(T,bT )
T , T ) ̸= 0 implies that b

NG(T,bT )
T has a

hyperfocal subgroup Q and that T ∩Q = 1 by Lemma 4.6 and Lemma 4.7.
Firstly, assume NG(T, bT ) = G. Then T�G. QT is a direct product, since

Q normalizes T , T normalizes Q and T ∩ Q = 1. In particular T < U and
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so Ê(f) acts on T through Ê(f)/CH(U) = E(f) ≃ C3. Then [T, Ê(f)] ≤
[T,NG(T, bT )p′ ] ≤ T ∩Q = 1. Hence T ≤ R.

Next, assume NG(T, bT ) < G. We will show by the induction on |G|.
When |G| is sufficiently small, then Q � G and the assertion holds by

Lemma 4.5.
Let G′ = NG(T, bT ) and b′ = bG

′
T . Let (T ′, b′T ′) be the b′-Brauer pair

contained in (P ′, bP ′) for T ′ ≤ P ′. Note (T, b′T ) = (T, bT ).
Let N ′ = NG′(Q, b′Q) and C ′ = CG′(Q). Then there exists unique H ′

such that C ′ � H ′ � N ′, which satisfies H ′/C ′ ≃ C3. Let f ′ = b′H
′

Q and
U ′ = CP ′(Q). For a maximal f ′-Brauer pair (U ′, b′U ′), E(f ′) is such that
Aut(U ′) ≥ NH′(U ′, b′U ′)/CH′(U ′) = U ′CH′(U ′)/CH′(U ′) ⋊ E(f ′). Then

E(f ′) ≃ C3 by Lemma 4.2 for b′, and let R′ = CU ′
(
E(f ′)

)
. Then U ′ = Q×R′

by Lemma 4.3 for b′. Note that R′ does not depend on the choice of E(f ′).
We can consider the statement of this proposition for b′. Since G′ < G, by

the induction hypothesis, ifm(e′NG′ (S′,e′), S′) ̸= 0 for a b′-Brauer pair (S′, e′),
then (S′, e′) is G′-conjugate to (P ′, bP ′) or (R′, b′R′). Since the condition

m(b
NG(T,bT )
T , T ) ̸= 0 can be viewed as a condition m(b′

NG′ (T,b′T )
T , T ) ̸= 0 of b′-

Brauer pair, the assumption m(b
NG(T,bT )
T , T ) ̸= 0 and T < P ′ implies (T, b′T )

is G′-conjugate to (R′, b′R′) and so T = R′.
Then we see (U ′, bU ′) = (U ′, b′U ′) and H ′ = NH′(U ′). Hence we have

NH′(U, bU ) ≤ NH′(U ′, b′U ′). On the other hand, since NH(U, bU ) controls
fusion of F(U,bU )(H, f) by Lemma 3.5 for f and CH(U ′) = CH′(U ′), we
have NH′(U ′, b′U ′) ≤ NH′(U, bU )CH′(U ′). Therefore we have NH′(U ′, b′U ′) =
NH′(U, bU )CH′(U ′).

The quotient groupNH′(U, bU )/CH′(U) is a subgroup ofNH(U, bU )/CH(U)
and acts on U ′ throughNH′(U, bU )/NH′(U, bU )∩CH′(U ′) ≃ NH′(U, bU )CH′(U ′)/CH′(U ′) =
NH′(U ′, b′U ′)/CH′(U ′). Then we can take E(f) and E(f ′) so that E(f) ≤
NH′(U, bU )/CH′(U) and E(f) acts on U ′ as E(f ′).

Then we have T = R′ = CU ′
(
E(f ′)

)
= CU

(
E(f)

)
∩ U ′ ≤ R. □

From Proposition 4.8 and Proposition 4.4(i), we have

Theorem 4.9. l(b) = m(b, P )+m(b,R) = m(b
NG(P,bP )
P , P )+m(b

NG(R,bR)
R , R)

=

{
3 (Case(i))
2 (Case(ii)).

Then Theorem 1.1 follows from Theorem 4.9.

Acknowledgements The author thanks Atumi Watanabe for her helpful
comments.
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Remark After a presence of our results at The Mathematical Society of
Japan Autumn Meeting 2017 (September 13th), the article [9] by Hu and
Zhou which treats more general situation appears.
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